
SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 16, No. 1, pp. 1–31

LINE SEARCH FILTER METHODS FOR NONLINEAR
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Abstract. Line search methods are proposed for nonlinear programming using Fletcher and
Leyffer’s filter method [Math. Program., 91 (2002), pp. 239–269], which replaces the traditional merit
function. Their global convergence properties are analyzed. The presented framework is applied to
active set sequential quadratic programming (SQP) and barrier interior point algorithms. Under
mild assumptions it is shown that every limit point of the sequence of iterates generated by the
algorithm is feasible, and that there exists at least one limit point that is a stationary point for the
problem under consideration. A new alternative filter approach employing the Lagrangian function
instead of the objective function with identical global convergence properties is briefly discussed.
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1. Introduction. Recently, Fletcher and Leyffer [9] proposed filter methods, of-
fering an alternative to merit functions, as a tool to guarantee global convergence in
algorithms for nonlinear programming (NLP). The underlying concept is that trial
points are accepted if they improve the objective function or improve the constraint
violation instead of a combination of those two measures defined by a merit func-
tion. The practical results reported for the filter trust region sequential quadratic
programming (SQP) method in [9] are encouraging, and subsequently global conver-
gence results for related algorithms were established by Fletcher et al. [7] and Fletcher,
Leyffer, and Toint [10]. Other researchers also proposed global convergence results
for different trust region based filter methods, such as for an interior point approach
(M. Ulbrich, S. Ulbrich, and Vicente [21]), a bundle method for nonsmooth opti-
mization (Fletcher and Leyffer [8]), and a pattern search algorithm for derivative-free
optimization (Audet and Dennis [1]).

In this paper we propose and analyze a filter method framework based on line
search which can be applied to active set SQP methods as well as barrier interior point
methods. The motivation given by Fletcher and Leyffer [9] for the development of the
filter method is to avoid the necessity of determining a suitable value of the penalty
parameter in the merit function. In addition, in the context of a line search method,
the filter approach offers another important advantage regarding robustness. It has
been known for some time that line search methods can converge to “spurious solu-
tions,” infeasible points that are not even critical points for a measure of infeasibility,
if the gradients of the constraints become linearly dependent at nonfeasible points. In
[19], Powell gave an example for this behavior. More recently, Wächter and Biegler
[25] demonstrated another global convergence problem for many line search interior
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point methods on a simple well-posed example. Here, the affected methods generate
search directions that point outside of the region I defined by the inequality con-
straints because they are forced to satisfy the linearization of the equality constraints.
Consequently, an increasingly smaller fraction of the proposed step can be taken, and
the iterates eventually converge to an infeasible point at the boundary of I, which
once again is not even a stationary point for any norm of the constraint violation (see
also Marazzi and Nocedal [15] for a detailed discussion of “feasibility control”). Using
a filter approach within a line search algorithm helps to overcome these problems. If
the trial step size becomes too small to guarantee sufficient progress toward a solution
of the problem, the proposed filter method reverts to a feasibility restoration phase,
whose goal is to deliver a new acceptable iterate by decreasing the constraint viola-
tion, or to converge to a local minimizer of infeasibility if this is not possible. In this
way, the filter line search procedure detects problematic cases automatically, so that
global convergence problems described above cannot occur if a suitable algorithm for
the restoration phase is used.

This paper is organized as follows. For easy comprehension of the derivation and
analysis of the proposed line search filter method, the main part of the paper consid-
ers the particular case of solving nonlinear optimization problems without inequality
constraints. At the end of the paper it is shown how the presented techniques can be
applied to general NLPs using active set SQP methods and a barrier approach.

In section 2 we motivate and state the algorithm for the solution of the equality
constrained problem. The method is motivated by the trust region SQP method
proposed by Fletcher et al. [7]. An important difference, however, lies in the condition
that determines when to switch between certain sufficient decrease criteria. The
proposed rule is more general and allows us to show fast local convergence of the
proposed line search filter method in the companion paper [26]. We then show in
section 3 that every limit point of the sequence of iterates generated by the algorithm
is feasible, and that there is at least one limit point that satisfies the first order
optimality conditions for the problem.

In section 4.1 we propose an alternative measure for the filter acceptance criteria.
Here, a trial point is accepted if it reduces the infeasibility or the value of the La-
grangian function (instead of the objective function). The global convergence results
still hold for this modification. Having presented the line search filter framework on
the simple case of problems with equality constraints only, we show in section 4.2
how it can be applied to SQP methods handling inequality constraints, preserving
the same global convergence properties. Finally, section 4.3 shows how the presented
line search filter method can be applied in a barrier interior point framework.

1.1. Notation. We denote the ith component of a vector v ∈ Rn by v(i), and
the ith unit coordinate vector is called ei in the text. Norms ‖ · ‖ denote a fixed
vector norm and its compatible matrix norm unless otherwise noted. For brevity, we
use the convention (x, λ) = (xT , λT )T for vectors x, λ. For a matrix A, we denote
by σmin(A) the smallest singular value of A, and for a symmetric, positive definite
matrix A we call the smallest eigenvalue λmin(A). Given two vectors v, w ∈ Rn, we
define the convex segment [v, w] := {v + t(w − v) : t ∈ [0, 1]}. Finally, we denote by
O(tk) a sequence {vk} satisfying ‖vk‖ ≤ β tk for some constant β > 0 independent
of k, and by o(tk) a sequence {vk} satisfying ‖vk‖ ≤ βktk for some positive sequence
{βk} with limk βk = 0.

2. A line search filter approach. For simplicity, we first describe and analyze
the line search filter method for NLPs with equality constraints only; i.e., we assume
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that the problem to be solved is stated as

min
x∈Rn

f(x)(1a)

subject to c(x) = 0,(1b)

where the objective function f : Rn → R and the equality constraints c : Rn → Rm

with m < n are sufficiently smooth. We later show how this approach can be used in
an active set SQP (section 4.2) and an interior point (section 4.3) framework in order
to tackle general NLPs.

The Karush–Kuhn–Tucker (KKT) conditions for the NLP (1) are

g(x) + A(x)λ = 0,(2a)

c(x) = 0,(2b)

where we denote with A(x) := ∇c(x) the transpose of the Jacobian of the constraints
c, and with g(x) := ∇f(x) the gradient of the objective function. The vector λ cor-
responds to the Lagrange multipliers for the equality constraints (1b). Under certain
constraint qualifications, such as linear independence of the constraint gradients, the
KKT conditions are the first order optimality conditions for (1) (see, e.g., [17]).

Given an initial estimate x0, the line search algorithm proposed in this section
generates a sequence of improved estimates xk of the solution for the NLP (1). For this
purpose in each iteration k a search direction dk is computed from the linearization
at xk of the KKT conditions (2),[

Hk Ak

AT
k 0

](
dk
λ+
k

)
= −

(
gk
ck

)
.(3)

Here, Ak := A(xk), gk := g(xk), and ck := c(xk). The symmetric matrix Hk denotes
the Hessian ∇2

xxL(xk, λk) of the Lagrangian

L(x, λ) := f(x) + c(x)Tλ(4)

of the NLP (1), or an approximation to this Hessian. The vector λk is some estimate
of the optimal multipliers corresponding to the equality constraints (1b), and λ+

k

in (3) can be used to determine a new estimate λk+1 for the next iteration. As is
common for most line search methods, we assume that the projection of the Hessian
approximation Hk onto the null space of the constraint Jacobian is uniformly positive
definite.

After a search direction dk has been computed, a step size αk ∈ (0, 1] is determined
in order to obtain the next iterate

xk+1 := xk + αkdk.(5)

We want to guarantee that ideally the sequence {xk} of iterates converges to a solution
of the NLP (1). In this paper we consider a backtracking line search procedure, where
a decreasing sequence of step sizes αk,l ∈ (0, 1] (l = 0, 1, 2, . . . ) is tried until some
acceptance criterion is satisfied. Traditionally, a trial step size αk,l is accepted if the
corresponding trial point

xk(αk,l) := xk + αk,ldk(6)
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provides sufficient reduction of a merit function, such as the exact penalty function
[14]

φρ(x) = f(x) + ρ θ(x),(7)

where we define the infeasibility measure θ(x) by

θ(x) = ‖c(x)‖ .

Under certain regularity assumptions it can be shown that a feasible strict local min-
imum of the exact penalty function coincides with a local solution of the NLP (1) if
the value of the penalty parameter ρ > 0 is chosen sufficiently large [14].

In order to avoid the determination of an appropriate value of the penalty param-
eter ρ, Fletcher and Leyffer [9] propose the concept of a filter method in the context
of a trust region SQP algorithm. In the remainder of this section we describe how
this concept can be applied to the line search framework outlined above.

The underlying idea is to interpret the NLP (1) as a biobjective optimization
problem with two goals: minimizing the constraint violation θ(x) and minimizing the
objective function f(x). A certain emphasis is placed on the first measure, since a
point has to be feasible in order to be an optimal solution of the NLP. Here, we do not
require that a trial point xk(αk,l) provides progress in a merit function such as (7),
which combines these two goals as a linear combination into one single measure. In-
stead, following Fletcher and Leyffer’s original idea, the trial point xk(αk,l) is accepted
if it improves feasibility, i.e., if θ(xk(αk,l)) < θ(xk), or if it improves the objective
function, i.e., if f(xk(αk,l)) < f(xk). Note that this criterion is less demanding than
the enforcement of decrease in the penalty function (7) and might in general allow
larger steps.

Of course, this simple concept is not sufficient to guarantee global convergence.
Several precautions have to be added, as we outline in the following; these are closely
related to those proposed in [7]. The overall line search filter algorithm is formally
stated in section 2.4.

2.1. Sufficient reduction. Line search methods that use a merit function en-
sure sufficient progress toward the solution. For example, they may do so by enforcing
an Armijo condition for the exact penalty function (7) (see, e.g., [17]). Here, we bor-
row the idea from [7, 10] and replace this condition by requiring that the next iterate
provides at least as much progress in one of the measures θ or f that corresponds to
a small fraction of the current constraint violation, θ(xk). More precisely, for fixed
constants γθ, γf ∈ (0, 1), we say that a trial step size αk,l provides sufficient reduction
with respect to the current iterate xk if

θ(xk(αk,l)) ≤ (1 − γθ)θ(xk)(8a)

or

f(xk(αk,l)) ≤ f(xk) − γfθ(xk).(8b)

In a practical implementation, the constants γθ, γf typically are chosen to be small.
However, relying solely on this criterion would allow the acceptance of a sequence {xk}
that always provides sufficient reduction of the constraint violation (8a) alone, and not
the objective function. This could result in convergence to a feasible but nonoptimal



LINE SEARCH FILTER METHODS: GLOBAL CONVERGENCE 5

point. In order to prevent this, we change to a different sufficient reduction criterion
whenever for the current trial step size αk,l the f-type switching condition

mk(αk,l) < 0 and [−mk(αk,l)]
sf [αk,l]

1−sf > δ [θ(xk)]
sθ(9)

holds with fixed constants δ > 0, sθ > 1, sf ≥ 1, where

mk(α) := αgTk dk(10)

is the linear model of the objective function f in the direction dk. We choose to
formulate the f -type switching condition (9) in terms of a general model mk(α) as it
allows us later, in section 4.1, to define the algorithm for an alternative measure that
replaces “f(x).”

If the condition (9) holds, the step dk is a descent direction for the objective
function. Then, instead of insisting on (8), we require that αk,l satisfies the Armijo-
type condition

f(xk(αk,l)) ≤ f(xk) + ηfmk(αk,l).(11)

Here, ηf ∈ (0, 1
2 ) is a fixed constant. It is possible that for several trial step sizes αk,l

with l = 1, . . . , l̃, condition (9) but not (11) is satisfied. In this case we note that for
smaller step sizes the f -type switching condition (9) may no longer be valid, so that
the method reverts to the acceptance criterion (8).

The second part of the switching condition (9) deserves some discussion. It ensures
that the progress for the objective function enforced by the Armijo condition (11)
is sufficiently large compared to the current constraint violation. In this way, the
decrease in the objective function from (11) cannot be arbitrarily small at points
remote from the feasible region. Note that if we choose sf = 1, condition (9) simplifies
to “−mk(αk,l) > δ[θ(xk)]

sθ” and relates the progress predicted by the linear model of
f for the step size αk,l to a power of the constraint violation. This is identical to the
condition used in filter trust region methods proposed in [7], except that a quadratic
model is used there. However, the analysis presented below allows for larger and
maybe less intuitive values of sf . In particular, we might choose sf > 2sθ, as required
for the local convergence analysis in the companion paper [26]. This choice of sf
makes it possible to show that, close to a local solution, the condition (9) holds true
only if a full step, possibly improved by a second order correction step, satisfies (11)
and is accepted.

In accordance with previous publications on filter methods (e.g., [7, 10]), we call
αk,l an “f -step size” if it satisfies the f -type switching condition (9), indicating that
then decrease of the objective function is required. Similarly, if an f -step size αk,l is
accepted as the final step size αk in iteration k, we refer to k as an “f -type iteration.”

2.2. Filter as taboo region. Beside requiring sufficient decrease with respect
to the current iterate, the filter line search algorithm also needs to avoid cycling. For
example, cycling may occur between two points that alternatingly improve one of the
measures θ and f and worsen the other one. For this purpose, Fletcher and Leyffer [9]
define a “taboo region” in the half-plane {(θ, f) ∈ R2 : θ ≥ 0}. They maintain a list
of (θ(xp), f(xp))-pairs (called filter) corresponding to (some of) the previous iterates
xp and require that a point, in order to be accepted, has to improve at least one of
the two measures compared to those previous iterates. In other words, a trial step
xk(αk,l) can be accepted only if

θ(xk(αk,l)) < θ(xp)
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or

f(xk(αk,l)) < f(xp)

for all (θ(xp), f(xp)) in the current filter.
In contrast to the notation in [7, 9], for the sake of a simplified notation we define

the filter in this paper not as a list but as a set Fk ⊆ [0,∞) × R containing all
(θ, f)-pairs that are “prohibited” in iteration k. We say that a trial point xk(αk,l) is
acceptable to the filter if its (θ, f)-pair does not lie in the taboo region, i.e., if(

θ(xk(αk,l)), f(xk(αk,l))
)

∈ Fk.(12)

During the optimization we make sure that the current iterate xk is always acceptable
to the current filter Fk.

At the beginning of the optimization, the filter is initialized to be empty: F0 := ∅
or—if one wants to impose an explicit upper bound on the constraint violation—as
F0 := {(θ, f) ∈ R2 : θ ≥ θmax} for some θmax > θ(x0). Throughout the optimization
the filter is then augmented in some iterations after the new iterate xk+1 has been
accepted. For this, the updating formula

Fk+1 := Fk ∪
{

(θ, f) ∈ R2 : θ ≥ (1 − γθ)θ(xk) and f ≥ f(xk) − γfθ(xk)
}

(13)

is used (see also [7]). If the filter is not augmented, it remains unchanged, i.e., Fk+1 :=
Fk. Note that then Fk ⊆ Fk+1 for all k. This ensures that all later iterates will have
to provide sufficient reduction with respect to xk as defined by criterion (8), if the
filter has been augmented in iteration k. Note that for a practical implementation it
is sufficient to store the “corner entries”(

(1 − γθ)θ(xk), f(xk) − γfθ(xk)
)
.(14)

It remains to decide which iterations should augment the filter. In order to keep
the filter approach less conservative, we do not want to augment the filter in every
iteration. In addition, as we see in the discussion of the next safeguard below, it is
important for the proposed method that we never include feasible points in the filter.
The following rule from [7] is motivated by these considerations.

We always augment the filter if the current iteration is not an f -type iteration,
i.e., if for the accepted trial step size αk the f -type switching condition (9) does not
hold. Otherwise, the Armijo condition (11) must be satisfied, and the value of the
objective function is strictly decreased. To see that this indeed prevents cycling let
us assume for a moment that the algorithm generates a cycle of length l,

xK , xK+1, . . . , xK+l−1, xK+l = xK , xK+l+1 = xK+1, . . . .(15)

Since a point xk can never be reached again if the filter is augmented in iteration k,
the existence of a cycle would imply that the filter is not augmented for all k ≥ K.
However, this would imply that f(xk) is a strictly decreasing sequence for k ≥ K,
giving a contradiction, so that (15) cannot be a cycle.

2.3. Feasibility restoration phase. If the linear system (3) is consistent, dk
satisfies the linearization of the constraints and we have θ(xk(αk,l)) < θ(xk) whenever
αk,l > 0 is sufficiently small. It is not guaranteed, however, that there exists a trial
step size αk,l > 0 that indeed provides sufficient reduction as defined by criterion (8).



LINE SEARCH FILTER METHODS: GLOBAL CONVERGENCE 7

In this situation, where no admissible step size can be found, the method switches
to a feasibility restoration phase, whose purpose is to find a new iterate xk+1 that sat-
isfies (8) and is also acceptable to the current filter by trying to decrease the constraint
violation. In this paper, we do not specify the particular procedure for this feasibil-
ity restoration phase. It could be any iterative algorithm with the goal of finding a
less infeasible point, and different methods could even be used at different stages of
the optimization procedure. For example, a nonlinear optimization algorithm might
be applied to minimize θ, possibly ignoring the objective function. If the feasibility
restoration phase terminates successfully by delivering a new admissible iterate, the
filter is augmented according to (13) to avoid cycling back to the problematic point
xk.

Since a feasible iterate is never included in the filter (see Lemma 4 below), it is
reasonable to assume that a suitable feasibility restoration phase algorithm is either
able to find a new acceptable iterate satisfying (8) or converges to a local minimizer
(or at least a stationary point) for some measure of infeasibility. The latter case may
be important information for the user, as it indicates that the problem seems (at
least locally) infeasible. This is, of course, no guarantee that the problem possesses
no feasible point; proving infeasibility is as difficult as finding a global minimizer and
beyond the capabilities of methods for finding local solutions like those discussed in
this paper. However, we believe that it is a desirable practical feature of a nonlinear
optimization code to return at least a local minimizer of the constraint violation if the
method fails to find a solution of the optimization problem, instead of terminating at
a less informative and possibly random point.

In order to detect the situation where no admissible step size can be found and
the restoration phase has to be invoked, we propose the following rule. Consider
the case when the current trial step size αk,l is still large enough that the f -type
switching condition (9) holds for some α ≤ αk,l. In this case, we do not switch to
the feasibility restoration phase, since there is still the chance that a shorter step
length might be accepted by the Armijo condition (11). Therefore, we can see from
the f -type switching condition (9) and the definition of mk (10) that we do not want
to revert to the feasibility restoration phase if gTk dk < 0 and

αk,l >
δ[θ(xk)]

sθ

[−gTk dk]
sf
.(16)

However, if the f -type switching condition (9) is not satisfied for the current trial step
size αk,l and all shorter trial step sizes, then the decision whether to switch to the
feasibility restoration phase is based on the linear approximations

θ̃(xk + αdk) = θ(xk) − αθ(xk),(17a)

f̃(xk + αdk) = f(xk) + αgTk dk.(17b)

(Note that indeed θ̃(xk + αdk) = θ(xk + αdk) + O(α2), since AT
k dk + c(xk) = 0 from

(3)). Substituting (17a) into the sufficient decrease condition for the infeasibility
measure (8a) indicates that (8a) may not be satisfied for step sizes satisfying αk,l ≤
γθ. Similarly, in case gTk dk < 0, the sufficient decrease criterion for the objective
function (8b) may not be satisfied for step sizes satisfying

αk,l ≤
γfθ(xk)

−gTk dk
.
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We can summarize this in the following formula for a minimal trial step size

αmin
k := γα ·

⎧⎪⎨
⎪⎩

min

{
γθ,

γfθ(xk)

−gT
k
dk

, δ[θ(xk)]sθ

[−gT
k
dk]sf

}
if gTk dk < 0,

γθ otherwise

(18)

and switch to the feasibility restoration phase when αk,l becomes smaller than αmin
k .

Here, γα ∈ (0, 1] is a safety factor that might be useful in a practical implementation
in order to compensate for the neglected higher order terms in the linearization (17)
and to avoid invoking the feasibility restoration phase unnecessarily.

It is possible, however, to employ more sophisticated rules to decide when to
switch to the feasibility restoration phase while still maintaining the convergence
properties. These rules could, for example, be based on higher order approximations of
θ and/or f . We need only ensure that the algorithm does not switch to the feasibility
restoration phase as long as (9) holds for a step size α ≤ αk,l where αk,l is the
current trial step size, and that the backtracking line search procedure is finite; i.e.,
it eventually either delivers a new iterate xk+1 or reverts to the feasibility restoration
phase.

The proposed method also allows us to switch to the feasibility restoration phase
in any iteration in which the infeasibility θ(xk) does not become arbitrarily small. For
example, this might be necessary when the Jacobian of the constraints AT

k is (nearly)
rank-deficient, so that the linear system (3) is (nearly) singular and no search direction
can be computed. For the purpose of the analysis we assume that the algorithm is
able to detect a situation in which the singular values of Ak become arbitrarily small
and switch to the restoration phase in that case, even if the linear system can be
solved numerically (see Assumption (G4) below). The search direction from (3) might
still be used to generate the next iterate xk+1 using (5), as long as xk+1 
∈ Fk and
(8) can be satisfied. Even though we could consider this a non-f -type iteration, we
formally treat this case as if the restoration phase is called. (Note that the iterate
xk+1 returned from the restoration phase does not necessarily have to satisfy (8a) if
(8b) holds instead.)

2.4. The algorithm. We are now ready to formally state the overall algorithm
for solving the equality constrained NLP (1).

Algorithm I

Given: Starting point x0; constants θmax ∈ (θ(x0),∞]; γθ, γf ∈ (0, 1); δ > 0; γα ∈
(0, 1]; sθ > 1; sf ≥ 1; ηf ∈ (0, 1

2 ); 0 < τ1 ≤ τ2 < 1.
1. Initialize. Initialize the filter F0 := {(θ, f) ∈ R2 : θ ≥ θmax} and the iteration

counter k ← 0.
2. Check convergence. Stop if xk is a stationary point of the NLP (1), i.e., if it satisfies

the KKT conditions (2) for some λ ∈ Rm.
3. Compute search direction. Compute the search direction dk from the linear sys-

tem (3). If this system is detected to be too ill-conditioned (see the assumptions
in the next section), go to the feasibility restoration phase in step 8.

4. Backtracking line search.
4.1. Initialize line search. Set αk,0 = 1 and l ← 0.
4.2. Compute new trial point. If the trial step size becomes too small, i.e., αk,l <

αmin
k with αmin

k defined by (18), go to the feasibility restoration phase in step
8. Otherwise, compute the new trial point xk(αk,l) = xk + αk,ldk.
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4.3. Check acceptability to the filter. If xk(αk,l) ∈ Fk, reject the trial step size and
go to step 4.5.

4.4. Check sufficient decrease with respect to current iterate.
4.4.1. Case I: αk,l is an f-step size (i.e., (9) holds): If the Armijo condi-

tion (11) for the objective function holds, accept the trial step and go
to step 5.
Otherwise, go to step 4.5.

4.4.2. Case II: αk,l is not an f-step size (i.e., (9) is not satisfied): If (8) holds,
accept the trial step and go to step 5.
Otherwise, go to step 4.5.

4.5. Choose new trial step size. Choose αk,l+1 ∈ [τ1αk,l, τ2αk,l], set l ← l + 1, and
go back to step 4.2.

5. Accept trial point. Set αk := αk,l and xk+1 := xk(αk).
6. Augment filter if necessary. If k is not an f -type iteration, augment the filter using

(13); otherwise leave the filter unchanged, i.e., set Fk+1 := Fk.
(Note that steps 4.3 and 4.4.2 ensure that (θ(xk+1), f(xk+1)) 
∈ Fk+1.)

7. Continue with next iteration. Increase the iteration counter k ← k+1 and go back
to step 2.

8. Feasibility restoration phase. Compute a new iterate xk+1 by decreasing the infea-
sibility measure θ so that xk+1 satisfies the sufficient decrease conditions (8) and
is acceptable to the filter, i.e., (θ(xk+1), f(xk+1)) 
∈ Fk. Augment the filter using
(13) (for xk) and continue with the regular iteration in step 7.

2.5. Remarks. Remark 1. From step 4.5 it is clear that liml αk,l = 0. In the
case that θ(xk) > 0, it can be seen from (18) that αmin

k > 0. Therefore, the algorithm
either accepts a new iterate in step 4.4 or switches to the feasibility restoration phase.
If, on the other hand, θ(xk) = 0 and the algorithm does not stop in step 2 at a
KKT point, then the positive definiteness of Hk on the null space of AT

k implies
that gTk dk < 0 (see, e.g., Lemma 4 below). In that case, αmin

k = 0, and the Armijo
condition (11) is satisfied for a sufficiently small step size αk,l; i.e., a new iterate is
accepted in step 4.4.1. Overall, we see that the inner loop in step 4 always terminates
after a finite number of trial steps, and the algorithm is well defined.

Remark 2. The algorithm generates an infinite sequence {xk} of iterates, unless
it encounters a KKT point and terminates in step 2, or if the feasibility restoration
phase in step 8 is not able to return a new iterate. In the latter case, the restoration
phase algorithm converges to a stationary point for the constraint violation, assuming
that a suitable method is used.

Remark 3. The mechanisms of the filter ensure that (θ(xk), f(xk)) 
∈ Fk for all k.
Furthermore, the initialization of the filter in step 1 and the update rule (13) imply
that for all k the filter has the following property:

(θ̄, f̄) 
∈ Fk =⇒ (θ, f) 
∈ Fk if θ ≤ θ̄ and f ≤ f̄ .(19)

Remark 4. For practical purposes, it might not be efficient to restrict the step
size by enforcing an Armijo-type decrease (11) in the objective function if the current
constraint violation is not small. It is possible to change the algorithm so that the step
acceptance criterion is always (8), unless the f -type switching condition (9) holds and
θ(xk) ≤ θsml for some fixed θsml > 0, in which case the Armijo condition (11) has to
be satisfied. In this modified method, the filter is augmented (using (13)), whenever
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(9) or (11) does not hold. The global convergence properties are not affected by this
modification.

Remark 5. The proposed method shares many similarities with the trust region
filter SQP method proposed and analyzed in [7]. However, we discuss a more general
f -type switching rule (9) in order to be able to show fast local convergence in the
companion paper [26]. Further differences result from the fact that the proposed
method follows a line search approach, so that in contrast to [7] the actual step taken
does not necessarily satisfy the linearization of the constraints; i.e., we might have
AT

k (xk − xk+1) 
= c(xk) in some iterations. As a related consequence, the condition
when to switch to the feasibility restoration phase in step 4.2 could not be chosen to
be the detection of infeasibility of the trust region QP but has to be defined by means
of a minimal step size (18). Due to these differences, the global convergence analysis
presented in [7] does not apply to the proposed line search filter method.

3. Global convergence.

3.1. Assumptions. In the remainder of this paper we denote the set of indices
of those iterations in which the filter has been augmented by A ⊆ N; i.e.,

Fk � Fk+1 ⇐⇒ k ∈ A.

The set R ⊆ N is defined as the set of all iteration indices in which the feasibility
restoration phase is invoked. Since step 8 makes sure that the filter is augmented in
every iteration in which the restoration phase is invoked, we have R ⊆ A. We denote
with Rinc ⊆ R the set of those iteration counters in which the restoration phase is
invoked from step 3.

Let us now state the assumptions necessary for the global convergence analysis
of Algorithm I. We first state these assumptions in technical terms and discuss their
practical relevance afterwards.

Assumptions G. Let {xk} be the sequence generated by Algorithm I, where we
assume that the feasibility restoration phase in step 8 always terminates successfully
and that the algorithm does not stop in step 2 at a KKT point.
(G1) There exists an open set C ⊆ Rn with [xk, xk + dk] ⊆ C for all k 
∈ Rinc so that

f and c are differentiable on C, and their function values, as well as their first
derivatives, are bounded and Lipschitz-continuous over C.

(G2) The matrices Hk approximating the Hessian of the Lagrangian in (3) are uni-
formly bounded for all k 
∈ Rinc.

(G3) The Hessian approximations Hk are uniformly positive definite on the null space
of the Jacobian AT

k . In other words, there exists a constant MH > 0 so that for
all k 
∈ Rinc

λmin

(
ZT
k HkZk

)
≥ MH ,(20)

where the columns of Zk ∈ Rn×(n−m) form an orthonormal basis matrix of the
null space of AT

k .
(G4) There exists a constant MA > 0 so that for all k 
∈ Rinc we have

σmin(Ak) ≥ MA.(21)

(G5) The iterates for which the restoration phase is invoked from step 3 (for example,
because (20) or (21) is violated) are not arbitrarily close to the feasible region.
In other words, there exists a constant θinc > 0 so that k 
∈ Rinc whenever
θ(xk) ≤ θinc.
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Assumptions (G1) and (G2) merely establish smoothness and boundedness of the
problem data. As we see later in Lemma 2, Assumption (G3) ensures a certain
descent property and is similar to common assumptions on the reduced Hessian in
SQP line search methods (see, e.g., [17]). To guarantee this requirement in a practical
implementation, one could compute a QR-factorization of Ak to obtain matrices Yk ∈
Rn×m and Zk ∈ Rn×(n−m) so that the columns of [Yk Zk] form an orthonormal basis
of Rn and the columns of Zk are a basis of the null space of AT

k (see, e.g., [11]). Then,
the overall search direction

dk = qk + pk(22a)

can be decomposed into the two orthogonal components

qk := Yk q̄k and pk := Zkp̄k,(22b)

with

q̄k := −
[
AT

k Yk

]−1
ck,(23a)

p̄k := −
[
ZT
k HkZk

]−1
ZT
k (gk + Hkqk)(23b)

(see, e.g., [17]). The eigenvalues for the reduced Hessian in (23b) (the term in square
brackets) could be monitored and modified if necessary. However, this procedure
is prohibitive for large-scale problems, and in those cases one instead might employ
heuristics to ensure at least positive definiteness of the reduced Hessian, for example,
by monitoring and possibly modifying the inertia of the iteration matrix in (3) (see,
e.g., [23]). Note, on the other hand, that (20) holds in the neighborhood of a local
solution x∗ satisfying the sufficient second order optimality conditions (see, e.g., [17])
if Hk approaches the exact Hessian of the Lagrangian of the NLP (1). Then, close to
x∗, no eigenvalue correction is necessary and fast local convergence can be expected,
assuming that full steps are taken close to x∗. See the companion paper [26] for a
local convergence analysis of the presented method.

In the description of the algorithm in section 2.4 we did not specify precisely when
the method switches in step 3 to the feasibility restoration phase, since there might
be several practical implementations compatible with Assumptions G. For complete-
ness, one possible option is outlined next. By monitoring and possibly modifying the
eigenvalues of the reduced Hessian it is possible to make sure that (20) is valid in ev-
ery iteration. Similarly, we can guarantee that the entire sequence {Hk} is uniformly
bounded. Let us further make the assumption (on the problem statement) that the
gradients of the constraints are uniformly linearly independent for all iterates xk close
to the feasible region; i.e., there exist constants b1, b2 > 0 so that

θ(xk) ≤ b1 =⇒ σmin(Ak) ≥ b2.

Then, if we decide in step 3 to invoke the feasibility restoration phase whenever
σmin(Ak) ≤ b3θ(xk) for some fixed constant b3 > 0, then Assumptions G hold (with
MA = min{b2, b1b3} and θinc = MA

2b3
).

3.2. Preliminary results. Similar to the analysis in [7], we make use of a first
order criticality measure χ(xk) ∈ [0,∞] with the property that if a subsequence {xki

}
of iterates with χ(xki) → 0 converges to a feasible limit point x∗, then x∗ corresponds
to a KKT solution. In the case of Algorithm I, this means that there exist λ∗ so that
the KKT conditions (2) are satisfied for (x∗, λ∗).
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For the convergence analysis of the filter method we define the criticality measure
for iterations k 
∈ Rinc as

χ(xk) := ‖p̄k‖2 ,(24)

with p̄k from (23b). Note that this definition is unique, since pk in (22a) is unique due
to the orthogonality of Yk and Zk, and since ‖p̄k‖2 = ‖pk‖2 due to the orthonormality
of Zk. For completeness, we define χ(xk) := ∞ for k ∈ Rinc.

In order to see that χ(xk) defined in this way is indeed a criticality measure under
Assumptions G, let us consider a subsequence of iterates {xki} with limi χ(xki) = 0
and limi xki = x∗ for some feasible limit point x∗. Since χ(xki

) = ∞ if ki ∈ Rinc,
we then have ki 
∈ Rinc for i sufficiently large. Furthermore, from Assumption (G4)
and (23a) we have limi q̄ki

= 0, and then from limi χ(xki) = 0, (24), (23b), and
Assumption (G3) we have that limi→∞ ‖ZT

ki
gki‖ = 0, which is a well-known optimality

measure (see, e.g., [17]).
Before we begin the global convergence analysis, let us state some preliminary

results.
Lemma 1. Suppose Assumptions G hold. Then there exist constants Md, Mλ,

Mm > 0, such that

‖dk‖ ≤ Md, ‖λ+
k ‖ ≤ Mλ, |mk(α)| ≤ Mmα(25)

for all k 
∈ Rinc and α ∈ (0, 1].
Proof. From (G1) we have that the right-hand side of (3) is uniformly bounded.

Additionally, Assumptions (G2), (G3), and (G4) guarantee that the inverse of
the matrix in (3) exists and is uniformly bounded for all k 
∈ Rinc. Consequently,
the solution of (3), (dk, λ

+
k ), is uniformly bounded, and therefore also mk(α)/α =

gTk dk.
The following result shows that the search direction is a direction of sufficient

descent for the objective function at points that are sufficiently close to feasible and
nonoptimal.

Lemma 2. Suppose Assumptions G hold. If {xki} is a subsequence of iterates for
which χ(xki) ≥ ε with a constant ε > 0 independent of i, then there exist constants
ε1, ε2 > 0, such that

θ(xki) ≤ ε1 =⇒ mki(α) ≤ −ε2α

for all i and α ∈ (0, 1].
Proof. Consider a subset {xki

} of iterates with χ(xki
) = ‖p̄ki

‖2 ≥ ε. Then, by
Assumption (G5), for all xki

with θ(xki
) ≤ θinc we have ki 
∈ Rinc. Furthermore, with

qki = O(‖c(xki
)‖) (from (23a) and Assumption (G4)) it follows that for ki 
∈ Rinc

mki(α)/α = gTki
dki

(22)
= gTki

Zki p̄ki + gTki
qki(26a)

(23b)
= −p̄Tki

[
ZT
ki
Hki

Zki

]
p̄ki

− p̄Tki
ZT
ki
Hki

qki
+ gTki

qki
(26b)

(G2),(G3)

≤ −c1 ‖p̄ki
‖2
2 + c2 ‖p̄ki

‖2 ‖cki
‖ + c3‖cki

‖(26c)

≤ χ(xki)
(
−ε c1 + c2θ(xki) +

c3
ε
θ(xki)

)
(26d)

for some constants c1, c2, c3 > 0, where we used χ(xki
) ≥ ε in the last inequality. If

we now define

ε1 := min

{
θinc,

ε2 c1
2(c2 ε + c3)

}
,
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it follows for all xki
with θ(xki

) ≤ ε1 that

mki(α) ≤ −α
ε c1
2

χ(xki) ≤ −α
ε2 c1

2
.

The claim follows after defining ε2 := ε2 c1
2 .

Lemma 3. Suppose Assumption (G1) holds. Then there exist constants Cθ, Cf >
0 so that for all k 
∈ Rinc and α ≤ 1

|θ(xk + αdk) − (1 − α)θ(xk)| ≤ Cθα
2 ‖dk‖2

,(27a)

|f(xk + αdk) − f(xk) −mk(α)| ≤ Cfα
2‖dk‖2.(27b)

These inequalities follow directly from second order Taylor expansions and (3).
Finally, we show that step 8 (feasibility restoration phase) of Algorithm I is well

defined. Unless the feasibility restoration phase terminates at a stationary point of
the constraint violation it is essential that reducing the infeasibility measure θ(x)
eventually leads to a point that is acceptable to the filter. This is guaranteed by the
following lemma which shows that no (θ, f)-pair corresponding to a feasible point is
ever included in the filter.

Lemma 4. Suppose Assumptions G hold. Then

θ(xk) = 0 =⇒ mk(α) < 0(28)

and

Θk := min{θ : (θ, f) ∈ Fk} > 0(29)

for all k and α ∈ (0, 1].
Proof. If θ(xk) = 0, we have from Assumption (G5) that k 
∈ Rinc. In addition,

χ(xk) > 0 then follows because Algorithm I would have terminated otherwise in step
2, in contrast to Assumptions G. Considering the decomposition (22), it follows, as
in (26), that

mk(α)/α = gTk dk ≤ −c1χ(xk)
2 < 0;

i.e., (28) holds.
The proof of (29) is by induction. It is clear from step 1 of Algorithm I that the

claim is valid for k = 0 since θmax > 0. Suppose the claim is true for k. Then, if
θ(xk) > 0 and the filter is augmented in iteration k, it is clear from the update rule
(13) that Θk+1 > 0, since γθ ∈ (0, 1). If, on the other hand, θ(xk) = 0, we have from
(28) that mk(α) < 0 for all α ∈ (0, 1] so that the f -type switching condition (9) is
true for all trial step sizes. Therefore, step 4.4 always considers Case I, and the reason
for αk having been accepted must have been that αk satisfies (11). Consequently, the
filter is not augmented in step 6. Hence, Θk+1 = Θk > 0.

3.3. Feasibility. In this section we show that under Assumptions G the sequence
θ(xk) converges to zero; i.e., all limit points of {xk} are feasible.

Lemma 5. Suppose that Assumptions G hold and that the filter is augmented only
a finite number of times, i.e., |A| < ∞. Then

lim
k→∞

θ(xk) = 0.(30)
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Proof. Choose K so that for all iterations k ≥ K the filter is not augmented in
iteration k; in particular, k 
∈ Rinc ⊆ A for k ≥ K. From step 6 in Algorithm I we
then have that for all k ≥ K both conditions (9) and (11) are satisfied for αk. We
now distinguish two cases, where k 
∈ A.

Case 1 (sf > 1). From (9) it follows with Mm from Lemma 1 that

δ[θ(xk)]
sθ < [−mk(αk)]

sf [αk]
1−sf ≤ M

sf
m αk

and hence (since 1 − 1/sf > 0)

c4[θ(xk)]
sθ−

sθ
sf < [αk]

1− 1
sf with c4 :=

(
δ

M
sf
m

)1− 1
sf

.

This implies

f(xk+1) − f(xk)
(11)

≤ ηfmk(αk)

(9)
< −ηfδ

1
sf [αk]

1− 1
sf [θ(xk)]

sθ
sf

< −ηfδ
1
sf c4[θ(xk)]

sθ .

Case 2 (sf = 1). From (9) we have δ[θ(xk)]
sθ < −mk(αk) so that from (11) we

immediately obtain f(xk+1) − f(xk) < −ηfδ[θ(xk)]
sθ .

In either case, we have for all k 
∈ A that

f(xk+1) − f(xk) < −c̃4[θ(xk)]
sθ(31)

for some c̃4 > 0. Hence, for all i = 1, 2, . . . ,

f(xK+i) = f(xK) +

K+i−1∑
k=K

(f(xk+1) − f(xk))

< f(xK) − c̃4

K+i−1∑
k=K

[θ(xk)]
sθ .

Since f(xK+i) is bounded below as i → ∞, the series on the right-hand side in the
last line is bounded, which in turn implies (30).

Note that this result could be obtained with a simpler proof if the model mk(α)
has the particular form (10), but the above version also holds for the model (56) in
section 4.1.

The following lemma considers a subsequence {xki} with ki ∈ A for all i.
Lemma 6. Let {xki} be a subsequence of iterates generated by Algorithm I so that

the filter is augmented in iteration ki; i.e., ki ∈ A for all i. Furthermore, assume that
there exist constants cf ∈ R and Cθ > 0 so that

f(xki) ≥ cf and θ(xki
) ≤ Cθ

for all i (for example, if Assumption (G1) holds). It then follows that

lim
i→∞

θ(xki) = 0.
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The proof of this lemma can be found in [7, Lemma 3.3]. There the proof is stated
for slightly different circumstances, but it is easy to verify that it is still valid in our
context.

The previous two lemmas prepare the proof of the following theorem.
Theorem 1. Suppose Assumptions G hold. Then

lim
k→∞

θ(xk) = 0.

Proof. In the case that the filter is augmented only a finite number of times,
Lemma 5 implies the claim. If in the other extreme there exists some K ∈ N, so
that the filter is updated by (13) in all iterations k ≥ K, then the claim follows from
Lemma 6. It remains to consider the case where for all K ∈ N there exist k1, k2 ≥ K
with k1 ∈ A and k2 
∈ A.

The proof is by contradiction. Suppose lim supk θ(xk) = M > 0. Now construct
two subsequences {xki} and {xli} of {xk} in the following way:

1. Set i ← 0 and k−1 = −1.
2. Pick ki > ki−1 with

θ(xki) ≥ M/2(32)

and ki 
∈ A. (Note that Lemma 6 ensures the existence of ki 
∈ A since
otherwise θ(xki) → 0.)

3. Choose li := min{l ∈ A : l > ki}; i.e., li is the first iteration after ki in which
the filter is augmented.

4. Set i ← i + 1 and go back to step 2.
Thus, every xki satisfies (32), and for each xki

the iterate xli is the first iterate after
xki for which (θ(xli), f(xli)) is included in the filter.

Since (31) holds for all k = ki, . . . , li − 1 
∈ A, we obtain for all i

f(xli) ≤ f(x(ki+1)) < f(xki) − c̃4[M/2]sθ .(33)

This ensures that for all K ∈ N there exists some i ≥ K with f(xk(i+1)
) ≥ f(xli)

because otherwise (33) would imply

f(xk(i+1)
) < f(xli) < f(xki) − c̃4[M/2]sθ

for all i and consequently limi f(xki) = −∞ in contradiction to the fact that {f(xk)}
is bounded below. Thus, there exists a subsequence {ij} of {i} so that

f(xk(ij+1)
) ≥ f(xlij

).(34)

Since xk(ij+1)

∈ Fk(ij+1)

⊇ Flij
and lij ∈ A, it follows from (34) and the filter update

rule (13) that

θ(xk(ij+1)
) ≤ (1 − γθ)θ(xlij

).(35)

Since lij ∈ A for all j, Lemma 6 yields limj θ(xlij
) = 0 so that from (35) we obtain

limj θ(xkij
) = 0 in contradiction to (32).

Remark 6. As one can easily verify, if sf = 1 is chosen in the f -type switching rule
(9), then the proof of the previous theorem does not actually require the assumption
that {f(xk)} and {‖∇f(xk)‖} are bounded above (see Assumption (G1)). This is
important for the discussion of the interior point method in section 4.3.
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3.4. Optimality. In this section we show that Assumptions G guarantee that
the optimality measure χ(xk) is not bounded away from zero; i.e., if {xk} is bounded,
at least one limit point is a first order optimal point for the NLP (1).

The first lemma shows conditions under which it can be guaranteed that there
exists a step length bounded away from zero so that the Armijo condition (11) for the
objective function is satisfied.

Lemma 7. Suppose Assumptions G hold. Let {xki
} be a subsequence with ki 
∈

Rinc and mki
(α) ≤ −αε2 for a constant ε2 > 0 independent of ki and for all α ∈ (0, 1].

Then there exists some constant ᾱ > 0 so that for all ki and α ≤ ᾱ

f(xki
+ αdki) − f(xki) ≤ ηfmki

(α).(36)

Proof. Let Md and Cf be the constants from Lemmas 1 and 3. It then follows

for all α ≤ ᾱ with ᾱ :=
(1−ηf )ε2

CfM2
d

that

f(xki + αdki) − f(xki) −mki
(α)

(27b)

≤ Cfα
2‖dki

‖2 ≤ α(1 − ηf )ε2

≤ −(1 − ηf )mki
(α),

which implies (36).
Let us again first consider the “easy” case, in which the filter is augmented only

a finite number of times.
Lemma 8. Suppose that Assumptions G hold and that the filter is augmented only

a finite number of times, i.e., |A| < ∞. Then

lim
k→∞

χ(xk) = 0.

Proof. Since |A| < ∞, there exists K ∈ N so that k 
∈ A for all k ≥ K. Suppose
the claim is not true; i.e., there exist a subsequence {xki} and a constant ε > 0 so
that χ(xki) ≥ ε for all i. From (30) and Lemma 2 there exist ε1, ε2 > 0 and K̃ ≥ K
so that for all ki ≥ K̃ we have θ(xki) ≤ ε1 and

mki(α) ≤ −αε2 for all α ∈ (0, 1].(37)

It then follows from (11) that for ki ≥ K̃

f(xki+1) − f(xki) ≤ ηfmki(αki) ≤ −αkiηf ε2.

Reasoning as in the proof of Lemma 5, one can conclude that limi αki
= 0, since

f(xki) is bounded below and since f(xk) is monotonically decreasing (from (31)) for
all k ≥ K̃. We can now assume without loss of generality that K̃ is sufficiently large
so that αki

< 1. This means that for ki ≥ K̃ the first trial step αk,0 = 1 has not been
accepted. The last rejected trial step size

αki,li ∈ [αki/τ2, αki/τ1](38)

during the backtracking line search procedure then satisfies (9) since ki 
∈ A and
αki,li > αki . Thus, it must have been rejected because it violates (11); i.e., it satisfies

f(xki + αki,lidki) − f(xki) > ηfmki(αki,li),(39)
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or it has been rejected because it is not acceptable to the current filter, i.e.,

(θ(xki
+ αki,lidki

), f(xki
+ αki,lidki

)) ∈ Fki
= FK .(40)

We conclude the proof by showing that neither (39) nor (40) can be true for sufficiently
large ki.

Consider (39): Since limi αki
= 0, we also have limi αki,li = 0 (see (38)). In

particular, for sufficiently large ki we have αki,li ≤ ᾱ with ᾱ from Lemma 7; i.e., (39)
cannot be satisfied for those ki.

Consider (40): Let ΘK := min{θ : (θ, f) ∈ FK}. From Lemma 4 we have ΘK > 0.
Using Lemmas 1 and 3, we then see that

θ(xki
+ αki,lidki

) ≤ (1 − αki,li)θ(xki
) + CθM

2
d [αki,li ]

2.

Since limi αki,li = 0 and from Theorem 1 also limi θ(xki
) = 0, it follows that for ki

sufficiently large we have θ(xki + αki,lidki) < ΘK , which contradicts (40).
The next lemma establishes conditions under which a step size can be found that

is acceptable to the current filter (see (12)).
Lemma 9. Suppose Assumptions G hold. Let {xki} be a subsequence with ki 
∈

Rinc and mki
(α) ≤ −αε2 for a constant ε2 > 0 independent of ki and for all α ∈ (0, 1].

Then there exist constants c5, c6 > 0 so that

(θ(xki
+ αdki), f(xki + αdki)) 
∈ Fki

for all ki and α ≤ min{c5, c6θ(xki
)}.

Proof. Let Md, Cθ, and Cf be the constants from Lemmas 1 and 3. Define
c5 := min{1, ε2/(M2

d Cf )} and c6 := 1/(M2
d Cθ).

Now choose an iterate xki . The mechanisms of Algorithm I ensure (see comment
in step 6) that

(θ(xki), f(xki)) 
∈ Fki .(41)

For α ≤ c5 we have α2 ≤ αε2
M2

d
Cf

≤ −mki
(α)

Cf‖dki
‖2

or, equivalently,

mki
(α) + Cfα

2‖dki‖2 ≤ 0,

and it follows with (27b) that

f(xki + αdki) ≤ f(xki).(42)

Similarly, for α ≤ c6θ(xki) ≤
θ(xki

)

‖dki
‖2 Cθ

, we have −αθ(xki) +Cθα
2‖dki‖2 ≤ 0 and thus

from (27a)

θ(xki + αdki
) ≤ θ(xki

).(43)

The claim then follows from (41), (42), and (43) using (19).
The last lemma in this section shows that in iterations corresponding to a sub-

sequence with only nonoptimal limit points the filter is eventually not augmented.
This result is used in the proof of the main global convergence theorem to yield a
contradiction.
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Lemma 10. Suppose Assumptions G hold. Let {xki
} be a subsequence with

χ(xki) ≥ ε for a constant ε > 0 independent of ki. Then there exists K ∈ N so that
for all ki ≥ K the filter is not augmented in iteration ki; i.e., ki 
∈ A.

Proof. Since by Theorem 1 we have limi θ(xki) = 0, it follows from Lemma 2 that
there exist constants ε1, ε2 > 0 so that

θ(xki) ≤ ε1 and mki
(α) ≤ −αε2(44)

for ki sufficiently large and α ∈ (0, 1]; without loss of generality we can assume that
(44) is valid for all ki. We can now apply Lemmas 7 and 9 to obtain the constants
ᾱ, c5, c6 > 0. Choose K ∈ N so that for all ki ≥ K

θ(xki) < min

{
θinc,

ᾱ

c6
,
c5
c6

,

[
τ1c6ε

sf
2

δ

] 1
sθ−1

}
(45)

with τ1 from step 4.5. For all ki ≥ K with θ(xki) = 0 we can argue as in the proof of
Lemma 4 that both (9) and (11) hold in iteration ki so that ki 
∈ A.

For the remaining iterations ki ≥ K with θ(xki
) > 0 we note that (45) implies

that ki 
∈ Rinc,

δ [θ(xki
)]sθ

ε
sf
2

< τ1c6θ(xki)(46)

(since sθ > 1), as well as

c6θ(xki) < min{ᾱ, c5}.(47)

Now choose an arbitrary ki ≥ K with θ(xki
) > 0 and define

βki := c6θ(xki
)

(47)
= min{ᾱ, c5, c6θ(xki)}.(48)

Lemmas 7 and 9 then imply that a trial step size αki,l ≤ βki satisfies both

f(xki
(αki,l)) ≤ f(xki) + ηfmki(αki,l)(49)

and (
θ(xki(αki,l)), f(xki(αki,l))

)

∈ Fki .(50)

If we now denote with αki,L the first trial step size satisfying both (49) and (50), the
backtracking line search procedure in step 4.5 then implies that for α ≥ αki,L

α ≥ τ1βki

(48)
= τ1c6θ(xki)

(46)
>

δ[θ(xki)]
sθ

ε
sf
2

and therefore for α ≥ αki,L

δ[θ(xki
)]sθ < αε

sf
2 = [α]

1−sf (αε2)
sf

(44)

≤ [α]
1−sf [−mki(α)]

sf .

This means that αki,L and all previous trial step sizes are f -step sizes. Consequently,
for all trial step sizes αki,l ≥ αki,L, Case I is considered in step 4.4, and by definition
we have αki,L ≥ αmin

ki
(see discussion around (16)). Hence, the method does not switch
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to the feasibility restoration phase in step 4.2 for those trial step sizes. Therefore,
αki,L is indeed the accepted step size αki . Since it satisfies both (9) and (49), the
filter is not augmented in iteration ki.

We are now ready to prove the main global convergence result.
Theorem 2. Suppose Assumptions G hold. Then

lim
k→∞

θ(xk) = 0(51a)

and

lim inf
k→∞

χ(xk) = 0.(51b)

In other words, all limit points are feasible, and if {xk} is bounded, then there exists a
limit point x∗ of {xk} which is a first order optimal point for the equality constrained
NLP (1).

Proof. Equation (51a) follows from Theorem 1. In order to show (51b), we
consider two cases:
(i) The filter is augmented only a finite number of times. Then Lemma 8 proves the

claim.
(ii) There exists a subsequence {xki} so that ki ∈ A for all i. Now suppose that

lim supi χ(xki
) > 0. Then there exist a subsequence {xkij

} of {xki
} and a con-

stant ε > 0 so that limj θ(xkij
) = 0 and χ(xkij

) > ε for all kij . Applying

Lemma 10 to {xkij
}, we see that there is an iteration kij , in which the filter

is not augmented; i.e., kij 
∈ A. This contradicts the choice of {xki} so that
limi χ(xki) = 0, which proves (51b).
Remark 7. We do not think that it is possible to obtain a stronger result in

Theorem 2 under Assumptions G, such as “limk χ(xk) = 0.” The reason for this is
that arbitrarily close to a strict local solution the restoration phase might be invoked
even though the search direction is very good. This can happen if the current filter
contains information corresponding to previous iterates that lie in a different region
of Rn but has values for θ and f similar to those for the current iterate. For example,
if for the current iterate the pair (θ(xk), f(xk)) is very close to the current filter
(e.g., there exist filter pairs (θ̄, f̄) ∈ Fk with θ̄ < θ(xk) and f̄ ≈ f(xk)) and the
objective function f has to be increased in order to approach the optimal solution,
then the trial step sizes can be repeatedly rejected in step 4.3. In this case, αk,l finally
becomes smaller than αmin

k and the restoration phase is triggered. Without making
additional assumptions on the restoration phase we know only that the next iterate
xk+1 returned from the restoration phase is acceptable to the augmented filter but
possibly far away from any KKT point. We believe that it is not possible under the
current assumptions to exclude the chance that this situation occurs repeatedly, in
which case “limk χ(xk) = 0” would not be valid.

Remark 8. It is possible to strengthen the convergence result under stronger
assumptions. In addition to Assumptions G, suppose that x∗ is a local solution of the
NLP (1) satisfying the second order sufficient optimality conditions [17] with optimal
multipliers λ∗. Let us further assume that the line search filter method generates
multiplier iterates λk based on the linearization (3) by choosing λk+1 = λk + αkd

λ
k

with

dλk := λ+
k − λk(52)
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in each iteration k 
∈ Rinc. Also, assume that close to x∗ the algorithm uses exact

second derivatives; i.e., Hk = ∇2f(xk)+
∑

i λ
(i)
k ∇2c(xk). Finally, suppose that, in the

neighborhood of (x∗, λ∗), also the algorithm used for the restoration phase is taking
steps (dk, d

λ
k) generated from (3) and (52), where Hk is bounded and satisfies (20).

Then, once the iterates (xk, λk) are sufficiently close to (x∗, λ∗), the overall algorithm
always takes fractions of steps (dk, d

λ
k). The assumptions ensure that the KKT error

(the norm of the left-hand side of (2)) is monotonically decreased and that the iterates
are attracted to (x∗, λ∗). As a second order sufficient optimal solution, (x∗, λ∗) is the
only root of (2) in a sufficiently small neighborhood. Therefore we obtain together
with Theorem 2 that the entire sequence converges to the solution, once the iterates
are sufficiently close.

One way to construct a restoration phase that satisfies the condition necessary
for this result is as follows. Suppose that we have a “rigorous” Algorithm R for
the restoration phase, which either converges to a stationary point of the constraint
violation or produces an acceptable new iterate for the filter method. If the restoration
phase is now invoked at a point where the KKT error is small, then, instead of directly
using Algorithm R, we first compute a search direction (dk, d

λ
k) from (3) and (52). If

the new (intermediate) iterate obtained by taking the full step does not reduce the
KKT error by a fixed fraction κR ∈ (0, 1), we switch to Algorithm R. Otherwise we
continue taking steps from (3) and (52) (still formally within the restoration phase in
step 8), until finally either a new acceptable iterate xk+1 is obtained, or the method
reverts to Algorithm R.

4. Alternative algorithms.

4.1. Measures based on the augmented Lagrangian function. The two
measures f(x) and θ(x) can be considered as the two components of the exact penalty
function (7). Another popular choice for a merit function is the augmented Lagrangian
function (see, e.g., [2, 5, 18])

�ρ(x, λ) := f(x) + λT c(x) +
ρ

2
c(x)T c(x),(53)

where λ are multiplier estimates corresponding to the equality constraints (1b). If λ∗
is the vector of multipliers corresponding to a strict local solution x∗ of the NLP (1),
then there exists a penalty parameter ρ > 0 so that x∗ is a strict local minimizer of
�ρ(x, λ∗).

In the line search filter method described in section 2 we can alternatively follow
an approach based on the two components L(x, λ) (defined in (4)) and θ(x) (or, equiv-
alently, θ(x)2) of the augmented Lagrangian function rather than on the components
of the exact penalty function. (Recently, S. Ulbrich [22] proposed a related approach
using the Lagrangian function in a trust region filter method, including both global
and local convergence results.) In Algorithm I we then replace all occurrences of the
measure “f(x)” by “L(x, λ).” In addition to the iterates xk we now also keep iterates
λk as estimates of the equality constraint multipliers, and compute in each iteration k
a search direction dλk for those variables. This search direction can be obtained with
no additional computational cost from (52) with λ+

k from (3). Defining

λk(αk,l) := λk + αk,ld
λ
k ,(54)

the sufficient reduction criteria (8b) and (11) are then replaced by

L(xk(αk,l), λk(αk,l)) ≤ L(xk, λk) − γfθ(xk)(55a)
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and

L(xk(αk,l), λk(αk,l)) ≤ L(xk, λk) + ηfmk(αk,l),(55b)

respectively, where the model mk for L is now defined as

mk(α) := αgTk dk − αλT
k ck + α(1 − α)cTk d

λ
k ,(56)

which is obtained by Taylor expansions of f(x) and c(x) around (xk, λk) into direction
(dk, d

λ
k) and the use of (3).

The f -type switching condition (9) remains unchanged, but the definition of the
minimum step size (18) has to be modified to accommodate (55) and (56). The only
requirements for this change are again that it is guaranteed that the method does not
switch to the feasibility restoration phase in step 4.2 as long as the f -type switching
condition (9) is satisfied for a trial step size α ≤ αk,l, and that the backtracking line
search in step 4 is finite. We also require that the multipliers λk+1 that are used
after the restoration phase has been called are uniformly bounded (e.g., by choosing
λk+1 = λk for k ∈ R).

In order to see that the global convergence analysis in section 3 still holds, let us
briefly revisit the individual results. The first two bounds in Lemma 1 remain valid,
so that with

λk+1
(54)
= λk + αkd

λ
k

(52)
= (1 − αk)λk + αkλ

+
k

we obtain by induction that λk, and therefore also dλk are uniformly bounded for all
k 
∈ Rinc. With this, also the last bound in (25) holds, as can be seen from (56).
Since λk is bounded for all k, we further see that the sequence {L(xk, λk)} is bounded
below, a property used at several points in the analysis. It is then easy to verify that
Lemmas 2 and 4 are still valid for the model definition (56), since the first equality in
(26a) then becomes

mki
(α)/α = gTki

dki
+ O(‖cki

‖),

and thus only the constant c3 in the proof may change. Furthermore, Lemma 3 still
holds for the model definition (56) and with the measure “f” replaced by “L,” because

L(xk + αdk, λk + αdλk) − L(xk, λk)

= f(xk + αdk) − f(xk) + (λk + αdλk)T c(xk + αdk) − λT
k c(xk)

= αgTk dk + O(α2‖dk‖2) + (λk + αdλk)T (c(xk) + αAT
k dk + O(α2‖dk‖2)) − λT

k c(xk)

(3)
= αgTk dk + (λk + αdλk)T (1 − α)c(xk) − λT

k c(xk) + O(α2‖dk‖2)

(56)
= mk(α) + O(α2‖dk‖).

Finally, the analysis in sections 3.3 and 3.4 then holds with replacing “f” by “L”
where appropriate. The only point that deserves special attention is the proof of
Lemma 8. Here, it is essential that the last rejected trial step size (38) satisfies the
f -type switching condition (9), at least for ki sufficiently large. To see that this is
also true for the model definition (56), which is no longer linear in α, let us define the
function

hki(α) := [−mki(α)]sf α1−sf − δ[θ(xki)]
sθ .



22 ANDREAS WÄCHTER AND LORENZ T. BIEGLER

This function is well defined for the considered ki due to (37), and we have hki
(αk,l) >

0 if and only if (9) holds. Since we assume limi θ(xki) = 0 and χ(xki) ≥ ε in the proof,
it can then be shown (using arguments similar to those in the proof of Lemma 2) that
h′
ki

(0) ≥ ε3 for some ε3 > 0 and ki sufficiently large and that h′′
ki

(0) is uniformly
bounded. Since αki → 0 and hki(αki) > 0, it then follows that the f -type switching
condition (9) holds for αki,li ∈ [αki

/τ2, αki
/τ1] when ki is sufficiently large.

4.2. Line search filter SQP methods. In this section we show how Algo-
rithm I can be applied to line search SQP methods for the solution of nonlinear
optimization problems of the form

min
x∈Rn

f(x)(57a)

subject to c(x) = 0,(57b)

x ≥ 0.(57c)

We choose to consider only bounds of the form (57c) to simplify the presentation, but
our discussion can easily be adapted to general bound constraints (such as “xL ≤ x ≤
xU”).

At an iterate xk, a line search SQP method obtains the search direction dk as a
solution of the quadratic program (QP)

min
d∈Rn

gTk d +
1

2
dTHkd(58a)

subject to AT
k d + c(xk) = 0,(58b)

xk + d ≥ 0.(58c)

As before, gk := ∇f(xk), Ak := ∇c(xk). Furthermore, now Hk denotes a symmetric
matrix approximating the Hessian of the Lagrangian

L(x, λ, z) := f(x) + λT c(x) − vTx(59)

of the NLP (57). The vector v ≥ 0 stands for the Lagrangian multipliers corresponding
to the bound constraints (57c). We denote by λ+

k and v+
k ≥ 0 some (not necessarily

unique) multipliers corresponding to the QP solution dk.

In the following analysis, we assume that the particular method for solving (58)
is able to ensure that the QP Hessian Hk is positive definite in a certain space (see
Assumption (G3∗) below), possibly by modifying the matrix Hk. Then a (finite)
solution of the QP exists, and the generated search direction dk is a direction of
sufficient decrease for the objective function if the constraint violation is small.

Starting from an initial point x0 ≥ 0, Algorithm I can then be used with the
following modification:

• The computation of the search direction in step 3 is replaced by the solution
of the QP (58).

• The restoration phase is invoked from step 3 if the QP (58) is unbounded,
infeasible, or “not sufficiently consistent” (see Assumption (G4∗) below). As
before, Rinc denotes the set of all iteration counters in which the restoration
phase is invoked from step 3.

• The feasibility restoration phase in step 8 has to return an iterate xk+1 that
satisfies the bound constraints (57c).
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In order to state the assumptions necessary for a global convergence analysis let us
define for each k 
∈ Rinc the set of coordinates that are active at the current point xk

and at xk + dk,

Sk :=
{
i ∈ {1, . . . , n} : x

(i)
k = 0 and d

(i)
k = 0

}
.

For the purpose of the analysis we again consider a decomposition of the search
direction

dk = qk + pk,(60)

where qk is now defined as the solution of the QP

min
q∈Rn

qT q(61a)

subject to AT
k q + ck = 0,(61b)

q(i) = 0 for i ∈ Sk,(61c)

x
(i)
k + q(i) ≥ 0 for i 
∈ Sk.(61d)

Therefore, qk is the shortest vector that satisfies the constraints in the QP (58) and
stays at those bounds that are active for all trial points (6). We further choose Zk as
an orthonormal null space matrix for the matrix

[
Ak ej1 · · · ejlk

]T
, where Sk = {j1, . . . , jlk};

i.e., Zk is a basis of the null space for the gradients of all equality constraints and
bounds that are active at xk and xk +dk. With this, we can compute pk = Zkp̄k with
p̄k as the solution of the reduced QP (see, e.g., [17])

min
p̄∈R

n−m−lk

(
ZT
k gk + ZT

k Hkqk
)T

p̄ +
1

2
p̄TZT

k HkZkp̄(62a)

subject to xk + qk + Zkp̄ ≥ 0.(62b)

Note that the set Sk is not known before the QP (58) has been solved. The QPs (61)
and (62) are defined only to state the assumptions below and are not a possible
procedure to obtain the search direction dk.

For the global convergence analysis of the filter line search SQP method we replace
Assumptions (G3) and (G4) by the following:
(G3∗) There exists a constant MH > 0 so that for all k 
∈ Rinc we have

λmin

(
ZT
k HkZk

)
≥ MH ,(63)

where Zk has been defined above.
(G4∗) There exist constants Mq,Mλ,Mv > 0 so that for all k 
∈ Rinc we have

‖qk‖ ≤ Mqθ(xk), ‖λ+
k ‖ ≤ Mλ, ‖v+

k ‖ ≤ Mv.

As Assumption (G3) for the original analysis, Assumption (G3∗) is necessary to
ensure descent in the objective function at points with small infeasibility. In order to
ensure this condition, the algorithm could monitor the eigenvalues of the projection of
Hk onto the null space of the gradients for all constraints active at xk and xk+dk, and
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perform modifications of Hk if necessary.1 Note that Assumption (G3∗) is natural in
the sense that if the method converges to a local solution x∗ of the NLP (57) satisfying
the strong second order optimality conditions, then the active set Sk finally becomes
unchanged and Zk is a null space matrix for the constraints active at x∗. Hence, no
correction of the reduced Hessian is necessary close to x∗ if exact second derivatives
are used and if λk converges to λ∗.

Assumption (G4∗) is similar in spirit to the assumption expressed by (2.10) for
the trust region filter SQP method in [7]. Essentially, it implies that eventually
the restoration phase is triggered from step 3 if the constraints of the QP (58) are
becoming increasingly degenerate close to feasible points.

It is straightforward to verify that the proofs in section 3 still hold under the
modified Assumptions G. Only the proof of Lemma 2 requires special attention. Let
us first state the KKT conditions of the reduced QP (62), which have to be satisfied
by the solution dk and the corresponding multipliers,

ZT
k HkZkp̄k + (ZT

k gk + ZT
k Hkqk) − ZT

k v
+
k = 0,(64a)

xk + qk + Zkp̄k ≥ 0,(64b)

(xk + qk + Zkp̄k)
T v+

k = 0,(64c)

v+
k ≥ 0.(64d)

For k 
∈ Rinc we then have

ZT
k gk

(64a)
= ZT

k v
+
k − ZT

k HkZkp̄k − ZT
k Hkqk,

(xk + qk)
T v+

k

(64c)
= −(v+

k )TZkp̄k

and therefore

gTk Zkp̄k = −(xk + qk)
T v+

k − p̄Tk Z
T
k HkZkp̄k − p̄Tk Z

T
k Hkqk

(61c),(61d),(64d)

≤ −p̄Tk Z
T
k HkZkp̄k − p̄Tk Z

T
k Hkqk.

This gives, together with the modified Assumptions G,

mk(α)/α
(10)
= gTk dk

(60)
= gTk Zkp̄k + gTk qk

≤ −p̄Tk Z
T
k HkZkp̄k − p̄Tk Z

T
k Hkqk + gTk qk

≤ −MH [χ(xk)]
2 + O (χ(xk)θ(xk)) + O(θ(xk)),

which corresponds to (26c). We can conclude the proof of Lemma 2 as before.

4.3. Line search filter interior point methods. An alternative to active set
methods for handling inequality constraints is offered by interior point or barrier
methods. In this section we demonstrate how the line search filter method presented
in section 2 can be used within an interior point framework. The presented algorithm
can be changed in an obvious way if (57c) is generalized to lower and upper bound
constraints on all or only some variables.

1The solution dk is not known before the QP (58) is solved. One possible way to find a suitable
modification of Hk is to solve (58) repeatedly with Hk = ∇2

xxL(xk, λk)+ξI for an increasing sequence
of modifications ξ ≥ 0, until the QP is not unbounded and Hk has the required convexity properties
expressed in (63).
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The barrier method presented here can be of the primal or primal-dual type, and
differs from the interior point filter algorithm proposed by M. Ulbrich, S. Ulbrich, and
Vicente [21] in that the barrier parameter is kept constant for several iterations. This
enables us to base the acceptance of trial steps directly on the (barrier) objective
function instead of only on the norm of the optimality conditions. Therefore the
presented method can be expected to be less likely to converge to saddle points or
maxima than the algorithm proposed in [21].

A barrier method solves a sequence of barrier problems

min
x∈Rn

ϕμ(x) := f(x) − μ

n∑
i=1

ln(x(i))(65a)

subject to c(x) = 0(65b)

for a decreasing sequence μl of barrier parameters with liml μl = 0. Local convergence
of barrier methods as μ → 0 has been discussed in detail by other authors, in partic-
ular by Nash and Sofer [16] for primal methods, and by Byrd, Liu, and Nocedal [4]
and Gould et al. [12, 13] for primal-dual methods. In those approaches, the barrier
problem (65) is solved to a certain tolerance ε > 0 for a fixed value of the barrier
parameter μ. The parameter μ is then decreased, and the tolerance ε is tightened for
the next barrier problem. For example, in [12] it is shown that if the parameters μ
and ε are updated in a particular fashion, the new starting point (enhanced by an
extrapolation step with the cost of one regular iteration that tries to follow the path
defined by the optimality conditions for (65) as μ changes) eventually solves the next
barrier problem well enough to satisfy the new tolerance. Then the barrier parameter
μ is decreased again immediately (without taking an additional step), leading to a
superlinear convergence rate of the overall interior point algorithm for solving the
original NLP (57).

Consequently, the step acceptance criterion in the solution procedure for a fixed
barrier parameter μ becomes irrelevant as soon as the (extrapolated) starting points
are immediately accepted. Until then, we can consider the (approximate) solution of
the individual barrier problems as independent procedures, similar to the approach
taken by Byrd et al. in [3]. The focus of this paper is the properties of the line
search filter approach, and we therefore address only the convergence properties of
an algorithm for solving the barrier problem (65) for a fixed value of the barrier
parameter μ. Some additional comments on the overall interior point method are
given in Remark 9 at the end of this section.

The main idea is to apply the technique developed and analyzed in sections 2 and
3 to solve the barrier problem (65); i.e., we replace all occurrences of “f” by “ϕμ.”
However, there are two issues that we have to consider:

1. The barrier objective function (65a) is defined only as long as all components
of x are strictly within bounds, i.e., x > 0;

2. The barrier objective function and its derivatives become unbounded if any
of the components of x approaches its bound.

In order to handle the first item, we enforce that all iterates xk are strictly positive.
For this purpose, we assume that the starting point satisfies x0 > 0 and that an iterate
returned from the restoration phase satisfies xk+1 > 0. We further define a maximal
step size αmax

k ∈ (0, 1] using the fraction-to-the-boundary rule

αmax
k := max {α ∈ (0, 1] : xk + αdk ≥ (1 − τ)xk}(66)
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for a fixed parameter τ ∈ (0, 1), usually chosen close to 1. With this, we start the
backtracking line search in step 4.1 of Algorithm I from αk,0 = αmax

k . Then all trial
points (6) lie strictly within bounds.

Addressing the second item, we show below that under additional assumptions the
iterates generated by the modified Algorithm I (using (66)) are bounded away from
the bounds (see Theorem 3), so that in turn the appropriate quantities in analysis of
section 3 are bounded. Here it is necessary to assume that the parameter sf in the
f -type switching condition (9) is chosen to be 1 (see Remark 6).

For later reference, let us restate the linear system (3) in the notation of this
section. Recalling that “f” is replaced by “ϕμ,” this system can be written as[

Wk + μX−2
k Ak

AT
k 0

](
dk
λ+
k

)
= −

(
∇f(xk) − μX−1

k e
c(xk)

)
,(67)

where Xk := diag(xk), e is a vector of appropriate dimension of 1’s, and Wk is (an
approximation of) the Hessian of the Lagrangian (59) for the original NLP (57). Note
that the Hessian Hk in (3) is equal to Wk+μX−2

k . It is easy to verify that the following
arguments also hold if the primal Hessian “μX−2

k ” of the log-barrier terms is replaced
by the primal-dual Hessian “Σk = X−1

k Vk” (with variables vk > 0), as long as there
exists mΣ > 1 such that

1

mΣ
μ ≤ v

(i)
k x

(i)
k ≤ mΣμ

for all i and k.
Next we state the assumptions necessary to show global convergence for the bar-

rier line search filter algorithm.
Assumptions B. Given a starting point x0 > 0, let {xk} be the sequence generated

by Algorithm I (adapted to the solution of the barrier problem and with sf = 1 in (9)),
where we assume that the feasibility restoration phase in step 8 always terminates
successfully with xk+1 > 0 and that the algorithm does not stop in step 2 at a KKT
point.
(B1) There exists an open set C ⊆ Rn with [xk, xk + αmax

k dk] ⊆ C for all k 
∈ Rinc so
that f and c are differentiable on C, and their function values, as well as their
first derivatives, are bounded and Lipschitz-continuous over C.

(B2) The matrices Wk approximating the Hessian of the Lagrangian of the original
NLP (57) used in (67) are uniformly bounded for all k 
∈ Rinc.

(B3) The matrices Hk = Wk +μX−2
k are uniformly positive definite on the null space

of the Jacobian AT
k . In other words, there exists a constant MH > 0 so that for

all k 
∈ Rinc

λmin

(
ZT
k (Wk + μX−2

k )Zk

)
≥ MH ,(68)

where the columns of Zk ∈ Rn×(n−m) form an orthonormal basis matrix of the
null space of AT

k .
(B4) There exists a constant MA > 0 so that for all k 
∈ Rinc we have

σmin(Ak) ≥ MA.(69)

(B5) The iterates for which the restoration phase is invoked from step 3 (for example,
because (68) or (69) is violated) are not arbitrarily close to the feasible region.
In other words, there exists a constant θinc > 0 so that k 
∈ Rinc whenever
θ(xk) ≤ θinc.
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(B6) The iterates {xk} are bounded.
(B7) At all feasible limit points x̄ of {xk}, the gradients of the active constraints,

∇c1(x̄), . . . ,∇cm(x̄), and ei for i ∈ {j : x̄(j) = 0},(70)

are linearly independent.
(B8) There exist constants δ̃θ, δ̃x > 0 so that whenever the restoration phase is called

in step 8 in an iteration k ∈ R with θ(xk) ≤ δ̃θ, it returns a new iterate with

x
(i)
k+1 ≥ x

(i)
k for all components satisfying x

(i)
k ≤ δ̃x.

Assumptions (B1)–(B5) are essentially identical to the original Assumptions (G1)–
(G5). Note, however, that the boundedness assumptions in (B1) and (B2) pertain to
the original functions and not to those from the barrier problem (65), to which the
line search filter algorithm is applied. Boundedness of the barrier function ϕμ cannot
be assumed, as pointed out above. On the other hand, the lower bound (68) refers to
the Hessian used for the step computation (67).

Assumption (B6) is necessary in order to guarantee that the barrier objective
function ϕμ(x) is bounded below. Assumption (B7) implies Assumptions (B4) and
(B5) if the strategy described at the end of section 3.1 is used to define when k ∈ Rinc.

Assumption (B7) is considerably less restrictive than the regularity assumptions
made for the global convergence analysis of the interior point methods proposed by
El-Bakry et al. [6], Yamashita [28], and Yamashita, Yabe, and Tanabe [29]. For those
algorithms, it is essentially required that the gradients of all equality constraints and
active inequality constraints (70) are linearly independent at all limit points, and not
only at all feasible limit points. If those methods are applied to the example presented
by Wächter and Biegler in [25] (which satisfies Assumption (B7)), they converge to
a spurious solution that is neither feasible nor a stationary point for any norm of the
constraint violation; for details, see [25]. In contrast to this, the proposed algorithm
is at least guaranteed to converge to a stationary point for the infeasibility (assuming
that a reasonable restoration phase algorithm is used), and in practice converges to
the solution [24]. We note here that the method presented by Tits et al. in [20] has a
similar convergence guarantee as the proposed method, in the sense that the regularity
assumption for the constraints in [20] excludes only infeasible limit points, at which
there is no feasible descent direction for the constraint violation measured in the �1
norm.

To see that Assumption (B8) is reasonable, suppose that the gradients of the
active constraints (70) are uniformly linearly independent at all feasible points x̄ (this
is similar to Assumption (B7)). By proof of contradiction one can then show that
there exist constants δ̃θ, δ̃x > 0 so that whenever θ(xk) ≤ δ̃θ for k ∈ R, then there

exists a feasible point x̄k with θ(x̄k) = 0, x̄k > 0, and x̄
(i)
k ≥ x

(i)
k for all i with x

(i)
k ≤ δ̃x.

The point x̄k is a candidate for the point xk+1 returned from the restoration phase
algorithm satisfying the condition in Assumption (B8).

To find an approximation to such a point x̄k, we may apply some algorithm for
bound constraint optimization to the problem

min ‖c(x)‖2
2 + ρ‖x− xk‖2

2(71a)

subject to x(i) ≥ min{ε, x(i)
k } for i = 1, . . . , n.(71b)

Here, the regularization term weighted by ρ > 0 aims to keep the solution of this
problem in the neighborhood of xk, and ε > 0 is some small number that we introduce
to make sure that the (approximate) solution for this problem is not arbitrarily close
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to the boundary. In order to find suitable values of ρ and ε one might start with
some initial choices, and whenever the optimal solution of (71) does not reduce θ(x)
sufficiently to be accepted in step 8 as xk+1, problem (71) could be resolved with
smaller values of ρ or ε; M. Ulbrich, S. Ulbrich, and Vicente [21] outline a related
restoration phase procedure. From the discussion in the previous paragraph, it is
clear that a careful implementation of such a procedure should eventually produce
(approximate) solutions x̄k of (71) for k ∈ R that satisfy Assumption (B8).2

While a detailed discussion of the restoration phase algorithm is beyond the scope
of this paper, we propose in Wächter and Biegler [27] a procedure for the restoration
phase which applies the interior point filter algorithm recursively to a problem for-
mulation similar to (71) and seems to perform well in practice.

Finally we remark that Assumption (B3) is weaker than the one made in an earlier
version of our analysis [24].

The remainder of this section deals with the proof of the following theorem.
Theorem 3. Suppose Assumptions B hold. Then there exists a constant εx > 0

so that xk ≥ εxe for all k.
This means that the iterates generated by Algorithm I (for the barrier algorithm)

are bounded away from the boundary of the region defined by the bound constraints
(57c). Once this is established one can verify that then Assumptions B imply As-
sumptions G, and therefore the global convergence results from section 3 hold. We
only point out that Theorem 3 and Lemma 1 together with (66) establish that the
starting step size in the backtracking line search αmax

k is uniformly bounded away
from zero, a property necessary in the proofs of Lemmas 7, 8, and 9 (for details, see
also [24]).

In order to prove Theorem 3 we make use of the following lemma.
Lemma 11. Suppose Assumptions B hold. Then, for a given subset of indices

S ⊆ {1, . . . , n} and a constant δl > 0, there exist δs, δθ > 0 so that d
(i)
k > 0 for i ∈ S

whenever k 
∈ R and

xk ∈ L :=
{
x ≥ 0 : x(i) ≤ δs for i ∈ S, x(i) ≥ δl for i 
∈ S, θ(x) ≤ δθ

}
;

i.e., at sufficiently feasible points, the search direction points away from almost active
bounds.

Proof. Let us denote with xs
k the components of xk in S and with xl

k the remaining
ones. Without loss of generality we assume xk = [(xs

k) (xl
k)]; similarly, we define As

k,
Al

k, etc. First, we rewrite the linear system (67) by scaling the first rows and columns
by Xs

k:⎡
⎣ Xs

kW
ss
k Xs

k + μI Xs
kW

sl
k Xs

kA
s
k

W ls
k Xs

k W ll
k + μ(X l

k)
−2 Al

k

(As
k)

TXs
k (Al

k)
T 0

⎤
⎦
⎛
⎝ d̃sk

dlk
λ+
k

⎞
⎠ = −

⎛
⎝ Xs

kg
s
k − μe

glk − μ(X l
k)

−1e
c(xk)

⎞
⎠,(72)

where we defined d̃sk := (Xs
k)−1dsk.

For some initial choice of δs, δθ > 0, let x̄ ∈ L be a feasible point with x̄s = 0.
We then have from Assumption (B7) that the columns of the matrix[

[∇c(x̄)]s I
[∇c(x̄)]l 0

]
,

2Recall that we assume here that the restoration phase always terminates successfully. Otherwise,
this procedure should produce a limit point that is a local minimizer, or at least a stationary point,
for the constraint violation within the bound constraints x ≥ 0.
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and therefore also the columns of [∇c(x̄)]l, are linearly independent. Using a com-
pactness argument and Assumption (B6), we can find a constant mσ > 0 so that
σmin([∇c(x̄)]l) ≥ mσ for all feasible limit points x̄ ∈ L of {xk} with x̄s = 0. There-
fore, we have from Assumption (B1) that

σmin(Al
k) ≥

mσ

2

for all xk ∈ L if δθ and δs are chosen sufficiently small.
In addition, possibly after further decreasing δθ, it follows from Assumptions (B3)

and (B5) that for all xk ∈ L the projection of W ll
k + μ(X l

k)
−2 into the null space of

(Al
k)

T is uniformly positive definite.
Together with the boundedness assumptions (B1) and (B2), we then see that (72)

satisfies⎛
⎝
⎡
⎣ μI 0 0

0 W ll
k + μ(X l

k)
−2 Al

k

0 (Al
k)

T 0

⎤
⎦ + O(δs)

⎞
⎠

⎛
⎝ d̃sk

dlk
λ+
k

⎞
⎠ = −

⎛
⎝ −μe

glk − μ(X l
k)

−1e
c(xk)

⎞
⎠ + O(δs),

for xk ∈ L, where the inverse of the matrix in the square brackets, as well as the right-
hand side, are uniformly bounded for δs sufficiently small. Therefore, for xk ∈ L, we
have that d̃sk = e + O(δs), and consequently d̃sk > 0, after possibly reducing δs even

more. The claim then follows from dsk = Xs
k d̃

s
k.

We finish with the proof of Theorem 3.
Proof of Theorem 3. We first show by contradiction that there exist constants

δx, δθ > 0 so that d
(i)
k > 0 for all indices i with x

(i)
k ≤ δx whenever θ(xk) ≤ δθ and

k 
∈ R.
Suppose this claim is not true. Then, there exists a subsequence {xkj} of iterates

with kj 
∈ R, limj θ(xkj
) = 0 and limj x

(s)
kj

= 0 for some index s, as well as d
(s)
kj

≤ 0

for all j. Let x̄ be a limit point of {xkj}, and define S := {i : x̄(i) = 0} and δl :=

min{x̄(i)/2 : i 
∈ S} > 0. Applying Lemma 11, we can conclude that d
(s)
kj

> 0 (since

s ∈ S) for j sufficiently large, in contradiction to the definition of the subsequence.
Since the filter mechanisms ensure limk θ(xk) = 0 (even if the barrier objec-

tive function is unbounded above; see Remark 6), we can find K so that θ(xk) ≤
min{δθ, δ̃θ} for k ≥ K (recall the definition of δ̃θ and δ̃x in Assumption (B8)). Define

εx := min
{

(1 − τ) min{δx, δ̃x},min
i
{x(i)

k : k ≤ K}
}
> 0.

By definition it is clear that xk ≥ εxe for k ≤ K, which can be used as the anchor

for a proof by induction. Now suppose that xk ≥ εxe for some k ≥ K. Since d
(i)
k > 0

for x
(i)
k ≤ δx for k 
∈ R, as well as from Assumption (B8), we see that we can have

x
(i)
k+1 < x

(i)
k for an index i only if x

(i)
k ≥ min{δx, δ̃x}. From (66) we then obtain

x
(i)
k+1 ≥ (1 − τ)x

(i)
k ≥ (1 − τ) min{δx, δ̃x} so that overall xk+1 ≥ εxe.

Remark 9. For the overall barrier method as the barrier parameter μ is driven
to zero, we may simply restart Algorithm I by deleting the current filter whenever
the barrier parameter changes. Alternatively, we may choose to store the values of

the two terms f(xl) and
∑

i ln(x
(i)
l ) in the barrier function ϕμ(xl) separately for each

corner entry (14) in the filter, which would allow one to initialize the filter for the new
barrier problem under consideration of already known information. Details on such a
procedure are beyond the scope of this paper.



30 ANDREAS WÄCHTER AND LORENZ T. BIEGLER

5. Conclusions. A framework for line search filter methods that can be applied
to barrier methods and active set SQP methods has been presented. Global conver-
gence has been shown under mild assumptions, which are, in particular, less restrictive
than those made previously for some line search interior point methods. The method
also possesses favorable local convergence behavior, as we discuss in the companion
paper [26]. We further proposed an alternative measure for the filter, using the La-
grangian function instead of the objective function, for which the global convergence
properties still hold.

In a recent report [27] we present practical experience with the line search filter
barrier method proposed in this paper. The numerical results on a large set of test
problems show that the algorithm exhibits very good practical performance in terms
of efficiency and robustness and that it is competitive with other current NLP codes.
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Abstract. A line search method is proposed for nonlinear programming using Fletcher and
Leyffer’s filter method, which replaces the traditional merit function. A simple modification of the
method proposed in a companion paper [SIAM J. Optim., 16 (2005), pp. 1–31] introducing second
order correction steps is presented. It is shown that the proposed method does not suffer from the
Maratos effect, so that fast local convergence to second order sufficient local solutions is achieved.
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1. Introduction. Recently, Fletcher and Leyffer [7] proposed filter trust region
methods, offering an alternative to merit functions, as a tool to guarantee global
convergence in algorithms for nonlinear programming. The underlying concept is
that trial points are accepted if they improve the objective function or improve the
constraint violation instead of a merit function. In a companion paper [14] we propose
and analyze a filter line search method which can be applied to equality constrained
nonlinear programs (NLPs), as well as problems with nonlinear equality and bound
constraints using active set SQP methods and barrier interior point methods.

In this paper we discuss the local convergence properties of the filter line search
algorithm proposed in [14]. As mentioned by Fletcher and Leyffer [7], the filter ap-
proach can suffer from the so-called Maratos effect [10]. The Maratos effect occurs if,
arbitrarily close to a strict local solution of the NLP (1), a full Newton step increases
both the objective function and the constraint violation, and is therefore rejected by
the line search, even though it could be a very good step toward the solution. This can
result in poor local convergence behavior. As a remedy, Fletcher and Leyffer propose
to improve the search direction, if the full step is rejected, by means of a second order
correction which aims to further reduce infeasibility. In this paper we show that this
modification is indeed able to prevent the Maratos effect.

Ulbrich [13] has recently presented a trust region filter method using the La-
grangian function (instead of the objective function) as one of the measures in the
filter (similar to what we propose in our companion paper [14]). In [13], Ulbrich shows
fast local convergence without second order correction steps.

The paper is organized as follows. In order to keep the analysis simple, we fo-
cus first only on the easiest case of equality constrained optimization problems. In
section 2 we revisit the filter line search procedure from the companion paper [14].
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Section 3 states the modified filter line search algorithm including second order cor-
rection steps. The local convergence analysis is presented in section 4. In section 5
we briefly discuss how this approach can be applied to a line search and a trust region
filter SQP method to handle inequality constrained problems.

Notation. We denote the ith component of a vector v ∈ Rn by v(i). Norms ‖ · ‖
denote a fixed vector norm and its compatible matrix norm. We denote by O(tk) a
sequence {vk} satisfying ‖vk‖ ≤ β tk for some constant β > 0 independent of k, and
by o(tk) a sequence {vk} satisfying ‖vk‖ ≤ βktk for some positive sequence {βk} with
limk βk = 0.

2. A line search filter method. The proposed algorithm is a filter line search
algorithm for solving nonlinear optimization problems of the form

min
x∈Rn

f(x)(1a)

subject to c(x) = 0,(1b)

where the objective function f : Rn → R and the equality constraints c : Rn → Rm

with m < n are twice continuously differentiable. The Karush–Kuhn–Tucker (KKT)
conditions for this problem are given by

g(x) + A(x)λ = 0,(2a)

c(x) = 0(2b)

with the Lagrangian multipliers λ, where g(x) := ∇f(x) and A(x) := ∇c(x). Un-
der suitable constraint qualifications, such as linear independence of the constraint
gradients ∇c(x), these are the first order optimality conditions for (1) (see, e.g., [12]).

Given a starting point x0, the proposed line search algorithm generates a sequence
of improved estimates xk of the solution for the NLP (1). For this purpose in each
iteration k a search direction dk is computed from the linearization of the KKT
conditions (2) at xk, [

Hk Ak

AT
k 0

](
dk
λ+
k

)
= −

(
gk
ck

)
.(3)

Here, Ak := A(xk), gk := g(xk), and ck := c(xk). The symmetric matrix Hk denotes
the Hessian ∇2

xxL(xk, λk) of the Lagrangian

L(x, λ) := f(x) + c(x)Tλ(4)

of the NLP (1), or an approximation to this Hessian. The vector λk is some estimate
of the optimal multipliers corresponding to the equality constraints (1b), and λ+

k in (3)
can be used to determine a new estimate λk+1 for the next iteration. In the context
of this paper the particular choice of λk is not important. As is common for many
line search methods, we assume that the projection of the Hessian approximation Hk

onto the null space of the constraint Jacobian is uniformly positive definite to ensure
certain descent properties.

After a search direction dk has been computed, a step size αk ∈ (0, 1] is determined
in order to obtain the next iterate

xk+1 := xk + αkdk.(5)
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In the companion paper [14] we propose a backtracking line search procedure, where
a decreasing sequence of step sizes αk,l ∈ (0, 1] (l = 0, 1, 2, . . . ) with liml αk,l = 0 is
tried until an acceptance criterion is satisfied. The procedure that decides which trial
step size is accepted is a “filter method.” In the remainder of this section we only
briefly revisit this approach; the detailed motivation can be found in [14]. The formal
statement of the algorithm is presented in section 3.

Filter methods were originally proposed by Fletcher and Leyffer [7]. The basic
idea behind this approach is to interpret the optimization problem (1) as a biobjective
optimization problem with the two goals of minimizing the objective function f(x)
and the constraint violation θ(x) := ‖c(x)‖ (with a certain emphasis on the latter
quantity). Following this paradigm, we might consider a trial point xk(αk,l) := xk +
αk,ldk during the line search to be acceptable if it leads to sufficient progress toward
either goal compared to the current iterate, i.e., if

θ(xk(αk,l)) ≤ (1 − γθ)θ(xk)(6a)

or f(xk(αk,l)) ≤ f(xk) − γfθ(xk)(6b)

holds for fixed constants γθ, γf ∈ (0, 1). However, the above criterion is replaced
by requiring sufficient progress in the objective function, whenever the “switching
condition”

gTk dk < 0 and αk,l[−gTk dk]
sf > δ [θ(xk)]

sθ(7)

with constants δ > 0, sθ > 1, sf > 2sθ holds.1 If (7) is true for the current step size
αk,l, the trial point has to satisfy the Armijo condition

f(xk(αk,l)) ≤ f(xk) + ηfαk,lg
T
k dk,(8)

instead of (6), in order to be acceptable. Here, ηf ∈ (0, 1
2 ) is a constant. Since

the projection of the matrix Hk in (3) onto the null space of AT
k is uniformly positive

definite, it can be shown that condition (7) becomes true if a feasible, but nonoptimal,
point is approached. Enforcing decrease in the objective function by (8) then prevents
the method from converging to such a point. In accordance with previous publications
on filter methods (e.g., [6, 8]) we may call a trial step size αk,l for which (7) holds, an
“f -step size.”

In order to prevent the method from cycling, the algorithm maintains a “filter”
Fk ⊆ {(θ, f) ∈ R2 : θ ≥ 0}, a set of (θ, f)-pairs that are “prohibited” for a trial
point in iteration k. During the line search, a trial point xk(αk,l) is rejected if it is
not acceptable to the current filter, i.e., if (θ(xk(αk,l)), f(xk(αk,l))) ∈ Fk. At the
beginning of the optimization, the filter is initialized to

F0 := {(θ, f) ∈ R2 : θ ≥ θmax}.(9)

Later, the filter is augmented for a new iteration using the update formula

Fk+1 := Fk ∪
{

(θ, f) ∈ R2 : θ ≥ (1 − γθ)θ(xk) and f ≥ f(xk) − γfθ(xk)
}

(10)

if the accepted trial step size does not satisfy the switching condition (7). In this way,
the iterates cannot return back into the neighborhood of xk. On the other hand, if (7)

1For the global convergence analysis in [14] it is sufficient if the constant sf satisfies sf ≥ 1.
However, for the proofs in this paper it has to satisfy a tighter condition, so that the relationship
(26) below holds.
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(and therefore also (8)) holds for the accepted step size, the filter remains unchanged.
Because such an iteration guarantees progress in the objective function, we may call
it an “f -type iteration.”

Finally, in some cases it is not possible to find a trial step size αk,l that satisfies
the above criteria. Using linear models of the involved functions, we assume to be in
this situation if αk,l becomes smaller than

αmin
k := γα ·

⎧⎨
⎩ min

{
γθ,

γfθ(xk)

−gT
k dk

, δ[θ(xk)]sθ

[−gT
k dk]sf

}
if gTk dk < 0,

γθ otherwise,
(11)

with a “safety factor” γα ∈ (0, 1]. If the backtracking line search encounters a trial step
size with αk,l ≤ αmin

k , the algorithm reverts to a feasibility restoration phase. Here, the
algorithm tries to find a new iterate xk+1 that is acceptable to the current filter and
for which (6) holds, by reducing the constraint violation with some iterative method.
Note that a suitable restoration phase algorithm might not be able to produce a new
iterate for the filter line search method and instead converges to a local minimizer
of the constraint violation, indicating to the user that the problem seems (at least
locally) infeasible.

3. Second order correction steps. It has been noted by Fletcher and Leyffer
[7] that the filter approach, similar to a penalty function approach, can suffer from the
Maratos effect. Here, a full Newton (or Newton-type) step increases both the objective
function and the constraint violation, even arbitrarily close to a local solution of the
NLP (1). As a consequence, the filter line search procedure rejects the full Newton step
and accepts only small fractions of the step. This can result in poor local convergence
behavior. As a remedy, Fletcher and Leyffer propose to improve the search direction
by means of a second order correction.

A second order correction step dsoc
k aims to reduce infeasibility by applying an

additional Newton-type step for the constraints at the point xk + dk. There is a wide
range of options to compute such a step. Here, we assume that it is obtained from
the solution of the linear system[

Hsoc
k Asoc

k

(Asoc
k )T 0

](
dsoc
k

λsoc
k

)
= −

(
gsoc
k

c(xk + dk) + csoc
k

)
,(12)

where Hsoc
k is a symmetric n × n matrix, Asoc

k ∈ Rn×m, gsoc
k ∈ Rn, and csoc

k ∈ Rm.
Second order correction steps of the form (12) are discussed by Conn, Gould, and
Toint in [3, section 15.3.2.3]. We assume that Hsoc

k is uniformly positive definite on
the null space of (Asoc

k )T , and that in a neighborhood of a second order sufficient
solution we have

gsoc
k = o(‖dk‖), Ak −Asoc

k = O(‖dk‖), csoc
k = o(‖dk‖2).(13)

In [3], the analysis is made for the particular choices csoc
k = 0, Asoc

k = A(xk + pk)
for some pk = O(‖dk‖), and Hk = ∇2

xxLμ(xk, λk) in (3) for multiplier estimates λk.
However, the careful reader will be able to verify that the cited results from [3] still
hold as long as

(Wk −Hk)dk = o(‖dk‖),(14)
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if xk converges to a second order sufficient solution x∗ of the NLP with corresponding
multipliers λ∗ (see Assumption (L2) below), where

Wk = ∇2
xxL(xk, λ∗)

(4)
= ∇2f(xk) +

m∑
i=1

(λ∗)
(i)∇2c(i)(xk).(15)

We note that if we choose Hk := ∇2
xxLμ(xk, λk), where the sequence of multiplier

estimates {λk} is generated using λ+
k from (3) (e.g., by setting λk+1 := λ+

k ), then
(14) holds if xk converges to a second order sufficient local solution x∗ satisfying
Assumption (L2) below.

Possible choices for the quantities in the computation of the second order correc-
tion step in (12) that satisfy (13) are the following.

(SOC-1) Hsoc
k = I, gsoc

k = 0, csoc
k = 0, and Asoc

k = Ak or Asoc
k = A(xk + dk); this

corresponds to a least-squares step for the constraints.
(SOC-2) Hsoc

k = Hk, g
soc
k = 0, csoc

k = 0, and Asoc
k = Ak; this option is inexpensive

since it allows us to reuse the factorization of the linear system (3).
(SOC-3) Hsoc

k is the Hessian approximation corresponding to xk + dk, gsoc
k =

g(xk + dk) + A(xk + dk)λ
+
k , csoc

k = 0, and Asoc
k = A(xk + dk); this step

corresponds to the step in the next iteration, supposing that xk +dk has
been accepted. In this sense, this choice has the flavor of the watchdog
technique [2].

(SOC-4) If dsoc
k is a second order correction step, and d̄soc

k is an additional second
order correction step (i.e., with “c(xk + dk)” replaced by “c(xk + dk +
dsoc
k )” in (12)), then dsoc

k + d̄soc
k can be understood as a single second

order correction step for dk (in that case with csoc
k 
= 0). Similarly,

several consecutive correction steps can be considered as a single one.
It is easy to show that for the combined step dk +dsoc

k we have c(xk +dk +dsoc
k ) =

o(‖dk‖2) (see (21b) below). As a consequence, the combined step has a better chance
of being accepted by the filter method than the original step dk if xk is close to a
local solution. In order to overcome the Maratos effect, we modify the filter line
search procedure outlined in section 2, so that a second order correction step is tried
whenever the full step has not been accepted. As we will see in section 4, this indeed
enables the algorithm to accept full steps close to a second order sufficient solution of
(1), so that fast local convergence is achieved.

We now formally state the line search filter algorithm from [14] with the modifi-
cation to include second order correction steps.

Algorithm I.

Given: Starting point x0; constants θmax ∈ (θ(x0),∞]; γθ, γf ∈ (0, 1); δ > 0; γα ∈
(0, 1]; sθ > 1; sf > 2sθ; ηf ∈ (0, 1

2 ); 0 < τ1 ≤ τ2 < 1.
1. Initialize. Initialize the filter (using (9)) and the iteration counter k ← 0.
2. Check convergence. Stop, if xk is a local solution (or at least stationary point) of

the NLP (1), i.e., if it satisfies the KKT conditions (2) for some λ ∈ Rm.
3. Compute search direction. Compute the search direction dk from the linear system

(3). If this system is detected to be too ill-conditioned or singular, go to feasibility
restoration phase in Step 8.

4. Backtracking line search.
4.1. Initialize line search. Set αk,0 = 1 and l ← 0.
4.2. Compute new trial point. If the trial step size becomes too small, i.e., αk,l <

αmin
k with αmin

k defined by (11), go to the feasibility restoration phase in Step
8. Otherwise, compute the new trial point xk(αk,l) := xk + αk,ldk.
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4.3. Check acceptability to the filter. If (θ(xk(αk,l)), f(xk(αk,l))) ∈ Fk, reject the
trial step size and go to Step 4.5.

4.4. Check sufficient decrease with respect to current iterate.
4.4.1. Case I: αk,l is an f-step size (i.e., (7) holds): If the Armijo condition (8)

for the objective function holds, accept the trial step xk+1 := xk(αk,l)
and go to Step 5. Otherwise, go to Step 4.5.

4.4.2. Case II: αk,l is not an f-step size (i.e., (7) is not satisfied): If (6) holds,
accept the trial step xk+1 := xk(αk,l) and go to Step 5. Otherwise, go
to Step 4.5.

4.5. Compute second order correction step. If l 
= 0, go to Step 4.8. Otherwise,
solve the linear system (12) to obtain the second order correction step dsoc

k

and define

x̄k+1 := xk + dk + dsoc
k .

4.6. Check acceptability to the filter. If x̄k+1 ∈ Fk, reject the second order correc-
tion step and go to Step 4.8.

4.7. Check sufficient decrease with respect to current iterate.
4.7.1. Case I: The switching condition (7) holds (for αk,0 and dk): If the

Armijo condition for the objective function,

f(x̄k+1) ≤ f(xk) + ηf gTk dk,(16)

holds, accept xk+1 := x̄k+1 and go to Step 5. Otherwise, go to Step 4.8.
4.7.2. Case II: The switching condition (7) is not satisfied: If

θ(x̄k+1) ≤ (1 − γθ)θ(xk)(17a)

or f(x̄k+1) ≤ f(xk) − γfθ(xk)(17b)

holds, accept xk+1 := x̄k+1 and go to Step 5. Otherwise, go to Step 4.8.
4.8. Choose new trial step size. Choose αk,l+1 ∈ [τ1αk,l, τ2αk,l], set l ← l + 1, and

go back to Step 4.2.
5. Accept trial point. Set αk := αk,l.
6. Augment filter if necessary. If k is not an f -type iteration (i.e., (7) does not hold

for αk), augment the filter using (10); otherwise leave the filter unchanged, i.e., set
Fk+1 := Fk.

7. Continue with next iteration. Increase the iteration counter k ← k+1 and go back
to Step 2.

8. Feasibility restoration phase. Compute a new iterate xk+1 by decreasing the infea-
sibility measure θ, so that xk+1 satisfies the sufficient decrease conditions (6) and
is acceptable to the filter, i.e., (θ(xk+1), f(xk+1)) 
∈ Fk. Augment the filter using
(10) (for xk) and continue with the regular iteration in Step 7.

It can be verified easily that this modification of Algorithm I in the companion paper
[14] does not affect the global convergence properties proved in [14].

4. Local convergence analysis. We start the analysis by stating the necessary
assumptions.

Assumptions L. Assume that the algorithm generates an infinite sequence {xk}
of iterates that converges to a local solution x∗ of the NLP (1), and that the following
hold.

(L1) The functions f and c are twice continuously differentiable in a neighborhood
of x∗.
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(L2) x∗ satisfies the following sufficient second order optimality conditions:
• there exists λ∗ ∈ Rm so that the KKT conditions (2) are satisfied for

(x∗, λ∗);
• the constraint Jacobian A(x∗)

T has full rank; and
• the Hessian of the Lagrangian W∗ = ∇2

xxL(x∗, λ∗) is positive definite
on the null space of A(x∗)

T .
(L3) In (3), Hk is uniformly positive definite on the null space of (Ak)

T , as well
as bounded.

(L4) In (12), Hsoc
k is uniformly positive definite on the null space of (Asoc

k )T , and
(13) holds.

(L5) The matrices Hk in (3) satisfy (14).
(L6) There exists a constant θinc > 0, so that the algorithm does not switch in

Step 3 to the restoration phase if θ(xk) ≤ θinc.
The assumption “limk xk = x∗” is discussed in Remark 3.15 in the companion paper
[14]. It is shown that if a particular restoration phase algorithm (based on Newton
steps for the KKT conditions) is used in the neighborhood of a solution x∗ satisfying
(L2), then the iterates of the overall filter line search algorithm are attracted to x∗
so that xk → x∗ follows. Assumption (L5) is reminiscent of the Dennis–Moré char-
acterization of superlinear convergence [4], but it is stronger than the one necessary
for superlinear convergence [1] which requires only that ZT

k (Wk −Hk)dk = o(‖dk‖),
where Zk is a null space matrix for AT

k . However, if multiplier estimates λk based on
λ+
k from (3) and exact second derivatives are used to obtain Hk close to x∗, i.e., if

Hk = ∇2
xxL(xk, λk),(18)

then Assumptions (L3) and (L5) are satisfied, since Hk → W∗ in that case. Finally, the
algorithm allows us to revert to the restoration phase in Step 3. This option exists so
that the overall globally convergent line search method can handle infeasible points at
which the constraint gradients are linearly dependent (see [14] for details). Therefore,
Assumption (L6) is introduced as a formality to guarantee that the algorithm does not
switch in arbitrary iterations to the restoration phase close to feasible points. In light
of Assumption (L2), it is easy to see that the iteration matrix in (3) is nonsingular
close to x∗, if Hk is chosen to be close to W∗ (e.g., by (18)), so that there is no need to
revert to the restoration phase in Step 3 close to x∗, and Assumption (L6) is satisfied.

The above assumptions imply Assumptions G in the companion paper [14] in a
neighborhood of the solution. Therefore, Lemma 1 from [14] remains valid close to
x∗, which states that dk and λ+

k from (3) are uniformly bounded. Furthermore, as
can be verified easily, the proof of Lemma 4 in [14] holds using Assumptions (L3) and
(L6), so that

θ(xk) = 0 =⇒ gTk dk < 0 and(19)

Θk := min{θ : (θ, f) ∈ Fk} > 0(20)

for all k.
First we summarize some preliminary results.
Lemma 4.1. Suppose Assumptions L hold. Then there exists a neighborhood U1

of x∗, so that for all xk ∈ U1 we have

dsoc
k = o(‖dk‖),(21a)

c(xk + dk + dsoc
k ) = o(‖dk‖2).(21b)



LINE SEARCH FILTER METHODS: LOCAL CONVERGENCE 39

Proof. From continuity, condition (13), and full rank of AT
∗ , as well as Assump-

tion (L4), we have that the matrix in (12) has a uniformly bounded inverse in the
neighborhood of x∗. Hence, since the right-hand side is o(‖dk‖), claim (21a) follows.
Furthermore, from

c(xk + dk + dsoc
k ) = c(xk + dk) + A(xk + dk)

T dsoc
k + O(‖dsoc

k ‖2)

(12)
= −csoc

k − (Asoc
k )T dsoc

k + (Ak + O(‖dk‖))T dsoc
k

+ O(‖dsoc
k ‖2)

(13)
= o(‖dk‖2) + O(‖dk‖‖dsoc

k ‖) + O(‖dsoc
k ‖2)

(21a)
= o(‖dk‖2)

for xk close to x∗, the claim (21b) follows.
In order to prove our local convergence result we make use of two results estab-

lished in [3] regarding the effect of second order correction steps on the exact penalty
function

φρ(x) = f(x) + ρ θ(x).(22)

Note that we employ the exact penalty function only as a technical device, but the
algorithm never refers to it. We also use the following model of the penalty function:

qρ(xk, d) = f(xk) + gTk d +
1

2
dTHkd + ρ

∥∥AT
k d + ck

∥∥ .(23)

The first result follows from Theorem 15.3.7 in [3].
Lemma 4.2. Suppose Assumptions L hold. Let φρ be the exact penalty func-

tion (22) and qρ defined by (23) with ρ > ‖λ∗‖D, where ‖ · ‖D is the dual norm to
‖ · ‖. Then,

lim
k→∞

φρ(xk) − φρ(xk + dk + dsoc
k )

qρ(xk, 0) − qρ(xk, dk)
= 1.(24)

The next result follows from Theorem 15.3.2 in [3].
Lemma 4.3. Suppose Assumptions L hold. Let (dk, λ

+
k ) be a solution of the linear

system (3), and let ρ > ‖λ+
k ‖D. Then,

qρ(xk, 0) − qρ(xk, dk) ≥ 0.(25)

The next lemma shows that in a neighborhood of x∗, Step 4.7.1 of Algorithm I is
successful if the combined step dk + dsoc

k is an f -type step.
Lemma 4.4. Suppose Assumptions L hold. Then there exists a neighborhood

U2 ⊆ U1 of x∗ so that whenever (7) holds for αk,l = 1, the Armijo condition (16) is
satisfied.

Proof. Choose U1 to be the neighborhood from Lemma 4.1. It then follows that
for xk ∈ U1 satisfying (7),

θ(xk) < δ
− 1

sθ [−gTk dk]
sf
sθ =O(‖dk‖

sf
sθ ) = o(‖dk‖2),(26)

since
sf
sθ

> 2 and gk is uniformly bounded in U1.



40 ANDREAS WÄCHTER AND LORENZ T. BIEGLER

Since ηf < 1
2 , Lemma 4.2 and (25) imply that there exists K ∈ N such that for

all k ≥ K we have for some constant ρ > 0 with ρ > ‖λ+
k ‖D independent of k that

φρ(xk) − φρ(xk + dk + dsoc
k ) ≥

(
1

2
+ ηf

)
(qρ(xk, 0) − qρ(xk, dk)) .(27)

We then have

f(xk) − f(xk + dk + dsoc
k )

(22)
= φρ(xk) − φρ(xk + dk + dsoc

k ) − ρ (θ(xk) − θ(xk + dk + dsoc
k ))

(27),(21b),(26)

≥
(

1

2
+ ηf

)
(qρ(xk, 0) − qρ(xk, dk)) + o(‖dk‖2)

(23),(26),(3)
= −

(
1

2
+ ηf

)(
gTk dk +

1

2
dTkHkdk

)
+ o(‖dk‖2).(28)

Before continuing, we recall the step decomposition from the companion paper [14]

dk = qk + pk,(29a)

qk := Yk q̄k and pk := Zkp̄k,(29b)

q̄k := −
[
AT

k Yk

]−1
ck,(29c)

p̄k := −
[
ZT
k HkZk

]−1
ZT
k (gk + Hkqk) ,(29d)

where Yk ∈ Rn×m and Zk ∈ Rn×(n−m) are matrices so that the columns of [Yk Zk]
form an orthonormal basis of Rn, and the columns of Zk are a basis of the null space
of AT

k . Since Assumptions L guarantee that the quantities (29), as well as λ+
k , are

bounded for k sufficiently large, we can conclude

f(xk) + ηfg
T
k dk − f(xk + dk + dsoc

k )

(28)

≥ −1

2
gTk dk −

(
1

4
+

ηf
2

)
dTkHkdk + o(‖dk‖2)

(3)
=

1

2

(
dTkHkdk + dTkAkλ

+
k

)
−
(

1

4
+

ηf
2

)
dTkHkdk + o(‖dk‖2)

(3)
=

(
1

4
− ηf

2

)
dTkHkdk − 1

2
c(xk)

Tλ+
k + o(‖dk‖2)

(26)
=

(
1

4
− ηf

2

)
dTkHkdk + o(‖dk‖2)

(29)
=

(
1

4
− ηf

2

)
p̄Tk Z

T
k HkZkp̄k + O(‖qk‖) + o(‖dk‖2).(30)

Finally, using repeatedly the orthonormality of [Yk Zk], we have

qk = O(q̄k)
(29c)
= O(θ(xk))

(26)
= o(‖dk‖2)

(29a)
= o(pTk pk + qTk qk)

(29b)
= o(‖p̄k‖2) + o(‖qk‖2)

and therefore qk = o(‖p̄k‖2), as well as

dk
(29a)
= O(‖qk‖) + O(‖pk‖)

(29b)
= o(‖p̄k‖2) + O(‖p̄k‖) = O(‖p̄k‖).
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Since p̄k → 0 as xk → x∗, (16) is then implied by (30), Assumption (L3), and ηf < 1
2 ,

if xk is sufficiently close to x∗.
It remains to show that also the filter and the sufficient reduction criterion (6)

do not interfere with the acceptance of full steps close to x∗. The following techni-
cal lemmas address this issue and prepare the proof of the main local convergence
theorem.

Lemma 4.5. Suppose Assumptions L hold. Then there exists a neighborhood
U3 ⊆ U2 (with U2 from Lemma 4.4) and constants ρ1, ρ2, ρ3 > 0 with

ρ3 = (1 − γθ)ρ2 − γf ,(31a)

2γθρ2 < (1 + γθ)(ρ2 − ρ1) − 2γf ,(31b)

2ρ3 ≥ (1 + γθ)ρ1 + (1 − γθ)ρ2,(31c)

so that for all xk ∈ U3 we have ‖λ+
k ‖D < ρi for i = 1, 2, 3. Furthermore, for all

xk ∈ U3 we have

φρi(xk) − φρi
(xk + dk + d̄soc

k ) ≥ 1 + γθ
2

(qρi
(xk, 0) − qρi(xk, dk))

(25)

≥ 0(32)

for i = 2, 3 and all choices

d̄soc
k = dsoc

k ,(33a)

d̄soc
k = σkd

soc
k + dk+1 + σk+1d

soc
k+1,(33b)

d̄soc
k = σkd

soc
k + dk+1 + σk+1d

soc
k+1 + dk+2 + σk+2d

soc
k+2,(33c)

or d̄soc
k = σkd

soc
k + dk+1 + σk+1d

soc
k+1 + dk+2 + σk+2d

soc
k+2

+dk+3 + σk+3d
soc
k+3,(33d)

with σk, σk+1, σk+2, σk+3 ∈ {0, 1}, as long as xl+1 = xl+dl+σld
soc
k for l ∈ {k, . . . , k+

j} with j ∈ {−1, 0, 1, 2}, respectively.
Proof. Since λ+

k is uniformly bounded for all k with xk ∈ U2, we can find ρ1 >
‖λ∗‖D with

ρ1 > ‖λ+
k ‖D(34)

for all k with xk ∈ U2. Defining now

ρ2 :=
1 + γθ
1 − γθ

ρ1 +
3γf

1 − γθ

and ρ3 by (31a), it is then easy to verify that ρ2, ρ3 ≥ ρ1 > ‖λ+
k ‖D and that (31b) and

(31c) hold. Since (1 + γθ) < 2, Lemma 4.2 implies that there exists a neighborhood
U3 ⊆ U2 of x∗, so that (32) holds for xk ∈ U3, since according to the second order
correction step choices (SOC-3) and (SOC-4) in section 3 all options for d̄soc

k in (33)
can be understood as second order correction steps to dk.

Before proceeding we give a short graphical motivation of the remainder of the
proof and introduce some more notation. Let U3 and ρi be the neighborhood and
constants from Lemma 4.5. Since limk xk = x∗, we can find K1 ∈ N so that xk ∈ U3

for all k ≥ K1. In Figure 1 we see the (θ, f) half-plane with the current filter FK1 .
Let us now define the level set

M := {x ∈ U3 : φρ3(x) ≤ φρ3(x∗) + κ} ,(35)
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FK1

FK2

U3

xK2

xK2+1

xK2+2

f(x)

θ(x)

(0
,f

(x
∗)

)

M

φρ(x) ≤ φρ(x∗) + κ

φρ(x) ≤ φρ(x∗) + κ− ε

Fig. 1. Basic idea of the proof.

where κ > 0 is chosen so that for all x ∈ M we have (θ(x), f(x)) 
∈ FK1 . This is
possible, since ΘK1

> 0 from (20), and since max{θ(x) : x ∈ M} converges to zero as
κ → 0, because x∗ is a strict local minimizer of φρ3 (see [9]). Obviously, x∗ ∈ M .

In Figure 1, M and U3 are the images of M and U3 in the (θ, f) half-plane. Let
K2 now be the first iteration K2 ≥ K1 with xK2 ∈ M . This means that no iterate
after K1 and before K2 is in M , and therefore also that the filter FK2 overlaps with
M by at most a small area whose size is governed by the parameters γf and γθ.
The (θ, f)-pairs with constant value of the exact penalty function (22) correspond to
dashed lines in the diagram, the slope of which is determined by the penalty parameter
ρ. The main trick of the proof is to use these dashed lines as frontiers approaching
(0, f(x∗)), so that the filter always lies to the upper right side of these lines (except
for small overlaps coming from (10) in the filter update rule), and at least every
other iterate (with or without second order correction step) lies on the lower left side
of these lines (see (32)). For technical reasons we have to consider three of those
frontiers corresponding to different values of the penalty parameter, in order to deal
with sufficient progress with respect to the old filter entries, the current iterate (6),
and new filter entries.

We denote the set of iteration indices k, in which the filter is augmented, by
A ⊆ N; i.e.,

Fk � Fk+1 ⇐⇒ k ∈ A.

Also, we define for k ∈ N the filter building blocks

Gk :=
{

(θ, f) : θ ≥ (1 − γθ)θ(xk) and f ≥ f(xk) − γfθ(xk)
}
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and index sets Ik2

k1
:= {l = k1, . . . , k2 − 1 : l ∈ A} for k1 ≤ k2. Then it follows from

the filter update rule (10) and the definition of A that for k1 ≤ k2

Fk2 = Fk1 ∪
⋃

l∈I
k2
k1

Gl.(36)

Also note that l ∈ Ik2

k1
⊆ A implies θ(xl) > 0. Otherwise, we would have from (19)

that gTk dk < 0, so that (7) holds for all trial step sizes α, and the step must have
been accepted in Step 4.4.1 or Step 4.7.1, hence satisfying (8) or (16). This would
contradict the filter update condition in Step 6.

The last lemma enables us to show in the main theorem of this section that, once
the iterates have reached the level set M , the full step is always acceptable to the
current filter.

Lemma 4.6. Suppose Assumptions L hold and let l ≥ K1 with θ(xl) > 0. Then
the following statements hold for a given x ∈ Rn.

If φρ2
(xl) − φρ2(x) ≥ 1+γθ

2 (qρ2
(xl, 0) − qρ2

(xl, dl)),
then (θ(x), f(x)) 
∈ Gl.

}
(37)

If x ∈ M and φρ2(xK2)−φρ2(x) ≥ 1+γθ

2 (qρ2(xK2 , 0) − qρ2(xK2 , dK2)),
then (θ(x), f(x)) 
∈ FK2 .

}
(38)

Proof of (37). Since ρ1 > ‖λ+
l ‖D we have from Lemma 4.3 that qρ1(xl, 0) −

qρ1
(xl, dl) ≥ 0. Hence, using the definition (23) for qρ, as well as AT

l dl + cl = 0 (from
(3)), we obtain

φρ2(xl) − φρ2(x) ≥ 1 + γθ
2

(qρ2(xl, 0) − qρ2(xl, dl))

=
1 + γθ

2
(qρ1(xl, 0) − qρ1(xl, dl) + (ρ2 − ρ1)θ(xl))

(25)

≥ 1 + γθ
2

(ρ2 − ρ1)θ(xl).(39)

If f(x) < f(xl) − γfθ(xl), the claim follows immediately. Otherwise, suppose that
f(x) ≥ f(xl) − γfθ(xl). In that case, we have together with θ(xl) > 0 that

θ(xl) − θ(x)
(22),(39)

≥ 1 + γθ
2ρ2

(ρ2 − ρ1)θ(xl) +
1

ρ2
(f(x) − f(xl))

≥ 1 + γθ
2ρ2

(ρ2 − ρ1)θ(xl) −
γf
ρ2

θ(xl)

(31b)
> γθθ(xl),

so that (θ(x), f(x)) 
∈ Gl.
Proof of (38). Since x ∈ M , it follows by the choice of κ in (35) that (θ(x), f(x)) 
∈

FK1 . Thus, according to (36) it remains to show that for all l ∈ IK2

K1
we have

(θ(x), f(x)) 
∈ Gl. Choose l ∈ IK2

K1
. As in (39) we can show that

φρ2(xK2) − φρ2(x) ≥ 1 + γθ
2

(ρ2 − ρ1)θ(xK2).(40)
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Since x ∈ M , it follows from the definition of K2 (as the first iterate after K1 with
xK2 ∈ M) and the fact that l < K2 that

φρ3(xl)
(35)
> φρ3(xK2)

(22)
= φρ2(xK2) + (ρ3 − ρ2)θ(xK2)

(40)

≥ φρ2(x) +

(
ρ3 −

1 + γθ
2

ρ1 −
1 − γθ

2
ρ2

)
θ(xK2)

(31c)

≥ φρ2
(x).(41)

If f(x) < f(xl) − γfθ(xl), we immediately have (θ(x), f(x)) 
∈ Gl. Otherwise we have
f(x) ≥ f(xl) − γfθ(xl) which yields

θ(x)
(22),(41)

<
1

ρ2
(f(xl) + ρ3θ(xl) − f(x))

≤ ρ3 + γf
ρ2

θ(xl)

(31a)
= (1 − γθ)θ(xl),

so that (θ(x), f(x)) 
∈ Gl which concludes the proof of (38).
After these preparations we are finally able to show the main local convergence

theorem.
Theorem 4.7. Suppose Assumptions L hold. Then, for k sufficiently large, full

steps of the form xk+1 = xk +dk or xk+1 = xk +dk +dsoc
k are taken, and xk converges

to x∗ superlinearly.
Proof. Recall that K2 ≥ K1 is the first iteration after K1 with xK2 ∈ M ⊆ U3.

We now show by induction that the following statements are true for k ≥ K2 + 2:

(ik)φρi(xl) − φρi(xk) ≥
1 + γθ

2
(qρi(xl, 0) − qρi(xl, dl))

for i ∈ {2, 3} and K2 ≤ l ≤ k − 2,

(iik)xk ∈ M,

(iiik)xk = xk−1 + dk−1 + σk−1d
soc
k−1 with σk−1 ∈ {0, 1}.

We start by showing that these statements are true for k = K2 + 2.
Suppose the point xK2 + dK2 is not accepted by the line search. In that case,

define x̄K2+1 := xK2 + dK2 + dsoc
K2

. Then, from (32) with i = 3, k = K2, and (33a),
we see from xK2

∈ M and the definition of M that x̄K2+1 ∈ M . After applying (32)
again with i = 2 it follows from (38) that (θ(x̄K2+1), f(x̄K2+1)) 
∈ FK2 , i.e., x̄K2+1

is not rejected in Step 4.6. Furthermore, if the switching condition (7) holds, we
see from Lemma 4.4 that the Armijo condition (16) with k = K2 is satisfied for the
point x̄K2+1. In the other case, i.e., if (7) is violated (note that then (19) and (7)
imply θ(xK2) > 0), we see from (32) for i = 2, k = K2, and (33a), together with
(37) for l = K2, that (17) holds. Hence, x̄K2+1 is also not rejected in Step 4.7 and
accepted as the next iterate. Summarizing the discussion in this paragraph we can
write xK2+1 = xK2 + dK2 + σK2d

soc
K2

with σK2 ∈ {0, 1}.
Let us now consider iteration K2 + 1. For σK2+1 ∈ {0, 1} we have from (32) for

k = K2 and (33b) that

φρi(xK2) − φρi(xK2+1 + dK2+1 + σK2+1d
soc
K2+1)

≥ 1 + γθ
2

(qρi(xK2 , 0) − qρi(xK2 , dK2))(42)
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for i = 2, 3, which yields

xK2+1 + dK2+1 + σK2+1d
soc
K2+1 ∈ M.(43)

If xK2+1 + dK2+1 is accepted as the next iterate xK2+2, we immediately obtain from
(42) and (43) that (iK2+2)–(iiiK2+2) hold. Otherwise, we consider the case σK2+1 =
1. From (42), (43), and (38) we have for x̄K2+2 := xK2+1 + dK2+1 + dsoc

K2+1 that

(θ(x̄K2+2), f(x̄K2+2)) 
∈ FK2 . If K2 
∈ IK2+1
K2

, it immediately follows from (36) that
(θ(x̄K2+2), f(x̄K2+2)) 
∈ FK2+1. Otherwise, we have θ(xK2) > 0. Then, (42) for i = 2
together with (37) implies (θ(x̄K2+2), f(x̄K2+2)) 
∈ GK2

, and hence with (36) we have
(θ(x̄K2+2), f(x̄K2+2)) 
∈ FK2+1, so that x̄K2+2 is not rejected in Step 4.6. Arguing
similarly as in the previous paragraph we can conclude that x̄K2+2 is also not rejected
in Step 4.7. Therefore, xK2+2 = x̄K2+2. Together with (42) and (43) this proves
(iK2+2)–(iiiK2+2) for the case σK2+1 = 1.

Now suppose that (il)–(iiil) are true for all K2 +2 ≤ l ≤ k with some k ≥ K2 +2.
If xk + dk is accepted by the line search, define σk := 0; otherwise, σk := 1. Set
x̄k+1 := xk + dk + σkd

soc
k . From (32) for (33c) we then have for i = 2, 3

φρi
(xk−1) − φρi

(x̄k+1) ≥
1 + γθ

2
(qρi

(xk−1, 0) − qρi
(xk−1, dk−1)) ≥ 0.(44)

Choose l with K2 ≤ l < k − 1 and consider two cases.

Case (a). If k = K2 + 2, then l = K2, and it follows from (32) with (33d) that
for i = 2, 3

φρi(xl) − φρi
(x̄k+1) ≥

1 + γθ
2

(qρi
(xl, 0) − qρi

(xl, dl)) ≥ 0.(45)

Case (b). If k > K2 + 2, we have from (44) that φρi(x̄k+1) ≤ φρi(xk−1), and
hence from (ik−1) it follows that (45) also holds in this case.

In either case, (45) implies in particular that φρ3(x̄k+1) ≤ φρ3
(xK2

), and since
xK2 ∈ M , we obtain

x̄k+1 ∈ M.(46)

If xk + dk is accepted by the line search, (ik+1)–(iiik+1) follow from (45), (44), and
(46). If xk + dk is rejected, we see from (46), (45) for i = 2 and l = K2, and (38) that
(θ(x̄k+1), f(x̄k+1)) 
∈ FK2 . Furthermore, for l ∈ IkK2

we have from (44) and (45) with
(37) that (θ(x̄k+1), f(x̄k+1)) 
∈ Gl, and hence from (36) that x̄k+1 is not rejected in
Step 4.6. We can again show as before that x̄k+1 is not rejected in Step 4.7, so that
xk+1 = x̄k+1 which implies (ik+1)–(iiik+1).

That {xk} converges to x∗ with a superlinear rate follows from (14) (see,
e.g., [11]).

Remark 4.8. As can be expected, the convergence rate of xk toward x∗ is
quadratic if (14) is replaced by

(Wk −Hk)dk = O(‖dk‖2)

(see, e.g., [3]).
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5. Fast local convergence of SQP methods.

5.1. A line search filter SQP method. In the companion paper [14] we pro-
pose a filter line search SQP method for solving NLPs with bound constraints, for
simplicity stated in the form

min
x∈Rn

f(x)(47a)

subject to c(x) = 0,(47b)

x ≥ 0.(47c)

The filter line search algorithm is essentially identical to the one for solving the equal-
ity constrained problem (1), where the search direction dk is now computed as a
solution of the QP

min
d∈Rn

gTk d +
1

2
dTHkd(48a)

subject to AT
k d + ck = 0,(48b)

xk + d ≥ 0.(48c)

The QP Hessian Hk is assumed to be positive definite in the null space of the con-
straints active at xk and xk+dk. Since the initial iterate as well as all iterates returned
from the feasibility restoration phase are assumed to satisfy the bound constraints,
we have from (48c) and (5) that xk ≥ 0 for all k. Therefore, the infeasibility is still
measured as θ(x) := ‖c(x)‖. For details, see [14].

In order to achieve fast local convergence for this active set approach, we can
again use second order correction steps. One possibility for computing a second order
correction step in an SQP framework is proposed in [5], where the composite step
d̃k = dk + dsoc

k is obtained as a solution of

min
d̃∈Rn

gTk d̃ +
1

2
d̃THkd̃(49a)

subject to AT
k d̃ + ck + c(xk + dk) = 0,(49b)

xk + d̃ ≥ 0.(49c)

This corresponds to the choice (SOC-2) in section 3.
Let us now assume that the iterates xk generated by the SQP filter line search

algorithm converge to a local solution x∗ of (47) satisfying the following second order
sufficient conditions:

• There exist multipliers λ∗ ∈ Rm and v∗ ∈ Rn with v∗ ≥ 0, so that the KKT
conditions

g(x∗) + A(x∗)λ∗ − v∗ = 0,

c(x∗) = 0,

v∗ ≥ 0, x∗ ≥ 0,

vT∗ x∗ = 0

hold;
• the gradients of the constraints active at x∗ are linearly independent;

• the Hessian of the Lagrangian, W∗ = ∇2f(x∗) +
∑

j=1,... ,m λ
(j)
∗ ∇2c(j)(x∗), is

positive definite in the null space of the active constraints;



LINE SEARCH FILTER METHODS: LOCAL CONVERGENCE 47

• strict complementarity holds, i.e., v
(i)
∗ + x

(i)
∗ > 0 for all i = 1, . . . , n.

If we assume that the QP Hessians Hk are uniformly positive definite in the null
space of the constraints active at xk and xk +dk (see Assumption (G3∗) in [14]), then
the bound constraints active at x∗ are identical to the bound constraints active at
the solution of (48) and (49) if xk is sufficiently close to x∗. Therefore, for large k,
the computation of dk and dsoc

k from the QPs (48) and (49) can be interpreted as the
steps obtained from Algorithm I applied to an equality constrained NLP, where the
equality constraints consist of the equality constraints (47b) and constraints x(i) = 0

for i ∈ {j : x
(j)
∗ = 0}. As a consequence, the analysis in the previous section can be

applied.

5.2. A trust region filter SQP method. In [6], Fletcher et al. propose a
trust region filter SQP algorithm and analyze its global convergence behavior. The
switching rule used there does not imply the relationship (26), and therefore the
proof of Lemma 4.4 in our local convergence analysis does not hold for that method.
However, it is easy to see that the global convergence analysis in [6] is still valid (in
particular, Lemmas 3.7 and 3.10 in [6]) if the switching rule (2.19) in [6] is modified
in analogy to (7) and replaced by

mk(xk) −mk(xk + sk) ≥ 0 and [mk(xk) −mk(xk + sk)]
sf Δ

1−sf
k ≥ κθθ

ψ
k ,

where mk is a quadratic model of the objective function, sk is the trial step, Δk is the
current trust region radius, κθ, ψ > 0 are constants from [6] satisfying certain rela-
tionships, and the new constant sf > 0 satisfies sf > 2ψ. Then the local convergence
analysis in section 4 is still valid (also for the quadratic model formulation), assuming
that sufficiently close to a strict local solution the trust region is inactive, the trust
region radius Δk is uniformly bounded away from zero, the (approximate) SQP steps
sk are computed sufficiently exactly, and a second order correction as discussed in
section 3 is performed.

6. Conclusions. We have shown that second order correction steps are able to
overcome the Maratos effect within filter methods and that fast local convergence
can be obtained. Important for the success of our analysis is a particular switching
rule (7), which differs from previous filter methods, such as the one proposed by
Fletcher et al. [6].
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A REVISED DUAL PROJECTIVE PIVOT ALGORITHM FOR
LINEAR PROGRAMMING∗
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Abstract. We revise the dual projective pivot algorithm using sparse rectangular LU factors.
In each iteration, the proposed algorithm solves at most three triangular systems, while simplex
algorithms solve four. Instead of the classical basis, it uses a so-called pseudobasis (a rectangular
matrix having fewer columns than rows), thereby solving smaller linear systems with a potentially
improved stability compared to simplex algorithms. Most importantly, it generates good search
directions at a low cost.

We report encouraging computational results on a set of 50 Netlib standard test problems as well
as a set of 15 much larger real-world problems. A code named RDPPA 1.10 based on the proposed
algorithm outperformed MINOS 5.51 significantly in terms of both iterations and run time. In
particular, it appears that a high proportion of degenerate iterations need not imply many total
iterations (contradicting the common belief).
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AMS subject classifications. 65K05, 90C05

DOI. 10.1137/030602253

1. Introduction. We consider linear programming (LP) problems in the stan-
dard form

minimize cTx,(1.1)

subject to Ax = b, x ≥ 0,

where the constraint matrix A ∈ Rm×n, cost vector c ∈ Rn, and right-hand side
b ∈ Rm are assumed to be nonzero (0 < m < n). We emphasize that no extra
assumption is made either on the rank of A or on the consistency of Ax = b.

In essence, the dual simplex algorithm [14, 1, 5] solves (1.1) by handling its dual
program, i.e.,

minimize bT y,(1.2)

subject to AT y + z = c, z ≥ 0.

Ever since it was introduced, the dual simplex algorithm has largely been present just
in the literature. However, all that has changed in recent years. Its implementations
have become so powerful that they work very competitively compared to primal sim-
plex implementations and are now among the standard choices in modern codes [2].
Such a success encourages us to deal with the LP problem from the dual side.

Similarly, the square matrix termed basis has long played a fundamental role in
simplex algorithms for solving LP problems [4, 6], yet the basis was extended recently
to include a deficient case by exploiting primal degeneracy. Described as either primal
variants [21, 22, 23, 26] or dual variants [20, 24], all the basis-deficiency-allowing
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algorithms performed very favorably in their dense implementations. Also, a sparse
implementation of such a primal algorithm outperformed MINOS 5.3 significantly
[25].

Thus, we are led to pursuing good dual approaches based on the deficient basis.
While other authors handle primal degeneracy by taking a dual approach [13], the
use of the deficient basis enables us to take advantage of primal degeneracy in a dual
approach. The dual projective simplex algorithm was first derived along this line [20].
This algorithm seemed to be particularly attractive in that it involved a pivot rule as
well as a projected search direction using the deficient basis and the QR factorization.
The algorithm was then recast systematically into a compact form by handling a series
of least-squares problems arising from the constraint matrix [24].

In this paper, a further revision using a sparse rectangular LU factorization is
made, allowing the algorithm to proceed without storing any full array and thus
making it more amenable to the solution of sparse problems. The revision has been
implemented and tested on a set of 50 Netlib standard test problems as well as on a
set of 15 much larger real-world problems with up to tens of thousands of rows and
columns. A code named RDPPA 1.10 based on it significantly outperformed MINOS
5.51, the latest version of MINOS, in terms of both required iterations and run time.
In particular, it appears that a high proportion of degenerate iterations need not
imply many total iterations (contradicting common belief).

In the next section, basic definitions and assumptions are presented first. In sec-
tions 3 and 4, we focus on the optimality test and search direction. Then, in section 5,
we describe the revised dual projective pivot algorithm (RDPPA). In section 6, re-
marks are made on the proposed algorithm about its motivation and an alternative
view of it. In section 7, a dual phase-1 approach is described briefly. Finally, in
section 8, computational results are reported, giving an insight into the encouraging
behavior of the proposed algorithm.

2. Basic definitions and assumptions. One of the main features of the pro-
posed algorithm is its use of a rectangular “pseudobasis.” In this section, we briefly
present the associated concepts and ideas and make some assumptions.

Definition 2.1 (pseudobasis). A pseudobasis is a submatrix consisting of any
linearly independent columns of A; the submatrix consisting of the remaining columns
is a pseudononbasis.

Definition 2.2 (basis). A pseudobasis is a basis if its range space includes the
right-hand side b; the associated pseudononbasis is a nonbasis.

Definition 2.3 (deficient basis). If the number of columns of a basis is less than
the number of its rows, it is a deficient basis; if a basis is square, it is a normal basis.

Instead of the normal square basis, our algorithm proceeds with a pseudobasis,
columns of which change dynamically in the solution process. As a result, the stan-
dard but unnatural full row rank assumption on A is no longer needed in our model
statement (1.1).

Since real-world LP problems are almost always degenerate, or even highly de-
generate, it can be expected that a great majority of bases encountered in practice
are deficient. Consequently, the algorithm solves smaller linear systems than those
solved in simplex algorithms. Moreover, a deficient basis is potentially better condi-
tioned than a normal basis. Most importantly, as explained in section 5.3, use of the
pseudobasis should enable us to form good search directions in the dual space at a
low cost. This is a primary goal that we pursue in this work.
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Let B be a pseudobasis with s (1 ≤ s ≤ m) columns and let N be the associated
pseudononbasis. The corresponding components of vectors and columns of matrices
will be called basic and nonbasic, respectively. Denote by ji the index of the ith
column of B and by kj the index of the jth column of N . Without confusion, denote
basic and nonbasic ordered index sets again by B and N , respectively, i.e.,

B = {j1, . . . , js}, N = {k1, . . . , kn−s}.(2.1)

Without loss of generality, components of vectors and columns of matrices will always
be rearranged conformably to the ordered set {B,N}. The proposed algorithm will
be developed with s < m if not indicated otherwise.

Let an LU factorization of B with row and column exchanges be as follows:

PBQ = LU, L =

[
L1

L2 I

]
, U =

[
U1

0

]
,(2.2)

where P ∈ Rm×m and Q ∈ Rs×s are permutations that balance stability and sparsity,
L1 ∈ Rs×s is unit lower-triangular, and U1 ∈ Rs×s is upper-triangular with nonzero
diagonals. Accordingly, define the transformed right-hand side b̄ by

Pb = Lb̄, b̄ =

[
b̄1
b̄2

]
s

m− s
.(2.3)

In what follows, without loss of generality, it might well be assumed that P and Q
are the identity permutations.

Assume that a dual feasible solution (ȳ, z̄) is available, satisfying

BT ȳ = cB ,(2.4)

NT ȳ + z̄N = cN , z̄B = 0,(2.5)

z̄N ≥ 0.(2.6)

Then two different cases arise, depending on whether or not the system

UxB = b̄(2.7)

is compatible, or equivalently b̄2 vanishes.
The dual feasible solution (ȳ, z̄) and LU factors along with b̄ will be updated,

iteration by iteration, until optimality is achieved. It is possible to keep L well con-
ditioned during the initial factorization and subsequent Bartels–Golub-type updates.
The package LUSOL is suitable for handling rectangular pseudobasis factorizations of
this kind [10]. In particular, this package returns ‖b̄2‖1 and hence identifies the two
cases, as discussed in the next two sections.

3. Optimality test. An assumption throughout this section is that

b̄2 = 0.(3.1)

It is clear that this case holds whenever s < m and B is a deficient basis, but all
discussions are also valid when s = m (B is a normal basis).

Lemma 3.1. There exists a primal basic solution x̄, defined by

Ux̄B = b̄, x̄N = 0.(3.2)
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Proof. Setting xN = 0 in the system Ax = b gives BxB = b, which along
with (2.2), (2.3), and (3.1) leads to an upper-triangular and compatible system (2.7).
Hence, (3.2) defines a primal basic solution.

Theorem 3.2. The primal objective value at x̄ is equal to the dual objective value
at (ȳ, z̄). Moreover, if x̄B ≥ 0, then x̄ and (ȳ, z̄) are a pair of primal and dual optimal
solutions.

Proof. From Lemma 3.1 and (2.4), it follows that the primal and dual objective
values are identical:

cT x̄ = cTBx̄B = ȳTBx̄B = ȳT b.

Further, it is clear that x̄ and z̄ exhibit complementary slackness. Therefore, if x̄B ≥ 0
(and hence x̄ is primal feasible), then x̄ and (ȳ, z̄) are a pair of primal and dual optimal
solutions, as the latter is assumed to be dual feasible.

According to Theorem 3.2, optimality is achieved and we are done if x̄B ≥ 0. If
x̄B �≥ 0, a leaving index jp is well defined such that

x̄jp = min{x̄ji | x̄ji < 0, i = 1, . . . , s} < 0.(3.3)

4. Search direction. An assumption throughout this section is that

b̄2 �= 0.(4.1)

By definition, this case holds whenever s < m and the pseudobasis B is not a basis.
We show in this case that an uphill search direction (Δy,Δz) in the dual space

can be determined such that

BTΔy = 0,(4.2)

NTΔy + ΔzN = 0, ΔzB = 0,(4.3)

bTΔy > 0.(4.4)

The key to satisfying the preceding equations lies in determining a suitable vector
Δy �= 0 in the null space of BT at a low cost. Using (2.2) and the transformation

LTΔy = Δy′,(4.5)

we convert (4.2) into [UT
1 0T ]Δy′ = 0, which has infinitely many solutions of the

form

Δy′
�
=

[
Δy′1
Δy′2

]
=

[
0
h

]
,

s
m− s

,

where h ∈ Rm−s is any given vector. If we simply take Δy′ = [0T b̄T2 ]T , it follows
from (4.5) and (4.3) that

LTΔy =
[
0T b̄T2

]T
,(4.6)

ΔzB = 0,(4.7)

ΔzN = −NTΔy.(4.8)

We justify the eligibility of (Δy,Δz) for being a search direction in the dual space.
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Lemma 4.1. (Δy,Δz) defined by (4.6)–(4.8) satisfies (4.2)–(4.4).
Proof. Condition (4.3) holds clearly. Additionally, it follows from (2.2) and (4.6)

that

BTΔy = UTLTΔy =
[
UT

1 0T
] [

0T b̄T2
]T

= 0.

Thus, condition (4.2) holds. Further, from (2.3), (4.6), and (4.1), it follows that

bTΔy = b̄TLTΔy =
[
b̄T1 b̄T2

] [
0T b̄T2

]T
= b̄T2 b̄2 > 0,

which completes the proof.
Now consider the associated line search scheme in the dual space:

ŷ = ȳ + αΔy,(4.9)

ẑB = 0,(4.10)

ẑN = z̄N + αΔzN .(4.11)

Lemma 4.2. (ŷ, ẑ) in (4.9)–(4.11) with any given α satisfies

BT ŷ = cB , NT ŷ + ẑN = cN , ẑB = 0.

Proof. The result can be easily derived from (4.2)–(4.3) (Lemma 4.1) and the
dual feasibility assumptions (2.4)–(2.5).

The preceding lemma says that (ŷ, ẑ) is a dual solution for any α, just like the
base-point (ȳ, z̄) at α = 0. Nevertheless, it might not be feasible unless the value of
α is restricted appropriately.

Theorem 4.3. If ΔzN ≥ 0, then (ŷ, ẑ) in (4.9)–(4.11) is a dual feasible solution
for any α > 0; hence, the dual program (1.2) is unbounded above.

Proof. By Lemma 4.2, (ŷ, ẑ) satisfies AT ŷ + ẑ = c for any α. Note that ẑB = 0
by (4.10). From (4.11) and the nonnegativity of z̄N and ΔzN , it follows that ẑN ≥ 0
for any α > 0. That is, (ŷ, ẑ) is a dual feasible solution for any α > 0. Moreover, by
(4.9), the associated dual objective is

bT ŷ = bT ȳ + αbTΔy,(4.12)

which goes to infinity with α, since (4.4) holds by Lemma 4.1.
Note that ΔzN (and hence Δz) vanishes whenever Δy happens to be in the null

space of NT (even though Δy �= 0 by (4.4)). By Theorem 4.3, this case implies dual
unboundedness and hence primal infeasibility. However, it implies still more.

Theorem 4.4. If ΔzN = 0, then Ax = b is inconsistent.
Proof. Assume the opposite, i.e., ΔzN = 0 but Ax = b is consistent. Then, it

follows from (4.8) that

NTΔy = 0(4.13)

and that there exists a solution, say x̂, such that

b = Bx̂B + Nx̂N .(4.14)

Transposing and then postmultiplying both sides of (4.14) by Δy leads to

bTΔy = x̂T
B(BTΔy) + x̂T

N (NTΔy).
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The preceding equation along with (4.2) and (4.13) gives bTΔy = 0. However, this
contradicts (4.4) by Lemma 4.1. Therefore, Ax = b is inconsistent if ΔzN = 0.

In the case of ΔzN �≥ 0, we maximize the step length α subject to ẑ ≥ 0 to achieve
the largest possible dual objective value. This leads us to determine α and index kq
such that

α = −z̄kq
/Δzkq

= min {−z̄kj
/Δzkj

| Δzkj
< 0, j = 1, . . . , n− s} ≥ 0.(4.15)

As usual, a dual feasible solution z̄ is said to be dual degenerate when some
components of z̄N are zero. Consequently, α determined by (4.15) could vanish; this
is considered to be an undesirable case because the solution, given by (4.9)–(4.11),
then coincides with its predecessor. If this is not the case, however, further progress
is assured.

Theorem 4.5. If ΔzN �≥ 0, then (ŷ, ẑ) in (4.9)–(4.11) is a dual feasible solution.
It corresponds to a dual objective value strictly greater than before if dual nondegen-
eracy is assumed.

Proof. Since ΔzN �≥ 0, a step length α ≥ 0 is well defined by (4.15), and so is
(ŷ, ẑ) by (4.9)–(4.11). As in the proof of Theorem 4.3, it can be shown that (ŷ, ẑ) is a
dual feasible solution. Further, (4.15) and the dual nondegeneracy together guarantee
α > 0, which along with (4.12) and (4.4) leads to bT ŷ > bT ȳ.

If we introduce an extra variable zn+1 (which might be called the dual objective
variable) and add bT y − zn+1 = 0 to the dual equality constraints, then the corre-
sponding component of the augmented search direction is Δzn+1 = bTΔy, and hence
ẑn+1 = z̄n+1 + αΔzn+1. Thus, it is seen from (4.12) that the value of zn+1 gives the
associated dual objective value. Such a variable might simplify the implementation.

5. Formulation of the algorithm. Once a leaving or entering index has been
selected, there remains the associated pseudobasis to be changed. In this respect,
LUSOL might be the only package available for updating LU factors of a rectangular
pseudobasis [10, 27]. In this section, we address some key points about updating and
downdating and then describe the algorithm formally.

5.1. Downdating. Let us return to the end of section 3. Assume that optimality
is not attained, and hence a leaving index jp has been selected by (3.3). Denote by

B̂ the matrix resulting from dropping ajp from B.

Proposition 5.1. The matrix B̂ is a pseudobasis.

Proof. The pseudobasis B has full column rank, and any subset of the columns
of B constitutes a matrix of full column rank.

We carry out the pseudobasis change by computing the LU factors of B̂ from
those of B. It is clear that B̂ = LH, where the upper-Hessenberg H is U with
its pth column removed. As in Reid’s implementation of the Bartels–Golub update
[27], we interchange the pth and sth rows of H and then eliminate entries p through
(s − 1) of the new sth row by a sequence of Gauss transformations and thus obtain
the upper-triangular factor of B̂. The factor L is easily updated in the product form.

Accordingly, b̄ is updated by interchanging its pth and sth component and apply-
ing the same sequence of Gauss transformations.

To complete the pseudobasis change, we move jp from the basic index set to the
end of the nonbasic index set and set s := s − 1. Deleting a column of B in this
manner is called downdating.
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5.2. Updating. Assume that an entering index kq has been chosen by (4.15).

We append akq to the end of B, obtaining B̃ = [B akq ].

Proposition 5.2. The matrix B̃ is a pseudobasis.
Proof. From (4.8) and (4.15), it follows that

−aTkq
Δy = Δzkq

< 0.(5.1)

Assume now that B̃ is not a pseudobasis. Then, there exists a nonzero vector u =
[uT

B ukq
]T such that

B̃u = BuB + ukqakq = 0.(5.2)

Further, it holds that

ukq �= 0,(5.3)

because otherwise B would not have full column rank, contradicting the fact that B
is a pseudobasis. Transposing and then postmultiplying both sides of (5.2) by Δy
lead to

uT
BB

TΔy + ukqa
T
kq

Δy = 0,

which along with (4.2) and (5.3) gives aTkq
Δy = 0. However, this contradicts (5.1).

Therefore, B̃ is a pseudobasis.
The pseudobasis change is made by computing the LU factors of B̃ from those of

B. To this end, we solve the triangular system

La = akq .(5.4)

If its solution is partitioned as a = [aT1 aT2 ]T , we have from (2.2) and (5.4) that

B̃ =
[
B akq

]
= L

[
U1 a1

0 a2

]
,

s
m− s

,(5.5)

where Proposition 5.2 and the nonsingularity of L together imply that a2 �= 0. The
right-hand factor in (5.5) is upper-triangular except perhaps for its last column. Mov-
ing the largest entry of a2 to the diagonal position and eliminating entries below the
diagonal by a Gauss transformation turn it into the upper-triangular factor of B̃. The
factor L is easily updated accordingly.

The vector b̄ is updated by applying the same Gauss transformation to it. This
is an inexpensive operation.

Finally, we move kq from the nonbasic index set to the end of the basic index set
and set s := s + 1. Adding a column to B in this way is called an updating.

Let us see what will happen after an updating or downdating.
Proposition 5.3. If the dual program is bounded above, any downdating is

followed by an updating.
Proof. Let B̂ result from a downdating. Without loss of generality, assume that

B̂’s predecessor is B = [B̂ ajp ]. We only need to show that b is not included in the
range of B̂, and hence b̄2 is nonzero after the downdating. Assume the opposite that
some xB̂ satisfies B̂xB̂ = b. Then [xT

B̂
0]T solves BxB = b. From the uniqueness of

the solution of the latter equation (B is of full column rank), it follows that [xT
B̄

0]T
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is the solution of (3.2). This implies x̄jp = 0, which contradicts x̄jp < 0 (see (3.3)).
Therefore, b is not included in the range of B̂, and the next pseudobasis change is an
updating if dual unboundedness is not detected.

A downdating and the following updating are said to be matched. On the other
hand, it is uncertain what happens after an updating. It could be either a downdating
or an updating.

5.3. Algorithm. The overall steps can be organized as follows.
Algorithm 1 (RDPPA). Given the ordered index sets (2.1), the LU factorization

(2.2) of the associated pseudobasis, and the transformed right-hand side (2.3), assume
that an initial dual feasible solution (ȳ, z̄) (with z̄B = 0) is available.

1. If s < m and b̄2 �= 0, go to step 7.
2. Solve Ux̄B = b̄ for x̄B (3.2).
3. Stop if x̄B ≥ 0 (optimality achieved).
4. Determine a leaving index jp by (3.3):

x̄jp = min {x̄ji | x̄ji < 0, i = 1, . . . , s} < 0.

5. Update LU factors and b̄ by the downdating associated with jp.
6. Move index jp from B to the end of N and set s := s− 1.
7. Solve LTΔy = [0T b̄T2 ]T for Δy (4.6).
8. Compute ΔzN by ΔzN = −NTΔy (4.8).
9. Stop if ΔzN ≥ 0 (dual unbounded).

10. Determine an entering index kq and step length α by (4.15):

α = −z̄kq/Δzkq = min {−z̄kj/Δzkj | Δzkj
< 0, j = 1, . . . , n− s} ≥ 0.

11. Update (ȳ, z̄): ŷ = ȳ + αΔy, ẑB = 0, ẑN = z̄N + αΔzN (4.9)–(4.11).
12. Update LU factors and b̄ by the updating associated with kq.
13. Move index kq from N to the end of B and set s := s + 1.
14. Go to step 1.

Steps 2–6 perform downdating operations, while steps 7–13 are related to up-
dating. An iteration involving steps 7–13 is called an updating iteration, and one
involving steps 2–13 is called a full iteration. It is clear that any full iteration does
not change the number of columns of the pseudobasis, while an updating iteration
increases it by 1. All iterations fall into one of these two categories.

Note that an updating iteration involves a triangular solve in step 7 and another
in step 12 (for the solution of (5.4)). As an additional triangular system is solved
in step 2, a full iteration involves three triangular solves, compared with the four
in conventional algorithms. It is maintaining b̄ that helps save one of the triangular
solves with L.

Moreover, for small s (relative to m), the size of the s × s system U1xB = b̄1 is
small, compared with m×m systems solved in simplex algorithms. Most importantly,
a higher dimension m− s of the null space of BT would contribute to the formation
of a better search direction Δy in the y-space (see (4.2)). Therefore, Algorithm 1
appears to be particularly suitable for solving real-world LP problems, which are
often degenerate or even highly degenerate. If s reaches m, on the other hand, its
advantages could vanish because it would perform like the dual simplex algorithm. In
view of this, a small initial pseudobasis seems to be favorable.

As in simplex contexts, the updated LU factors tend to become increasingly
dense as columns enter and leave the pseudobasis. This is controlled by the periodic
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refactorization. As with other dual algorithms, if n � s, then the cost associated
with ΔzN in step 8 is higher compared to its primal-simplex counterpart with partial
pricing. A helpful remedy is suggested in section 8.2.

5.4. Properties of Algorithm 1. We first give the following main result asso-
ciated with the proposed algorithm.

Theorem 5.4. Under the dual nondegeneracy for full iterations, Algorithm 1
terminates either at

(1) step 3, yielding a pair of primal and dual optimal solutions, or
(2) step 9, detecting dual unboundedness.
Proof. It is clear that each (full or updating) iteration corresponds to a

pseudobasis, and the number of columns in the pseudobasis never decreases in the
solution process. Also note that each full iteration produces a primal solution x̄
whose primal objective value is equal to the dual objective value of the dual iterates
(ȳ, z̄) (see Lemma 3.1 and Theorem 3.2).

Assume that the process does not terminate. Then, some pseudobases must ap-
pear infinitely many times because there are only finitely many. Moreover, such a
cycling involves only full iterations because any updating iteration would increase
the number of columns in the pseudobasis. Under dual nondegeneracy for full it-
erations, the dual objective value increases strictly in the cycling, by Theorem 4.5.
However, this is clearly a contradiction. Therefore, the algorithm terminates. Termi-
nation at step 3 produces a pair of primal and dual optimal solutions, according to
Theorem 3.2, while termination at step 9 detects dual unboundedness, according to
Theorem 4.3.

Corollary 5.5. Termination at step 9 also indicates primal infeasibility of the
program. If ΔzN = 0, moreover, it reveals inconsistency of Ax = b.

Proof. The first half of the corollary is easily derived from Theorem 5.4 and the
well-known weak duality theorem. The other half is from Theorem 4.4.

In the preceding corollary, dual nondegeneracy is assumed to prevent cycling in
the solution process. Of course, such an assumption is entirely unrealistic—in fact,
both primal and dual degeneracy occur all the time. As in conventional contexts,
however, experimental results suggest that cycling rarely happens, if at all (see section
8). Therefore, Algorithm 1 should be regarded as finite in practice.

Although it has not been possible to rule out the possibility of cycling in the
presence of dual degeneracy, we still have the following desirable result.

Proposition 5.6. An entering index from an updating never leaves immediately;
a leaving index from a downdating never enters immediately.

Proof. We only show the first half of the proposition, as the other half can
be shown similarly. Assume that kq is an entering index and B̃ = [B akq

] is the
resulting pseudobasis. If the following is another updating, then no column leaves B̃.
So, assume that the following is a downdating. Then B̃ is a basis, and hence there
exists a vector, say x̄ = [x̄T

B x̄kq ]
T , such that

Bx̄B + x̄kqakq = b.(5.6)

Transposing and then postmultiplying both sides of (5.6) by Δy give

x̄T
BB

TΔy + x̄kqa
T
kq

Δy = bTΔy.

The preceding equation along with (4.2) and (4.4) (Lemma 4.1) gives x̄kq (a
T
kq

Δy) > 0,
which with (5.1) leads to x̄kq > 0. In view of (3.3), therefore, we assert that kq never
leaves immediately.
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6. Motivation and alternative presentation. The new algorithm may be
derived from two diverging ideas. One is where the present work comes from and the
other is due to Saunders [28]. We address them separately in this section.

6.1. Motivation. It might be accepted that crucial to an LP solver’s success
is the quality of the search direction used and the complexity of its computation.
An “ideal” search direction should be the orthogonal projection of b onto the null
space of BT, as it is the steepest uphill direction in the space, with respect to the
dual objective. Indeed, such a simple idea has achieved great success in practice (see,
e.g., [8]).

Along this line, we have solved dense LP problems by handling a sequence of
least-squares problems using the QR factorization [20, 24]. Favorable computational
results motivate the derivation of a sparse and practical approximation in this paper
using the LU factorization (2.2). As a result, the key search direction Δy defined by
(4.6) is, in general, no longer the orthogonal projection of b onto the null space of BT.
However, Δy′ = [0T b̄T2 ]T is the orthogonal projection of the transformed right-hand
side b̄ onto the null space of UT, the transpose of the transformed basis, since it equals
the residual at the unique solution of the least-squares problem

min
xB

‖b̄− UxB‖2.(6.1)

As Δy differs from Δy′ only by a matrix factor LT, it could be viewed as an oblique
projection of b onto the null space of BT, which is why the proposed algorithm is
still described as projective, like its dense version. Clearly, Δy would be the orthog-
onal projection if L were orthogonal. Even though it is not orthogonal, L is well
conditioned, as mentioned in section 2.

6.2. Reduced-gradient representation. An alternative derivation is possible
by following Saunders’s penetrating view of Algorithm 1 as a reduced-gradient im-
plementation of a normal active-set method for solving the dual linear program [28].
Indeed, the proposed algorithm could be described in terms of active sets such as con-
ventional simplex variants (e.g., see [7]). Nevertheless, it might be far more important
that the algorithm turns out to be of a reduced-gradient nature, as explained next.

In the LU factorization of B (2.2), assume that

PBQ =

[
B1

B2

]
s

m− s
(6.2)

with B1 nonsingular. Then the following matrix is a basis for the null space of BT :

Z = PT

[
−B−T

1 BT
2

I

]
.(6.3)

(It is trivial to prove that Z is nonsingular and BTZ = 0.) The following theorem
reveals the relation between Z and the key quantities used in the proposed algorithm.

Theorem 6.1. Assume that Z is defined by (6.3) with (6.2). For b̄ defined by
(2.3) and Δy defined by (4.6), it holds that

b̄2 = ZT b,(6.4)

Δy = PZZT b.(6.5)
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Proof. By (2.2) and (6.2), we have B1 = L1U1 and B2 = L2U1, which implies

B2B
−1
1 = L2L

−1
1 .(6.6)

Also, from (6.3), (2.3), and (2.2) it follows that

ZT b = [−B2B
−1
1 I]Pb = [−B2B

−1
1 I]L b̄ = [−B2B

−1
1 L1 + L2 I][b̄T1 b̄T2 ]T ,

which with (6.6) proves (6.4). Further, by (6.4), (6.3), (2.2), and (6.6), we have

LTPZZT b = LT (PZ)b̄2 = LT [−B2B
−1
1 I]T b̄2 = [0 I]T b̄2 = [0T b̄T2 ]T ,

implying that PZZT b solves (4.6); thus, (6.5) holds and the proof is complete.
Theorem 6.1 says that the key quantity b̄2 is equal to the reduced-gradient ZT b,

and the dual search direction Δy is equal to PZZT b (or ZZT b if P is assumed to be
the identity permutation, as in previous sections). It is, therefore, clear that all of
the linear algebra associated with the proposed algorithm can be described in terms
of Z or B1 and B2. Consequently, we would be led to a reduced-gradient alternative,
using the LU factorization of just B1, not all of B.

Algorithms that are equivalent theoretically could perform very differently in
practice. Indeed, Saunders’s alternative implementation of the proposed algorithm
deserves further investigation.

7. Dual phase-1. To get Algorithm 1 started, a dual phase-1 procedure is
needed to produce an initial dual feasible solution. Several approaches are avail-
able for this purpose (see [20, 24]). In this section, we briefly present an auxiliary
problem similar to that described in [24], and show how to use it to fit our needs.

Let B be any given pseudobasis and let N be the associated pseudononbasis.
Assume that [0T c̄TN ]T is the corresponding reduced cost and that [0T gTN ]T ≥ 0 is
any given n-vector. Introducing an artificial variable xn+1, we construct the following
auxiliary program:

(7.1) minimize c̄TNxN ,

subject to

[
B N 0
0 (c̄N − gN )T −1

]⎡⎣ xB

xN

xn+1

⎤
⎦ =

[
0
−1

]
, x, xn+1 ≥ 0.

Now consider the associated dual problem

(7.2) maximize −ym+1,

subject to

⎡
⎣BT 0
NT c̄N − gN
0 −1

⎤
⎦[

y
ym+1

]
+

⎡
⎣ zB

zN
zn+1

⎤
⎦ =

⎡
⎣ 0
c̄N
0

⎤
⎦ , z, zn+1 ≥ 0.

A feasible solution to (7.2) is readily available, namely,

[
ȳ

ȳm+1

]
=

[
0
1

]
,

⎡
⎣ z̄B

z̄N
z̄n+1

⎤
⎦ =

⎡
⎣ 0
gN
1

⎤
⎦ .(7.3)

Thereby, one can get Algorithm 1 started to solve (7.2). There are infinitely many
choices of gN resulting in a variety of initial feasible solutions to (7.2). Among them,
it might be preferable to choose the one with all gN ’s components set to 1.
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The following result, the proof of which is omitted, clarifies the use of (7.2).

Theorem 7.1. The dual program (7.2) has an optimal solution with value of no
more than zero. If the optimal value is less than zero, then the original dual program
(1.2) has no feasible solution; otherwise, the (y, z) part of the optimal solution gives
a feasible solution to (1.2).

Thus, an optimal solution to (7.2) provides a feasible solution to (1.2).

8. Computational results. Numerical experiments were performed to gain an
insight into the behavior of the proposed algorithm. In this section, we report results
obtained and make final remarks.

8.1. Test codes. Our code, named RDPPA 1.10, was coded in Fortran 77.
It consisted of two phases: phase-2 was based on Algorithm 1; phase-1 solved the
auxiliary program (7.2), using Algorithm 1 and starting with the dual feasible solution
(7.3) with gN = [1, . . . , 1]T .

We decided to use MINOS for making a comparison, as it is accepted by the com-
munity to be a good benchmark for such purposes. In fact, code RDPPA 1.10 was
developed using MINOS 5.3 as a platform. Consequently, the two codes shared such
features as preprocessing, scaling, LUSOL [10], etc. Only the Mi50lp and Mi25bfac
modules were replaced by programs written by the author. Very limited changes
were made to other parts. Subroutine M2crsh in MINOS 5.3 searches for a (per-
muted) triangular initial basis. Since the required input of the new algorithm is only a
pseudobasis, M2crsh was modified by deleting its last lines filling up gaps with logical
columns with the limitation of the number s of initial basic columns not to exceed m
by 80%. In addition, as Harris’s two-pass ratio test [12] was used to select a leaving
index in MINOS 5.3, we incorporated the same in RDPPA 1.10 to select an entering
index. In a word, we made every endeavor to ensure a fair competition between the
primal simplex algorithm and the proposed algorithm.

We made a comparison with MINOS 5.3 in an earlier version of this paper. Later,
when Saunders kindly provided us with the latest version of MINOS, we were able
to test and compare with MINOS 5.51 [15]. We now only report our computational
results obtained with the latter, although those with the former were much more
favorable.

Like MINOS 5.51, the new code carried out an LU refactorization whenever LU
factors were updated more than 98 times, or more than 19 times, but the sum of
nonzeros of L and U exceeded two times that of the fresh factors from the previous
refactorization. MINOS 5.51 worked with the default threshold pivoting tolerances
τF = 100 for factorization and τU = 10 for updating. The large value of τF favors
sparsity over stability whenever the basis is refactorized. (It allows the subdiagonals
of L to be as large as 100.) In RDPPA 1.10, there is a reason to keep L better
conditioned in order to improve the choice of B1 from the rectangular pseudobasis
(6.2). We, therefore, set τF = τU = 10. Even smaller values such as τF = 5 or 2.5 may
be desirable [11, section 4.5]. They would improve the condition of B1 and probably
the quality of the search directions at the expense of slightly denser LU factors.

Compiled using Visual Fortran 5.0, both MINOS 5.51 and RDPPA 1.10 were run
under the Windows 98 system on a Pentium III 550E personal computer with 256
MB of memory and about 16 digits of precision. In RDPPA 1.10, both the primal
and dual feasibility tolerances were taken to be 10−6, and ‖b̄2‖1 > 10−6 was used in
place of b̄2 �= 0. All the reported CPU times were measured in seconds with utility
routine CPU TIME, excluding the time spent on preprocessing and scaling.
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In running both MINOS 5.51 and RDPPA 1.10, the usual default options were
used, except for Rows 32000; Columns 250000; Elements 4000000; Iterations 1000000;
Scale yes; Solution no; Log Frequency 0; Print Level 0.

8.2. Partial pricing tactics. Since Partial Price 10 is the default in MINOS
5.51 for LPs, partial pricing p was invoked with p = 10 for moderate-sized problems
with n < max(1000, 4m); for the other problems, partial pricing was carried out with
p = n/2 ×m, where m and n are the number of rows and columns, respectively [15].

Unfortunately, there is no corresponding partial pricing for dual algorithms. As
a remedy, the following tactic was taken in RDPPA 1.10. Define the index set as

J = {kj | Δzkj < −ε1, z̄kj
< ε0, j = 1, . . . , n− s},

where ε1 ≈ 10−11 and ε0 ≈ 10−13. Before the two-pass ratio test, a procedure was
inserted for choosing an entering index kq such that

Δzkq = min {Δzkj | kj ∈ J};

hence, the ratio test was carried out only when the index set J was empty. When
J was nonempty, only degenerate components of Δzkj , that is, those indexed by
elements in the set {kj | z̄kj

< ε0, j = 1, . . . , n− s} needed to be computed. Viewed
as a kind of “partial pricing,” this tactic turned out to be efficient in practice.

8.3. Results for set 1. All of our test problems were standard LP problems
that do not have Bounds and Ranges sections in their MPS files, since our current code
cannot handle such problems implicitly [9]. Our test set 1 included 50 problems from
Netlib.1 In fact, they were all of the Netlib problems for which m + n ≤ 10000. Of
the largest 4 Netlib problems for which m+n > 10000, MAROS-R7 and STOCFOR3
were left for test set 2, and QAP12 and QAP15 were not included in our tests because
they are too time-consuming to solve for both MINOS 5.51 and RDPPA 1.10.

Numerical results obtained with set 1 are displayed in Tables 8.1 and 8.2, in the
order of increasing sum m + n before slack variables are added. In these tables, the
total iterations and time required for solving each problem are listed in the columns
labeled Itns and Time; percentages of total degenerate iterations are given in the
columns labeled % Degen. We point out that the column labeled Itns in Table 8.2
lists full iteration counts, because for each run of the new code, all updating iterations
should be considered together with the pseudobasis factorization and refactorizations.
Final objective values reached are not listed, as they are the same as those given in
the Netlib index file. Table 8.3 compares the performance of the two codes by giving
iteration and time ratios of MINOS 5.51 to RDPPA 1.10 for each problem.

These results are summarized in Table 8.4, where the 50 problems are catego-
rized into three groups: group Small includes the first 20 problems (from AFIRO to
SCTAP1), Medium includes the next 15 problems (from SCFXM1 to SHIP04L), and
Large includes the last 15 problems (from QAP8 to TRUSS). The bottom four lines
of Table 8.4 may serve as an overall comparison between the two codes. From the
bottom line labeled Total there, it is seen that the total iteration and total time ratios
are 1.37 and 1.24, respectively. Therefore, RDPPA 1.10 outperformed MINOS 5.51
with set 1, although the small time ratio (relative to the iteration ratio) reveals that
the computational effort per iteration for RDPPA 1.10 was overall greater than that
for MINOS 5.51 (using partial pricing).

1http://www.netlib.org/lp/data/
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Table 8.1

MINOS 5.51 statistics for set 1 of 50 Netlib problems.

Problem m n m + n Itns Time % Degen

AFIRO 27 32 60 9 0.11 33.3
SC50B 50 48 99 16 0.11 68.8
SC50A 50 48 99 14 0.16 50.0
ADLITTLE 56 97 154 105 0.11 1.9
BLEND 74 83 158 78 0.16 35.9
SHARE2B 96 79 176 97 0.10 7.2
SC105 105 103 209 27 0.16 48.1
STOCFOR1 117 111 229 86 0.17 24.4
SCAGR7 129 140 270 79 0.11 21.5
ISRAEL 174 142 317 273 0.28 1.8
SHARE1B 117 225 343 189 0.22 0.5
SC205 205 203 409 52 0.17 40.4
BEACONFD 173 262 436 45 0.22 17.8
LOTFI 153 308 462 248 0.16 10.5
BRANDY 220 249 470 443 0.44 7.9
E226 223 282 506 468 0.43 14.3
AGG 488 163 652 117 0.28 23.1
SCORPION 357 358 716 181 0.27 45.9
BANDM 305 472 778 476 0.55 8.6
SCTAP1 300 480 781 311 0.32 21.5
SCFXM1 330 457 788 410 0.44 11.5
AGG2 516 302 819 153 0.38 7.2
AGG3 516 302 819 169 0.39 10.1
SCSD1 77 760 838 443 0.27 61.4
SCAGR25 471 500 972 489 0.60 13.9
DEGEN2 442 534 977 837 1.05 53.6
FFFFF800 524 854 1379 488 0.82 20.3
SCSD6 147 1350 1498 1028 0.72 50.2
SCFXM2 660 914 1575 729 1.15 13.7
SCRS8 490 1169 1660 737 0.88 29.3
BNL1 643 1175 1819 1236 1.70 11.0
SHIP04S 402 1458 1861 169 0.33 14.8
SCFXM3 990 1371 2362 1100 2.15 12.9
25FV47 821 1571 2393 7129 15.16 9.7
SHIP04L 402 2118 2521 262 0.50 14.5
QAP8 912 1632 2545 11055 52.90 33.4
WOOD1P 244 2594 2839 816 3.95 43.9
SCTAP2 1090 1880 2971 767 1.65 51.9
SCSD8 397 2750 3148 2779 3.51 42.8
SHIP08S 778 2387 3166 256 0.77 21.1
DEGEN3 1503 1818 3322 7301 36.36 54.7
SHIP12S 1151 2763 3915 414 1.21 20.3
SCTAP3 1480 2480 3961 915 2.52 54.9
STOCFOR2 2157 2031 4189 1922 7.14 41.4
SHIP08L 778 4283 5062 438 1.27 14.4
BNL2 2324 3489 5814 4682 22.08 16.5
SHIP12L 1151 5427 6579 831 2.52 24.1
D2Q06C 2171 5167 7339 46638 303.51 8.9
WOODW 1098 8405 9504 3710 14.12 38.2
TRUSS 1000 8806 9807 13253 46.03 37.0
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Table 8.2

RDPPA 1.10 statistics for set 1 of 50 Netlib problems.

Problem m Itns Time % Degen As/m (%) Fs/m (%)

AFIRO 27 5 0.05 60.0 91.4 96.4
SC50B 50 7 0.11 42.9 98.0 98.0
SC50A 50 12 0.00 33.3 96.1 98.0
ADLITTLE 56 138 0.06 15.9 96.2 98.2
BLEND 74 32 0.05 6.3 96.7 98.7
SHARE2B 96 114 0.11 23.7 95.9 99.0
SC105 105 29 0.11 24.1 98.0 99.1
STOCFOR1 117 67 0.06 10.4 98.3 99.2
SCAGR7 129 97 0.11 1.0 95.3 99.2
ISRAEL 174 506 0.33 35.6 98.8 99.4
SHARE1B 117 194 0.11 5.7 97.6 99.2
SC205 205 44 0.06 4.5 98.7 99.5
BEACONFD 173 140 0.11 2.9 88.0 89.1
LOTFI 153 143 0.11 69.2 96.2 99.4
BRANDY 220 237 0.16 2.1 80.5 82.4
E226 223 469 0.33 2.6 97.5 99.1
AGG 488 328 0.28 19.5 99.5 99.8
SCORPION 357 29 0.16 0.0 98.4 99.4
BANDM 305 471 0.44 1.5 98.1 99.7
SCTAP1 300 176 0.16 85.2 96.4 98.7
SCFXM1 330 314 0.27 15.9 95.6 99.7
AGG2 516 246 0.27 28.9 99.4 99.8
AGG3 516 263 0.33 27.8 99.5 99.8
SCSD1 77 333 0.16 66.4 98.7 98.7
SCAGR25 471 301 0.27 1.0 94.1 97.0
DEGEN2 442 643 0.88 0.8 97.6 99.8
FFFFF800 524 329 0.38 43.2 98.0 98.5
SCSD6 147 1079 0.60 75.3 99.3 99.3
SCFXM2 660 622 0.94 15.8 97.1 99.7
SCRS8 490 430 0.55 14.9 98.7 99.6
BNL1 643 1205 1.48 41.5 96.0 98.9
SHIP04S 402 340 0.39 10.9 84.7 88.6
SCFXM3 990 981 1.98 15.6 96.9 99.7
25FV47 821 6545 15.87 11.0 99.3 99.8
SHIP04L 402 393 0.66 7.6 85.5 88.6
QAP8 912 10273 41.30 28.9 81.3 81.3
WOOD1P 244 984 7.30 51.4 89.0 99.2
SCTAP2 1090 379 0.55 91.8 93.7 96.8
SCSD8 397 4324 5.44 58.1 99.7 99.7
SHIP08S 778 390 0.72 0.8 81.2 81.8
DEGEN3 1503 4245 22.95 3.0 98.9 99.8
SHIP12S 1151 624 1.53 5.9 86.4 88.7
SCTAP3 1480 429 0.83 90.2 92.5 96.2
STOCFOR2 2157 1757 5.22 3.0 98.9 100.0
SHIP08L 778 816 2.64 3.9 81.3 81.8
BNL2 2324 2420 10.76 35.3 91.1 96.6
SHIP12L 1151 1437 6.86 9.9 86.7 88.7
D2Q06C 2171 25948 198.94 14.9 99.5 100.0
WOODW 1098 6378 46.08 55.5 99.8 99.9
TRUSS 1000 6063 47.62 18.9 99.9 99.9
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Table 8.3

Ratios of MINOS 5.51 to RDPPA 1.10 for set 1.

Problem m n Itns Time % Degen

AFIRO 27 32 1.80 2.20 0.56
SC50B 50 48 2.29 1.00 1.60
SC50A 50 48 1.17 – 1.50
ADLITTLE 56 97 0.76 1.83 0.12
BLEND 74 83 2.44 3.20 5.70
SHARE2B 96 79 0.85 0.91 0.30
SC105 105 103 0.93 1.45 2.00
STOCFOR1 117 111 1.28 2.83 2.35
SCAGR7 129 140 0.81 1.00 21.50
ISRAEL 174 142 0.54 0.85 0.05
SHARE1B 117 225 0.97 2.00 0.09
SC205 205 203 1.18 2.83 8.98
BEACONFD 173 262 0.32 2.00 6.14
LOTFI 153 308 1.73 1.45 0.15
BRANDY 220 249 1.87 2.75 3.76
E226 223 282 1.00 1.30 5.50
AGG 488 163 0.36 1.00 1.18
SCORPION 357 358 6.24 1.69 –
BANDM 305 472 1.01 1.25 5.73
SCTAP1 300 480 1.77 2.00 0.25
SCFXM1 330 457 1.31 1.63 0.72
AGG2 516 302 0.62 1.41 0.25
AGG3 516 302 0.64 1.18 0.36
SCSD1 77 760 1.33 1.69 0.92
SCAGR25 471 500 1.62 2.22 13.90
DEGEN2 442 534 1.30 1.19 67.00
FFFFF800 524 854 1.48 2.16 0.47
SCSD6 147 1350 0.95 1.20 0.67
SCFXM2 660 914 1.17 1.22 0.87
SCRS8 490 1169 1.71 1.60 1.97
BNL1 643 1175 1.03 1.15 0.27
SHIP04S 402 1458 0.50 0.85 1.36
SCFXM3 990 1371 1.12 1.09 0.83
25FV47 821 1571 1.09 0.96 0.88
SHIP04L 402 2118 0.67 0.76 1.91
QAP8 912 1632 1.08 1.28 1.16
WOOD1P 244 2594 0.83 0.54 0.85
SCTAP2 1090 1880 2.02 3.00 0.57
SCSD8 397 2750 0.64 0.65 0.74
SHIP08S 778 2387 0.66 1.07 26.38
DEGEN3 1503 1818 1.72 1.58 18.23
SHIP12S 1151 2763 0.66 0.79 3.44
SCTAP3 1480 2480 2.13 3.04 0.61
STOCFOR2 2157 2031 1.09 1.37 13.80
SHIP08L 778 4283 0.54 0.48 3.69
BNL2 2324 3489 1.93 2.05 0.47
SHIP12L 1151 5427 0.58 0.37 2.43
D2Q06C 2171 5167 1.80 1.53 0.60
WOODW 1098 8405 0.58 0.31 0.69
TRUSS 1000 8806 2.19 0.97 1.96
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Table 8.4

Summary for set 1.

Problem Itns Time % Degen
Small (20) 3314 4.53 483.4

For MINOS 5.51 Medium (15) 15379 26.54 334.1
Large (15) 95777 499.54 503.5
Total 114470 530.61 1321.0

Small (20) 3238 2.91 446.4
For RDPPA 1.10 Medium (15) 14024 25.03 376.6

Large (15) 66467 398.74 471.5
Total 83729 426.68 1294.5

Small (20) 1.02 1.56 1.08
Ratios of Medium (15) 1.10 1.06 0.89
M.5.51 to R.1.10 Large (15) 1.44 1.25 1.07

Total 1.37 1.24 1.02

8.4. Results for set 2. In order to see how the codes perform as the problem
size increases, our test set 2 included 15 test problems larger than those in the first
set; m + n > 10000 holds for most problems in set 2.

The associated numerical results obtained with MINOS 5.51 and RDPPA 1.10
are listed in Tables 8.5 and 8.6, respectively, where the first eight problems (from
CRE-C to OSA-60) are from Kennington,2 the following five problems (from RAT7A
to DBIR2) from BPMPD,3 and the last two problems from Netlib. In fact, all Ken-
nington and BPMPD problems were included that do not have Bounds and Ranges
sections in their MPS files and that are more than 500 kB in a compressed form.

Table 8.4 gives iteration and time ratios of MINOS 5.51 to RDPPA 1.10 for each
problem in set 2. It can be seen from Table 8.4 that both the total iteration ratio 4.58
and the total time ratio 2.14 are even higher than those associated with set 1; this
is also the case with either Kennington or BPMPD group alone. In short, the new
code outperformed MINOS 5.51 remarkably on set 2, although the relatively small
time ratio indicates that the computational effort per iteration for RDPPA 1.10 was
greater than that for MINOS 5.51 (with partial pricing), as in the case of set 1.

We do not list numerical results associated with phase-1, but only offer that
the phase-1 iteration and phase-1 time ratios are 2.46 and 1.47 for set 1, and those
associated with set 2 are 6.44 and 2.16. Thus, our dual phase-1 worked quite well.

8.5. Effects of degeneracy. To show how large the pseudobases used in the
new code were, relative to normal bases, the columns labeled As/m (%) and Fs/m (%)
(in Tables 8.2 and 8.6) give average and final s/m percentages, respectively. It is seen
from the columns labeled Fs/m (%) that RDPPA 1.10 terminated at a deficient basis
for all the test problems, except for two problems from set 1 and four problems from
set 2. From Table 8.9, which gives total average s/m (%) and total final s/m (%)
(total s to total m), it is seen that these percentages are not low: they are around
95%, roughly speaking. This is not very surprising though if we recall that the initial
pseudobases could have high s/m approaching 80% (see the second paragraph of
section 8.1). In general, high primal degeneracy should lead to low ratio s/m. To
exploit primal degeneracy to a large extent, it might be favorable to have a low initial
ratio s/m and some effective tactic to limit subsequent fill-in in the LU factors.

2http://www-fp.mcs.anl.gov/otc/Guide/TestProblems/LPtest/
3http://www.sztaki.hu/˜meszaros/bpmpd/
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Table 8.5

MINOS 5.51 statistics for set 2 of 15 test problems.

Problem m n m + n Itns Time % Degen
CRE-C 3068 3678 6747 4252 25.32 34.5
CRE-A 3516 4067 7584 3642 24.94 32.7
OSA-07 1118 23949 25068 1919 14.22 2.3
OSA-14 2337 52460 54798 4115 52.29 1.1
CRE-D 8926 69980 78907 295538 6633.90 41.0
CRE-B 9648 72447 82096 188706 4708.10 43.6
OSA-30 4350 100024 104375 8141 192.90 0.5
OSA-60 10280 232966 243247 17098 909.12 0.4
RAT7A 3136 9408 12545 3801 844.20 0.2
NSCT1 22901 14981 37883 2151 127.81 6.0
NSCT2 23003 14981 37985 12298 643.78 44.3
DBIR1 18804 27355 46160 1710 113.53 5.4
DBIR2 18906 27355 46262 53839 2874.96 67.0
MAROS-R7 3136 9408 12545 2520 74.04 0.0
STOCFOR3 16675 15695 32371 14189 532.89 42.2

Table 8.6

RDPPA 1.10 statistics for set 2 of 15 test problems.

Problem m Itns Time % Degen As/m (%) Fs/m (%)
CRE-C 3068 1909 8.73 68.9 89.9 94.0
CRE-A 3516 2019 11.04 68.8 91.7 94.6
OSA-07 1118 750 16.32 40.0 98.1 99.5
OSA-14 2337 2061 80.14 52.4 99.2 99.9
CRE-D 8926 39897 1510.45 89.2 72.4 72.4
CRE-B 9648 35547 1535.11 84.1 74.9 75.0
OSA-30 4350 3353 233.87 60.1 99.6 99.9
OSA-60 10280 6687 1046.44 62.8 99.8 100.0
RAT7A 3136 2531 175.87 0.0 100.0 100.0
NSCT1 22901 3753 520.91 29.9 98.7 98.7
NSCT2 23003 3872 502.67 13.1 95.6 98.0
DBIR1 18804 6463 1011.17 75.2 99.4 99.4
DBIR2 18906 7355 1060.33 15.0 97.6 99.1
MAROS-R7 3136 2345 62.01 0.0 100.0 100.0
STOCFOR3 16675 15392 538.33 23.4 99.1 100.0

Table 8.7

Ratios of MINOS 5.51 to RDPPA 1.10 for set 2.

Problem m n Itns Time % Degen
CRE-C 3068 3678 2.23 2.90 0.50
CRE-A 3516 4067 1.80 2.26 0.48
OSA-07 1118 23949 2.56 0.87 0.06
OSA-14 2337 52460 2.00 0.65 0.02
CRE-D 8926 69980 7.41 4.39 0.46
CRE-B 9648 72447 5.31 3.07 0.52
OSA-30 4350 100024 2.43 0.82 0.01
OSA-60 10280 232966 2.56 0.87 0.01
RAT7A 3136 9408 1.50 4.80 –
NSCT1 22901 14981 0.57 0.25 0.20
NSCT2 23003 14981 3.18 1.28 3.38
DBIR1 18804 27355 0.26 0.11 0.07
DBIR2 18906 27355 7.32 2.71 4.47
MAROS-R7 3136 9408 1.07 1.19 –
STOCFOR3 16675 15695 0.92 0.99 1.80
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Table 8.8

Summary for set 2.

Problem Itns Time % Degen

Kennington (8) 523411 12560.79 156.1
For MINOS 5.51 BPMPD (5) 73799 4604.28 122.9

Total 613919 17772.00 321.2

Kennington (8) 92223 4442.10 526.3
For RRDPPA 1.10 BPMPD (5) 23974 3270.95 133.2

Total 133934 8313.39 682.9

Kennington (8) 5.68 2.83 0.30
Ratios of BPMPD (5) 3.08 1.41 0.92
M.5.51 to R.1.10 Total 4.58 2.14 0.47

Table 8.9

Total s/m (%).

Problem Average Final
Set 1 94.5 95.4
Set 2 94.7 96.6

On the other hand, from the bottom row labeled Total and the column labeled
% Degen in Table 8.4, it is seen that the ratio of percentages of total degenerate
iterations is 1.02. Thus, the overall effects of degeneracy are about the same for the
two codes with test set 1.

Interestingly enough, for set 2 the situation is quite the contrary: % Degen ratio
0.47 in Table 8.4 reveals that the percentage of total degenerate iterations associated
with MINOS 5.51 is much lower than for RDPPA 1.10. We were astonished initially
by the fact that MINOS 5.51 required 4.58 times as many total iterations as those
required by RDPPA 1.10 despite such a low ratio of percentages of total degenerate
iterations! This is also true for either the Kennington problems or the BPMPD
problems alone. Such a striking contrast is quite encouraging as it provides a clue to
the merit of the proposed algorithm.

We emphasize that even if the proportion of degenerate iterations is high, the total
iterations could still be low; in other words, there is no inevitable correlation between
an algorithm’s inefficiency and degeneracy, contradicting a widespread belief that
degeneracy is a primary cause of inefficiency of pivot algorithms. Such an observation
coincides with the recent experiments carried out with a sparse implementation of a
generalized revised simplex algorithm [25]. This is also supported by experiments with
steepest-edge pivot rules, which outperformed conventional rules by large margins
even though the proportions of degenerate iterations were similar [8].

Finally, much work remains to be done. As an early version, RDPPA 1.10 still
has much room for improvement. First of all, the steepest-edge rule is important to
both primal and dual simplex algorithms. According to Bixby [2], its application is
the major thrust that has driven the dual simplex algorithm to become a competitor
of the primal simplex algorithm. We expect that this rule is equally important to
the algorithm presented in this paper although it is still open how to implement it in
our context efficiently. Other techniques known to be good in practice should also be
considered. We leave all these to our future research.
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ANDREAS EICHHORN† AND WERNER RÖMISCH†

Abstract. We consider stochastic programs with risk measures in the objective and study
stability properties as well as decomposition structures. Thereby we place emphasis on dynamic
models, i.e., multistage stochastic programs with multiperiod risk measures. In this context, we
define the class of polyhedral risk measures such that stochastic programs with risk measures taken
from this class have favorable properties. Polyhedral risk measures are defined as optimal values of
certain linear stochastic programs where the arguments of the risk measure appear on the right-hand
side of the dynamic constraints. Dual representations for polyhedral risk measures are derived and
used to deduce criteria for convexity and coherence. As examples of polyhedral risk measures we
propose multiperiod extensions of the Conditional-Value-at-Risk.
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1. Introduction. Stochastic programs are essentially known to minimize, max-
imize, or bound expected values. From a theoretical point of view they easily offer
the possibility to minimize or bound risk functionals since they rest upon stochastic
models. This idea goes back to [14]. However, in practice it may happen that in-
corporating risk measures in stochastic programs makes them much harder to solve,
especially if integer decisions are included. In addition, other favorable properties
like stability with respect to approximations or duality results may get lost. In this
paper considerations are made about the question as to how risk measures should be
designed so that stochastic programs incorporating them show similar properties as
stochastic programs based on expected values only. As a result, the class of polyhedral
risk measures is introduced.

Of course, when analyzing risk measures with respect to their practicability for
stochastic programs, one has to determine first of all what is understood by the expres-
sion risk measure and what properties are required from the viewpoint of economic
considerations. Here, a (one-period) risk measure ρ will be understood as a functional
from some set of real random variables to the real numbers. Random variables will be
denoted by the letter z, they will represent uncertain (usually monetary) values for
which larger outcomes are preferred to lower ones. The value ρ(z) gives information
about the riskiness of z, i.e., a high value ρ(z) indicates a high danger of reaching low
values.

Risk measures are broadly discussed in financial mathematics. For one-period
risk measures, i.e., for risk measures that depend on one random variable only, there
is a relatively high degree of agreement among the community about the desirable
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properties. Possibly the most important work in this context is the axiomatic char-
acterization of coherent risk measures [1], where the risk ρ(z) is understood as the
minimal amount of additional (risk-free) capital that is required to make the posi-
tion z acceptable. Several generalizations of this paper followed, e.g., [6, 13, 10, 28];
see also Chapter 4 in the monograph [11]. Further desirable properties, namely,
the consistency of risk measures with stochastic dominance rules, were suggested in
[15, 17, 18, 19]. In addition, there are papers dealing with specific risk measures, e.g.,
[27, 20, 38]; see also the volumes [7, 41]. Recently, a theory for convex optimization
of convex risk measures has been developed in [35].

Currently, generalizations of one-period risk measures to different dynamic set-
tings are discussed in the literature. Such generalizations become necessary when
information is revealed gradually with the passing of time and a sequence of random
variables z1, . . . , zT is to be assessed with respect to its riskiness. In the literature, the
settings as well as the postulated properties for risk functionals differ more than in
the one-period case. Generally speaking, there are two classes of settings depending
on whether liquidity risk over a time period is considered or intermediate monitoring
by supervisors is to be anticipated. In the latter case an entire risk measure process
ρ1, . . . , ρT is defined; see [25, 42] and also [3, 2]. The more important case from the
viewpoint of optimization is the case where one has one real number ρ(z1, . . . , zT )
that represents the risk of the entire process (multiperiod risk). Such concepts are
presented in [22, 36, 21] and again in [3, 2]. As in the one-period case, the number
ρ(z1, . . . , zT ) can be understood as minimal capital requirement for the overall time
period so that the strategy corresponding to z1, . . . , zT is acceptable.

In the present paper, we consider (mixed-integer) multistage stochastic programs
of the form

min

⎧⎪⎨
⎪⎩E

[
T∑

t=1

〈bt(ξt), xt〉
] ∣∣∣∣∣∣∣

xt is Ft-measurable,∑t−1
τ=0 At,τ (ξt)xt−τ = ht(ξt) a.s.,

xt ∈ Xt a.s. (t = 1, . . . , T )

⎫⎪⎬
⎪⎭(1.1)

as starting point, where (ξt)
T
t=1 is a stochastic process and Ft = σ(ξ1, . . . , ξt), the

sets Xt are closed and have polyhedral convex hulls, bt(·) are cost coefficients, ht(·)
are right-hand sides, and At,τ (·), τ = 0, . . . , t − 1, are matrices having appropriate
dimensions and possibly depending on ξt for t = 1, . . . , T .

Much is known for expectation-based stochastic programs, e.g., on optimality and
duality, decomposition methods, and statistical approximations and stability (cf. [34]).
Most of these results are essentially based on the fact that E is a linear operator. As
will be seen below in section 2, risk measures are usually by no means linear. Hence,
if we change from expectation to a risk measure in (1.1), many known results will
no longer be valid. Nevertheless, there are results about incorporating certain risk
functionals into (stochastic) optimization problems, e.g., [38, 35, 37]. In particular,
the Conditional-Value-at-Risk turns out to behave very opportunely in stochastic pro-
grams because it allows a reformulation of the risk aversive problem as an expectation-
based problem with additional variables (cf. [27, 20, 40]).

However, from an economic point of view not every risk measure is suitable for
any application. In particular, for multistage stochastic programs it may become
necessary to incorporate multiperiod risk measures, i.e., to minimize ρ(z1, . . . , zT )
with zt = −

∑t
τ=1〈bτ (ξτ ), xτ 〉 denoting the intermediate values. Hence, it would

be convenient to have an entire class of risk measures at hand such that every risk
measure from this class behaves opportunely in stochastic programs.
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Such a class will be introduced in section 2 for the one-period case, namely the
class of polyhedral risk measures. Conditions implying that polyhedral risk measures
are coherent and consistent with second order stochastic dominance are provided. In
section 3 this class will be extended to the multiperiod case. Briefly, polyhedral risk
measures are defined as optimal values of certain simple linear stochastic programs.
In section 4 it will be shown that, indeed, several properties of expectation-based
stochastic programs remain valid for stochastic programs with polyhedral risk mea-
sures as objectives. This is due to the fact that a problem of the form (1.1) with
E replaced by a polyhedral risk measure ρ can easily be transformed into a stochastic
program with additional variables and an objective consisting of the expectation of
a linear function. In particular, we present stability results for two-stage stochastic
programs with polyhedral risk measures and show that dual decomposition structures
are maintained.

2. Polyhedral risk measures. We consider a probability space (Ω,F ,P) and
the linear space of real random variables Lp(Ω,F ,P) with some p ∈ [1,∞]. According
to [10, 11] a functional ρ : Lp(Ω,F ,P) → R̄ is called a risk measure if it satisfies the
following two conditions for all z, z̃ ∈ Lp(Ω,F ,P):

(i) If z ≤ z̃ a.s., then ρ(z) ≥ ρ(z̃) (monotonicity).
(ii) For each r ∈ R we have ρ(z + r) = ρ(z) − r (translation invariance).

A risk measure ρ is called convex if it satisfies the condition

ρ(μz + (1 − μ)z̃) ≤ μρ(z) + (1 − μ)ρ(z̃)

for all z, z̃ ∈ Lp(Ω,F ,P) and μ ∈ [0, 1]. A convex risk measure is called coherent if
it is positively homogeneous, i.e., ρ(μz) = μρ(z) for all μ ≥ 0 and z ∈ Lp(Ω,F ,P).
There is a number of representation theorems for convex and especially for coherent
risk measures in the literature emerging from convex duality. Next, we cite one of
these representations adapted to our needs. Therefore, we set

D := {f ∈ L1(Ω,F ,P) : f ≥ 0 a.s., E [f ] = 1},

the set of all density functions for (Ω,F ,P).
Theorem 2.1. Let ρ : Lp(Ω,F ,P) → R̄ with p ∈ [1,∞]. Assume that ρ is

lower semicontinuous. Then ρ is a coherent risk measure if and only if the following
condition holds:

∃Pρ ⊆ D convex : ρ(z) = sup
f∈Pρ

E [−zf ] ∀ z ∈ Lp(Ω,F ,P).

Proof. “⇒” is stated in [35, Corollary 1] and “⇐” is easily seen by checking the
four properties of the definition above; see also [11, 6, 28].

Now we are ready to define the class of polyhedral risk measures.
Definition 2.2. A risk measure ρ on Lp(Ω,F ,P) with some p ∈ [1,∞] will be

called polyhedral if there exist k1, k2 ∈ N, c1, w1 ∈ Rk1 , c2, w2 ∈ Rk2 , a nonempty
polyhedral set Y1 ⊆ Rk1 , and a polyhedral cone Y2 ⊆ Rk2 such that

ρ(z) = inf

⎧⎪⎨
⎪⎩〈c1, y1〉 + E [〈c2, y2〉]

∣∣∣∣∣∣∣
y1 ∈ Y1,

y2 ∈ Lp(Ω,F ,P), y2 ∈ Y2 a.s.,

〈w1, y1〉 + 〈w2, y2〉 = z a.s.

⎫⎪⎬
⎪⎭(2.1)

for every z ∈ Lp(Ω,F ,P). Here, E denotes the expectation on (Ω,F ,P) and 〈·, ·〉 a
scalar product on Rk1 or Rk2 .
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Hence, expressed in the language of stochastic programming, a polyhedral risk
measure is given as the optimal value of a certain two-stage stochastic program with
random right-hand side. We use the term polyhedral because, for #Ω < ∞, the space
Lp(Ω,F ,P) can be identified with R#Ω and in this case a risk measure defined by
(2.1) is indeed a polyhedral function on R#Ω.

Remark 2.3. Of course, the negative expectation is a polyhedral risk measure.
Moreover, a convex combination of (negative) expectation and a polyhedral risk mea-
sure is again a polyhedral risk measure: Let μ ∈ [0, 1] and ρ be a polyhedral risk
measure with dimensions kt, vectors ct and wt (t = 1, 2), and polyhedral set/cone
Y1 / Y2. Then the risk measure ρ̂ := μρ−(1−μ)E is polyhedral with the same dimen-
sions kt and the same sets Yt and vectors ŵ1 := w1, ŵ2 := w2, ĉ1 := μc1 − (1− μ)w1,
and ĉ2 := μc2 − (1 − μ)w2. Thus, so-called mean-risk models, where expectation and
risk are optimized simultaneously, do not need to be considered separately.

Next, we derive dual representations for (2.1). To this end, we do not need to
assume that ρ is a risk measure in the sense of [10, 11], i.e., that it is monotone and
translation invariant. We conclude in our first result that ρ is a convex functional.
To state this result, we use the notation1

Dρ,t := {u ∈ R : ct + uwt ∈ −Y ∗
t } (t = 1, 2)

for the so-called dual feasible sets.
Theorem 2.4. Let ρ be a functional of the form (2.1) on Lp(Ω,F ,P) with some

p ∈ [1,∞). Assume
(i) complete recourse: 〈w2, Y2〉 = R,
(ii) dual feasibility: Dρ,1 ∩Dρ,2 �= ∅.

Then ρ is finite, convex, and continuous. Further, the representation

ρ(z) = inf
y1∈Y1

{
〈c1, y1〉 + E

[
max
�=1,2

u� (〈w1, y1〉 − z)

]}
(2.2)

holds with two real numbers u1 and u2 that are the endpoints of Dρ,2 which is a compact
interval in R. Furthermore, with 1

p + 1
p′ = 1, ρ admits the dual representation

ρ(z) = sup

{
−E [λz] + inf

y1∈Y1

〈c1 + E [λ]w1, y1〉
∣∣∣∣∣ λ ∈ Lp′(Ω,F ,P),

c2 + λw2 ∈ −Y ∗
2 a.s.

}
.(2.3)

In particular, if Y1 is a cone, then ρ is positively homogeneous and (2.3) becomes

ρ(z) = sup

{
−E [λz]

∣∣∣∣∣ λ ∈ Lp′(Ω,F ,P),

c1 + E [λ]w1 ∈ −Y ∗
1 , c2 + λw2 ∈ −Y ∗

2 a.s.

}
.(2.4)

Proof. Finiteness, convexity, continuity, and the representations (2.3) and (2.4)
will be proved in a more general framework in section 3, Theorem 3.9. Representation
(2.2) follows from LP duality applied to the second stage program. (Note that due to
[29, Theorem 14.60] the minimization for the second stage can be carried out pointwise
on Ω.) Namely, it holds for each y1 ∈ Y1 and each z ∈ R that

min {〈c2, y2〉 : y2 ∈ Y2, 〈w1, y1〉 + 〈w2, y2〉 = z}
= max {u (〈w1, y1〉 − z) : c2 + uw2 ∈ −Y ∗

2 } .

1Thereby Y ∗
t denotes the polar cone of Yt. For a nonempty set Y the polar cone Y ∗ is defined

by Y ∗ = {y∗ : 〈y, y∗〉 ≤ 0 ∀ y ∈ Y }.
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Due to complete recourse and dual feasibility the feasible sets of both problems are
nonempty and the joint optimal value is finite for each y1 ∈ Y1 and each z ∈ R. Since
the expression 〈w1, y1〉− z can reach any real number and the feasible set of the right
problem Dρ,2 does not depend on y1 and z, it is clear that the latter is bounded, i.e.,
it is a compact interval in R. Of course, the maximum is attained for u being an
endpoint of Dρ,2.

If a functional ρ on Lp(Ω,F ,P) is defined by formula (2.1), the question arises for
which choice of ct, wt, and Yt (t = 1, 2) this functional is a (convex) risk measure in
the sense of [10, 11]. Formula (2.4) provides a sufficient criterion for a functional of
the form (2.1) to be a coherent risk measure in case Y1 is a cone.

Corollary 2.5. Let ρ be a functional on Lp(Ω,F ,P) of the form (2.1) with
Y1 being a polyhedral cone and 1 ≤ p < ∞. Let the conditions of Theorem 2.4 be
satisfied (complete recourse, dual feasibility) and assume that

Λρ :=

{
λ ∈ Lp′(Ω,F ,P)

∣∣∣∣∣ c1 + E [λ]w1 ∈ −Y ∗
1 ,

c2 + λw2 ∈ −Y ∗
2 a.s.

}
⊆ D.(2.5)

Then ρ is a coherent risk measure.
Proof. The proof follows immediately from Theorems 2.1 and 2.4 with Pρ := Λρ

since, of course, continuity implies lower semicontinuity.
The following result provides a sufficient criterion for a functional of the form

(2.1) to be a convex risk measure in case Y1 is not a cone.
Proposition 2.6. Let ρ be a functional on Lp(Ω,F ,P) of the form (2.1) with

p ∈ [1,∞). Assume that complete recourse and dual feasibility hold and that Dρ,2 ⊆
R+ and let c1, w1, and Y1 be of the form c1 = (ĉ1, 1), w1 = (ŵ1,−1), and Y1 = Ŷ1×R,
where ŵ1, ĉ1 ∈ Rk1−1, and Ŷ1 ⊆ Rk1−1. Then ρ is a (polyhedral) convex risk measure.

Proof. Finiteness and convexity of ρ follow from Theorem 2.4. The monotonicity
property (i) follows from the representation (2.2) and the fact that u1 and u2 are
nonnegative. Indeed, let z, z̃ ∈ Lp(Ω,F ,P) be such that z ≤ z̃ a.s.; then we have
E[max�=1,2 u�(〈w1, y1〉 − z)] ≥ E[max�=1,2 u�(〈w1, y1〉 − z̃)] for every y1 ∈ Y1. The
translation invariance condition (ii) follows by setting y1 = (ŷ1, ȳ1), ỹ1 := ȳ1 + r ∈ R
as a consequence of the identity

ρ(z + r)

= inf
{
〈ĉ1, ŷ1〉 + ȳ1 + E [max�=1,2 u� (〈ŵ1, ŷ1〉 − ȳ1 − (z + r))] : ŷ1 ∈ Ŷ1, ȳ1 ∈ R

}
= inf

{
〈ĉ1, ŷ1〉 + ỹ1 + E [max�=1,2 u� (〈ŵ1, ŷ1〉 − ỹ1 − z)] : ŷ1 ∈ Ŷ1, ỹ1 ∈ R

}
− r

= ρ(z) − r

for each r ∈ R and z ∈ Lp(Ω,F ,P).
The assumptions of Proposition 2.6 guarantee even a stronger type of monotonic-

ity than imposed earlier for risk measures. Such stronger monotonicity properties are
based on so-called integral stochastic orders or stochastic dominance rules (see [15]
for a recent survey). For real random variables z and z̃ in L1(Ω,F ,P), stochastic
dominance rules are defined by classes F of measurable real-valued functions on R.
A stochastic dominance rule is defined by

z �F z̃ if E[f(z)] ≤ E[f(z̃)]

for each f ∈ F such that the expectations exist. Important special cases are the
class of Fnd of nondecreasing functions and the class Fndc of nondecreasing concave
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functions. In these cases the rules are also called first order stochastic dominance and
second order stochastic dominance and denoted by �FSD and �SSD, respectively.
Clearly, z �FSD z̃ implies z �SSD z̃. The relation z �FSD z̃ is equivalent to P(z ≤
t) ≥ P(z̃ ≤ t) for each t ∈ R. Furthermore, z �SSD z̃ is equivalent to the condition
E[min{z, t}] ≤ E[min{z̃, t}] for each t ∈ R (cf. [15, section 8]). Other equivalent
characterizations of z �SSD z̃ are

∫ η

−∞ P(z ≤ t)dt ≥
∫ η

−∞ P(z̃ ≤ t)dt for each t ∈ R
(cf. [17, 18]) and

∫ p

0
qα(z)dα ≤

∫ p

0
qα(z̃)dα for each p ∈ (0, 1] (cf. [19]) with qα(z) =

inf{r ∈ R : P(z ≤ r) ≥ α} denoting the (lower) α-quantile of the random variable z.
In [19, 17, 18] the consistency of risk measures ρ with certain stochastic dominance

rules �F is studied. In particular, it is said that ρ is consistent with second order
stochastic dominance if z �SSD z̃ implies ρ(z) ≥ ρ(z̃).

Proposition 2.7. Let ρ be a functional on Lp(Ω,F ,P) of the form (2.1) with
p ∈ [1,∞). Assume that complete recourse and dual feasibility hold and that Dρ,2 ⊆
R+. Then ρ is consistent with second order stochastic dominance.

Proof. Due to Theorem 2.4 the representation (2.2) holds with u1, u2 ∈ R+.
Define for y1 ∈ Y1 the real-valued function gy1 given by

gy1
(t) := 〈c1, y1〉 + max

�=1,2
u� (〈w1, y1〉 − t)

for t ∈ R. Note that gy1
is convex and, because of u1, u2 ≥ 0, nonincreasing.

Let z �SSD z̃. Then E[−gy1(z)] ≤ E[−gy1(z̃)] for all y1 ∈ Y1 and, thus, ρ(z) =
infy1∈Y1

E[gy1
(z)] ≥ infy1∈Y1

E[gy1
(z̃)] = ρ(z̃).

Remark 2.8. For a risk measure ρ on Lp(Ω,F ,P) the acceptance set Aρ is defined
by Aρ = {z ∈ Lp(Ω,F ,P) : ρ(z) ≤ 0} [3, 11]; let the conditions of Theorem 2.4 be
satisfied. Then, since ρ is a convex functional, Aρ is a convex set. If, in addition,
Y1 is a cone, then Aρ is a convex cone. Regarding (2.5) it is obvious that

Aρ = {z ∈ Lp(Ω,F ,P) | ∀λ ∈ Λρ : E [λz] ≥ 0} = −Λ∗
ρ

in this case. Of course, if Ω = {ω1, . . . , ωS}, then Λρ is a polyhedron in RS , thus
Aρ = −Λ∗

ρ is a polyhedral cone.
For stability analysis of stochastic programs (cf. section 4.1), it is important to

know whether first stage solution sets are bounded or not. For a polyhedral risk
measure ρ satisfying complete recourse and dual feasibility, the first stage solution set
S(ρ(z)) ⊆ Y1 can be written according to the dual representation (2.2) as

S(ρ(z)) := {y1 ∈ Y1 : 〈c1, y1〉 + E [max�=1,2 u� (〈w1, y1〉 − z)] = ρ(z)}.(2.6)

The following proposition provides a sufficient criterion for the boundedness of S(ρ(z))
for a large class of polyhedral risk measures.

Proposition 2.9. Let ρ be a functional on Lp(Ω,F ,P) of the form (2.1) with
p ∈ [1,∞). Let the conditions of Theorem 2.4 be satisfied (complete recourse, dual
feasibility) and assume that S(ρ(0)) is a nonempty, bounded subset in Rk1 . Then
S(ρ(z)) is nonempty, convex, and compact for any z ∈ Lp(Ω,F ,P).

Proof. Clearly, Theorem 2.4 implies convexity and closedness of S(ρ(z)). It
remains to be seen whether S(ρ(z)) is nonempty and bounded. The polyhedral set Y1

can be represented in the form Y1 = P1 +C1, where P1 is a bounded polyhedron and
C1 a polyhedral cone (e.g., [29, Corollary 3.53]). Let 0 �= d1 ∈ C1 (hence, μd1 ∈ C1

for any μ ≥ 0) and gd1(0) = 〈c1, d1〉 + max�=1,2 u�〈w1, d1〉. Next we show gd1(0) > 0.
Suppose gd1(0) < 0 and let p1 ∈ P1, μ > 0. Then p1 + μd1 ∈ Y1 and we obtain
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ρ(0) ≤ gp1
(0) + μgd1

(0). This contradicts to the finiteness of ρ since μ > 0 may be
chosen arbitrarily large. If gd1(0) = 0, the set S(ρ(0)) would contain the unbounded
subset {ȳ1 + μd1 : μ ≥ 0} for some ȳ1 ∈ S(ρ(0)). Now, let z ∈ Lp(Ω,F ,P) and let
(y1,n) be a sequence with y1,n = p1,n + d1,n ∈ Y1, p1,n ∈ P1, d1,n ∈ C1, and

〈c1, y1,n〉 + E [max�=1,2 u� (〈w1, y1,n〉 − z)] → ρ(z).

Since P1 is bounded, we may assume without loss of generality that (p1,n) is convergent
to some p̄1 ∈ P1. Suppose that (y1,n) is unbounded. Then we may assume without

loss of generality that ‖d1,n‖ → ∞ and
d1,n

‖d1,n‖ → d̄1 ∈ C1. It follows that

ρ(z) = lim
n→∞

(
〈c1, y1,n〉 + E [max�=1,2 u� (〈w1, y1,n〉 − z)]

)
= lim

n→∞
‖d1,n‖αn

with αn := 〈c1, y1,n

‖d1,n‖ 〉+E[max�=1,2 u�(〈w1,
y1,n

‖d1,n‖ 〉−
z

‖d1,n‖ )]. Obviously, it holds that

αn → gd̄1
(0) > 0, hence ρ(z) = limn→∞ ‖y1,n‖αn = ∞. This is a contradiction. It

follows that each minimizing sequence (y1,n) in Y1 is always bounded. This implies
both existence of a solution and boundedness of the solution set S(ρ(z)).

Example 2.10. We consider the Conditional- or Average-Value-at-Risk at level
α ∈ (0, 1) (CV aRα or AV aRα) defined by

CV aRα(z) := 1
α

∫ α

0

V aRγ(z)dγ = inf
r∈R

{
r + 1

αE
[
(r + z)

−
]}

,(2.7)

where V aRγ(z) := inf{r ∈ R : P(z+r < 0) ≤ γ} = −q̄γ(z) is the Value-at-Risk at level
γ ∈ (0, 1) (see [11, section 4.4] and [27]) and a− = max{0,−a} denotes the negative
part of a real number a. The number q̄γ(z) is also called the upper γ-quantile of z.
Introducing variables for positive and negative parts of the infimum representation in
(2.7), respectively, leads to

CV aRα(z) = inf

⎧⎪⎨
⎪⎩y1 + 1

αE
[
y
(2)
2

] ∣∣∣∣∣∣∣
y1 ∈ R, y2 ∈ L1(Ω,F ,P),

y2 ∈ R+ × R+ a.s.,

y
(1)
2 − y

(2)
2 = z + y1 a.s.

⎫⎪⎬
⎪⎭ .(2.8)

Thus, CV aRα is of the form (2.1) by setting k1 = 1, k2 = 2, w1 = −1, c1 = 1,
c2 = (0, 1

α ), w2 = (1,−1), Y1 = R, and Y2 = R2
+, and, hence, is a polyhedral risk

measure. Moreover, 〈w2, Y2〉 = R, Dρ,1 = Dρ,1 ∩Dρ,2 = {1}, and Dρ,2 = [0, 1
α ] ⊆ R+,

thus the dual representation (2.4) holds and CV aRα is consistent with second order
stochastic dominance. The representation (2.2) holds with u1 = 0 and u2 = 1

α . The
condition c2 + λw2 ∈ −Y ∗

2 in the dual representation (2.4) is equivalent to λ ∈ [0, 1
α ].

Hence, (2.4) becomes

CV aRα(z) = sup
{
−E [λz] : λ ∈ Lp′(Ω,F ,P), λ ∈

[
0, 1

α

]
a.s., E [λ] = 1

}
(2.9)

for each z ∈ Lp(Ω,F ,P), 1 ≤ p < ∞. Corollary 2.5 applies thus, CV aR is a coherent
risk measure, too. Similar results have already been shown in [28, 19]. Furthermore,
it is shown in [27] that the set {r ∈ R : CV aRα(z) = r + 1

αE[(r + z)−]} of first stage
solutions is just the interval [−q̄α(z),−qα(z)], i.e., the set of all negative α-quantiles
of z. Indeed, Proposition 2.9 is inspired by the latter result.

Example 2.11. Consider the expected regret or expected loss defined by

EL(z) = E
[
(z − γ)

−
]
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with some fixed target γ ∈ R. This functional, too, can be written in the form
(2.1) with k1 = 1, k2 = 2, w1 = 1, c1 = 0, c2 = (0, 1), w2 = (1,−1), Y1 = {γ},
Y2 = R+ × R+. Note that, actually, Y1 is not a cone here. Further, 〈w2, Y2〉 = R,
Dρ,1 ∩Dρ,2 �= ∅, and Dρ,2 = [0, 1] ⊆ R+, thus the dual representations (2.2) and (2.3)
hold and ρ is consistent with second order stochastic dominance. However, ρ is not
translation invariant, i.e., not a risk measure in the sense of [10, 11]. Nevertheless, it
is used as a risk measure in some applications.

Example 2.12. The utilization of deviation and semideviation measures in stochas-
tic optimization goes back to [14] and is further discussed, e.g., in [17, 18, 19, 28]. For
k ≥ 1 deviation and semideviation are defined by

Dk(z) :=
(
E
[
|z − E[z]|k

])1/k

SDk(z) :=

(
E
[(

(z − E[z])
−
)k
])1/k

,

respectively. They are closely related to coherent risk measures (cf. [28]), −E+β ·Dk

and −E+β·SDk with β ≥ 0 are translation invariant in the sense of [10, 11] and, hence,
candidates for coherent risk measure. However, they are not within the framework
of polyhedral risk measures, even SD1 = 1

2D1 cannot be written in the form (2.1).
But, if we change from expectation E[z] to the median q 1

2
(z), then we obtain the

median-deviation which is a special case of the so-called dispersion measures at level
α ∈ (0, 1) given by

dα(z) := E
[
α(z − qα)+ + (1 − α)(z − qα)−

]
d 1

2
(z) = 1

2E
[∣∣∣z − q 1

2
(z)

∣∣∣]
(cf. [19, 40]). These functionals are polyhedral with k1 = 1, k2 = 2, c1 = 0, c2 =
(α, 1−α), w1 = 1, w2 = (1,−1), Y1 = R, and Y1 = R+×R+. Again, ρ := −E+β ·dα is
a candidate for a coherent risk measure. According to Remark 2.3 also ρ is polyhedral
with c1 = −1, c2 = (αβ−1, (1−α)β+1), and wt and Yt as above. Hence, Dρ,1 = {1},
Dρ,2 = [1−αβ, 1+(1−α)β], and Λρ = {λ : E[λ] = 1, λ ∈ [1−αβ, 1+(1−α)β] a.s.}, i.e.,
ρ is coherent and second order stochastic dominance consistent if β ≤ 1

α (see also [19]).
However, the latter representation reveals that ρ = −(1 − αβ)E + αβ · CV aRα, i.e.,
quantile dispersion and Conditional-Value-at-Risk is basically the same thing.

3. Multiperiod risk. When random variables z1, . . . , zT with zt ∈ Lp(Ω,Ft,P),
p ≥ 1, are considered and the available information is revealed with the passing of
time, it may become necessary to use multiperiod risk measures (see [3, 2, 22, 25,
42, 36]). We assume that a filtration of σ-fields Ft, t = 1, . . . , T , is given, i.e.,
Ft ⊆ Ft+1 ⊆ F , and that F1 = {∅,Ω}, i.e., that z1 is always deterministic. We will
now generalize the concepts of the previous section to this multiperiod framework.

Remark 3.1. When dealing with multiperiod risk measures one has to determine
whether the random variables represent (potentially financial) incomes or payments
as, e.g., in [22, 36, 42], or if they have to be understood in a cumulative sense, i.e.,
as a wealth or value process as in [3, 2]. Of course, the one can easily be transformed
into the other: If Zt is an income, then one can consider accumulation zt = Z1 + · · ·+
Zt, and if zt is an accumulated value, then the income is given by Zt = zt − zt−1.
Throughout this paper we consider z = (z1, . . . , zT ) to be a value process.

We give the definition of coherence in the multiperiod case as introduced2 in [3, 2].

2In [3, 2] the definition is slightly different since another framework was considered: The first
time stage (i.e., the deterministic stage) was denoted by index 0. Here, the formulation is adapted
to our framework with index 1 for the deterministic time stage (i.e., F1 = {∅,Ω}).
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Definition 3.2. A functional ρ on ×T
t=1 Lp(Ω,Ft,P) is called a multiperiod

coherent risk measure if the following:
(i) if zt ≤ z̃t a.s., t = 1, . . . , T , then ρ(z1, . . . , zT ) ≥ ρ(z̃1, . . . , z̃T ) (monotonic-

ity);
(ii) for each r ∈ R we have ρ(z1+r, . . . , zT +r) = ρ(z)−r (translation invariance);
(iii) ρ(μz1 +(1−μ)z̃1, . . . , μzT +(1−μ)z̃T ) ≤ μρ(z1, . . . , zT )+(1−μ)ρ(z̃1, . . . , z̃1)

for μ ∈ [0, 1] (convexity);
(iv) for μ ≥ 0 we have ρ(μz1, . . . , μzT ) = μρ(z1, . . . , zT ) (positive homogeneity).
Remark 3.3. How translation invariance is to be defined in the multiperiod

case is still subject to discussion in the ongoing research in financial mathematics.
Different suggestions were made, e.g., in [36, 25, 42] such that nonrandom amounts
can be shifted in time by means of credits. However, from the viewpoint of capital
requirement and optimization it appears reasonable to keep with [3, 2].

Example 3.4. In [3, Example 3] it was shown that ρ(z) := −E[min{z1, . . . , zT }]
with z = (z1, . . . , zT ) is a multiperiod coherent risk measure on ×T

t=1 L∞(Ω,Ft,P).
Remark 3.5. Let ρt be (one-period) coherent risk measures on Lp(Ω,Ft,P),

t = 1, . . . , T . Let further ∅ �= S ⊆ {1, . . . , T}. Then ρ(z) := maxt∈S ρt(zt) is

multiperiod coherent. Let μt ∈ R+, t = 1, . . . , T , with
∑T

t=1 μt = 1. Then also

ρ(z) :=
∑T

t=1 μtρt(zt) is a multiperiod coherent risk measure. This can easily be
verified by checking the four properties of Definition 3.2.

As shown in [3, 2], the representation result for (one-period) risk measures (Theo-
rem 2.1) can be carried over to the multiperiod case. Therefore, the set of densities D
is extended such that the integrals of the time steps sum up to one,

DT :=
{
f ∈ ×T

t=1 L1(Ω,Ft,P) : ft ≥ 0 a.s. (t = 1, . . . , T ),
∑T

t=1 E [ft] = 1
}
.

Theorem 3.6. Let ρ : ×T
t=1 Lp(Ω,Ft,P) → R̄ and assume that ρ is lower semi-

continuous. Then ρ is a multiperiod coherent risk measure if and only if the following
condition holds:

∃Pρ ⊆ DT convex : ρ(z) = sup
{∑T

t=1 E [−ztft] : f ∈ Pρ

}
.(3.1)

Proof. We follow the ideas of [3, 2], but in reverse order. Obviously, ρ is coherent if
and only if the corresponding one-period risk measure ρ′ on Lp(Ω

′,F ′,P′) is coherent
in the usual sense, where (Ω′,F ′,P′) and ρ′ are defined as follows:

Ω′ := Ω × {1, . . . , T}

F ′ :=
{⋃T

t=1 (At × {t}) : At ∈ Ft

}
P′
(⋃T

t=1 (At × {t})
)

:= 1
T

∑T
t=1 P(At)

ρ′(z′) := ρ (z(z′))

and z(z′) is defined by z(z′)(ω) := (z′(ω, 1), z′(ω, 2), . . . , z′(ω, T )). Theorem 2.1
says that there exists a convex set of density functions P ′

ρ ⊆ D such that, for

z ∈ ×T
t=1 Lp(Ω,Ft,P),

ρ(z) = ρ′(z′(z)) = sup
{
E′ [−z′f ′] : f ′ ∈ P ′

ρ

}
with z′(z)(ω, t) := zt(ω). Note that also the conditions from Definition 3.2 are equiv-
alent to those from Theorem 2.1 for (Ω′,F ′,P′) and that lower semicontinuity of ρ is
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equivalent to lower semicontinuity of ρ′. By setting

Pρ :=
{
f =

(
1
T f

′(., 1), 1
T f

′(., 2), . . . , 1
T f

′(., T )
)

: f ′ ∈ P ′
ρ

}
,

the assertion follows.
Now we are ready to extend Definition 2.2 to the multiperiod case.
Definition 3.7. A multiperiod risk measure ρ on ×T

t=1 Lp(Ω,Ft,P) with p ∈
[1,∞] is called multiperiod polyhedral if there are kt ∈ N, ct ∈ Rkt , t = 1, . . . , T ,
wtτ ∈ Rkt−τ , t = 1, . . . , T , τ = 0, . . . , t− 1, a polyhedral set Y1 ⊆ Rk1 , and polyhedral
cones Yt ⊆ Rkt , t = 2, . . . , T , such that

ρ(z) = inf

⎧⎪⎨
⎪⎩E

[
T∑

t=1

〈ct, yt〉
] ∣∣∣∣∣∣∣

yt ∈ Lp(Ω,Ft,P; Rkt),

yt ∈ Yt a.s.,∑t−1
τ=0〈wt,τ , yt−τ 〉 = zt a.s.

(t = 1, . . . , T )

⎫⎪⎬
⎪⎭ .(3.2)

Remark 3.8. The reader might wonder why, for T = 2, this definition does not
precisely coincide with the Definition 2.2 for the one-period case. This is due to
the fact that, in the literature, the risk of a process z1, . . . , zT is allowed to depend
also on z1 although this value is constant, i.e., deterministic (see [3, 2, 25]), whereas
one-period risk depends on one scalar random variable only. Nevertheless, the one-
period case can be regarded as a special case of Definition 3.7 because for T = 2 the
parameters Y1, c1, and w1,0 can easily be chosen such that z1 does not contribute to
the optimal value of (3.2).

Theorem 3.9. Let ρ be a functional of the form (3.2) on ×T
t=1 Lp(Ω,Ft,P) with

p ∈ [1,∞). Assume
(i) complete recourse: 〈wt,0, Yt〉 = R (t = 1, . . . , T ),

(ii) dual feasibility: {u ∈ RT : ct +
∑T

ν=t uνwν,ν−t ∈ −Y ∗
t (t = 1, . . . , T )} �= ∅.

Then ρ is finite, convex, and continuous on ×T
t=1 Lp(Ω,Ft,P) and with 1

p + 1
p′ = 1

the following dual representation holds:

ρ(z)

=sup

⎧⎪⎨
⎪⎩

inf
y1∈Y1

〈
c1 +

∑T
ν=1 E [λν ]wν,ν−1, y1

〉
− E

[∑T
t=1 λtzt

]
∣∣∣∣∣∣∣
λt ∈ Lp′(Ω,Ft,P) (t = 1, . . . , T ),

ct +
∑T

ν=t E [λν |Ft]wν,ν−t ∈ −Y ∗
t

a.s. (t = 2, . . . , T )

⎫⎪⎬
⎪⎭ .

(3.3)

If, in addition, Y1 is a polyhedral cone, then ρ is positively homogeneous and (3.3)
simplifies to

ρ(z) = sup

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−E

[
T∑

t=1

λtzt

] ∣∣∣∣∣∣∣∣∣

λt ∈ Lp′(Ω,Ft,P),

ct +
T∑

ν=t
E [λν |Ft]wν,ν−t ∈ −Y ∗

t a.s.

(t = 1, . . . , T )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.(3.4)

Proof. We use results on conjugate duality (see [26] and [5, section 2.5.1]). Con-
sider the Banach spaces and their duals

E := ×T
t=1 Lp(Ω,Ft,P; Rkt) E∗ = ×T

t=1 Lp′(Ω,Ft,P; Rkt)

Z := ×T
t=1 Lp(Ω,Ft,P) Z∗ = ×T

t=1 Lp′(Ω,Ft,P)



POLYHEDRAL RISK MEASURES IN STOCHASTIC PROGRAMMING 79

with bilinear forms 〈e, e∗〉E/E∗ =
∑T

t=1 E[〈et, e∗t 〉Rkt ] and 〈z, z∗〉Z/Z∗ =
∑T

t=1 E[ztz
∗
t ],

respectively. Due to the complete recourse assumption it holds that ρ(z) < ∞ for all
z = (z1, . . . , zT ) ∈ E. Define Y := {y ∈ E : yt(ω) ∈ Yt (t = 1, . . . , T ) for a.e. ω ∈ Ω},
K =

∑T
t=1 kt and

ϕ : E × Z → R̄

(y, z) �→ ϕ(y, z) := 〈y, c〉E/E∗ + δY (y) + δ{0}(Wy − z)

with δ denoting the indicator function (taking values 0 and +∞ only) and with

c =

⎛
⎜⎜⎜⎝

c1
c2
...
cT

⎞
⎟⎟⎟⎠ ∈ RK W =

⎛
⎜⎜⎜⎜⎜⎜⎝

w′
1,0 0 0 · · · 0

w′
2,1 w′

2,0 0 · · · 0

w′
3,2 w′

3,1 w′
3,0

. . .
...

...
...

...
. . . 0

w′
T,T−1 w′

T,T−2 w′
T,T−3 · · · w′

T,0

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ RT×K .

Note that ϕ is proper, lower semicontinuous, and convex since Y is convex. With
these notations Definition 3.7 reads ρ(z) = infy∈E ϕ(y, z) and due to [5, Proposition
2.143] ρ is convex. The (conjugate) dual problem according to [5] is given by

ρ∗(z) = sup
{
〈z, z∗〉Z/Z∗ − ϕ∗(0, z∗) : z∗ ∈ Z∗

}
(3.5)

in which the conjugate ϕ∗ is given by

ϕ∗(y∗, z∗) = sup
{
〈y, y∗〉E/E∗ + 〈z, z∗〉Z/Z∗ − ϕ(y, z) : y ∈ E, z ∈ Z

}
= sup

{
〈y, y∗ − c〉E/E∗ + 〈z, z∗〉Z/Z∗ : y ∈ Y , z = Wy a.s.

}
= sup

{
〈y, y∗ − c〉E/E∗ + 〈Wy, z∗〉Z/Z∗ : y ∈ Y

}
= sup

{
〈y, y∗ − c + W ∗z∗〉E/E∗ : y ∈ Y

}
with W ∗ : Z∗ → E∗ denoting the adjoint operator implicitly defined by the relation
〈Wy, z∗〉Z/Z∗ = 〈y,W ∗z∗〉E/E∗ for y ∈ E, z∗ ∈ Z∗. Thereby, the matrix W is
understood as mapping from E to Z. For the adjoint operator W ∗ it holds that

〈y,W ∗z∗〉E/E∗ = 〈Wy, z∗〉Z/Z∗ =
∑T

t=1 E
[
z∗t
∑t−1

τ=0 〈wt,τ , yt−τ 〉R
kt−τ

]
= E

[∑T
t=1

∑t−1
τ=0 〈z∗twt,τ , yt−τ 〉R

kt−τ

]
= E

[∑T
s=1

∑T
ν=s 〈z∗νwν,ν−s, ys〉Rks

]
=
∑T

s=1 E
[〈∑T

ν=s z
∗
νwν,ν−s, ys

〉
Rks

]
=
∑T

s=1 E
[〈∑T

ν=s E [z∗ν |Fs]wν,ν−s, ys

〉
Rks

]
,

hence W ∗z∗ = (
∑T

ν=1 E[z∗ν ]wν,ν−1,
∑T

ν=2 E[z∗ν |F2]wν,ν−2, . . . , z
∗
TwT,0) ∈ E∗. Utilizing

the fact that Yt are cones for t = 2, . . . , T results in
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ρ∗(z) = sup
{
〈z, z∗〉Z/Z∗ − sup

{
〈y,W ∗z∗ − c〉E/E∗ : y ∈ Y

}
: z∗ ∈ Z∗

}
= sup

{
〈z, z∗〉Z/Z∗ + inf

{
〈y, c−W ∗z∗〉E/E∗ : y ∈ Y

}
: z∗ ∈ Z∗

}

= sup

⎧⎪⎨
⎪⎩

〈z, z∗〉Z/Z∗ +

inf
y1∈Y1

〈
y1, c1 −

∑T
t=1 E [z∗t ]wt,t−1

〉
∣∣∣∣∣∣∣
z∗ ∈ Z∗,

ct −
∑T

ν=t E [z∗ν |Ft]wν,ν−t ∈ −Y ∗
t

a.s. (t = 2, . . . , T )

⎫⎪⎬
⎪⎭

and this is exactly (3.3) with λ = −z∗. Weak duality holds (cf. [5, section 2.5.1]), i.e.,
ρ∗(z) ≤ ρ(z), and dual feasibility ensures ρ∗(z) > −∞, hence

−∞ < ρ∗(z) ≤ ρ(z) < +∞ ∀ z ∈ Z.

Now, [5, Proposition 2.152] provides that ρ(z) is continuous. In turn, for this case [5,
Theorem 2.151] guarantees strong duality, i.e., ρ∗(z) = ρ(z).

As for the one-period case, we define the set of dual multipliers by

Λρ :=

{
λ ∈ ×T

t=1 Lp′(Ω,Ft,P)

∣∣∣∣∣ ct +
∑T

ν=t E [λν |Ft]wν,ν−t ∈ −Y ∗
t a.s.

(t = 1, . . . , T )

}
.(3.6)

Again, comparing the dual representations (3.1) and (3.4) provides a criterion for a
polyhedral functional to be a multiperiod coherent risk measure.

Corollary 3.10. Let ρ be a functional on ×T
t=1 Lp(Ω,Ft,P) of the form (3.2)

with Y1 being a polyhedral cone. Let the conditions of Theorem 3.9 be satisfied (com-
plete recourse, dual feasibility) and assume Λρ ⊆ DT . Then ρ is a multiperiod coherent
risk measure.

Proof. Analogously to Corollary 2.5, the assertion here is an immediate conse-
quence of Theorems 3.6 and 3.9 since Pρ := Λρ does the job.

Example 3.11. A straightforward approach to incorporate risk in terms of the
Conditional-Value-at-Risk at all time stages consists in considering a weighted sum

ρ1(z) :=

T∑
t=2

γtCV aRαt(zt)

with some weights γt ≥ 0 (e.g., γt = 1
T−1 ) and some confidence levels α2, α3, . . . , αT ∈

(0, 1). Note that

ρ1(z) =
∑T

t=2 γt infrt∈R

{
rt + 1

αt
E
[
(zt + rt)

−
]}

= inf(r2,...,rT )∈RT−1

{∑T
t=2 γt

(
rt + 1

αt
E
[
(zt + rt)

−
])}

= inf

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
∑T

t=2 γt

(
y
(t)
1 + 1

αt
E
[
y
(2)
t

])
∣∣∣∣∣∣∣∣∣∣

y1 ∈ RT , y
(1)
1 = z1,

yt ∈ L1(Ω,Ft,P; R2),

y
(1)
t − y

(2)
t = zt + rt a.s.,

yt ∈ R+ × R+ a.s. (t = 2, . . . , T )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(set y
(t)
1 = rt), i.e., ρ1 is of the form (3.2) with k1 = T , kt = 2 (t = 2, . . . , T ), c1 =

(0, γ2, . . . , γT ), ct = (0, γt

αt
) (t = 2, . . . , T ), w1,0 = e1, wt,0 = (1,−1) (t = 2, . . . , T ),

wt,t−1 = −et (t = 2, . . . , T ), wt,τ = 0 (τ = 1, . . . , t − 2, t = 3, . . . , T ), Y1 = RT ,
Yt = R+ × R+ (t = 2, . . . , T ) (with et denoting the tth standard basis vector in RT ).
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Thus, the risk measure ρ1 is multiperiod polyhedral. Due to Remark 3.5 it is multi-
period coherent, too, if

∑T
t=2 γt = 1. This can also be seen by means of Corollary 3.10.

The set of feasible multipliers is given here by

Λρ1
=

⎧⎪⎨
⎪⎩λ ∈ ×T

t=1 Lp′(Ω,Ft,P)

∣∣∣∣∣∣∣
λ1 = 0,

0 ≤ λt ≤ γt

αt
a.s. (t = 2, . . . , T ),

E [λt] = γt

⎫⎪⎬
⎪⎭(3.7)

and, of course, Λρ1
⊆ DT . Moreover, the conditions of Theorem 3.9 are satisfied, i.e.,

complete recourse and dual feasibility hold (take u = (0, γ2, . . . , γT )).
Next we present more involved examples, which extend the Conditional-Value-

at-Risk to the multiperiod situation. The characteristic thing about CV aR is that,
in the dual representation, the density functions, i.e., the Lagrangian multipliers are
bounded pointwise from above (cf. Example 2.10). This idea will be found somehow
in all of the following examples.

Example 3.12. In this example, we define a multiperiod coherent risk measure
where not every time step contributes with a fixed weight. When looking at the dual
representation (3.3) and at Corollary 3.10, it becomes obvious that each of the dual

constraints ct +
∑T

ν=t E[λν |Ft]wν,ν−t ∈ −Y ∗
t has to imply λt ≥ 0 for t = 1, . . . , T .

A natural candidate for implying
∑T

ν=1 E[λν ] = 1 is the corresponding constraint for

t = 1, which reads c1 +
∑T

ν=1 E[λν ]wν,ν−1 ∈ −Y ∗
1 .

Now, setting kt = 2 (t = 1, . . . , T ), c1 = (1, 0), ct = (0, βt) with some βt > 0

(t = 2, . . . , T ) such that
∑T

t=2 βt ≥ 1, w1,0 = (0, 1), wt,0 = (1,−1) (t = 1, . . . , T ),
wt,t−1 = (−1, 0) (t = 2, . . . , T ), and wt,τ = 0 (τ = 1, . . . , t − 2, t = 3, . . . , T ),
Y1 = R × R, Yt = R+ × R+ (t = 2, . . . , T ) leads to

c1 +
∑T

ν=1 E [λν ]wν,ν−1 ∈ −Y ∗
1 ⇐⇒ λ1 = 0 and

∑T
ν=1 E [λν ] = 1,

ct +
∑T

ν=t E [λν |Ft]wν,ν−t ∈ −Y ∗
t ⇐⇒ 0 ≤ λt and λt ≤ βt (t = 2, . . . , T )

since Y ∗
1 = {0} × {0} and Y ∗

t = R− × R− (t = 2, . . . , T ). Hence, the dual set Λρ2 is
of the form

Λρ2 =

⎧⎪⎨
⎪⎩λ ∈ ×T

t=1 Lp′(Ω,Ft,P)

∣∣∣∣∣∣∣
λ1 = 0,

0 ≤ λt ≤ βt a.s. (t = 2, . . . , T ),∑T
t=1 E[λt] = 1

⎫⎪⎬
⎪⎭.(3.8)

Note that complete recourse and dual feasibility hold. Thus, Corollary 3.10 implies
that the functional

ρ2(z) := inf

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
y
(1)
1 +

T∑
t=2

βtE
[
y
(2)
t

]
∣∣∣∣∣∣∣∣∣∣

yt ∈ Lp(Ω,Ft,P; R2) (t = 1, . . . , T ),

y1 ∈ R × R, yt ∈ R+ × R+ a.s. (t = 2, . . . , T ),

y
(2)
1 = z1,

y
(1)
t − y

(2)
t = zt + y

(1)
1 a.s. (t = 2, . . . , T )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

or simply ρ2(z) = infr∈R{r +
∑T

t=2 βtE[(zt + r)−]} is a multiperiod polyhedral and
coherent risk measure.

The remaining examples present multiperiod polyhedral coherent risk measures
that depend on the filtration {Ft}Tt=1, i.e., on the information flow over time.
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Example 3.13. To incorporate the information structure we adapt the previous
example in such a manner that successive time steps are associated. We choose
everything as before, only the assignment wt,τ = 0 (τ = 1, . . . , t − 2, t = 3, . . . , T ) is
replaced by wt,1 = (0,−1) (t = 3, . . . , T ) and wt,τ = 0 (τ = 2, . . . , t− 2, t = 4, . . . , T ).
In addition, we set ct = (0, δt) with δt > 0 for t = 2, . . . , T . Hence, the dual set Λρ3

is of the form

Λρ3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ ∈ ×T

t=1 Lp′(Ω,Ft,P)

∣∣∣∣∣∣∣∣∣

λ1 = 0,
∑T

t=1 E[λt] = 1,

0 ≤ λt, λt + E[λt+1|Ft] ≤ δt a.s.

(t = 2, . . . , T − 1),

0 ≤ λT ≤ δT a.s.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.(3.9)

Again, the complete recourse condition is satisfied and dual feasibility holds if the
parameters δt are chosen sufficiently large. Altogether, Corollary 3.10 implies that
the functional

ρ3(z) := inf

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩
y
(1)
1 +

T∑
t=2

δtE
[
y
(2)
t

]
∣∣∣∣∣∣∣∣∣∣∣∣∣

yt ∈ Lp(Ω,Ft,P; R2) (t = 1, . . . , T ),

y1 ∈ R × R, yt ∈ R+ × R+ a.s. (t = 2, . . . , T ),

y
(2)
1 = z1,

y
(1)
2 − y

(2)
2 = z2 + y

(1)
1 a.s.,

y
(1)
t − y

(2)
t = zt + y

(1)
1 + y

(2)
t−1 a.s. (t = 3, . . . , T )

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

is a polyhedral multiperiod coherent risk measure.
Example 3.14. In this approach, the concatenation of the time steps is even

stronger than in the previous example. We set kt = 2 (t = 1, . . . , T ), c1 = ( 1
T−1 , 0),

ct = (0, μt) (t = 2, . . . , T ) with some numbers 1
T−1 < μ2 ≤ μ3 ≤ · · · ≤ μT , w1,0 =

(0, 1), wt,0 = (1,−1) (t = 2, . . . , T ), wt,1 = (−1, 0) (t = 2, . . . , T ), wt,τ = 0 for τ > 1,
Y1 = R × R, Yt = R × R+ (t = 2, . . . , T − 1), YT = R+ × R+.

The dual constraints ct +
∑T

ν=t E[λν |Ft]wν,ν−t ∈ −Y ∗
t imply that λ has to be a

martingale with respect to the filtration (Ft)
T
t=1. This implies E[λ2] = · · · = E[λT ]

and λt ≥ 0 since λT ≥ 0. Together with (3.6) we obtain

Λρ4 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ ∈ ×T

t=1 Lp′(Ω,Ft,P)

∣∣∣∣∣∣∣∣∣

λ1 = 0,

0 ≤ λt ≤ μt a.s. (t = 2, . . . , T ),

λt = E [λt+1|Ft] (t = 2, . . . , T − 1),

E [λ2] = · · · = E [λT ] = 1
T−1

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.(3.10)

Complete recourse is satisfied and dual feasibility holds since the vector u ∈ RT with
u1 = 0 and ut = 1

T−1 for t = 2, . . . , T defines a (constant) element of Λρ4 . Hence,
Corollary 3.10 applies and the resulting functional

ρ4(z) := inf

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1
T−1y

(1)
1 +

T∑
t=2

μtE
[
y
(2)
t

]
∣∣∣∣∣∣∣∣∣∣∣∣∣

yt ∈ Lp(Ω,Ft,P; R2) (t = 1, . . . , T ),

y1 ∈ R × R, yT ∈ R+ × R+ a.s.,

yt ∈ R × R+ a.s. (t = 2, . . . , T − 1),

y
(2)
1 = z1,

y
(1)
t − y

(2)
t = zt + y

(1)
t−1 a.s. (t = 2, . . . , T )

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

is a polyhedral multiperiod coherent risk measure.
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Comparing (3.10) for μt = 1
(T−1)α with the dual representation of the Conditional-

Value-at-Risk (2.9) it turns out that the multiperiod risk measure ρ4 defined in this
way is a kind of canonical extension of the Conditional-Value-at-Risk in terms of [3,
sections 4 and 5] and of [25].3

The next example is motivated from the viewpoint of the value of information
(cf. [21, 22]).

Example 3.15. In [22], the following multiperiod risk measure was suggested.
Given some constants bT = 0 ≤ d ≤ bT−1 ≤ · · · ≤ b2 ≤ b1 and bt−1 ≤ qt for
t = 2, . . . , T , this risk measure is defined4 on ×T

t=1 Lp(Ω,Ft,P) by

ρ5(Z) = − sup

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

E
[
b1A1 +

∑T−1
t=2 (btAt − qtMt) + dKT − qTMT

]
:

At ∈ Lp(Ω,Ft,P) (t = 1, . . . , T ),

Kt = [Kt−1 + Zt −At−1]
+

(t = 2, . . . , T ),

Mt = [Kt−1 + Zt −At−1]
−

(t = 2, . . . , T )

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

with K1 := 0. However, in [22] Z = (Z1, . . . , ZT ) is understood as income process
with Z1 = 0, thus this definition does not fit in our framework.

Therefore, we rewrite this definition taking the value processes z = (z1, . . . , zT )

with z1 = Z1 = 0, zt =
∑T

τ=1 Zτ , i.e., Zt = zt − zt−1 for t > 2. This reformulation
leads to the representation (3.2) with kt = 3 (t = 1, . . . , T ), Y1 = R × R × {0},
Yt = R × R+ × R+ (t = 2, . . . , T ), yt = (At,Mt,Kt), wt,0 = (0,−1, 1) (t = 1, . . . , T ),
wt,τ = (1,−1, 0) (τ = 1, . . . , t − 2, t = 3, . . . , T ), wt,t−1 = (1, 0, 0) (t = 2, . . . , T ),
c1 = (−b1, 0, 0), ct = (−bt, qt, 0) (t = 2, . . . , T − 1), cT = (0, qT ,−d).

To understand this reformulation note that w1,0 = (0,−1, 1) implies M1 = −z1 =
0 and that for t = 2, . . . , T the recursion Kt −Mt = Kt−1 + Zt − At−1 with Kt ≥ 0
and Mt ≥ 0 must hold. This recursion can be transformed into a recursion of the
type of definition of multiperiod polyhedrality

zt = Kt +
∑t−1

τ=1 Aτ −
∑t

τ=2 Mτ (t = 2, . . . , T )

with K1 = 0. Thus, this risk measure fits into the framework of multiperiod polyhedral
risk measures.

Furthermore, it is multiperiod coherent if b1 = 1. This can be shown by means of
Corollary 3.10. Note that

c1 +
∑T

ν=1 E [λν ]wν,ν−1 ∈ −Y ∗
1 ⇐⇒

∑T
ν=2 E [λν ] = b1 and λ1 = 0

and

ct +
∑T

ν=t E [λν |Ft]wν,ν−t ∈ −Y ∗
t (t = 2, . . . , T ) ⇐⇒

d ≤ λT ≤ qT , 0 ≤ λt ≤ qt − bt,
∑T

ν=t+1 E [λν |Ft] = bt (t = 2, . . . , T − 1),

3The framework in these papers assumes that the multiperiod risk measure is determined only by
a set of (scalar) density functions Pρ ⊆ L1(Ω,F ,P) rather than Pρ ⊆ ×T

t=1 L1(Ω,Ft,P). Then, the

risk ρ(z) is given by expressions like sup{− 1
T

∑T
t=1 E[fzt] : f ∈ Pρ} [25] or sup{−E [fzτ ] : f ∈ Pρ,

τ stopping time} [3]. Indeed, Λρ4 is nothing else but the set of densities for the Conditional-Value-
at-Risk (2.9) in terms of [25], i.e., all density functions bounded by 1

α
.

4In [22], ρ5 is called a (negative) utility measure rather than a risk measure. Moreover, the first
time stage (i.e., the deterministic stage) is denoted by index 0 there. Here, the formulation is adapted
to our framework with index 1 for the deterministic time stage (i.e., F1 = {∅,Ω}). In addition, the
notations ct and at were replaced by the definitions bt := ct+1 and At := at+1.
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thus

Λρ5 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
λ ∈ ×T

t=1 Lp′(Ω,Ft, P )

∣∣∣∣∣∣∣∣∣

λ1 = 0,

0 ≤ λt ≤ qt − bt a.s. (t = 2, . . . , T − 1),

d ≤ λT ≤ qT a.s.,

E [λt|Ft−1] = bt−1 − bt (t = 2, . . . , T )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
.

Further, complete recourse is obviously satisfied and dual feasibility holds since the
vector u ∈ RT with u1 = 0, uT = bT−1, and ut = bt−1 − bt for t = 2, . . . , T − 1 defines

a (constant) element of Λρ5
. Furthermore,

∑T
t=1 E[λt] = b1 for λ ∈ Λρ5 , thus the

inclusion Λρ5
⊆ DT holds indeed if b1 = 1.

An interesting specific case appears for d = 0, bt = T−t
T−1 , and qt = bt + 1

(T−1)αt

(t = 1, . . . , T ) with αt ∈ (0, 1). Then we obtain

Λρ5 =

{
λ ∈ ×T

t=1 Lp′(Ω,Ft, P )

∣∣∣∣∣
λ1 = 0, 0 ≤ λt ≤ 1

(T−1)αt
a.s.,

E [λt|Ft−1] = 1
T−1

(t = 2, . . . , T )

}

and the risk measure ρ5 on ×T
t=1 Lp(Ω,Ft, P ) takes the form

ρ5(z) = 1
T−1

∑T
t=2 inf

{
E
[
ut−1 + 1

αt
(zt + ut−1)

−
] ∣∣∣ ut ∈ Lp(Ω,Ft,P)

}
.(3.11)

The tth summand can be interpreted as the expectation of the Conditional-Value-at-
Risk of zt conditioned with respect to the σ-field Ft−1. Clearly, (3.11) boils down to
the one-period CV aR (2.8) for T = 2.

Remark 3.16. Of course, it is interesting to compare these examples. To this
end, it is useful to consider the dual representations, i.e., the Lagrange multiplier sets
Λρj (j = 1, . . . , 5). Hence, regarding formulas (3.8), (3.9), and (3.10), it is obvious
that for βt = δt = μt it holds that Λρ4

⊆ Λρ2
⊇ Λρ3

, thus, since

ρj(z) = sup
{
−
∑T

t=1 E [λtzt] : λ ∈ Λρj

}
,(3.12)

the relation ρ4 ≤ ρ2 ≥ ρ3 is valid. On the other hand, comparing ρ3 and ρ4 for the
case δt = 2μt leads to Λρ4

⊆ Λρ3
, thus ρ4 ≤ ρ3. Hence, ρ3 is more cautious than ρ4

in this case. Moreover, if we set γt = 1
T−1 and βt = μt = 1

(T−1)αt
, formula (3.7)

shows Λρ4 ⊆ Λρ1 ⊆ Λρ2 , hence ρ4 ≤ ρ1 ≤ ρ2. Thus, ρ2 is the most cautious or most
pessimistic of these risk measures.

More precisely, for a fixed random variable z let λj = λj(z) ∈ Λρj be a maximizer
for the dual representations (3.12) of ρj , respectively. Then, roughly speaking, λj is
big where z is small in compliance with the respective restrictions. For j = 1 and
j = 4, the weighting of the time steps is fixed in advance since E[λj

t ] is fixed. For
j = 2 the weighting of the time steps is variable, hence the available probability mass
of λ2 is concentrated at time steps at which z is low. Thus, ρ2 is a kind of worst time
step risk measure. This might be desirable or not, depending on the application.

Comparing ρ1 with ρ4, one sees that in the first case λ1
t is big where zt is small,

independent of the other time steps. In the second case, λ4 is completely determined
by λ4

T since λ4
t = E[λ4

T |Ft] because of the martingale property. This means that
the maximization (3.12) takes all time steps into account simultaneously, i.e., the
maximization occurs along the paths of the treelike information structure given by
the filtration (Ft)

T
t=1. This latter approach seems to be more efficient in case the risk
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of paths is of interest. Then, ρ1 may be more pessimistic than necessary. Furthermore,
it does not incorporate the information structure of the problem. On the other hand,
the martingale property of ρ4 seems very restrictive.

Comparing ρ3 and ρ4 for the case δt = 2μt leads to Λρ4 ⊆ Λρ3 , thus ρ4 ≤ ρ3.
Hence, ρ3 is more cautious than ρ4 in this case. Regarding the dual sets for ρ5, one
obtains Λρ5

⊆ Λρ1
for γt = bt−1 − bt and αt = (bt−1 − bt)/(qt − bt), and Λρ5

⊆ Λρ3

for δt = qt − bt+1. Hence, ρ1 ≥ ρ5 ≤ ρ3, i.e., ρ5 is less cautious for this choice of the
coefficients.

However, cautiousness is not necessarily a desirable property, because in applica-
tions one usually has to pay a price for being cautious. Which risk measure to take
depends highly on the intention of the application. It seems that ρ3 may be a good
compromise, since the information structure is taken into account and there is no
fixed weighting of the time steps. For initial numerical results we refer to [9].

4. Risk measures in stochastic programs. In this section we study the ef-
fect of replacing expectation-based objectives of stochastic programming problems
by polyhedral risk measures. In particular, we are interested in consequences for
structural and stability properties of the resulting models. We assume that ran-
domness occurs as a (possibly multivariate) stochastic data process (ξt)

T
t=1 and set

Ft = σ(ξ1, . . . , ξt), t = 1, . . . , T . We consider multistage stochastic programs of the
form

min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E

[
T∑

t=1

〈bt(ξt), xt〉
]
∣∣∣∣∣∣∣∣∣∣

xt ∈ Xt,

Ht(xt) = 0,

Bt(ξt)xt ≤ dt(ξt),∑t−1
τ=0 At,τ (ξt)xt−τ = h(ξt)

(t = 1, . . . , T )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(4.1)

with closed sets Xt having the property that their convex hull is polyhedral, and
with cost coefficients bt(·), right-hand sides dt(·) and ht(·), and matrices At,τ (·), τ =
0, . . . , t − 1, and Bt(·) all having suitable dimensions and possibly depending affine
linearly on ξt for t = 1, . . . , T . The constraints consist of four groups, where the first
xt ∈ Xt models simple fixed constraints, the second Ht(z) := z − E[z|Ft] = 0 ensures
the nonanticipativity of the decisions xt, and the third and fourth are the coupling
and the dynamic constraints, respectively. By X (ξ) we denote the set of decisions
satisfying all constraints of (4.1).

When replacing the expectation of the stochastic overall costs
∑T

t=1〈bt(ξt), xt〉 by
some polyhedral multiperiod risk measure ρ applied to the random vector

z(x, ξ) :=
(
−〈b1(ξ1), x1〉,−〈b1(ξ1), x1〉 − 〈b2(ξ2), x2〉, . . . ,−

∑T
τ=1〈bτ (ξτ ), xτ 〉

)
of negative intermediate costs, we arrive at the following risk averse alternative to
problem (4.1):

min {ρ (z(x, ξ)) | x ∈ X (ξ)} .(4.2)

The polyhedral risk measure ρ is defined by the minimization problem

ρ(z) = inf

{
E
[∑T

t=1〈ct, yt〉
] ∣∣∣∣∣

Ht(yt) = 0, yt ∈ Yt,∑t−1
τ=0〈wt,τ , yt−τ 〉 = zt

(t = 1, . . . , T )

}
.

This gives rise to the question whether (4.2) is equivalent to the optimization model
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min

⎧⎪⎨
⎪⎩E

[
T∑

t=1

〈ct, yt〉
] ∣∣∣∣∣∣∣

x ∈ X (ξ),

Ht(yt) = 0, yt ∈ Yt (t = 1, . . . , T ),∑t−1
τ=0〈wt,τ , yt−τ 〉 +

∑t
τ=1〈bτ (ξτ ), xτ 〉 = 0 (t = 1, . . . , T )

⎫⎪⎬
⎪⎭ ,

(4.3)

where the minimization with respect to the original decision x and the variable y
defining ρ is carried out simultaneously. Of course, the answer is positive.

Proposition 4.1. Minimizing (4.2) with respect to x is equivalent to minimizing
(4.3) with respect to all pairs (x, y) in the following sense: The optimal values of (4.2)
and (4.3) coincide and a pair (x∗, y∗) is a solution of (4.3) if and only if x∗ solves
(4.2) and y∗ is a solution of the minimization problem defining ρ(z(x∗, ξ)).

Proof. The minimization with respect to all feasible pairs (x, y) of (4.3) can be
carried out by minimizing with respect to y and then by minimizing the latter residual
with respect to x ∈ X (ξ). Hence, the optimal values coincide and, if the pair (x∗, y∗)
solves (4.3), its first component x∗ is a solution of (4.2) and y∗ is a solution of the
problem

min

{
E
[∑T

t=1〈ct, yt〉
] ∣∣∣∣∣

Ht(yt) = 0, yt ∈ Yt,∑t−1
τ=0〈wt,τ , yt−τ 〉 +

∑t
τ=1〈bτ (ξτ ), x∗

τ 〉 = 0

}
,(4.4)

whose optimal value is just ρ(z(x∗, ξ)). Conversely, if x∗ is a solution of (4.2) and
y∗ a solution of (4.4), the pair (x∗, y∗) has to be a solution of (4.3).

Thus, minimizing a stochastic program with a polyhedral risk measure in the
objective leads to a “traditional” stochastic program with linear expectation-based
objective and with additional variables y and constraints, respectively. Both the
variables and the constraints are convenient for stochastic programs since the variables
are nicely constrained by polyhedral sets (no integer requirements). Thus, if the
original expectation-based stochastic program (4.1) has convenient properties, there
is good reason to expect that these properties are maintained when using a polyhedral
risk measure for risk aversion.

4.1. Stability of stochastic programs. Stability of solutions and optimal val-
ues of stochastic programs with respect to the perturbation of the underlying prob-
ability measure is an important issue since in applications the true measure P is
usually unknown and has to be approximated by some other measure Q. Such an
approximation may be gained by sampling techniques.

In [30] various stability results involving distances d(P,Q) of probability measures
are developed for different types of (mainly) expectation-based stochastic programs.
It is shown there that certain ideal probability metrics (see [23] for an exposition)
may be associated with classes of stochastic programs. Here, we briefly show that
these stability results remain valid for important classes if the expectation is replaced
by a polyhedral risk measure. We restrict ourselves to the two-stage case here since
stability properties are best understood for such programs. In the context of distances
of probability measures it turns out to be useful to assume that Ω = Ξ ⊆ Rn and
F = B(Ξ).

4.1.1. Linear two-stage programs. In [24, Theorem 3.3] and [30] it is shown
that two-stage stochastic programs with fixed recourse of the form

min

{
〈b, x1〉 + EP [〈p(·), x2(·)〉]

∣∣∣∣∣ Wx2(ξ) = h(ξ) − T (ξ)x1,

x1 ∈ X1, x2(ξ) ∈ X2

}
,(4.5)
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with X1 and Ξ being polyhedral sets, X2 being a polyhedral cone, and p(·), h(·), T (·)
being affine linear functions (of ξ ∈ Ξ), are stable5 at P with respect to the probability
metric ζ2 given by

ζ2(P,Q) = sup

⎧⎪⎨
⎪⎩|EP [F ] − EQ [F ]|

∣∣∣∣∣∣∣
F : Ξ → R,

|F (ξ) − F (ξ′)| ≤ max{1, ‖ξ‖, ‖ξ′‖} · ‖ξ − ξ′‖
∀ ξ, ξ′ ∈ Ξ

⎫⎪⎬
⎪⎭

if the following four conditions hold:
(A1) ∀ (x1, ξ) ∈ X1 × Ξ ∃x2 ∈ X2 : Wx2 = h(ξ) − T (ξ)x1

(relatively complete recourse).
(A2) ∀ ξ ∈ Ξ ∃ z : W ′z − p(ξ) ∈ X∗

2 (dual feasibility).
(A3) EP‖ξ‖2 < ∞ (finite second moments).
(A4) The first stage solution set SE ⊆ X1 is nonempty and bounded.

The program (4.5) is equivalent to min{EP[z(x1)] : x1 ∈ X1} using the notations
z(x1) := 〈b, x1〉+Φ(p(·), h(·)−T (·)x1) and the second stage value function Φ(u, t) :=
inf{〈u, x2〉 : x2 ∈ X2, Wx2 = t} (cf. [34, 29, 30]). Hence, the first stage solution set
is given by SE := {x1 ∈ X1 : E[z(x1)] = vE} with vE := inf{E[z(x1)] : x1 ∈ X1}
denoting the optimal value.

If we exchange from expectation to a (one-period) polyhedral risk measure ρ = ρP

according to Definition 2.2, we obtain the problem

min

{
ρ [−〈b, x1〉 − 〈p(.), x2(.)〉]

∣∣∣∣∣ Wx2(ξ) = h(ξ) − T (ξ)x1,

x1 ∈ X1, x2(ξ) ∈ X2

}
,(4.6)

which is equivalent to min{ρ[−z(x1)] : x1 ∈ X1} and, too, equivalent to

min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈c1, y1〉 +

E [〈c2, y2(.)〉]

∣∣∣∣∣∣∣∣∣

x1 ∈ X1, x2(ξ) ∈ X2,

y1 ∈ Y1, y2(ξ) ∈ Y2,

Wx2(ξ) = h(ξ) − T (ξ)x1,

〈p(ξ), x2(ξ)〉 + 〈w2, y2(ξ)〉 = −〈b, x1〉 − 〈w1, y1〉

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.(4.7)

The latter program has almost the same structure as (4.5) with

x̂1 =

(
x1

y1

)
, x̂2 =

(
x2

y2

)
, ĥ(ξ) =

(
h(ξ)

0

)
, b̂ =

(
0
c1

)
, p̂ =

(
0
c2

)
,

Ŵ (ξ) =

(
W 0
p(ξ)′ w′

2

)
, T̂ (ξ) =

(
T (ξ) 0
b w′

1

)
, X̂1 = X1 × Y1, X̂2 = X2 × Y2,

but now the recourse matrix Ŵ is random while the cost coefficient p̂ is nonrandom.
Moreover, if we also impose complete recourse and dual feasibility for the polyhe-

dral risk measure ρ in the sense of section 2, i.e., (i) 〈w2, Y2〉 = R and (ii) Dρ,1∩Dρ,2 �=
∅, Dρ,2 ⊆ R+, then we can conclude both relatively complete recourse and dual fea-
sibility for the risk aversive alternative (4.7):

(A1) Relatively complete recourse:
Let (x1, y1, ξ) ∈ X1 × Y1 ×Ξ; then ∃x2 ∈ X2 : Wx2 = h(ξ)− T (ξ)x1 and y2 ∈ Y2 can
be chosen such that 〈w2, y2〉 + 〈p(ξ), x2〉 = −〈b, x1〉 − 〈w1, y1〉 because 〈w2, Y2〉 = R,

thus Ŵ (ξ)x̂2 = ĥ(ξ) − T̂ (ξ)x̂1.

5We do not give a precise definition of stability here; see [30] for this. Briefly, stability means
that optimal values and (first stage) solution sets behave (quantitatively) continuous at the original
measure P with respect to a distance d(P,Q).
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(A2) Dual feasibility:
Let ξ ∈ Ξ. Choose v ∈ Dρ,2 = {u ∈ R : −(c2 + uw2) ∈ Y ∗

2 } ⊆ R+ and z such that
W ′z + p(ξ) ∈ X∗

2 , set ẑ = (vz′,−v)′; then one obtains

Ŵ (ξ)′ẑ − p̂ =

(
v(W ′z − p(ξ))
−vw2 − c2

)
∈ X∗

2 × Y ∗
2 = X̂∗

2 ,

by making use of the fact that X2 is a cone.
Since the randomness enters only the last row of Ŵ (ξ) except for the coefficient

in the main diagonal, the stability results from [32] for the random recourse situation
with only lower diagonal randomness apply. The model (4.7) with nonrandom costs,
however, is again stable with respect to the same metric ζ2 as for (4.5) if the (first
stage) solution set S̄ ⊆ X1 × Y1 of (4.7) is nonempty and bounded.

Proposition 4.2. Let ρ be a polyhedral risk measure on L1(Ω,F ,P) of the
form (2.1). Assume that the conditions (i) 〈w2, Y2〉 = R and (ii) Dρ,1 ∩ Dρ,2 �= ∅,
Dρ,2 ⊆ R+, are satisfied and that the set S(ρ(0)) (see (2.6)) is nonempty and bounded.
Then the set S̄ ⊆ X1×Y1 is nonempty and bounded if the solution set Sρ := {x1 ∈ X1 :
ρ[−z(x1)] = inf x̂1∈X1 ρ[−z(x̂1)]} of (4.6) is nonempty and bounded. Hence, the
stochastic program (4.7) is stable at P with respect to the metric ζ2 if the conditions
(A1)–(A3) are valid and Sρ is nonempty and bounded.

Proof. Proposition 4.1 implies that the set S̄ is nonempty and bounded if Sρ is
nonempty and bounded and the subset

⋃
x1∈Sρ

S(ρ[−z(x1)]) of Y1 is bounded. Here,

S(ρ(z)) is defined by (2.6) and is nonempty and bounded due to Proposition 2.9.
Clearly, nothing has to be shown if Y1 is bounded. Now, let Y1 be unbounded.
Suppose

⋃
x1∈Sρ

S(ρ[−z(x1)]) is unbounded. Then there exist sequences (y1,n) and

(x1,n) such that x1,n ∈ Sρ, y1,n ∈ S(ρ[−z(x1,n)]) and ‖y1,n‖ ≥ n for n ∈ N. Because
Sρ is compact, we may assume without loss of generality that x1,n → x1,0 ∈ Sρ. Since
Φ is Lipschitz in t (cf. [43]) we have z(x1,n) → z(x1,0) in L1(Ξ). Hence, the sequence of
probability distributions of z(x1,n) converges to the distribution of z(x1,0) with respect
to the Fortet–Mourier metric ζ1 (cf. [23, section 5.1]). Now, the set S(ρ[−z(x1,0)])
is nonempty and bounded. Therefore, the stability result [30, Corollary 25] for two-
stage stochastic programs with random right-hand side implies that there must exist
an index n0 ∈ N such that for n ≥ n0 the sets S(ρ[−z(x1,n)]) are contained in a
fixed bounded neighborhood of S(ρ[−z(x1,0)]). This contradicts ‖y1,n‖ ≥ n, thus⋃

x1∈Sρ
S(ρ[−z(x1)]) must be bounded.

4.1.2. Linear mixed-integer two-stage programs. In [30, Theorem 35], it
is shown that programs of the form

min

⎧⎪⎨
⎪⎩EP [〈b, x1〉 + 〈p, x2(.)〉 + 〈p̄, x̄2(.)〉]

∣∣∣∣∣∣∣
x1 ∈ X1,

x2(ξ) ∈ X2 ∩ Zm, x̄2(ξ) ∈ X̄2,

Wx2(ξ) + W̄ x̄2(ξ) = h(ξ) − T (ξ)x1

⎫⎪⎬
⎪⎭

(4.8)

with a closed Euclidean set X1, a polyhedral set Ξ, and polyhedral cones X2 and X̄2

are stable with respect to the probability metric ζ1,phk
with some k ∈ N if the following

conditions are satisfied:
(B1) ∀ (x1, ξ) ∈ X1 × Ξ ∃x2 ∈ X2 ∩ Zm, x̄2 ∈ X̄2 : Wx2 + W̄ x̄2 = h(ξ) − T (ξ)x1

(relatively complete recourse).
(B2) ∃ z ∈ Rr : W ′z + p ∈ X∗

2 and W̄ ′z + p̄ ∈ X̄∗
2 (dual feasibility).
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(B3) EP‖ξ‖ < ∞ (finite first moments).
(B4) W and W̄ have rational coefficients only (rational recourse).
(B5) The first stage solution set SE ⊆ X1 is nonempty and bounded.

The metric ζ1,phk
is given by

ζ1,phk
(P,Q) = sup

⎧⎪⎨
⎪⎩|EP [χB · F ] − EQ [χB · F ]|

∣∣∣∣∣∣∣
B ∈ Bphk

(Ξ), F : Ξ → R

|F (ξ) − F (ξ′)| ≤ ‖ξ − ξ′‖
∀ ξ, ξ′ ∈ Ξ

⎫⎪⎬
⎪⎭ ,

where Bphk
(Ξ) is the set of polyhedra contained in Ξ with at most k faces and χ de-

notes the characteristic function, i.e., χB(ξ) = 1 if ξ ∈ B and = 0 otherwise.
If we exchange in (4.8) from expectation to a polyhedral risk measure ρ we obtain

the problem min{ρ[−z(x1)] : x1 ∈ X1} with z(x1) := 〈b, x1〉 + Φ(h(·) − T (·)x1) and
Φ(t) := inf{〈p, x2〉+ 〈p̄, x̄2〉 : x2 ∈ X2∩Zm, x̄2 ∈ X̄2, Wx2 +W̄ x̄2 = t}. This problem
is equivalent to

min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈c1, y1〉 +

E [〈c2, y2(.)〉]

∣∣∣∣∣∣∣∣∣∣∣∣

x1 ∈ X1, x2(ξ) ∈ X2 ∩ Zm, x̄2(ξ) ∈ X̄2,

y1 ∈ Y1, y2(ξ) ∈ Y2,

Wx2(ξ) + W̄ x̄2(ξ) = h(ξ) − T (ξ)x1,

〈w2, y2(ξ)〉 + 〈p, x2(ξ)〉 + 〈p̄, x̄2(ξ)〉 =

−〈b, x1〉 − 〈w1, y1〉

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.(4.9)

The latter program has the same structure as (4.8) with

x̂1 =

(
x1

y1

)
, x̂2 = x2, ˆ̄x2 =

(
x̄2

y2

)
, X̂1 = X1 × Y1, X̂2 = X2,

ˆ̄X2 = X̄2 × Y2,

Ŵ =

(
W 0
p′ w′

2

)
, ˆ̄W =

(
W̄
p̄′

)
, T̂ (ξ) =

(
T (ξ) 0
b′ w′

1

)
, ĥ(ξ) =

(
h(ξ)

0

)
,

b̂ =

(
0
c1

)
, p̂ =

(
0
c2

)
, ˆ̄p = 0.

As in the previous paragraph, this combined program satisfies relatively complete
recourse and dual feasibility if both (4.8) and ρ do so. To have the condition (B4)
satisfied, one has to impose additionally that also p, p̄, and w2 have only rational
coefficients. Then, however, the same stability (with respect to the metric ζ1,phk

) as for
the original program is guaranteed if the (first stage) solution set S̄ ⊆ X1×Y1 of (4.9)
is nonempty and bounded. Unfortunately, we cannot conclude as in Proposition 4.2
in the mixed-integer case since Φ is no longer continuous. However, a quantitative
stability result is available for the expected loss and the Conditional-Value-at-Risk.

Proposition 4.3. Let ρ denote the expected loss or the Conditional-Value-at-
Risk (see section 2). Then the first stage solution set S̄ ⊆ X1×Y1 of (4.9) is nonempty
and bounded if the set Sρ := {x1 ∈ X1 : ρ[−z(x1)] = inf x̂1∈X1 ρ[−z(x̂1)]} is nonempty
and bounded. Hence, the stochastic program (4.9) is stable at P with respect to ζ1,phk

if the conditions (B1)–(B3), (B4)′ W , W̄ , p, and p̄ have rational coefficients only and
are satisfied and Sρ is nonempty and bounded.

Proof. As in Proposition 4.2, boundedness of S̄ is guaranteed if both the set Sρ of
X1-solutions of (4.9) is nonempty and bounded and the subset

⋃
x1∈Sρ

S(ρ[−z(x1)])
of Y1 is bounded, too. Clearly, the latter set is bounded if Y1 is bounded which is the
case for the expected loss. For the Conditional-Value-at-Risk, we argue as follows.
The set of random variables {z(x1) : x1 ∈ Sρ} is bounded in L1(Ξ) since Sρ is bounded
and the estimate |Φ(t)−Φ(t̃)| ≤ a‖t− t̃‖+b holds for the second stage function Φ with
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some positive coefficients a and b (e.g., [30, Lemma 33]). This implies boundedness
of the set of their probability distributions {D(z(x1)) : x1 ∈ Sρ} with respect to the
Fortet–Mourier metric ζ1. For real random variables z, ẑ and their distributions D(z),
D(ẑ) the metric ζ1 has the explicit representation (cf. [23, section 5.4])

ζ1(D(z), D(ẑ)) =

∫ ∞

−∞
|P(z ≤ t) − P(ẑ ≤ t)|dt.

For the CV aRα we know that for any random variable z the first stage solution set
is given by the interval of negative quantiles S(ρ(z)) = [−q̄α(z),−qα(z)] (cf. Exam-
ple 2.10). Fix x̂1 ∈ Sρ and set ẑ := z(x̂1). Let Ψj : R+ → R+ (j = 1, 2) be defined
by

Ψ1(r) :=
∫ qα(ẑ)

qα(ẑ)−r
(α− P(ẑ ≤ t)) dt Ψ2(r) :=

∫ q̄α(ẑ)+r

q̄α(ẑ)
(P(ẑ ≤ t) − α) dt.

Note that the functions Ψj (j = 1, 2) are strictly increasing. Let z be a random
variable. We show that the distances |qα(ẑ)− qα(z)| and |q̄α(ẑ)− q̄α(z)| are bounded
in terms of ζ1(D(z), D(ẑ)). In case qα(z) < qα(ẑ) it holds that

ζ1(D(z), D(ẑ)) =
∫∞
−∞ |P(z ≤ t) − P(ẑ ≤ t)|dt ≥

∫ qα(ẑ)

qα(z)
|P(z ≤ t) − P(ẑ ≤ t)|dt

=
∫ qα(ẑ)

qα(z)
(P(z ≤ t) − P(ẑ ≤ t)) dt ≥

∫ qα(ẑ)

qα(z)
(α− P(ẑ ≤ t)) dt

= Ψ1(qα(ẑ) − qα(z)),

hence |qα(ẑ) − qα(z)| ≤ Ψ−1
1 (ζ1(D(z), D(ẑ))). In case q̄α(z) > q̄α(ẑ) we get

ζ1(D(z), D(ẑ)) ≥
∫ q̄α(z)

q̄α(ẑ)
|P(z ≤ t) − P(ẑ ≤ t)|dt =

∫ q̄α(z)

q̄α(ẑ)
(P(ẑ ≤ t) − P(z ≤ t)) dt

≥
∫ q̄α(z)

q̄α(ẑ)
(P(ẑ ≤ t) − α) dt = Ψ2(q̄α(z) − q̄α(ẑ)),

hence |q̄α(z) − q̄α(ẑ)| ≤ Ψ−1
2 (ζ1(D(z), D(ẑ))).

After this paper was submitted, the authors attention was called to the recent
paper [39]. It contains a stability result for the Conditional-Value-at-Risk in mixed-
integer two-stage stochastic programs, which is similar to the preceding proposition
but proved without relying on Proposition 4.1.

4.2. Lagrangian relaxation and decomposition. We consider again the mul-
tistage stochastic program (4.1) and its risk averse alternative (4.2), which, according
to Proposition 4.1, is of the form

min

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

E

[
T∑

t=1

〈ct, yt〉
]
∣∣∣∣∣∣∣∣∣∣∣∣

xt ∈ Xt, yt ∈ Yt,

Ht(xt) = 0, Ht(yt) = 0,

Bt(ξt)xt ≤ dt(ξt),∑t−1
τ=0 At,τ (ξt)xt−τ = h(ξt),∑t−1
τ=0(〈wt,τ , yt−τ 〉 + 〈bτ+1(ξτ+1), xτ+1〉) = 0

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

.(4.10)

Obviously, (4.10) has a similar structure as (4.1) but additionally with T vector val-
ued random variables and T dynamic (equality) constraints. Thus, decomposition
methods that work for (4.1) are likely to work similarly for (4.10), too. We exemplify
this here by two important dual decomposition methods.
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4.2.1. Scenario decomposition. When solving problems like (4.1) or (4.10)
one usually has to approximate P or, equivalently, ξ by a finite number of scenarios
(more precisely: by a finite scenario tree). This can be expressed by ∞ > #Ω =: S
and one can assume without loss of generality Ω = {ξ1, . . . , ξS} and F = ℘(Ω). Then
the problem is no longer infinite-dimensional and can be solved by standard mixed-
integer linear programming techniques, but it is very large scale in most cases. Thus,
specialized decomposition techniques are of great interest (cf. [8, 33, 31, 37, 34]).

Scenario decomposition means Lagrange-dualizing the nonanticipativity con-
straints of (4.10) and solving the dual scenario-wise. Setting mt := dimxt we ob-
tain the dual problem

max
{
D(λ1, λ2) : λ1t ∈ L1(Ω,F ,P; Rmt), λ2t ∈ L1(Ω,F ,P; Rkt)

}
,

where the dual function D(λ1, λ2) is given by

D(λ1, λ2) = min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
L(λ1, λ2, x, y)

∣∣∣∣∣∣∣∣∣∣

xt ∈ Xt, yt ∈ Yt,

Bt(ξt)xt ≤ dt(ξt),∑t−1
τ=0 At,τ (ξt)xt−τ = h(ξt),∑t−1
τ=0(〈wt,τ , yt−τ 〉 + 〈bτ+1(ξτ+1), xτ+1〉) = 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

with L(λ1, λ2, x, y) := E[
∑T

t=1(〈ct, yt〉+〈λ1t, Ht(xt)〉+〈λ2t, Ht(yt)〉)] denoting the La-
grangian. Solving this problem is an iterative process: D(λ1, λ2) has to be computed
for a fixed pair (λ1, λ2) and then (λ1, λ2) has to be updated via subgradient-type
methods and so on. If the sets Xt are nonconvex, this procedure only leads to lower
bounds of the optimal value of (4.1) and suitable globalization techniques based on
these lower bounds have to be used in addition.

Because both the restrictions and the Lagrangian are separable with respect to
scenarios for a fixed pair (λ1, λ2), the calculation of the dual function can be car-

ried out scenario-wise, i.e., D(λ1, λ2) =
∑S

s=1 P({ξs})Ds(λ1, λ2). To derive the
separability of the Lagrangian the identities E[〈λ1t, Ht(xt)〉] = E[〈Ht(λ1t), xt〉] and
E[〈λ2t, Ht(yt)〉] = E[〈Ht(λ2t), yt〉] were used.

Hence, instead of one problem with S ·
∑T

t=1(mt + kt) variables one only has to

solve S subproblems each with
∑T

t=1(mt + kt) variables to update the multipliers. In
comparison with the (dualized form of the) purely expectation-based problem (4.1)

one has T additional equality constraints and
∑T

t=1 kt additional variables in each
subproblem. Note that the dimensions kt of yt are typically small compared to the
dimensions mt of xt.

4.2.2. Geographical decomposition. In many practical applications the stochas-
tic program (4.1) shows the following kind of block separability xi = (xi1, . . . , xiT ),
i = 1, . . . , I, of components of x:

min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

E

[
I∑

i=1

T∑
t=1

〈bit(ξt), xit〉
]
∣∣∣∣∣∣∣∣∣∣

xit ∈ Xit,

Ht(xit) = 0,∑I
i=1 Bit(ξt)xit ≤ dt(ξt),∑t−1
τ=0 Ait,τ (ξt)xi,t−τ = hit(ξt)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.(4.11)

Hence, the I blocks of x are only coupled by the sum in the third constraint in (4.11).
For such programs, Lagrange relaxation of coupling constraints, also known as geo-
graphical or component decomposition, may lead to efficient algorithms for computing
lower bounds (cf. [8, 31]).
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By exchanging from E to a multiperiod polyhedral risk measure this property is
maintained, but an additional block consisting of the yt variables and T additional
(dynamic) coupling constraints appear,

min

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E

[
T∑

t=1

〈ct, yt〉
]
∣∣∣∣∣∣∣∣∣∣∣∣∣

xit ∈ Xit, yt ∈ Yt,

Ht(xit) = 0, Ht(yt) = 0,∑I
i=1 Bit(ξt)xit ≤ dt(ξt),∑t−1
τ=0 Ait,τ (ξt)xi,t−τ = hit(ξt),∑t−1
τ=0(〈wt,τ , yt−τ 〉 +

∑I
i=1〈bi,τ+1(ξt), xi,τ+1〉) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.(4.12)

Here, Lagrange relaxation of coupling constraints means to assign Ft-measurable La-
grange multipliers λ1t and λ2t to the third and fifth constraint in (4.12), respectively,
and to arrive at the dual problem

max
{
D(λ1, λ2) : λ1t ∈ Lp′(Ω,Ft,P; Rnt

+ ), λ2t ∈ Lp′(Ω,Ft,P)
}
.

The dual function D(λ1, λ2) is given by

D(λ1, λ2) = min

⎧⎪⎨
⎪⎩L(λ1, λ2, x1, . . . , xI , y)

∣∣∣∣∣∣∣
xit ∈ Xit, yt ∈ Yt,

Ht(xit) = 0, Ht(yt) = 0,∑t−1
τ=0 Ait,τ (ξt)xi,t−τ = hit(ξt)

⎫⎪⎬
⎪⎭

and the Lagrangian L(λ1, λ2, x1, . . . , xI , y) is defined by

L(λ1, λ2, x1, . . . , xI , y)

=E
[∑T

t=1

(
〈ct, yt〉 +

〈
λ1t,

∑I
i=1 Bit(ξt)xit − dt(ξt)

〉
+ λ2t

∑t−1
τ=0

(
〈wt,τ , yt−τ 〉 +

∑I
i=1〈bi,τ+1(ξτ+1), xi,τ+1〉

))]
.

By rearranging with respect to blocks in the objective, the dual function D decomposes
into I + 1 minimization subproblems and is then of the form

D(λ1, λ2) =

I∑
i=1

Di(λ1, λ2) + DR(λ2) − E

[
T∑

t=1

〈λ1t, dt(ξt)〉
]
.

The functions Di correspond to I geographical subproblems

Di(λ1, λ2)

=min

⎧⎪⎨
⎪⎩E

[
T∑

t=1

〈
Bit(ξt)

′λ1t + bit(ξt)
∑T

τ=t λ2τ , xit

〉] ∣∣∣∣∣∣∣
xit ∈ Xit,

Ht(xit) = 0,∑t−1
τ=0 Ait,τ (ξt)xi,t−τ = hit(ξt)

⎫⎪⎬
⎪⎭

and DR corresponds to the risk subproblem

DR(λ2) = min

{
E
[

T∑
t=1

〈
ct +

∑T
τ=t λ2τwτ,τ−t, yt

〉] ∣∣∣∣∣ yt ∈ Yt,

Ht(yt) = 0

}
.

Compared to the (dualized form of the) purely expectation-based problem (4.11), the
subproblems for the xi-blocks have the same structure, therefore the same solution
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methods can be applied. The only change consists in the additional factors
∑T

τ=t λ2τ

of bit(ξt) in the objective. If Y1 is a cone, the subproblem for the additional y-block
represents a cone constrained linear stochastic program and can be solved explicitly,
namely, it holds

DR(λ2) =

⎧⎨
⎩ 0 if −

(
ct +

∑T
τ=t E[λ2τ |Ft]wτ,τ−t

)
∈ Y ∗

t (t = 1, . . . , T ),

−∞ otherwise.

Hence, the dual problem reads

max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

I∑
i=1

Di(λ1, λ2) − E

[
T∑

t=1

〈λ1t, dt(ξt)〉
]
∣∣∣∣∣∣∣∣∣∣

λ1t ∈ Lp′(Ω,Ft,P; Rnt
+ ),

λ2t ∈ Lp′(Ω,Ft,P),

ct +
∑T

τ=t E[λ2τ |Ft]wτ,τ−t ∈ −Y ∗
t

(t = 1, . . . , T )

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

and the whole Lagrangian decomposition strategy has the same favorable features for
the risk averse model (4.12) as for the expectation-based one (4.11). For example, the
known Lagrangian relaxation based algorithms for electricity portfolio optimization
(e.g., [4, 12, 16]) apply to risk aversive models after some modifications.

5. Conclusions. We have introduced the class of polyhedral risk measures.
Polyhedral risk measures are defined as optimal values of certain linear stochastic
programs with recourse where the arguments appear on the right-hand sides of the
dynamic constraints. By means of convex duality, criteria for coherence and second
order stochastic dominance consistency have been deduced. For the one-period case it
has been shown that well-known risk measures are contained in this class: Conditional-
Value-at-Risk / quantile dispersion, and expected loss. For the multiperiod case, five
polyhedral (coherent) risk measures were suggested.

Stochastic programs with a polyhedral risk measure as objective (or, alternatively,
with an objective consisting of a linear combination of an expectation and a polyhedral
risk measure) can be easily transformed into expectation-based stochastic programs.
This observation has been used to demonstrate that important dual decomposition
techniques known for certain expectation-based stochastic programs can be applied
to stochastic programs with polyhedral risk measures after some modicifactions. The
same is true for stability properties of stochastic programs.

Hence, for large scale problems possibly including integer variables polyhedral
risk measures are a reasonable and flexible means to control risk while keeping the
problems tractable.

Acknowledgments. The authors wish to thank the referees as well as the asso-
ciate editor for valuable remarks and suggestions. Further thanks are due to Stephan
Tiedemann (University of Duisburg-Essen) for helpful discussions.

REFERENCES

[1] P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, Coherent measures of risk, Math.
Finance, 9 (1999), pp. 203–228.

[2] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, and H. Ku, Coherent Multiperiod Risk
Measurement, Working Paper, 2002, downloadable from www.math.ethz.ch/∼delbaen.

[3] P. Artzner, F. Delbaen, J.-M. Eber, D. Heath, and H. Ku, Coherent Multiperiod Risk
Adjusted Values and Bellman’s Principle, Working Paper, 2004, downloadable from www.
math.ethz.ch/∼delbaen.



94 ANDREAS EICHHORN AND WERNER RÖMISCH
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[41] G. P. Szegö, ed., Statistical and Computational Problems in Risk Management: VaR and
Beyond VaR, special issue of Journal of Banking & Finance, 26 (7) (2002).

[42] S. Weber, Distribution-Invariant Dynamic Risk Measures, Working Paper, Humboldt-
University, Berlin, Germany, 2003.

[43] R. J.-B. Wets, Stochastic programs with fixed recourse: The equivalent deterministic program,
SIAM Rev., 16 (1974), pp. 309–339.



SIAM J. OPTIM. c© 2005 Society for Industrial and Applied Mathematics
Vol. 16, No. 1, pp. 96–119

STRONG LIPSCHITZ STABILITY OF STATIONARY SOLUTIONS
FOR NONLINEAR PROGRAMS AND VARIATIONAL

INEQUALITIES∗

DIETHARD KLATTE† AND BERND KUMMER‡

Abstract. The stationary solution map X of a canonically perturbed nonlinear program or
variational condition is studied. We primarily aim at characterizing X to be locally single-valued and
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1. Introduction. Our basic model is the canonically perturbed nonlinear pro-
gram

P(a, b) : min
x∈G(b)

f(x) − 〈a, x〉, where G(b) = {x | g(x) ≤ b}(1)

with parameter p = (a, b) ∈ Rn × Rm, where f and g = (g1, . . . , gm) are defined
on Rn and have (at least) locally Lipschitzian derivatives, briefly f, g ∈ C1,1. Our
main topic is that of strong Lipschitz stability (s.L.s.) of stationary points, and this
only under the (inherent) Mangasarian–Fromowitz constraint qualification (MFCQ).
Extensions to programs with additional parametric equations and to variational in-
equalities with a nonpolyhedral constraint set will be discussed too. For describing
the crucial singular situations only, MFCQ will be weakened.

Let p �→ X(p) and p �→ XKKT(p) denote the maps of stationary solutions x and
Karush–Kuhn–Tucker (KKT-) points (x, y) to (1), respectively. Further, let B denote
the closed unit ball.

Notions of stability. Given a multifunction Γ : Rk ⇒ Rs and some z0 ∈ Γ(p0), Γ
is said to be strongly Lipschitz stable (s.L.s.) at (p0, z0) if

for certain positive reals ε, δ, L and all p, p′ ∈ p0 + δB,
the sets Γε(p) := Γ(p) ∩ (z0 + εB) are singletons {z(p)}
and fulfill ‖z(p′) − z(p)‖ ≤ L‖p′ − p‖;

(2)
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i.e., Γ is locally single-valued and Lipschitz near (p0, z0). We aim to characterize
strong Lipschitz stability of the map Γ = X at (0, x0) in terms of the given data
functions and model structure.

The behavior of stationary solutions to (1) has been already precisely described by
parametric optimization provided that both the involved functions are of type C3 and
(1) belongs to some generic class of problems; cf. [11, 12]. Here, we study less smooth
problems in general. The assumption f, g ∈ C1,1\C2 is typical for problems which
involve extreme-value functions of other (sufficiently regular) optimization models like
in design- or semi-infinite optimization or for multilevel problems. For comparison,
we introduce a second stability notion and call Γ upper Lipschitz at (p0, z0) ∈ gph Γ if

Γε(p) ⊂ z0 + L‖p− p0‖B holds for certain positive ε, δ, L and all p ∈ p0 + δB.

(3)

If both (3) and Γε(p) �= ∅ hold with appropriate constants, then we call Γ upper
Lipschitz stable at (p0, z0). The notions concerning stability or regularity differ in the
literature. So “s.L.s.” and “strongly regular” often mean the same thing, and our
“upper Lipschitz” is “locally upper Lipschitz” in [6], while “upper Lipschitz stable”
is “upper regular” in [18]. We avoid speaking of “regularity,” since this has been used
in an alternative definition via local linearizations in [36].

For the inverse map Γ = F−1 of a C1 function F : Rn → Rn with F (z0) = p0, all
these properties coincide and require detDF (z0) �= 0. If F is only locally Lipschitz,
they are quite different.

MFCQ. Throughout the paper, x0 denotes a fixed stationary point for p = 0, and
constraint qualifications concern just this pair of points. The upper Lipschitz stability
(even more s.L.s.) of X at (0, x0) implies for the constraint sets G(b) and small ‖b‖
that

G(b) �= ∅ and dist (x0, G(b)) ≤ L‖b‖.(4)

With b = −ε(1, . . . , 1)T , the latter is possible only under the Mangasarian–Fromovitz
constraint qualification (MFCQ). Similarly, MFCQ follows if equations γ(x) = c∈Rm′

additionally appear in the description of G(·): To see this, change also c = εv sep-
arately for both v ∈ Rm′

and v ∈ kerDγ(x0). Therefore, MFCQ is a canonical
assumption for characterizing these stabilities.

However, then the stability behavior essentially differs from that under the con-
straint qualification LICQ which makes Lagrange multipliers y(p, x) on gphX unique
and Lipschitz near (x0, 0) and thus implies that the Lipschitz conditions coincide for
X and XKKT.

The current state of art concerning Lipschitz stability of stationary solutions for
problem (1) under the given canonical perturbations, and similarly for the model (9)
below, can be summarized as follows.

1. Under related smoothness, all known (explicit) conditions for stability are
invariant w.r.t. replacing the involved functions by quadratic approximations near
the reference point x0 (for h in (5) or (9) take the linearization). This fact remains
true for the generic stability theory in [11, 12] as well as for generalized equations of
the type

p ∈ h(x) + N (x),(5)

where N is a closed multifunction and h a C1 function, and is the red line through
the whole stability theory (not only) in optimization or variational analysis even if a
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second parameter z appears in h and Dxh(·, ·) is continuous: linearize h(·, z0). This
invariance principle was basically shown, for (1), (5), and (9), by Robinson [36]; in his
paper, N had a particular structure, but the main proofs hold for any closed N , too.

Further, the principle simplifies stability conditions up to a certain level which, for
(5), essentially depends on the ability to work with N . If N has a concrete structure
involving again some vector function, say ψ, the same invariance can be observed in
the literature; cf. [37, 7, 32, 42, 6, 18, 40]: In conditions for strong or upper Lipschitz
behavior of the solutions, ψ may be replaced by its quadratic approximation at the
reference point.

We shall show that this principle is not valid for s.L.s. of the stationary point
map X = X(a, b) even if f and gi are convex polynomials, and we will characterize
this stability in an analytical manner as simply as possible.

2. The kind of constraint qualification is important since known sufficient con-
ditions (as far as they are verifiable in original terms) for X being s.L.s. require,
directly or indirectly, that LICQ is satisfied at x0. After using another description of
the problems in [39, 40], LICQ became a formally weaker nondegeneracy property. But
it ensures again that assigned Lagrange multipliers y(p, x) are unique and Lipschitz.
So it implies that s.L.s. of X and XKKT coincide.

3. Further, s.L.s. of XKKT, for (1) or (9), implies necessarily LICQ at x0 and
already has been completely characterized. So LICQ and the map XKKT itself are
of less interest in the following. More information concerning XKKT can be found in
section 4.

4. Under MFCQ, there exists a nearly complete theory for X or XKKT to be upper
Lipschitz, where p = (a, b) or only p = a is regarded as the canonical parameter [37, 41,
31, 14, 27, 28, 42, 16, 2, 26, 17, 18]. The results include formulas for computing proto-
derivatives (being contingent derivatives with a particular property) of the mappings
in question.

For the particular mapping a �→ X(a, 0), s.L.s. at some local minimizer x0 sat-
isfying MFCQ is characterized in [2, section 5.1] by a second order growth condition
which is uniform w.r.t. small perturbations of (x, a).

5. Most of the stability (or regularity) characterizations, e.g., those in [27, 28, 42,
24, 25], cannot be applied to (1) and (9) if g ∈ C1,1\C2 since second derivatives are
decisively applied. Some related statements for such problems along with a calculus
for the subsequent derivatives are elaborated, e.g., in [18] and earlier work of the
authors. Here, the C1,1 difficulties are hidden in the problem of determining the sets
Φ(y, u) in Remark 3.2. For a deeper discussion of the resulting questions and partial
results we refer to [8].

6. The way of dealing with other parameterizations (some parameter z appears
in f, g, or h) has been basically clear since [36] was published: Rewrite the new
variations in terms of canonical perturbations and apply the knowledge concerning
the latter. This brings results and difficulties (concerning necessity of the conditions
and existence of solutions) as in the context of implicit functions; cf. [20, 37, 22, 34, 42,
17, 2, 24, 18]. So, a basic counterexample from convex quadratic optimization in [37]
shows that s.L.s. of X under canonical perturbations does not imply the analogue
property if z appears linearly in g and LICQ does not hold. The reason for these
difficulties, under MFCQ, will be discussed in section 5.4.

7. Further, several abstract conditions on s.L.s. of X or of the solution map Γ to
(5) (cf. [42, 24, 25, 18]) are given in terms of generalized derivatives or by interrelations
to the Aubin property which can be characterized by generalized derivatives [29], too.
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However, in contrast to Fréchet-derivatives, generalized derivatives are defined via
more or less complicated sets of (double) limits, which make the calculus and direct
applications quite hard. So, to mention only one difficulty, the derivatives D = T ,
D = C below do not satisfy the addition rule D(f + g) = Df +Dg for arbitrary real
Lipschitz functions. The same problem occurs for Clarke’s generalized Jacobians and
coderivatives and even more for generalized derivatives of multifunctions. Therefore,
the value of any stability characterization via generalized derivatives crucially depends
on the ability to determine the latter ones for the problem in question. A typical
derivative characterization is given by Theorem 2.3 below, and our main intent is just
to show how to overcome its insufficiency and to exploit the problem structure.

The approach and content of the paper can be summarized as follows.
Negation of stability. For violating strong Lipschitz stability of X at (0, x0),

there are exactly two (not disjoint) possibilities which arise from the negation of this
property:

Local unsolvability: ∃ε > 0 such that X(pk) ∩ (x0 + εB) = ∅ for certain pk → 0.

Far solutions 1: ∃xk ∈ X(pk), ξk ∈ X(πk) with xk, ξk → x0 and pk, πk → 0
such that xk �= ξk and ‖πk − pk‖/‖ξk − xk‖ → 0.

(6)

Definition 1.1. If the first situation does not happen, we will speak of local
solvability. If the second situation happens, we will speak of singularity.

Singularity means, in terms of a generalized derivative TX (cf. Definition 2.1
of the strict graphical derivative), that u ∈ TX(0, x0)(0) for some u �= 0. This well-
known fact, mentioned, e.g., in [21, 42, 24, 18], immediately follows with every cluster

point u of uk = ξk−xk

‖ξk−xk‖ and is nothing more than a motivation of the definition of

TX. Nevertheless, one may try to characterize TX in terms of the original data in
order to simplify the singularity condition. This is precisely both the main problem
for applying any generalized derivative (which often describes some property only in
another, more compact, form) and the kernel of our analysis in section 3, where we
extend the calculus developed for C1,1 problems (1) in [21, 22, 18]. For characterizing
singularity, we weaken the MFCQ-supposition by requiring throughout the paper that

for every sequence (pk, xk) ∈ gphX with (pk, xk) → (0, x0), there is some
subsequence such that certain assigned Lagrange multipliers yk converge.

(7)

This covers (piecewise) linear constraints and several other constraint qualifications.
The crucial results of the paper. After preparations in section 2, we shall present

and prove our main Theorem 3.1 in section 3. For C2 problems (1), let F1(x, y) =
Df(x)+

∑
i yiDgi(x) denote the first derivative w.r.t. x of the Lagrangian and let Y 0

denote the set of Lagrange multipliers to x0 at p = 0. Further, put J = {i|gi(x0) = 0}
and Q(y) = DxF1(x

0, y). Then Theorem 3.1 characterizes singularity, under (7), as
follows:

There exist u �= 0 and y ∈ Y 0 such that yiDgi(x
0)u = 0 ∀i

and with certain sequences xk → x0and αk ∈ Rm, one has
αk
i Dgi(x

0)u ≥ 0 ∀i ∈ J and Q(y)u +
∑

i∈J αk
i Dgi(x

k) → 0.
(8)

By (8) and Corollary 5.3, strong Lipschitz stability at a local minimizer x0 to p = 0
will be completely described. The key point concerning LICQ or assumption (7) at
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x0 can be seen as follows. Under LICQ, the sequence αk in (8) cannot diverge. So
one may select some cluster point α0 to obtain a much simpler equivalent condition
(namely, the negation of TF -injectivity w.r.t. u; cf. section 4) by setting αk = α0,
xk = x0.

Theorem 3.1 also applies to the solution map X of parametric variational condi-
tions

a ∈ h(x) + NG(b)(x), x ∈ G(b)(9)

with parameter p = (a, b), where h ∈ C1(Rn, Rn), g ∈ C2(Rn, Rm), and NG(b)(x)
is the B-normal cone at x to the set G(b) in (1). In this case, we speak of the C2

problem (9).

Finally (cf. Remark 3.2), Theorem 3.1 similarly holds for C1,1 problems (1) and
for (9) if h is locally Lipschitz and g ∈ C1,1. Then we also call (9) a C1,1 problem.

As long as assumption (7) remains true, additional equations gi = 0 may appear
in the description of the feasible sets G(b). For any related i, then also Dgi(x

0)u = 0
must be required in (8), so αk

i is not restricted by sign.

Condition (8) is something unsatisfactory due to the included sequences. Defining
the cone K(x0, u) = lim supx→x0{

∑
i∈J αiDgi(x) |αiDgi(x

0)u ≥ 0∀i ∈ J} via the
upper Hausdorff (or Kuratovski–Painlevé) limit of sets, one can hide the limits in the
equivalent condition that there are u �= 0 and y ∈ Y 0 with yiDgi(x

0)u = 0 ∀i and
−Q(y) ∈ K(x0, u). This is elegant but no simplification, of course.

So we derive in section 4 a second characterization of singularity by classical means
of canonically perturbed quadratic problems (Theorem 4.2) and we ask whether the
limit characterization can be simplified or replaced, under smoothness, by using only
Fréchet-derivatives (up to some fixed order) of f, g, or h at x0. We call such a condition
a finite derivative condition.

Though various limit characterizations appear in nonsmooth analysis, the discus-
sion of this question is not standard. Our Examples 4.7 and 4.8 demonstrate that,
given any natural q > 0, there are two convex polynomial problems (1), uniquely
solvable for all parameters, such that the derivatives up to order q of f and g coincide
at x0, though one problem is singular and the other is not.

Hence there is no singularity characterization by a finite derivative condition.

For other regularity or stability notions to problem (1) or (9), this phenomenon
does not appear or has not been observed up to now. Because of unique solvabil-
ity in our examples, also the Aubin property in section 4.3 permits no singularity
characterization by a finite derivative condition for convex problems. It needs a limit
condition although related (coderivative) criteria are sometimes called point condi-
tions. We include the Aubin property in this paper since it yields local solvability; cf.
Theorem 4.11.

In section 5, we discuss special cases in which a finite derivative condition still
exists and compare (8) with criteria for upper Lipschitz stability and Kojima’s strong
stability [20]. In particular, the relations between s.L.s. and Kojima’s stability will
be completely clarified. Some results on local solvability, which are closely connected
with these stabilities, will be mentioned in section 5.2. In this respect, there are
differences for the problems under consideration. In particular for (9), or for (1) if
f, g ∈ C1,1\C2, such investigations need more effort and are not the focus of this
paper. However, without having local solvability, the estimate in (2) still holds for all
existing solutions, provided that singularity does not hold.
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2. Preliminaries.

2.1. Kojima’s function. For technical reasons we describe the KKT-points,
following Kojima [20] as zeros of some function F given by the components

F1(x, y) = Df(x) +

m∑
i=1

y+
i Dgi(x), y+

i = max{0, yi},

F2,i(x, y) = gi(x) − y−i , y−i = min{0, yi}.
(10)

With the usual Lagrangian L, we have F1(x, y) = DxL(x, y+). For each zero of F ,
(x, y+) is a usual KKT-point, and negative yi coincide with gi(x). The KKT-points
of (1) correspond to the equation F (x, y) = p; we put XKKT(p) = {(x, y) |F (x, y) = p}.
Throughout, let

Y (p, x) = {y |F (x, y) = p} and Y 0 = Y (0, x0).

As is well known, MFCQ at a solution (0, x0) just ensures that Y 0 is nonempty and
bounded, and hence the mapping Y (·, ·) is upper semicontinuous at (0, x0).

Additional equality constraints. For simplicity of presentation, we restrict our-
selves to inequality constraints, though constraints gν(x) = bν , ν = m + 1, . . . , κ, can
be included without affecting the results. The related Kojima function F then also
contains the sum

∑
ν yνDgν(x) in F1 and new components F3,ν = gν(x). In every

subsequent statement where the signs of yi play any role, yν must be handled like
positive yi (even if yν ≤ 0). In the conditions of Theorem 3.1, additional components
αν and βν will appear where αν is not restricted by sign and βν = 0.

Analysis of variational inequalities. As in [18], our analysis of Lipschitz stability
can be applied to the solution map X of variational conditions (9) of C2 or C1,1 type.
Provided that x ∈ G(b) satisfies MFCQ (or any weaker constraint qualification), it is

known that x solves (9) if and only if F̃ (x, y) = p holds for some y ∈ Rm, where F̃
is defined by substituting h(x) for Df(x) in (10) only. As before, we call the related
pairs (x, y) KKT-points and denote the corresponding solution map by XKKT.

In the following, when characterizing the derivative TX and s.L.s., we will never
make use of the special form h = Dxf if nothing else is written explicitly. Thus,
this variation of F1 allows us to deal with (1) and (9) in the same way (of course,
if symmetry of Dh or the background of optimization is not needed). Again, C1,1

equations may occur in G(b) as long as MFCQ or (7), respectively, holds true.
For studying derivatives, it is essential that F in (10) has a separable product

form

F = N(y)M(x), where N(y) = (1, y+, y−) ∈ R1+2m(11)

has (simple) directional derivatives, while M(x) is a matrix of size (1 + 2m,n + m):

M(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Df(x)T g1(x) . . . gm(x)
Dg1(x)T 0 . . . 0

...
...

...

Dgm(x)T 0 . . . 0
0 −1 . . . 0
...

...
...

0 0 . . . −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Evidently, M ∈ C1 holds for C2 problems (1) and (9) while M is locally Lipschitz
in the C1,1 case. Note that additional equality constraints simply lead us to a larger
matrix and to additional (smooth) components yν in N .
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2.2. The derivatives TΓ, CΓ. It is well known that strong Lipschitz stability
of a (multi)function Γ : Rm ⇒ Rn is closely related to nonsingularity of certain limits,
e.g., [21, 22, 42, 24, 25, 18]. We recall the following definition.

Definition 2.1 (strict graphical derivative TΓ). Let x0 ∈ Γ(p0) and c ∈ Rm.
Then the set TΓ(p0, x0)(c) consists of all u ∈ Rn such that xk ∈ Γ(pk) and xk +
tkuk ∈ Γ(pk + tkc

k) hold for certain tk ↓ 0 and related sequences (xk, uk, pk, ck) →
(x0, u, p0, c).

Sets of this form have been called strict graphical derivatives in [42]. For functions
Γ, they were introduced by Thibault (to define other types of generalized derivatives)
and denoted by limit sets in [44, 45], and they appeared, e.g., in [21, 16, 18] as Δ- or
T-derivatives.

Setting, in the case of “far solutions 1” (6), ξk = xk + tku
k, where ‖uk‖ =

1 and tk > 0, and selecting a subsequence such that uk → u, one obtains

some u �= 0 belongs to TX(0, x0)(a, b) for (a, b) = 0,(12)

and vice versa. Hence, singularity and (12) coincide.
Definition 2.2 (contingent derivative CΓ). The set of all u ∈ Rn such that

x0 + tkuk ∈ Γ(p0 + tkc
k) holds for certain tk ↓ 0 and (uk, ck) → (u, c) forms the

contingent derivative, also called the Bouligand derivative CΓ(p0, x0)(c); cf. [1].
Due to the symmetry w.r.t. images and preimages, the derivative TΓ−1 or CΓ−1

of the inverse Γ−1 is just the inverse of TΓ or CΓ, respectively.
The negation of upper Lipschitz stability is described by the two (not disjoint)

possibilities local unsolvability as under (6) and

Far solutions 2 : ∃ξk ∈ X(πk) with ξk → x0 and πk → 0
such that ξk �= x0 and ‖πk‖/‖ξk − x0‖ → 0.

(13)

The singular situation (13) means, by taking a cluster point u of uk = ξk−x0

‖ξk−x0‖ , that

some u �= 0 belongs to CX(0, x0)(a, b) for (a, b) = 0.(14)

This is just the negation of CF -injectivity w.r.t. u; cf. section 4. As mentioned in the
introduction, the derivative CX has already been exactly determined. We shall recall
related results for comparison and for obtaining a bridge to local solvability; cf. (18)
and Corollary 5.3.

Here, we have Γ(p) = X(p), p = (a, b), and p0 = 0 and we may put uk = u (∀k)
in the definition of TX(0, x0)(c). Indeed,

xk + tku
k ∈ X(pk + tkc

k) means F (xk + tku
k, yk) = pk + tkc

k for some yk,

where, under (7), yk may be seen as bounded for (pk, xk) near (0, x0) and small positive
tk (otherwise choose an appropriate subsequence). Further, F is locally Lipschitz. So,
replacing uk by u leads us to

F (xk + tku, y
k) = pk + tkc

k + tkr
k, where rk → 0.(15)

Thus, with uk ≡ u one obtains the same set TX(0, x0)(c). Concerning CX(0, x0)(c),
where xk ≡ x0, pk ≡ 0, the same arguments are valid.

Similarly, these derivatives can be applied to the function F and their factors
M,N in (11). Then, the usual product rule of differentiation holds for these derivatives
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applied to F [21, 22, 18], and TM(x0)(u) consists of all limits of φk = t−1
k [M(xk +

tku) −M(xk)] where tk ↓ 0 and xk → x0. Further, TN and CN have a simple form
due to the structure of ci(y) = (y+

i , y
−
i ) = (y+

i , yi − y+
i ):

TN(y)(v) = {(0, r, s) | r + s = v, risi ≥ 0 siy
+
i = 0, riy

−
i = 0 ∀i},

CN(y)(v) = {(0, r, s) ∈ TN(y)(v) | si = 0 if yi = 0 ≤ vi, ri = 0 if yi = 0 ≥ vi}.

The (full) images TN (y) := TN(y)(Rm) and CN (y) := CN(y)(Rm) of these maps are
polyhedral cones in R1+2m:

TN (y) = {(0, α, β) |αiβi ≥ 0, βiy
+
i = 0, αiy

−
i = 0 ∀i},(16)

CN (y) = {(0, α, β) ∈ TN (y) |αi ≥ 0 ≥ βi if yi = 0},(17)

and CN(y)(v) consists of the directional derivative N ′(y; v) of N at y in direction v.
The set TN (y) coincides with the image of Clarke’s [3, 4] generalized Jacobian ∂N(y).
The reader who is less familiar with such derivatives may substitute these sets, via
(16) and (17) by complementarity conditions in all subsequent formulas.

2.3. First characterization of TX. Before dealing with the double limits in
TX, let us recall the simpler form of CX for C1,1 problems (1) and (9). It holds that

u ∈ CX(0, x0)(a, b) iff there are y ∈ Y 0 and (α, β) ∈ R2m satisfying

a ∈ CF1(·, y)(x0)(u) +
∑

i αiDgi(x
0) , Dg(x0)u− β = b, and

(0, α, β) ∈ CN (y).

(18)

Now we give a first description of TX. For problems (1) under MFCQ, it was already
shown in [18].

Theorem 2.3. For C1,1 problems (1) or (9) satisfying (7), it holds that u ∈
TX(0, x0)(a, b) if and only if there exist some sequence t = tk ↓ 0 and assigned
converging points x → x0, y → y0, y′ → y1 (all depending on k → ∞) such that y0,
y1 ∈ Y 0 and

(i) t−1[M(x + tu) −M(x)] → M◦ for some M◦ ∈ TM(x0)(u), and
(ii) N(y1)M◦ + t−1[N(y′) −N(y)]M(x) → (a, b).
The statement shows the kind of conditions that arise by exploiting the definition

of TX and the structure (11) of F only, and it demonstrates the need for better
reformulations in terms of the original data. Before proving the statement we will
interpret the occurring terms and conditions. The terms t−1[N(y′) − N(y)]M(x)
depend on Dg only and have the form

t−1
∑m

i=1 (y′+ − y+)iDgi(x) assigned to F1,
−t−1 (y′− − y−) assigned to F2.

For M ∈ C1, it clearly follows that

M◦ = DM(x0)u and N(y1)M◦ = (DxF1(x
0, y1)u,Dg(x0)u) ∈ Rn+m.(19)

If M is only locally Lipschitz, M◦ may depend on the sequences tk, xk under consid-
eration.

The point (x, y+) is a KKT-point for problems (1), (9) with perturbation p =
F (x, y), while (x′, y′+) = (x+ tu, y′+) is a KKT-point for (1), (9) with p′ = F (x′, y′).
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The singularity condition expresses the fact that ‖p′ − p‖ � ‖x′ − x‖ provided that
t ↓ 0, where “�” is to read as much smaller. Condition (15) tells us that p′ − p =
t(a, b) + o(t). These relations have to be true for some discrete sequence t = tk ↓ 0
only.

Proof of Theorem 2.3. (⇒) Let u ∈ TX((0, 0), x0)(a, b). It holds (at least for
some subsequence), with x′ = x + tu and certain assigned y, y′ having accumulation
points y → y0 ∈ Y 0, y′ → y1 ∈ Y 0, that

t(a, b) + o(t) = F (x′, y′) − F (x, y)

= N(y′)M(x′) −N(y)M(x)

= N(y′)[M(x′) −M(x)] + [N(y′) −N(y)]M(x).

After division by t (and selecting an appropriate subsequence), one sees that

t−1[M(x′) −M(x)] → M◦ ∈ TM(x0)(u),

t−1N(y′)[M(x′) −M(x)] → N(y1)M◦.

So the limit of

Λ = t−1[N(y′) −N(y)]M(x)(20)

exists and satisfies N(y1)M◦ + Λ → (a, b), indeed.
(⇐) Having sequences as in the theorem, it follows that

F (x′, y′) − F (x, y) = N(y′)[M(x′) −M(x)] + [N(y′) −N(y)]M(x)

= N(y′)[tM◦ + o1(t)] + tΛ

= N(y′)[tM◦ + o1(t)] + t[(a, b) −N(y1)M◦] + o2(t)

= t(a, b) + o3(t),

where oi denote different o-type functions. This finishes the proof.
Comments.
1. Similarly, based on the product form of F , (simpler) formulas for CX(0, x0)(c),

TXKKT(0, (x
0, y0))(c), and CXKKT(0, (x

0, y0))(c) can be derived.
2. If a further parameter z appears in f, g, or h one may ask for the derivative

TX((0, 0, 0), x0)(a, b, ζ). Now, one has z′ − z = t ζ + o(t), and F depends on z
only via M = M(x, z). Having M ∈ C1, one concludes as above that the term
N(y1)M◦ = N(y1)DM(x0)u must be replaced by N(y1)(DxM(x0, 0)u+DzM(x0, 0)ζ)
only.

3. Difficulties for simplifying the conditions of Theorem 2.3 arise from the fact
that the speed of convergence of y, y′, x and t may be different and that y0 �= y1 is
possible.

3. The main theorem. Here, we show that the singularity condition can be
written in a way much simpler than what was done in Theorem 2.3.

Since we consider only points sufficiently close to x0 ∈ X(0), any constraint being
not active at x0 is also inactive at x near x0 and can be completely deleted in our
models. For this reason, we assume in this section (without loss of generality) that
g(x0) = 0. Then we have y ≥ 0 ∀y ∈ Y 0. Throughout, we also suppose (7) and put

A = Dg(x0) with rows Ai = Dgi(x
0)T and Q(y) = DxF1(x

0, y).(21)
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Theorem 3.1. For C2 problem (1) or (9), singularity is equivalent to the follow-
ing condition:

There exist u �= 0 and y ∈ Y 0 with yiAiu = 0 ∀i such that,
for certain sequences xk → x0 and αk ∈ Rm, one has
αk
i Aiu ≥ 0 ∀i and Q(y)u + Dg(xk)Tαk → 0.

(22)

Moreover, if b ∈ ImA, then u ∈ TX(0, x0)(a, b) means equivalently that

there exist y ∈ Y 0 and sequences xk → x0,αk ∈ Rm with yiβi = 0 ∀i,
β = Au− b, αk

i βi ≥ 0 ∀i and Q(y)u + Dg(xk)Tαk → a.
(23)

Remark 3.2. For M being locally Lipschitz, Theorem 3.1 remains true if one
replaces Q(y)u by any element φ ∈ Φ(y, u) := TF1(·, y)(x0)(u) ⊂ Rn and if the
sequence of xk is assigned to tk ↓ 0 such that, in accordance with Theorem 2.3, φ is
just the limit of t−1

k [F1(x
k + tku, y) − F1(x

k, y)] as k → ∞.
However, for general C1,1 problems, computing or describing Φ(y, u) is a hard

task even if Df,Dg, or h is continuous and piecewise linear. Taking y ≥ 0 ∀y ∈ Y 0

and formula (16) into account, we have, with Au = β,

(0, α, β) ∈ TN (y) ⇔ yiAiu = 0 and αiAiu ≥ 0 ∀i.(24)

So the singularity condition (22) means, in terms of TN , that

there exist u �= 0, y ∈ Y 0 such that for certain sequences xk → x0 and
αk ∈ Rm with (0, αk, Au) ∈ TN (y), one has Q(y)u + Dg(xk)Tαk → 0.

(25)

Proof of Theorem 3.1 and Remark 3.2. In the remainder of this section, we
verify both the second statement of Theorem 3.1 (the first one then follows from
the equivalent singularity condition (12)) and Remark 3.2. This will be done by
simplifying the condition in Theorem 2.3.

The key consists of studying the limit of (20) Λ = t−1[N(y′) − N(y)]M(x) in
condition (ii) of that theorem and in showing that one may put y0 = y1 in order to
describe all limits in Theorem 2.3 (and to eliminate tk for C2 problems). In what
follows we abbreviate

N1 = N(y1), N◦ = N(y0).

Part 1: The cone N ′(y1; Rm) − N ′(y0; Rm). Recall that N ′(y; v) denotes the
directional derivative of N (11) at y in direction v. Setting y′ = y1 + v′, y = y0 + v,
then, since N is piecewise linear, the formula

N(y′) −N(y) = N1 −N◦ + N ′(y1; v′) −N ′(y0; v)

holds for a small norm of v′ and v. With q = N ′(y1; v′) −N ′(y0; v) we thus obtain

Λ = t−1[N1 −N◦ + q]M(x).(26)

So the differences q become important for fixed y0, y1. These elements have the form

q = (0, r, s) ∈ R1+2m and q ∈ D(y1, y0) := N ′(y1; Rm) −N ′(y0; Rm).
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The set D = D(y1, y0) is a polyhedral cone. Since y0 ≥ 0, the images of the directional
derivatives c′i(y

0
i ; R) for the m functions ci(yi) = (y+

i , y
−
i ) have the form

c′i(y
0
i ; R) =

{
(R, 0) if y0

i > 0,
{(α, β) ∈ R2 |β ≤ 0 ≤ α, αβ = 0} if y0

i = 0.

The same holds for y1. So the elements q = (0, r, s) with (ri, si) ∈ Di = Di(y
1, y0) :=

c′i(y
1
i ; R) − c′i(y

0
i ; R) build the set D, where the sets Di ⊂ R2 are nothing but

Case 1 Di = {(ri, si) | risi ≥ 0} if y1
i = 0, y0

i = 0,

Case 2 Di = {(ri, si) | si ≤ 0} if y1
i = 0, y0

i > 0,

Case 3 Di = {(ri, si) | si ≥ 0} if y1
i > 0, y0

i = 0,

Case 4 Di = {(ri, si) | si = 0} if y1
i > 0, y0

i > 0.

Now we can characterize the terms Λ of (26) in more detail, where again Ai =
Dgi(x

0)T:

qM(x) =

(
0,

m∑
i=1

riDgi(x)T,−s1, . . . ,−sm

)
,(27)

[N1 −N◦]M(x) =

(
0,

m∑
i=1

(y1
i − y0

i )Dgi(x)T, 0, . . . , 0

)
.(28)

Finally, recalling (19) one has N1DM(x0)u = DxF (x0, y1)u = (Q(y1)u,Au) ∈ Rn+m.
Knowing these terms, we obtain the following corollary from Theorem 2.3.

Corollary 3.3. For C2 problems, it holds that u ∈ TX(0, x0)(a, b) if and only
if for certain y0, y1 ∈ Y 0 as well as some sequence t = tk ↓ 0 and assigned converging
points x → x0 and d = (d1, . . . , dm) → 0 with di = (ri, si) ∈ Di(y

1, y0) ( ∀i), one has

t−1
m∑
i=1

(y1
i − y0

i + ri)Dgi(x) → a−Q(y1)u,(29)

−t−1s → b−Au.(30)

For C1,1 problems, one has to replace Q(y1)u by some φ ∈ Φ(y, u), and the sequences
of x and t have to correspond to each other as in Remark 3.2.

Part 2: Simplifying s. We specify s by requiring that

si = tβi, where β = Au− b(31)

and show that this additional condition in Corollary 3.3 does not shrink the set of
possible limits. Since si does not appear in (29), it is only important for defining the
restrictions to ri via (ri, si) ∈ Di(y

1, y0). These restrictions remain the same after
replacing si by any λisi (λi > 0).

If βi �= 0, condition (30) yields si = tβi + oi(t) and signβi = sign si. So, the

setting (31) along with the requirement

(ri, βi) ∈ Di(y
1, y0)(32)

leads us to the same (sign-) conditions for ri.
If βi = 0 and si = 0 in the corollary, then, due to the particular form of Di, the

restrictions concerning the sign of ri disappear. So the same variation of ri as before
is possible. Thus, the sequence of si may be specified by (31) for all i whereafter the
conditions (ri, si) ∈ Di(y

1, y0) and (32) coincide.
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Part 3: Simplifying γ := y1 − y0 + r dependent on β = Au− b.
Lemma 3.4. In the characterization of Corollary 3.3, both of the following hold:
(i) βi �= 0 ⇒ y1

i = y0
i = 0, provided that b ∈ ImA,

(ii) γiβi ≥ 0 ∀i if ‖r‖ is small enough.
Proof. For the purpose of this proof, the assumption b ∈ ImA is used. We may

already suppose (31) and (32).
Let βi < 0. By the structure of Di, the situation βi < 0 is allowed in two cases.

In the first case, y1
i = 0 and y0

i > 0 hold true. Then y1
i − y0

i < 0, and there is no sign
restriction for ri; so it follows that

(y1
i − y0

i )βi > 0 and γi < 0 for |ri| small enough.

In the second case, y1
i = 0 = y0

i holds true. Then ri ≤ 0 and hence γi ≤ 0 have to
hold. Thus,

βi < 0 ⇒ y1
i = 0 and γi ≤ 0.

Let βi > 0. Again, the situation βi > 0 is allowed in two cases. In the first one, y1
i > 0

and y0
i = 0 are valid. Then y1

i − y0
i > 0 and there is no sign restriction for ri. So it

follows that

(y1
i − y0

i )βi > 0 and γi > 0 for |ri| small enough.

In the second case, y1
i = 0 = y0

i , it now follows that ri ≥ 0 and γi ≥ 0. Thus,

βi > 0 ⇒ y0
i = 0 and γi ≥ 0.

Other cases are not possible. Therefore, it holds in all cases that

γi βi ≥ 0 and (y1
i − y0

i )βi ≥ 0 ∀i.(33)

Due to y0, y1 ∈ Y 0, we also have AT(y1 − y0) = 0. Since b = Au− β ∈ ImA, there is
some w ∈ Rn such that β = Aw and

(y1 − y0)Tβ = 0.

Therefore, the first case for both signs of βi �= 0 cannot occur. Indeed, otherwise one
obtains from (33), (y1

i0
− y0

i0
)βi0 > 0 for some i0 and (y1 − y0)Tβ > 0, a contradiction.

So βi �= 0 is possible only for y1
i = y0

i = 0. This completes the proof.
Part 4: Setting y0 = y1. We already know that, in Corollary 3.3, we may put

s = tβ where β = Au− b and that, due to the lemma, we may split the sum (29) into

S1 + S2 = t−1
∑

i:βi 	=0

riDgi(x) + t−1
∑

i:βi=0

γiDgi(x).

For βi �= 0, it follows that y1
i = y0

i = 0 and, by definition of Di, ri is restricted only by
risi ≥ 0. Thus the terms S1 attain exactly all values of

∑
i:βi 	=0 αiDgi(x) where αiβi ≥

0. For βi = 0, the terms S2 form a subset of the linear hull H = lin{Dgi(x), βi = 0}.
However, if we change the related coordinates y0

i by setting y0
i = y1

i and take into
account that thereafter γi = ri is not restricted by sign (in accordance with Di), these
terms form the whole space H. Hence, if at all, condition (29) can be fulfilled with
the particular setting y0 = y1 and means: Some sequence of α = αk satisfies∑
i:βi 	=0,αiβi≥0

αiDgi(x) +
∑

i:βi=0

αiDgi(x) → a−Q(y1)u, where x = xk → x0, t = tk ↓ 0.

Clearly, the interplay of the sequences xk and tk is important only in the C1,1 case.
Since y1

i βi = 0 follows from Lemma 3.4, this proves Theorem 3.1 and Remark 3.2.
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4. Discussion of the singularity condition (22). In this section, we demon-
strate that the sequences in conditions (22) and (23) of Theorem 3.1 are really neces-
sary and that there is no singularity characterization by a finite derivative condition.
Further, we point out the role of quadratic approximations for s.L.s. of stationary
points. The counterexamples are constructed in such a way that the same facts be-
come clear for the so-called Aubin property (cf. section 4.3) of X as well.

4.1. Comparison of strong Lipschitz stability of X and XKKT. Let us first
compare strong Lipschitz stability of X and the map XKKT of KKT-points assigned to
p = (a, b). The following characterization is well known and holds without supposing
any constraint qualification. We apply TN as in (16).

Theorem 4.1. For C2 problems (1), (9), the map XKKT is strongly Lipschitz
stable at (0, (x0, y0)) if and only if

Au = β, Q(y0)u + ATα = 0, and (0, α, β) ∈ TN (y0) imply (u, α, β) = 0.(34)

For details and equivalent conditions, we refer to [15], [2, Chapter 2], and [18,
Chapter 8]. Nevertheless, some bibliographical notes seem to be appropriate. For
problem (1) under LICQ, Theorem 4.1 was shown in [36] and [20]. An alternative
approach to this result via Clarke’s inverse function theorem [3] was given in [13]. For
(1) without supposing LICQ, the result is known from [19] with C2 functions and
[21, 22] with C1,1 functions. In the C1,1 case, again Q(y0)u must be replaced by
φ ∈ TF1(·, y0)(x0)(u) as in Remark 3.2. However, the proof has to sharpen Clarke’s
result [3] by using injectivity of TF (z0) and required chain rules for computing TF .
In this way, Theorem 4.1 is also verified for the C1,1 problem (9). For variational
inequalities as in [36]

p ∈ h(x) + NC(x), p a parameter, C is a polyhedron, h ∈ C1;(35)

thus also for C2 problems (1), the theorem again appeared in [5]. The proof method
in [5] is based on characterizations of the Aubin property [29, 30], normal maps [38],
and alternative criteria for s.L.s. via coherent orientation [43, 35] of PC1 functions.
As a new topic, it has been shown [5] that, for (35), the weaker Aubin property and
s.L.s. of XKKT coincide.

The approach via the Aubin property does not apply to C1,1 problems. A coun-
terexample for unconstrained optimization (X = XKKT) and an alternative approach
to investigating this coincidence can be found in [23]. There, it also can be seen why
the conditions in [5] and [21] are equivalent. The latter studies have been continued
in [16, 17, 18], without requiring that appearing derivatives are piecewise smooth as
in [43, 35], and in several models of the complementarity theory.

Needless to say, in all of these papers, the relations to noncanonical perturbations
also have been pointed out.

Condition (34) means, in fact, injectivity of TF (x0, y0). So, a similar but weaker
condition is suggested which is called TF -injectivity w.r.t. u (cf. [18]):

∀y ∈ Y 0,
Au = β, Q(y)u + ATα = 0, and (0, α, β) ∈ TN (y) imply u = 0.

(36)

In section 5 we need condition (36) also with CN at the place of TN , which we call
CF -injectivity w.r.t. u.

Since αiβi ≥ 0, both TF - and CF -injectivity w.r.t. u are satisfied if 〈u,Q(y0)u〉
> 0 ∀y0 ∈ Y 0, u �= 0. Recalling the descriptions (17), (16) of CN and TN and



STRONG LIPSCHITZ STABILITY OF STATIONARY SOLUTIONS 109

supposing again that g(x0) = 0, without loss of generality, both conditions can be
formulated for problem (1) by means of the quadratic programs

P (p, y) : min
u

{Df(x0)u + 1
2 〈u,Q(y)u〉 − 〈a, u〉 |Au ≤ b}, y ∈ Y 0, p = (a, b),(37)

and local uniqueness of their stationary solutions; cf. Remark 4.3. Notice that (34)
just means that XKKT, if considered for P (p, y0), is s.L.s. at (0, 0). To describe s.L.s.
of X, one has to study a family of canonically perturbed quadratic programs instead
of (37) only:

P (p, y, x) : min
u

{Df(x0)u + 1
2 〈u,Q(y)u〉 − 〈a, u〉 |Dg(x)u ≤ b}, p = (a, b).(38)

For problem (9), let Kb,x(u) be the normal cone to the constraints in (38) at u and
replace (38) analogously by the (polyhedral w.r.t. u) inclusion

P (p, y, x) : a ∈ h(x0) + Q(y)u + Kb,x(u).(39)

Theorem 4.2. For C2 problems (1), (9) under (7), nonsingularity is the same
as the following:

For each y ∈ Y 0, there exist positive L and ε such that ‖u‖ ≤ L ‖p′ − p‖
whenever 0 and u ∈ εB are stationary points of P (p, y, x) and P (p′, y, x),
respectively, for x ∈ x0 + εB and p,p′ ∈ εB.

(40)

Proof. Let singularity hold, and let u, y, xk, αk be according to the singularity
characterization (25). Setting β = Au and c = Q(y)u+Dg(xk)Tαk, we have (c, xk) →
(0, x0) and (0, αk, β) ∈ TN (y). Let tk with 0 < tk < (k + ||αk||)−1 be small enough
such that yi − tk|αk

i | > 0 if yi > 0. We write x = xk, t = tk, α = αk and put
a = (Dg(x)−A)Ty− tDg(x)Tα−, b = tβ+, p = (a, b). Now we show that for some p′,
the points (0, y−tα−) and (tu, y+tα+) are KKT-points for P (p, y, x) and P (p′, y, x),
respectively, where p → 0, p′ − p = o(t), t ↓ 0, and x → x0.

Discussing separately the cases of yi = 0 and yi > 0 for (0, α, β) ∈ TN (y) (16),
one obtains

(y − tα−)i > 0 ⇒ βi ≤ 0 = β+
i and (y + tα+)i > 0 ⇒ 0 ≤ βi = β+

i .

Since, in addition,

Df(x0) + Dg(x)T(y − tα−) = (Df(x0) + ATy) + (Dg(x) −A)Ty − tDg(x)Tα− = a,

one easily sees that the origin along with the dual y − tα− is stationary for problem
P (p, y, x). Notice that p → 0 is ensured by the choice of t.

Next let a′ = a+ tc, b′ = b+ t(Dg(x)−A)u, and p′ = (a′, b′). Then p′ − p = o(t)
and

Df(x0) + tQ(y)u + Dg(x)T(y + tα+)
= Df(x0) + Dg(x)T(y − tα−) + t[Dg(x)Tα + Q(y)u] = a + tc = a′.

If (y+tα+)i > 0, we have tDgi(x)u = tAiu+t(Dgi(x)−Ai)u = tβ+
i +t(Dgi(x)−Ai)u =

b′i. Hence constraint i is active. Due to Au = β ≤ β+ (hence Dgi(x)(tu) ≤ b′i ∀i), it
follows that (tu, y + tα+) is a KKT-pair for P (p′, y, x) and (40) cannot hold.

Conversely, assume that (40) is violated, and let 0 and tu, with ‖u‖ = 1 and
t ↓ 0, be stationary for P (p, y, x) and P (p′, y, x), respectively, where y ∈ Y 0 is fixed
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and p′ − p = o(t), x → x0, p → 0. With assigned duals λ, λ′, one obtains Df(x0) +
Dg(x)Tλ+ = a, Df(x0) + tQ(y)u + Dg(x)Tλ′+ = a′ and

o1(t) = a′ − a = Dg(x)T(λ′+ − λ+) + tQ(y)u, o2(t) = b′ − b = tDg(x)u + t(λ′− − λ−).

After selecting a cluster point u∗ of the related u, now the convergence

t−1Dg(x)T(λ′+ − λ+) → −Q(y)u∗ and (λ′− − λ−) → −Dg(x0)u∗

follows. This is just the singular situation studied in Theorem 2.3.
Remark 4.3. The same formal condition (40), but with x = x0 and p′ = p,

describes TF -injectivity w.r.t. u, whereas (40), with x = x0 and p′ = p = 0, charac-
terizes just CF -injectivity w.r.t. u; see, e.g., [18, sections 8.2 and 8.3].

Theorem 4.2 and Remark 4.3 extend Robinson’s approach of quadratic approx-
imation [36] for analyzing KKT-points in a canonical way to the case of stationary
points and establish the bridge to complementarity problems and second order con-
ditions. Further, one directly obtains invariance of singularity w.r.t. quadratic ap-
proximation of the objective since the problems P (p, y, x) remain the same under this
operation.

Corollary 4.4. Suppose (7). For C2 problems (1) singularity at (0, x0) is
invariant w.r.t. replacing f by its quadratic approximation at x0. For C2 problems
(9), the same holds w.r.t. replacing h by its linearization at x0.

Theorem 3.1 and Remark 4.3 also ensure (due to s.L.s. ⇒ MFCQ) the following
implication which was already shown for C2 programs (1) in [18] by alternative means.

Corollary 4.5. For C2 problems (1), (9), TF -injectivity w.r.t. u is necessary
for strong Lipschitz stability.

Corollary 5.2 will ensure sufficiency if the constraint functions are linear-affine.
Fixing u = 0, (34) implies that all (active) gradients Dgi(x

0) are linearly inde-
pendent, i.e., LICQ at x0. In this case, strong Lipschitz stability of the map X (being
now s.L.s. of XKKT) depends on the first two derivatives of the data functions at x0.
The same is valid for all stability statements which (as in section 5) can be reduced to
the above injectivity conditions. Now we show that this generally cannot be expected
for s.L.s. of X.

4.2. Basic counterexamples.
Example 4.6. Consider the following problem, given for parameter p = (a, b) = 0

and with some constant r:

min rx2
1 + x2 s.t. g1(x) = −x2 ≤ 0, g2(x) = x2

1 − x2 ≤ 0.

Then Df = (2rx1, 1) , Dg1 = (0,−1), Dg2 = (2x1,−1), and x0 = (0, 0) is a stationary
point with Y 0 = {y ≥ 0 | y1 + y2 = 1} and A1 = A2 = (0,−1). With γ = 2r + 2y2,
we have

Q(y) =

(
γ 0
0 0

)
.

Hence uQ(y) = (γu1, 0).
Since at least one yi is positive for y ∈ Y 0, it follows that u⊥Ai ∀i from yiAiu =

0 ∀i. Hence all u of interest have the form u = (u1, 0), u1 �= 0. Condition (22) now
requires exactly that for some sequence of (α1, α2) ∈ R2 and of converging x → x0, it
holds that

(γu1, 0) + α1(0,−1) + α2(2x1,−1) → 0.
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This condition cannot be satisfied with x = x0 whenever γ �= 0. Note that γ �= 0
holds for all y ∈ Y 0 if r /∈ [−1, 0], so convexity of the problem plays no role.

On the other hand, it suffices to put x = ( 1
k , 0), α2 = − 1

2 k γu1, and α1 = −α2

in order to satisfy the singularity condition.
So, given any r, the problem is not s.L.s. However, if r > 0, then

for each y ∈ Y 0, Q(y) is positive definite on K(y) = {u | u⊥Ai if yi > 0},(41)

since u1 �= 0 ∀u ∈ K(y) \ {0} and y ∈ Y 0. The latter is Kojima’s condition [20] for
strong stability at (0, x0); see section 5.3.

Example 4.7. Change Example 4.6, with some fixed q ≥ 2, as follows:

min x2
1 + x2 s.t. g1(x) = −x2 ≤ 0, g2(x) = xq+1

1 − x2 ≤ 0.

We again obtain singularity at (0, 0), since for any u = (u1, 0) �= 0, it holds that

(2u1, 0) + α1(0,−1) + α2((q + 1)xq
1,−1) → 0

for the sequences x = ( 1
k , 0), α2 = − 2u1

(q+1)xq
1
, and α1 = −α2.

For odd q, we are still in the class of convex problems having unique and continu-
ous solutions x(p) for all parameters p = (a, b). Nevertheless there is no possibility of
identifying the singularity by using only the first q derivatives of f and g at x0, since
these derivatives are the same for the next, s.L.s. example with r = 1.

Example 4.8. Change only the second constraint in Example 4.6,

min rx2
1 + x2 s.t. g1(x) = −x2 ≤ 0, g2(x) = −x2 ≤ 0.

Now the map X is s.L.s. at (0, x0) for every r �= 0. If r < 0, then the stationary
points are never minimizers. This is remarkable since Kojima’s strong stability holds,
under (47), only if x0 is a minimizer satisfying (41); cf. section 5.3.

4.3. Comparison with the Aubin property of X. For verifying s.L.s. of
a mapping, one may show that the image sets are (at most) single-valued and the
so-called Aubin property is satisfied. Recall the definition in [1].

Definition 4.9. A map Γ : P ⇒ X (normed spaces) is said to be pseudo-
Lipschitz at (0, z0) ∈ gph Γ if there are positive ε, δ, and L such that Γ(p) ∩ (z0 +
εBX) ⊂ Γ(p′) + L‖p′ − p‖BX ∀p, p′ ∈ δBP .

Other notations (or equivalent notions) for the same fact are that Γ−1 is metrically
regular, respectively, pseudoregular, and that Γ has the Aubin property [42]. This
property has several consequences and applications in stability theory. In particular,
it implies local solvability due to z0 ∈ Γ(0).

Recalling (4), MFCQ at x0 is necessary for the Aubin property of X at (0, x0);
less obvious is that if XKKT is pseudo-Lipschitz at (0, (x0, y0)), then LICQ holds at x0

(cf. [23] and the more general [18, Lemma 7.1]).
For characterizations of the Aubin property and explicit results concerning XKKT,

we refer to [1, 29, 30]. An explicit limit condition for X = X(a, b) having this property
can be found in [18, Theorem 8.42]. In our context, the following particular statement
of this theorem is of interest.

Corollary 4.10. For C2 problems (1) under linear constraints and MFCQ,
TF -injectivity w.r.t. u is equivalent to the Aubin property of X at (0, x0).

Further, both of the regularity notions coincide for the mapping Xglob(a, b) of
global minimizers to problem (1). The following statement (implicitly known from
[18]) holds quite generally.
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Theorem 4.11. For the mapping Xglob to programs (1), even without any con-
straint qualification or continuity of the involved functions, s.L.s. and the Aubin prop-
erty at (0, x0) coincide.

Proof. Under the Aubin property, Xglob(a, b) remains locally single-valued. This
is a consequence of Corollary 4.7 in [18] which states, for any b, that Xglob(·, b) is
only pseudo-Lipschitz at (a, x), x ∈ Xglob(a, b), if Xglob(a

′, b) is single-valued for all
a′ near a.

Comment. By Corollary 4.7 [18], the same holds for Xglob(·, 0) (fixed constraints),
and Xglob(a, b) may even denote the global solutions s.t. G(b)∩S for any set S ⊂ Rn.

5. Specializations and related stability concepts. In this section, we re-
strict ourselves to the C2 case and compare s.L.s. with known conditions for several
related stability notions. We derive a specialization of the singularity condition to
some case of linear-quadratic constraints and discuss local solvability near (0, x0).
Further, we help to clarify the interrelations between s.L.s. and Kojima’s stability
and discuss the case of general perturbations.

Throughout this section, we use the abbreviations A = Dg(x0) and Q(y) =
DxF1(x

0, y) as in (21) and (without loss of generality) g(x0) = 0. Further, the fact
that (1) and (9) are C2 problems is essential.

5.1. Singularity for linear and quadratic constraints. In this subsection,
we additionally suppose that (7) is fulfilled.

If all constraint functions gi are quadratic, then s.L.s. depends on the first two
derivatives of the problem functions at x0 only; cf. Theorem 4.2 and note that g is
completely described by these derivatives. Nevertheless, we cannot present, at this
moment, a verifiable algebraic condition in these terms.

For linear constraints, one may replace the sequence (αk, xk) by (α0, x0) in The-
orem 3.1 to obtain a simpler condition (cf. Corollary 5.2 below). A similar condition
(for fixed y, still equivalent to a linear complementarity system) can be obtained if
only one constraint is quadratic and the others are linear (where, under presence
of equations, it does not matter which constraint is quadratic). To show this, one
mainly has to apply that, for any system of linear inequalities, the right-hand sides
that permit solvability form a closed set (closed range argument). Given u, define the
polyhedral cone Ku = {α |αiAiu ≥ 0 ∀i}.

Theorem 5.1. Let g1(x) = γ + cTx + 1
2x

TCx (with given γ, c, and quadratic
symmetric matrix C) and let all gi, i > 1, be linear-affine for problem (1) or (9). Then
singularity holds true if and only if there exist u �= 0 and y ∈ Y 0 with yiAiu = 0 ∀i
such that

(i) Q(y)u + ATα = 0 for some α ∈ Ku or
(ii) there are z,ζ ∈ Ku,w ∈ Rn with Q(y)u + ATz + Cw = 0, ATζ = 0, and

|ζ1| = 1.

Proof. Given αk and xk → x0 according to the singularity condition of Theo-
rem 3.1, take Dg1(x

k) = AT
1 + C(xk − x0) into account, put wk = αk

1(xk − x0), and
notice that

Dg(xk)Tαk = Cwk + ATαk = bk, bk → −Q(y)u, αk ∈ Ku.(42)

Case 1. If Cwk → 0 (for some subsequence), the closed range argument yields
that the singularity condition holds in the form ATα = −Q(y)u, α ∈ Ku, and (i)
follows.
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Case 2. Otherwise, λk := |αk
1 | diverges, and division in (42) shows that ATαk/λk →

0. Hence, again by the closed range argument, the equation AT ζ = 0 holds for some
ζ ∈ Ku with |ζ1| = 1. So, (ii) is satisfied since (42) guarantees the solvability of

Cw + AT z = −Q(y)u, z ∈ Ku.

It remains to show that (i) and (ii) imply singularity. Concerning (i) this is trivial;
we assume (ii) and define αk = kζ + z and xk = x0 + tkw with k → ∞ and tk =
(kζ1 + z1)

−1. This yields

αk ∈ Ku and Dg(xk)Tαk = ATz + (kζ1 + z1) tk Cw = ATz + Cw = −Q(y)u.

Since now xk → x0, the singularity condition is satisfied.

Note that g1 may describe a complementarity condition 〈x1, x2〉 = 0, x = (x1, x2) ∈
R2n since (7) holds true. If all constraints are linear, then Q(y) is constant and one
obtains the following corollary.

Corollary 5.2. Let all gi be linear-affine for (1) or (9). Then singularity holds
true if and only if TF -injectivity w.r.t. u (36) is violated.

The case of linear constraints does not coincide with the analysis of the polyhedral
inclusion (35) due to variation of a and b and X �= XKKT.

For the remainder of the paper, hypothesis (7) is too weak and will be replaced
by MFCQ.

5.2. The upper Lipschitz property and local solvability. As already men-
tioned, CF -injectivity w.r.t. u characterizes exactly the upper Lipschitz property of
X for canonical perturbations p = (a, b).

The upper Lipschitz condition becomes more complicated for the stationary point
mapping a �→ X̂(a) := X(a, 0) (i.e., constraints are not perturbed). The next state-
ment originally has been shown via the analysis of proto-derivatives for subgradients
of composed maps; see [41, 31, 27, 42]. For deriving, as in [18, Corollary 9.10], the
form (43) given in the terms introduced above, let ‖Df(x0)‖ be sufficiently small
(otherwise multiply f with some small λ > 0) and suppose MFCQ:

X̂ is not locally upper Lipschitz at (0, x0) iff CF -injectivity w.r.t. u can
be violated with some α ≥ 0 and y0 ∈ Y 0 where, in addition, y0 solves the LP

maxy u
TD2

xL(x0, y)u s.t. DxL(x0, y) = 0 and yi ≥ 0 if Aiu = αi = 0,
with optimal value 0.

(43)

Again, only the first and second derivatives of f and g at x0 are crucial.

If x0 is a local minimizer of P(0) satisfying MFCQ for a C2 problem (1), then by
[18, Theorem 8.36],

CF -injectivity w.r.t. u implies that X is upper Lipschitz stable
at (0, x0) and all x ∈ X(p) ∩ (x0 + εB) are local minimizers for
sufficiently small ε and ‖p‖ < δ(ε).

Further, if the singularity condition of Theorem 3.1 is not satisfied, then TF -injectivity
w.r.t. u holds true. This ensures the weaker CF -injectivity and, consequently, we have
the following corollary.



114 DIETHARD KLATTE AND BERND KUMMER

Corollary 5.3. For programs (1) under MFCQ and a local minimizer x0 of
P (0), the upper Lipschitz property (hence also nonsingularity) implies local solva-
bility.

Theorem 5.4. For linearly constrained programs (1) under MFCQ, TF -injectivity
w.r.t. u (36) coincides with the Aubin property and s.L.s. of X at (0, x0).

Proof. By Corollary 5.2, the singularity condition of Theorem 3.1 is the negation
of (36). Hence, under local solvability, the equivalence between s.L.s. of X and (36) is
valid. On the other hand, (36) coincides with the Aubin property by Corollary 4.10.
So local solvability is satisfied, too.

By Theorem 4.11 and its comment, nonsingularity implies local solvability if the
map of stationary points is replaced by the map Xglob of minimizers to problem (1)
(w.r.t. some fixed neighborhood of x0). Clearly, under the generality of Theorem 4.11,
we cannot present any verifiable condition for nonsingularity. On the other hand,
second order (and growth) conditions can be imposed to ensure that all stationary
points near x0 are local minimizers, see, e.g., [37, 9, 10, 2]. However, many conditions
of this type directly imply the upper Lipschitz property; then local solvability follows
from Corollary 5.3, too.

Recently [24, 25], the implication “nonsingularity ⇒ local solvability” has been
studied for maps Γ : Rn ⇒ Rn, based on the nonsingularity condition (12) only, i.e.,

{0} = TΓ(0, z0)(0).(44)

Though our map X = X(a, b) acts between spaces having different dimension, let us
give the main topics of this approach in view of our models:

(i) It is supposed (described by being kernel inverting) that, near (0, z0), Γ sat-
isfies

Γ(p) = U−1σ−1(V p) + Wp(45)

with locally Lipschitzian σ : Rn → Rn, regular linear transformations U, V of the
image, and preimage space and linear W . This hypothesis yields that

(44) ⇔ {0} = T (σ−1)(0, Uz0)(0) ⇔ σ−1 is s.L.s. at (0, Uz0).

Here, the equivalence on the right is just Theorem 1.1 in [21] and ensures via chain
rules the inverse mapping theorem [24, 25]: Γ is s.L.s. at (0, z0) ⇔ (44) holds true.

(ii) Property (45) holds for mappings Γ = H and Γ = H−1 if H is max-
hypomonotone, i.e., H + μ id (id = identity) is maximal-monotone for some μ > 0,
locally around the (by μ transformed) reference point.

(iii) Under MFCQ at x0 and g ∈ C2, the map of normals to G(0)

H(x) = {z | z = Dg(x)Ty, yigi(x) = 0, y ≥ 0} if x ∈ G(0) else H(x) = ∅(46)

is max-hypomonotone at (x0, z0) ∈ gphH.

For (ii) and (iii), basic results of [33] have been used. Applying (i), (ii), and
(iii) to H−1, one may now conclude that nonsingularity of the mapping X(·, 0) (fixed
constraints) implies local solvability, too. However, one does not know whether X(0, b)
is locally empty or not, and checking (44) in original terms remained open if Γ differs
from the solution map Γ = Γ(p) of (35).
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5.3. Strong stability in Kojima’s sense. For a C2 problem (1), Kojima’s [20]
notion of strong stability requires that, w.r.t. small C2 perturbations of the objective
and small C2 perturbations of the constraints, the map X of stationary points is
locally unique and continuous near (0, x0). Under LICQ, the equivalence of s.L.s.
and Kojima’s strong stability for X is a standard fact; see, e.g., [19]. Thus let us
consider the remaining case of

x0 ∈ X(0) satisfies MFCQ, but not LICQ.(47)

For this situation, we can combine Theorem 5.4 with the following well-known state-
ment of Kojima [20, Theorem 7.2]:

Under (47), strong stability in Kojima’s sense holds true iff
condition (41) is satisfied; we recall: Q(y) is positive definite
on K(y) = {u | u⊥Ai if yi > 0} ∀y ∈ Y 0.

Obviously, this implies that x0 is a local minimizer for (1) at p = 0 and, in addition,
that one cannot find y ∈ Y 0 and (u, α) with u �= 0 such that

Q(y)u + ATα = 0, yiAiu = 0, and αiAiu ≥ 0 (∀i)

(otherwise multiply the equation Q(y)u+ATα = 0 with u). The condition just given
is once more TF -injectivity w.r.t. u. So we arrive at the following interrelations which
seem to be new.

Corollary 5.5. Let x0 ∈ X(0) satisfy (47).
(i) Under linear constraints, Kojima’s strong stability implies s.L.s.
(ii) If x0 is a local minimizer for p = 0, then s.L.s. implies Kojima’s strong

stability.
Proof. Statement (i) now follows from Theorem 5.4, and statement (ii) follows

from [18, Corollary 8.37], which just asserts that Kojima’s condition is satisfied.
Due to Example 4.8, statement (i) cannot be reversed. Due to Example 4.6,

Kojima’s strong stability does not imply s.L.s. for convex problems even if X = X(·, 0)
is s.L.s.

5.4. Consequences for nonlinear perturbations. Let (z, p) �→ X̃(z, p) be
the stationary point map of the parametric program

(P)(z, p) : min x f(x, z) − aTx s.t. gi(x, z) ≤ bi (i = 1, . . . ,m), p = (a, b),(48)

and suppose that f, gi ∈ C2(Rn+κ, R) and D2
xzf and D2

xzgi are locally Lipschitz.
Then it is well known that strong stability in Kojima’s sense and the upper Lip-

schitz property of the stationary solution set map X under canonical perturbations
carry over to the mapping X̃. On the other hand, Robinson [37, p. 219] gave an
example, namely, to minimize

∑m
i=1 x

2
i under nonlinearly (by z) perturbed linear

constraints satisfying MFCQ, with two important properties: Under canonical per-
turbations of the problem to z = 0, X is s.L.s. at (0, x0). In contrast, X̃ is not s.L.s.
So there is a gap between canonical and nonlinear perturbations.

Below we explain this gap in the context of a parametric variational inequality.
Our construction is standard in linking an inverse function theorem with an implicit
function theorem. Under MFCQ and suitable second order conditions, it also has
been successfully used w.r.t. upper Lipschitz behavior, Kojima’s strong stability, and
calculation of CX̃ in many papers, see, e.g., [20, 37, 42, 2, 17, 18]. However, if g

depends on z, s.L.s. of X̃ requires additional assumptions such as a constant rank
constraint qualification [34] even if s.L.s. holds for canonical perturbations.
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Consider, again under MFCQ, the problem

Find x ∈ G0(z): 0 ∈ h(x, z) + NG0(z)(x), z a parameter,

where G0(z) = {x|g(x, z) ≤ 0}, g ∈ C2(Rn+κ, Rm), and h ∈ C1(Rn+κ, Rn) with
locally Lipschitz Dxzg, Dzh, and z varies near 0 ∈ Rκ. Denote here by X(z) the
problem’s solution set at given z and by Y (z, x) the associated multiplier set. Due to
existence and continuity of the related derivatives, we have

h(x, z) = h(x, 0) + Dzh(x, 0)z + o1(x, z),

g(x, z) = g(x, 0) + Dzg(x, 0)z + o2(x, z),

Dxg(x, z) = Dxg(x, 0) + Dzxg(x, 0)z + o3(x, z),

and obtain with x ∈ X(z), y ∈ Y (z, x) from h(x, z) + y+TDxg(x, z) = 0 and
g(x, z) = y− that

h(x, 0) + Dzh(x, 0)z + o1 + y+T (Dxg(x, 0) + Dzxg(x, 0)z + o3) = 0,

g(x, 0) + Dzg(x, 0)z + o2 = y−.

Setting

a = Dzh(x, 0)z + o1 + y+T (Dzxg(x, 0)z + o3) and b = −(Dzg(x, 0)z + o2),(49)

one sees that x is nothing but a stationary point for the canonically perturbed problem

a ∈ h(x, 0) + NG(b)(x), where G(b) is given by g(x, 0) ≤ b.

Here, a depends on y if g depends on z. For (z, x) near (0, x0), the duals y are
bounded (MFCQ) and close to Y 0 = Y (0, x0). So the linear maps in (49), Dzh(x, 0),
y+TDzxg(x, 0), and Dzg(x, 0), are uniformly Lipschitz functions (rank L′) of z. The
same holds true for the functions ok above. This ensures, for x ∈ X(z) near x0, a
(pointwise) Lipschitz estimate

‖x− x0‖ ≤ L(‖a‖ + ‖b‖) ≤ LL′‖z‖.

However, for a second pair of points x′ ∈ X(z′), y′ ∈ Y (z′, x′), the crucial terms

H := y+TDzxg(x, 0) and H ′ := y′+TDzxg(x
′, 0)(50)

of (49) are (in general) only close to each other if there are multipliers y, y′ such that
‖y′ − y‖ is small enough or if (lin Y 0)TDzxg(x

0, 0) = 0. Only in these cases may one
estimate, with certain constants 0 < c < c′ and W = H −H ′ → 0,

||a− a′|| ≤ c ||z − z′|| + ||Hz −H ′z′||
= c ||z − z′|| + ||H(z − z′) + (H −H ′)z′)|| ≤ c′ ||z − z′|| + ||W || ||z′||,

which guarantees, with new L′ and due to s.L.s. for canonical perturbations,

‖x′ − x‖ ≤ L(‖a′ − a‖ + ‖b′ − b‖) ≤ L′‖z′ − z‖ + L′ ||W || ||z′||.

Under the strict MFCQ which just ensures that Y 0 is single-valued, one obtains
that ||W || ≤ L′′ max{||z||, ||z′||}. Under the constant rank condition, one finds y ∈
Y (z, x), y′ ∈ Y (z′, x′) such that ||y′ − y|| ≤ L′′||z′ − z||. The latter yields the desired
Lipschitz estimate, indeed. Under MFCQ alone, the terms (50) are out of control.
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6. Concluding remarks. The main results of this paper (cf. Theorems 3.1 and
4.2) indicate that (and how) s.L.s. of the stationary point mapping X for problem
(1) or (9) depends on limits of data at a sequence xk → x0. Some counterexamples
show that our condition is not reducible to a condition which uses derivatives of
the involved functions up to a fixed order at the reference points x0 only. Further,
a standard invariance principle fails to hold: Strong Lipschitz stability of X is not
invariant w.r.t. replacing the problem functions by quadratic approximations at x0.

Nevertheless, s.L.s. depends on the stationary solutions of canonically perturbed
quadratic problems which, however, have different constraint-matrices A(x) = Dg(x)
for x near x0 in general.

These properties of the studied stability notion are in contrast to s.L.s. of the
primal-dual solution mapping XKKT and of other popular stability properties (cf. sec-
tions 4.1 and 5), where—w.r.t. some multiplier associated with x0—a fixed quadratic
problem has to be analyzed.

Since under MFCQ the multiplier set is not a singleton, it is difficult to com-
putationally verify the stability criteria already if the mentioned invariance principle
holds true. Our analysis has shown that this is even more difficult in the case of s.L.s.
of X and that this cannot be avoided. However, even for obtaining this negative re-
sult, we had to show how the abstract characterization of Theorem 2.3 via (seemingly
hopeless) double sequences of multipliers can be transformed into the simpler analyt-
ical criterion of Theorem 3.1. Only the latter permitted the comparison with other
stability notions and (more understandable) reformulations via quadratic problems.

For future research, simplifications of the conditions for particular problems such
as in the case of linear-quadratic constraints (see section 5.1), as well as the study of
generic classes of s.L.s. problems, seem to be most useful.

Acknowledgments. We are indebted to the referees for their detailed and con-
structive comments. Also, we would like to thank Stefan Scholtes for his suggestions
and editorial help.

REFERENCES

[1] J.-P. Aubin and I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.
[2] J. F. Bonnans and A. Shapiro, Perturbation Analysis of Optimization Problems, Springer-

Verlag, New York, 2000.
[3] F. H. Clarke, On the inverse function theorem, Pacific J. Math., 64 (1976), pp. 97–102.
[4] F. H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
[5] A. L. Dontchev and R. T. Rockafellar, Characterizations of strong regularity for varia-

tional inequalities over polyhedral convex sets, SIAM J. Optim., 6 (1996), pp. 1087–1105.
[6] A. Dontchev and R. T. Rockafellar, Characterizations of Lipschitz stability in nonlinear

programming, in Mathematical Programming with Data Perturbations, A. V. Fiacco, ed.,
Marcel Dekker, New York, 1998, pp. 65–82.

[7] A. V. Fiacco, Introduction to Sensitivity and Stability Analysis, Academic Press, New York,
1983.

[8] P. Fusek, D. Klatte, and B. Kummer, Examples and counterexamples in Lipschitz analysis,
Control Cybernet., 31 (2002), pp. 471–492.
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GLOBAL CONVERGENCE OF AN ELASTIC MODE APPROACH
FOR A CLASS OF MATHEMATICAL PROGRAMS WITH

COMPLEMENTARITY CONSTRAINTS∗
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Abstract. We prove that any accumulation point of an elastic mode approach, that approx-
imately solves the relaxed subproblems, is a C-stationary point of the problem of optimizing a
parametric mixed P variational inequality. If, in addition, the accumulation point satisfies the
MPCC-LICQ constraint qualification, and if the solutions of the subproblem satisfy approximate
second-order sufficient conditions, then the limiting point is an M-stationary point. Moreover, if
the accumulation point satisfies the upper-level strict complementarity condition, the accumulation
point will be a strongly stationary point. If we assume that the penalty function associated with the
feasible set of the mathematical program with complementarity constraints has bounded level sets,
and if the objective function is bounded below, we show that the algorithm will produce bounded
iterates and will therefore have at least one accumulation point. We prove that the obstacle problem
satisfies our assumptions for both a rigid and a deformable obstacle. The theoretical conclusions are
validated by several numerical examples.
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1. Introduction. Complementarity constraints are used to model numerous
economics and engineering applications [18, 22]. Solving optimization problems with
complementarity constraints may prove difficult in classical nonlinear optimization;
however, given that, at a solution x∗ such problems cannot satisfy a constraint qual-
ification [18]. Nevertheless, recently there has been substantial interest in solving
mathematical programs with complementarity constraints (MPCCs) by using classi-
cal nonlinear programming techniques. It has been shown that an SQP elastic mode
approach can be expected to locally solve the generic case of MPCC [1]. Several
positive results in the same direction have been proved for FilterSQP [10]. These
results have been validated by an extensive numerical investigation of SNOPT and of
FilterSQP [9]. SNOPT is an algorithm that implements a version of the elastic mode
considered here [15]. The success of the SQP elastic mode approach has also been
empirically extended to interior point approaches coupled with a relaxation strategy
much like the elastic mode approach [2].

Classical nonlinear programming techniques are not the only ones developed for
solving MPCC. Other types of techniques have been developed, most notably bun-
dle nonsmooth trust region methods for implicit programming [22] and disjunctive
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programming [18]. We believe that further investigation into the behavior of classi-
cal nonlinear programming techniques is warranted, however, given their success in
solving large-scale problems, as well as the level of maturity of their software imple-
mentations.

Most of the convergence results presented so far in the literature are of a local
nature [1, 10, 24]. In this work, we investigate the global convergence of an elastic-
mode approach for a special class of MPCCs: optimization of parametric variational
inequalities that satisfy the mixed P property [18, Def. 6.1.4]. To accommodate the
fact that the penalty parameter may need to be driven to infinity, and to avoid the
possibility that an insufficiently penalized relaxation will require an infinite number of
steps to solve, we consider the possibility that a subproblem is solved only inexactly
for a given penalty parameter.

Some of our techniques are related to those of [18, sect. 6.1]. That reference was
the original inspiration for the class of problems considered here. A major difficulty
with that work, however, is that unless lower-level strict complementarity is satisfied
at the point toward which the algorithm defined in [18, sect. 6.1] converges, nothing
can be said about the quality of that point [18, p. 312]. In this work we refine the
range of outcomes that was provided in [18]. We show that under assumptions similar
to those of [18, sect. 6], the outcome of an elastic-mode approach can be connected to
weaker, though broadly employed in the literature [16, 23, 24], stationarity concepts,
without requiring lower-level strict complementarity.

We note that global convergence to a B-stationary point was proved for an active
set method that assumes that the MPCC linear independence constraint qualification
(MPCC-LICQ) holds everywhere [14]. The assumptions of this work neither imply
nor are implied from the assumptions of [14]. In particular, we do not assume uni-
form MPCC-LICQ, but we do assume that the problem has a structure that is more
restrictive than that of [14].

2. Accumulation points are C-stationary points. In this section, we discuss
the mixed P property, state our model problem, and present and prove our global
convergence result.

2.1. The mixed P property. The key notion used in this section is the mixed
P partition [18, Def. 6.1.4].

Definition (mixed P partition). Let nc ≥ 1 and l ≥ 0. Let A ∈ R(nc+l)×nc ,
B ∈ R(nc+l)×nc , and C ∈ R(nc+l)×l. We say that the partition [A B C] is mixed P
partition if

0 �= (y, w, z) ∈ R2nc+l, Ay + Bw + Cz = 0 ⇒ ∃i, 1 � i � nc, such that yiwi > 0.

(2.1)

When l = 0, the C block is empty, and [A B] is called a P partition. When defining
our MPCC, the variables yi and wi will be required to be complementary to each other
for i = 1, 2, . . . , nc. Therefore, nc will denote the number of complementarity pairs,
and thus its subscript.

Lemma 2.1. Assume [A B C] is a mixed P partition. Let D ∈ Rnc×nc be a
diagonal matrix such that all its diagonal entries satisfy di �= 0, i = 1, 2, . . . , nc. Then
[AD BD C] is also a mixed P partition.

Proof. Let 0 �= (y, w, z) ∈ R2nc+l such that ADy +BDw +Cz = 0. Let ỹ = Dy
and w̃ = Dw. We then have that 0 �= (ỹ, w̃, z) and Aỹ + Bw̃ + Cz = 0. From (2.1)
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we obtain that ∃i, 1 � i � nc, such that 0 < ỹi w̃i = d2
i yiwi, which in turns implies

that yiwi > 0. The proof is complete.

Theorem 2.2. Assume that [A B C] is a mixed P partition. The system of
linear constraints

AT θ � 0, BT θ � 0, CT θ = 0

has the unique feasible point θ = 0.

Proof. Let 0 �= y ∈ Rnc . An immediate consequence of the fact that [A B C]
is a mixed P partition is that the matrix [B C] is invertible [18]. We define w ∈ Rnc

and z ∈ Rl by

w = −[Inc 0][B C]−1Ay,
z = −[0 Il][B C]−1Ay.

Here we denote by Ik the k×k identity block. One can immediately see that (y, w, z)
satisfies Ay + Bw + Cz = 0. Using that [A B C] is a mixed P partition, we obtain
that ∃i, 1 � i � nc, such that yiwi > 0. Let Q = −[Inc 0][B C]−1A. Since w = Qy,
this means that ∀y �= 0, ∃i, 1 � i � nc, such that yi (Qy)i > 0, and thus Q is a P
matrix [6]. Therefore, QT is also a P matrix [6], where

QT = −AT

[
BT

CT

]−1 [
Inc

0

]
.

Now let θ be a feasible point of the linear constraints in the statement of the theorem.
There exist η1, η2 ∈ Rnc , η1 � 0, η2 � 0, such that

AT θ + η1 = 0, BT θ + η2 = 0, CT θ = 0.

We solve for θ from the last two equations to obtain that

θ = −
[

BT

CT

]−1 [
Inc

0

]
η2.(2.2)

Substituting in the remaining equation, we get that

0 = η1 −AT

[
BT

CT

]−1 [
Inc

0

]
η2,

which, using our definitions for Q and QT , can be rewritten as

−η1 = QT η2.

From the definition of a P matrix, it follows that, if η2 �= 0, there exists i, where
1 � i � nc such that −η1,iη2,i > 0 or η1,iη2,i < 0. This would contradict the fact that
η1 � 0 and η2 � 0. The only alternative remaining is η1 = η2 = 0. From (2.2) this
results in θ = 0, which proves our claim.
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2.2. Optimization of parameterized mixed P variational inequalities.
We now define the following MPCC together with its relaxed version:

(OMPV)
min

x,y,w,z
f(x, y, w, z)

s.t. g(x) � 0 (μ)
h(x) = 0 (λ)
F (x, y, w, z) = 0 (θ)
y, w � 0(ηy,w)
yTw � 0 (αc)

(OMPV(c))
min

x,y,w,z,ζ1,ζ2
f(x, y, w, z)+ c(ζ1 + ζ2)

s.t. g(x) � 0 (μ)
h(x) = 0 (λ)

−ζ1enc+l � F (x, y, w, z) � ζ1enc+l(θ
−,+)

y, w � 0 (ηy,w)
yTw � ζ2 (αc)
ζ1, ζ2 � 0 (α1,2)

Here we show in parentheses the symbols we will use for the Lagrange multipliers.
We denote by enc+l a vector of all ones of dimension nc + l.

The last constraint, which together with the bound constraints y, w � 0 forms the
complementarity constraints of (OMPV), can be formulated as either an equality or
an inequality constraint without altering the feasible set [10]. This constraint makes
the problem a member of the class of MPCCs. Many of the issues and properties we
will discuss are relevant to MPCCs and we will use the MPCC acronym to identify
them. We note that there exists a more general class of related problems called
mathematical programs with equilibrium constraints (MPEC) [18]. However, when
the convex set over which the equilibrium constraints are defined can be represented
by a finite number of inequalities, which is the case in most applications, an MPEC
problem can be reduced to an MPCC problem.

Here x ∈ Rn, y, w ∈ Rnc , z ∈ Rl, f : Rn+2nc+l → R, h : Rn → Rne , g : Rn → Rni ,
F : Rn+2nc+l → Rnc+l. In (OMPV(c)) we relax the complementarity constraints
yTw � 0 as well as the nonlinear equation F (x, y, w, z) = 0. A large variety of other
relaxations, connected to various nondifferentiable exact penalty functions, lead to
similar results. For example, all nonlinear constraints can be relaxed [1]. We do not
pursue that avenue further.

2.2.1. Stationary points of (OMPV). The difficult nature of MPCC has led
to the definition of stationary points of (OMPV) different from those that correspond
to the nonlinear programming interpretation of (OMPV). Formally, we consider multi-
pliers of (OMPV) that satisfy αc = 0, though we relax the requirement that ηy, ηw � 0,
and we denote the new multipliers by η̂y, η̂w. We call such multipliers (λ, μ, θ, η̂y, η̂w)
MPCC multipliers. The corresponding stationary points (x, y, w, z), together with
the MPCC multipliers, satisfy the following relations:

∇xf(x, y, w, z)T + ∇xh(x)Tλ
+∇xg(x)Tμ + ∇xF (x, y, w, z)T θ = 0,

∇yf(x, y, w, z)T + η̂y + ∇yF (x, y, w, z)T θ = 0,
∇wf(x, y, w, z)T + η̂w + ∇wF (x, y, w, z)T θ = 0,
∇zf(x, y, w, z)T + ∇zF (x, y, w, z)T θ = 0,

g(x) � 0, μ � 0, h(x) = 0, g(x)Tμ = 0,
F (x, y, w, z) = 0, y � 0, w � 0, yTw = 0,∑nc

k=1 yk|η̂y,k| = 0,
∑nc

k=1 wk|η̂w,k| = 0.

(2.3)

We distinguish the following types of stationarity [16, 23]:
• Weakly stationary points, where no sign requirements are made on η̂y, η̂w.
• C-stationary points, where we require that η̂y,kη̂w,k � 0, k = 1, 2, . . . , nc.
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• M-stationary points, which are C-stationary points with the additional re-
quirement that either η̂y,k � 0 or η̂w,k � 0, k = 1, 2, . . . , nc.

• B-stationary points, for which d = 0 is a solution of the problem obtained by
linearizing all the data of (OMPV) with the exception of the complementarity
constraint yTw � 0.

• Strongly stationary points, which satisfy

yk = 0, wk = 0 ⇒ η̂y,k � 0 and η̂w,k � 0, k = 1, 2, . . . , nc.

It is immediate that such points are also KKT points in the nonlinear programming
sense of (OMPV) [23].

If a point is strongly stationary, then it is also a stationary point of any other type
[23]. Also, a stationary point of any type is a weakly stationary point [23]. In addition,
an M-stationary point is also a C-stationary point. No other relation holds in general
between these stationarity concepts. For an approach that uses the linearization of the
data, B-stationary points seem to be the desirable outcome. However, the amount of
work necessary to recognize B-stationary points may be exponential in the dimension
of the problem [22].

Definition (ULSC. See [13, 24]). A weakly stationary point (x, y, w, z) of (OMPV)
satisfies the upper-level strict complementarity (ULSC) property if there exists an
MPCC multiplier that satisfies

yk + wk = 0 ⇒ η̂y,kη̂w,k �= 0, k = 1, 2, . . . , nc.

2.2.2. Parametric mixed P variational inequalities. For fixed x, the system
of constraints

F (x, y, w, z) = 0, y � 0, w � 0, wT y = 0(2.4)

defines a mixed nonlinear complementarity problem, that is, an instance of a varia-
tional inequality. We can therefore interpret y, w, z as the state variables and x as the
parameters of the parameterized variational inequality (2.4).

For the remainder of this work we make the following assumptions:

A1. The mappings f, g, h, F are twice continuously differentiable.
A2. The constraints involving only the parameters x satisfy, for any x, that

(i) ∇xh(x)T has full column rank.
(ii) ∃p ∈ Rn such that ∇xh(x)p = 0 and ∇gi(x)p < 0 whenever gi(x) � 0.
(iii) the linearization h(x) + ∇xh(x)d = 0, g(x) + ∇xg(x)d � 0 is feasible.

A3. The partition [∇yF,∇wF,∇zF ] is a mixed P partition (2.1).

Note that A2(i) and A2(ii) do not imply A2(iii), since we allow for the point
x to be infeasible for the constraints g(x) � 0, h(x) = 0. Assumption A2 holds when
g � 0, h = 0 represent a polyhedral set in a minimal representation.

Under A1–A3 we call the problem (OMPV) containing (2.4) as a constraint
optimization of parameterized mixed P variational inequalities. Note that (OMPV)
under A1–A3 was also studied in [18] but with a different algorithmic approach and
outcome.

Theorem 2.3. The nonlinear program (OMPV(c)) has a feasible linearization
and satisfies the Mangasarian–Fromovitz constraint qualification (MFCQ) [4, p. 441],
[19] at any point (x, y, w, z, ζ1, ζ2).
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Proof. Consider the constraints g(x) � 0, h(x) = 0, y � 0, w � 0. Using A2, we
obtain that there exist dx, dy, dw such that

g(x) + ∇xg(x)dx < 0,
h(x) + ∇xh(x)dx = 0,
y + dy < 0,
w + dw < 0.

Choose also dw = 0nc , dy = 0nc , dz = 0l, and consider the linearization of the feasible
set of the program (OMPV(c)) at the point (x, y, w, z, ζ1, ζ2):

g(x) + ∇xg(x)dx � 0,
h(x) + ∇xh(x)dx = 0,

−ζ1enc+l − dζ1enc+l � F (x, y, w, z)

+∇(x,y,w,z)F (x, y, w, z) (dx, dy, dw, dz)
T � ζ1enc+l + dζ1enc+l,

y + dy, w + dw � 0,
yTw + wT dy + yT dw � ζ2 + dζ2 ,

ζ1 + dζ1 � 0,
ζ2 + dζ2 � 0.

If we choose dζ1 , dζ2 sufficiently large, then we obtain d = (dx, dy, dw, dz, dζ1 , dζ2)
such that the inequalities in the above system are strictly satisfied, which shows that
(OMPV(c)) has a feasible linearization and satisfies the MFCQ everywhere.

In the following, we introduce the notion of an ε stationary point. A variant of
it has been used for Lagrange multiplier algorithms [3, Prop. 4.2.2]. This will help
define an algorithm that needs to spend only a finite number of steps to approximately
solve (OMPV(c)) before having to increase the penalty parameter. This property is
unlike the regularization approach in [24], where the relaxed problem must be solved
exactly.

Definition (ε stationary point). We say that (x, y, w, z, ζ1, ζ2) is an ε stationary
point of (OMPV(c)) if there exists (λ, μ, θ, ηy, ηw, αc, α1, α2) such that the following
conditions are satisfied:

Dual

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇xf(x, y, w, z)T + ∇xh(x)Tλ
+∇xg(x)Tμ + ∇xF (x, y, w, z)T (θ+ − θ−) = tx,

∇yf(x, y, w, z)T + ηy + αcw + ∇yF (x, y, w, z)T (θ+ − θ−) = ty,
∇wf(x, y, w, z)T + ηw + αcy + ∇wF (x, y, w, z)T (θ+ − θ−) = tw,

∇zf(x, y, w, z)T + ∇zF (x, y, w, z)T (θ+ − θ−) = tz,
‖θ+‖1 + ‖θ−‖1 + α1 = c + tα1; αc + α2 = c + tα2,

μ � 0; ηy, ηw � 0; θ+, θ− � 0; αc, α1, α2 � 0,

Primal

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g(x) � tg,
h(x) = th,

−ζ1enc+l − t1F � F (x, y, w, z) � ζ1enc+l + t2F ,
y, w � 0,
yTw � ζ2 + tc,
ζ1, ζ2 � 0,

Compl.

⎧⎨
⎩

(ζ1enc+l − F )T θ+ + (F + ζ1enc+l)
T θ− = tcF ,

αc(ζ2 − wT y) = tcc; g(x)Tμ = tcg,
|α2ζ2| � tcp; |α1ζ1| � tcp;

∣∣yT ηy∣∣ � tcp;
∣∣wT ηw

∣∣ � tcp,

where the size of the inexactness is bounded above by ε, that is,

‖tg, th, t1F , t2F , tc, tx, ty, tw, tz, tα1,tα2, tcc, tcF , tcg, tcp‖∞ � ε.



126 MIHAI ANITESCU

When defining our approximate stationary point, we assumed that bound con-
straints that involve a zero bound and the sign condition for the resulting multiplier
can be exactly enforced. For interior point methods this assumption is readily satisfied
(even in finite-precision arithmetic).

Definition (global convergence safeguard). We say that a nonlinear program-
ming algorithm has a global convergence safeguard if any accumulation point of the
algorithm is one of the following:

1. An infeasible point of the nonlinear program at which the linearization of the
constraints is infeasible.

2. A feasible point of the nonlinear program that does not satisfy the MFCQ.
3. A feasible point of the nonlinear program that satisfies the MFCQ and that is

a KKT point of the nonlinear program.

An example of such an algorithm is FilterSQP [11]. We use the following assump-
tion.

Alg1. The nonlinear programming algorithm has a global convergence safeguard.

Lemma 2.4. Any accumulation point of a nonlinear programming algorithm that
satisfies Alg1 and is applied to (OMPV(c)) is a KKT point.

Proof. Since the nonlinear programming algorithm has a global convergence safe-
guard, it cannot end in case 1 or case 2, following Theorem 2.3. The conclusion
follows, and the proof is complete.

Based on this lemma, we will assume in the rest of this work that we have access to
an algorithm that satisfies Alg1 and that can provide, for any ε > 0, an ε stationary
point of (OMPV(c)). We can now state the following theorem, which will be our main
convergence tool.

Theorem 2.5. Assume that (OMPV) satisfies A1, A2, and A3 and that the
relaxed problems (OMPV(c)) are solved with an algorithm that satisfies Alg1. Let
(xn, yn, wn, zn, ζn1 , ζ

n
2 ) be an εn stationary point of (OMPV(cn)). Assume that

limn→∞ cn = ∞, limn→∞ εn = 0, and limn→∞ cnεn = 0. Then any accumulation
point (x∗, y∗, w∗, z∗, ζ∗1 , ζ

∗
2 ) of (xn, yn, wn, zn, ζn1 , ζ

n
2 ) must satisfy ζ∗1 = 0, ζ∗2 = 0, and

(x∗, y∗, w∗, z∗) is a feasible C-stationary point of (OMPV).

Proof (feasibility). From our assumption, (xn, yn, wn, zn, ζn1 , ζ
n
2 ) is an εn station-

ary point of (OMPV(cn)), which, by Theorem 2.3, satisfies the MFCQ everywhere.
There must exist the Lagrange multipliers λn ∈ Rne , μn ∈ Rni

+ , θ+n, θ−n ∈ Rnc+l
+ ,

ηny ∈ Rnc
+ , ηnw ∈ Rnc

+ , αn
1 , α

n
2 , α

n
c ∈ R+ that, together with (xn, yn, wn, zn, ζn1 , ζ

n
2 ),

satisfy the εn approximate KKT conditions, which include the following equations:

∇xf(xn, yn, wn, zn)T + ∇xh(xn)Tλn

+∇xg(x
n)Tμn + ∇xF (xn, yn, wn, zn)T (θ+n − θ−n) = tnx ,

∇yf(xn, yn, wn, zn)T + αn
cw

n + ηny + ∇yF (xn, yn, wn, zn)T (θ+n − θ−n) = tny ,
∇wf(xn, yn, wn, zn)T + αn

c y
n + ηnw + ∇wF (xn, yn, wn, zn)T (θ+n − θ−n) = tnw,

∇zf(xn, yn, wn, zn)T + ∇zF (xn, yn, wn, zn)T (θ+n − θ−n) = tnz ,
(ζn1 enc+l − F (xn, yn, wn, zn))T θ+n + (F (xn, yn, wn, zn) + ζn1 enc+l)

T θ−n = tcF ,
αn

1 + ||θ+n||1 + ||θ−n||1 = cn + tnα1
; g(xn) � tng , yn � 0, wn � 0,

αn
c (wnT yn − ζn2 ) = tncc, αn

2 + αn
c = cn + tnα2

; (wnT yn − ζn2 ) � tnc , ζn2 � 0,
g(xn)Tμn = tncg, |αn

1 ζ
n
1 | � tcp;

∣∣yTn ηny ∣∣ � tncp,
∣∣wnT ηnw

∣∣ � tncp, |αn
2 ζ

n
2 | � tncp,

(2.5)

∥∥tnx , tny , tnw, tnz , tncc, tncF , tncg, tncy, tncw, tnα1
, tnα2

, tncp
∥∥
∞ � εn.
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We ignore for the time being the effect of the variable ζ1 on the optimality con-

ditions. We also denote θn = θ+n − θ−n and λ̃
n

=
(
λn, μn, θn, ηny , η

n
w, α

n
c , α

n
2

)
.

Since αn
c + αn

2 = cn + tnα2
, cn → ∞ and εn → 0, we must have that ‖λ̃n‖∞ → ∞

as n → ∞. Therefore, the sequence λ̃
n

||λ̃n||∞
, admits an accumulation point

λ̃
∗

=
(
λ∗, μ∗, θ∗, η∗y , η

∗
w, α

∗
c , α

∗
2

)
that satisfies ‖λ̃∗‖∞ = 1 and μ∗ � 0, η∗y � 0, η∗w � 0, α∗

c � 0, and α∗
2 � 0. We can

assume without loss of generality (after eventually restricting the respective sequences
to subsequences) that

λ̃
n∣∣∣∣∣∣λ̃n
∣∣∣∣∣∣
∞

→ λ̃
∗

and (xn, yn, wn, zn, ζn2 ) → (x∗, y∗, w∗, z∗, ζ∗2 ).

We now divide (2.5) by ‖λ̃n‖∞ and take the limit as n → ∞ to obtain

∇xh(x∗)Tλ∗ + ∇xg(x
∗)Tμ∗ + ∇xF (x∗, y∗, w∗, z∗)T θ∗ = 0,

α∗
cw

∗ + η∗y + ∇yF (x∗, y∗, w∗, z∗)T θ∗ = 0,
α∗
cy

∗ + η∗w + ∇wF (x∗, y∗, w∗, z∗)T θ∗ = 0,
∇zF (x∗, y∗, w∗, z∗)T θ∗ = 0,

g(x∗) � 0, y∗ � 0, w∗ � 0, (w∗T

y∗ − ζ∗2 ) � 0, ζ∗2 � 0,

g(x∗)Tμ∗ = 0, y∗
T

η∗y = 0, w∗T

η∗w = 0, α∗
c(w

∗T

y∗ − ζ∗2 ) = 0, α∗
2ζ

∗
2 = 0.

(2.6)

Now take an index k such that 1 � k � nc. Since α∗
c � 0, w∗

k � 0, y∗k � 0,
η∗w,k � 0, and η∗y,k � 0, we must have that

η∗y,k + α∗
cw

∗
k > 0 ⇒ η∗y,k > 0

(2.6)⇒ y∗k = 0 ⇒ η∗w,k + α∗
cy

∗
k � 0.

Similarly, we have that

η∗w,k + α∗
cy

∗
k > 0 ⇒ η∗w,k > 0

(2.6)⇒ w∗
k = 0 ⇒ η∗y,k + α∗

cw
∗
k � 0.

We therefore conclude that, for k = 1, 2, . . . , nc, we must have that

(η∗w,k + α∗
cy

∗
k)(η

∗
y,k + α∗

cw
∗
k) � 0.

We can therefore define for k = 1, 2, . . . , nc the quantities

dk =

⎧⎨
⎩

1 if (η∗w,k + α∗
cy

∗
k) > 0 or (η∗y,k + α∗

cw
∗
k) > 0,

−1 if (η∗w,k + α∗
cy

∗
k) < 0 or (η∗y,k + α∗

cw
∗
k) < 0,

1 if (η∗w,k + α∗
cy

∗
k) = (η∗y,k + α∗

cw
∗
k) = 0.

From our observation and the definition of dk, k = 1, 2, . . . , nc, we must have that

dk(η
∗
w,k + α∗

cy
∗
k) � 0 and dk(η

∗
y,k + α∗

cw
∗
k) � 0, k = 1, 2, . . . , nc.

We denote by D ∈ Rnc×nc the matrix whose diagonal elements are dk, k = 1, 2, . . . , nc.
The middle equations from (2.6) and our definition of D imply that

D∇yF (x∗, y∗, w∗, z∗)T θ∗ � 0,
D∇wF (x∗, y∗, w∗, z∗)T θ∗ � 0,
∇zF (x∗, y∗, w∗, z∗)T θ∗ = 0.
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From A3, Lemma 2.1, and Theorem 2.2, the preceding equation implies that θ∗ = 0.
Replacing this in (2.6), we obtain that

∇xh(x∗)Tλ∗ +
∑

i∈A(x∗)

∇xgi(x
∗)Tμ∗

i = 0,

which, from A2, implies that λ∗ = 0 and μ∗ = 0. The fact that θ∗ = 0 also implies
from (2.6) that

η∗y + α∗
cw

∗ = 0, η∗w + α∗
cy

∗ = 0.(2.7)

Multiplying the first relation by y∗
T

, the second by w∗T

, and using the complemen-

tarity relations y∗
T

η∗y = 0 and w∗T

η∗w = 0 from (2.6), we obtain that

α∗
cy

∗T

w∗ = 0.(2.8)

We have the following cases:

1. α∗
c > 0. Then (2.8) implies that y∗

T

w∗ = 0. From α∗
c(w

∗T

y∗ − ζ∗2 ) = 0 of

(2.6) we get that ζ∗2 = y∗
T

w∗ = 0.
2. α∗

c = 0. Then from (2.7) we get that η∗y = η∗w = 0. It then follows that the

only nonzero component of λ̃
∗

is α∗
2, which must then satisfy α∗

2 = ‖λ̃∗‖∞ = 1.
The complementarity condition α∗

2ζ
∗
2 = 0 from (2.6) now implies ζ∗2 = 0.

In either case we obtain ζ∗2 = 0 .

Assume now that ζn1
n→∞−−−→ ζ∗1 > 0. Define λ̃

n
= (λn , μn, θ+n, θ−n,ηny , η

n
w,

αn
c , α

n
1 , α

n
2 ) that, by an observation similar to that of the previous paragraphs, must

satisfy ‖λ̃n‖∞ → ∞ as n → ∞. Consider an accumulation point λ̃
∗

=(
λ∗, μ∗, θ+∗, θ−∗, η∗y , η

∗
w, α

∗
c , α

∗
1, α

∗
2

)
of the sequence λ̃

n

||λ̃n||∞
. Using the complemen-

tarity relationships from (2.5), we obtain that θ+∗T

θ−∗ = 0. Indeed, if we assume
that θ+∗

k > 0, for some k = 1, 2, . . . , nc, the complementarity relations from (2.5),

in which we take the limit after dividing with ‖λ̃n‖∞ → ∞, result in 0 < ζ∗1 =
Fk(x

∗, y∗, w∗, z∗), which in turn implies that θ−∗
k = 0.

Repeating the argument that led to the conclusion that ζ∗2 = 0, we obtain that

0 = θ∗ = θ+∗ − θ−∗ which, in conjunction with θ+∗T

θ−∗ = 0, implies θ+∗ = θ−∗ = 0
and (λ∗, μ∗, θ+∗, θ−∗) = 0 as well as η∗y + α∗

cw
∗ = 0, and η∗w + α∗

cy
∗ = 0. The last

two equations imply that ηny , η
n
w = O(αn

c ). Using the definition of λ̃ we obtain that

‖λ̃
n
‖∞ � Γ‖(αn

c , α
n
1 , α

n
2 )‖∞ � Γcn ∀n sufficiently large, for some positive Γ, which

in turn implies that θ+n

cn
n→∞−−−→ 0, θ−n

cn
n→∞−−−→ 0. Using these relations, together with

αn
1 + ||θ+n||1 + ||θ−n||1 = cn + tnα1

, we obtain that α∗
1 > 0. However, from the

limit of complementarity relationships from (2.5), which are obtained after dividing

with ‖λ̃n‖∞ → ∞, we obtain that α∗
1ζ

∗
1 = 0. This is a contradiction to the initial

assumption that ζ∗1 > 0. We must therefore have that ζ∗1 = 0 in addition to ζ∗2 = 0,
which shows that the limit point (x∗, y∗, w∗, z∗) must be feasible.

Proof (C-stationarity). We return to (2.5). We define

η̂ny = ηny + αn
cw

n, η̂nw = ηnw + αn
c y

n.(2.9)

Following our definition of an εn stationary point, we have that, ∀ k = 1, 2, . . . , nc,
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the following relations hold:

ηny,k, η
n
w,k ≥ 0; ynk , w

n
k ≤ 0,

αn
c ≤ cn + εn,∣∣ηny,kynk ∣∣ +

∣∣ηnw,kw
n
k

∣∣ ≤ 2εn.

In turn, this implies that, ∀k = 1, 2, . . . , nc,

αn
c

(
ηny,ky

n
k + ηnw,kw

n
k

)
� −2cnεn − 2 (εn)

2
,

and, thus, that

η̂ny,k η̂
n
w,k = ηny,kη

n
w,k + (αn

c )2ynkw
n
k + αn

c

(
ηny,ky

n
k + ηnw,kw

n
k

)
� −2cnεn − 2(εn)2

n→∞−→ 0.

(2.10)

Define

λ̂
n

=
(
λn, μn, θn, η̂ny , η̂

n
w

)
.

The components of λ̂
n

satisfy the following set of equations derived from (2.5):

∇xf(xn, yn, wn, zn)T + ∇xh(xn)Tλn

+∇xg(xn)Tμn + ∇xF (xn, yn, wn, zn)T θn = tnx ,
∇yf(xn, yn, wn, zn)T + η̂ny +∇yF (xn, yn, wn, zn)T θn = tny ,
∇wf(xn, yn, wn, zn)T + η̂nw +∇wF (xn, yn, wn, zn)T θn = tnw,

∇zf(xn, yn, wn, zn)T + ∇zF (xn, yn, wn, zn)T θn = tnz ,
h(xn) = tnh, g(xn) � tng , yn � 0, wn � 0,

(2.11)

where
∥∥tng , tnh, tnx , tny , tnw, tnz , tny∥∥∞ � εn. Assume that λ̂

n
admits a subsequence that

diverges to ∞. We can assume without loss of generality that the entire sequence
itself diverges to ∞. Define the sequence

˜̂
λ
n

=
λ̂
n∣∣∣∣∣∣λ̂n
∣∣∣∣∣∣
∞

,

which, being bounded, must admit a convergent subsequence. We assume, again

without loss of generality, that the sequence
˜̂
λ
n

is itself convergent to

˜̂
λ
∗

=
(
λ̃
∗
, μ̃∗, θ̃

∗
, η̃∗y, η̃

∗
w

)
,

with ‖˜̂λ∗
‖∞ = 1. From the construction of λ̂

n
we must have that μ̃∗ � 0, whereas

from (2.10) we must have that

η̃∗y,k η̃
∗
w,k � 0, k = 1, 2, . . . , nc.(2.12)

Now, dividing all equations involving multipliers of (2.11) by ‖λ̂
n
‖∞ and taking the

limit as n → ∞, we obtain that

∇xh(x∗)T λ̃
∗
+∇xg(x

∗)T μ̃∗ +∇xF (x∗, y∗, w∗, z∗)T θ̃
∗

= 0

η̃∗y +∇yF (x∗, y∗, w∗, z∗)T θ̃
∗

= 0

η̃∗w +∇wF (x∗, y∗, w∗, z∗)T θ̃
∗

= 0

∇zF (x∗, y∗, w∗, z∗)T θ̃
∗

= 0
h(x∗) = 0 g(x∗) � 0, g(x∗)T μ̃∗ = 0, y∗ � 0, w∗ � 0.

(2.13)
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Using the same argument that we applied to (2.6) and that led to the conclusion
θ∗ = 0 and, subsequently, ζ∗ = 0, we get that (2.13), (2.12), and A3 imply that

θ̃
∗

= 0. In turn, this implies that η̃∗y = η̃∗w = 0 and, from A2 and from using the

complementarity relation on the last line of (2.13), that λ̃
∗

= 0, μ̃∗ = 0, and thus˜̂
λ
∗

= 0, which is a contradiction to ‖˜̂λ∗
‖∞ = 1. This implies that the sequence λ̂

n

must be bounded. Let

λ̂
∗

=
(
λ∗, μ∗, θ∗, η̂∗y, η̂

∗
w

)
be a limit point of this sequence. We assume without loss of generality that it is the
unique limit point. From (2.10) we must have that

η̂∗y,k η̂
∗
w,k � 0, k = 1, 2, . . . , nc.(2.14)

From our definition of η̂nw and η̂ny (see (2.9)), it does not immediately follow that the
corresponding limit point satisfies a complementarity relation with w∗ and, respec-
tively, y∗. Although we have that ηnw,kw

n
k → 0 and ηny,ky

n
k → 0 for k = 1, 2, . . . , nc from

(2.5), the additional terms αcy
n
k and αcw

n
k may potentially prevent a corresponding

complementarity relation from holding for η̂nw and η̂ny , or the respective limits, since
αn
c may diverge into ∞.

In the following we show that this is not the case. We prove that η̂∗y,ky
∗
k = 0.

Since λ̂n is bounded we must have that

O(1) = η̂ny,k = ηny,k + αn
cw

n
k , O(1) = η̂nw,k = ηnw,k + αn

c y
n
k ,(2.15)

and that y∗k = 0 ⇒ ynk
n→∞−→ 0 ⇒ η̂∗y,ky

∗
k = 0, which would complete the proof.

Assume then that y∗k < 0. Since the limit point is feasible for (OMPV), we must

have that w∗
k = 0, and therefore that wn

k
n→∞−→ 0. Multiplying the second equation in

(2.15) by wn
k , we obtain that limn→∞ ηnw,kw

n
k + αn

c y
n
kw

n
k = 0.

Since, from the definition of εn stationary points, we have that ‖ηnw,kw
n
k‖ ≤ εn,

this implies that αn
c y

n
kw

n
k

n→∞−→ 0. Using the first equation of (2.15) and the fact that
(xn, yn, wn, zn, ζn1 , ζ

n
2 ) is an εn stationary point, we obtain that

η̂ny,ky
n
k = ηny,ky

n
k + αn

c y
n
kw

n
k

n→∞−→ 0.

The last equation proves that η̂∗y,ky
∗
k = 0, k = 1, 2, . . . , nc. Similarly, it also follows

that η̂∗w,kw
∗
k = 0, k = 1, 2, . . . , nc.

Now, taking the limit in (2.11) as n → ∞ and using (2.14), and λ̂n n→∞−→ λ̂∗,

we obtain that (x∗, y∗, w∗, z∗) is a C-stationary point with MPCC multiplier λ̂
∗

=
(λ∗, μ∗, θ∗, η̂∗y , η̂

∗
w). The proof is complete.

Note that, in order to obtain a similar result, MPCC-LICQ was needed in [24].
The preceding result also allows us to characterize all local solutions of (OMPV).

Corollary 2.6. Assume that (OMPV) satisfies A1, A2, and A3 everywhere
and that (x∗, y∗, w∗, z∗) is a strict local minimum of (OMPV). Then (x∗, y∗, w∗, z∗)
is a C-stationary point of (OMPV).

Proof. It is immediate from the definition of (OMPV(c)) that (xc, yc, wc, zc, ζc)
is a local solution of (OMPV(c)) if and only if (xc, yc, wc, zc) is a local solution of

(OMPV 1(c))
min

x,y,w,z
f(x, y, w, z) + cyTw + c ‖F (x, y, w, z)‖∞

s.t. g(x) � 0, h(x) = 0, y, w � 0.
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If x̂ = (x∗, y∗, w∗, z∗) is a strict local minimum of (OMPV), then there exist δ > 0
and a ball B(x̂, δ), whose boundary we denote by Γ, such that for any (x, y, w, z) ∈ Γ,
which is a feasible point of (OMPV1(c)), we must have that

max{f(x, y, w, z) − f(x∗, y∗, w∗, z∗), yTw + ‖F (x, y, w, z)‖∞} > 0.

This implies that there exists ĉ such that, ∀ γ > ĉ, we have that for any (x, y, w, z),
which is a feasible point of (OMPV1(c)) on the boundary Γ of B(x̂, δ), we must have
that

f(x, y, w, z) − f(x∗, y∗, w∗, z∗) + γ
(
yTw + ‖F (x, y, w, z)‖∞

)
> 0.

If this is not true, then for any n there exists γn > n such that, for some (xn, yn, wn,
zn) ∈ Γ, which is a feasible point of (OMPV1(c)), we have that

f(xn, yn, wn, zn) − f(x∗, y∗, w∗, z∗) + γn

(
yn

T

wn + ‖F (xn, yn, wn, zn)‖∞
)

� 0.

(2.16)

Since Γ is compact, the sequence (xn, yn, wn, zn) has an accumulation point (x◦, y◦,
w◦, z◦) ∈ Γ that must be feasible for (OMPV1(c)). Dividing (2.16) by γn and taking

the limit as n → ∞, we get that y◦
T

w◦ = 0 and that F (x◦, y◦, w◦, z◦) = 0, that is,
that (x◦, y◦, w◦, z◦) is, in effect, feasible for (OMPV). But (2.16) also implies that,
for all n,

f(xn, yn, wn, zn) − f(x∗, y∗, w∗, z∗) � 0.

Taking the limit in the last inequality, we obtain that

f(x◦, y◦, w◦, z◦) − f(x∗, y∗, w∗, z∗) � 0,

which contradicts our choice of δ.
Therefore, ĉ with the properties specified above must exist. This shows that,

for c > ĉ, (OMPV1(c)) will have a local solution inside of B(x̂, δ). For all n > ĉ
let (xn, yn, wn, zn) be the local solution of (OMPV1(n)) in B(x̂, δ) with the lowest
value. By an argument similar to that which led to the existence of ĉ, it follows that
(xn, yn, wn, zn) → (x∗, y∗, w∗, z∗). It also follows from the observation at the begin-

ning of the proof that (xn, yn, wn, zn, F (xn, yn, wn, zn), yn
T

wn) is a local solution,
and thus a stationary point, of (OMPV(n)). From Theorem 2.5 it thus follows that
(x∗, y∗, w∗, z∗) is a C-stationary point of (OMPV). The proof is complete.

We note that the above result could also be proven using [23, Thm. 2], after
one proves that, under A1, A2, and A3, (OMPV) satisfies MPCC–MFCQ at any
solution. The proof follows once we use the dual form of MPCC–MFCQ in conjunction
with Theorem 2.2. However, the resulting proof is not shorter than the one we just
provided.

2.3. A globally convergent modified elastic mode for the optimization
of parameterized mixed P variational inequalities. We now describe our adap-
tive elastic-mode approach. Although the global convergence result we have presented
in the preceding subsection deals with the situation in which cn → ∞, we are inter-
ested in also allowing the penalty parameter to remain bounded because, in that
case, we can recover a strongly stationary point [1]. This is a major advantage over
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Table 2.1

Elastic-mode algorithm.

Choose c0 > 0, n = 0, K > 1, an integer q � 1 and a sequence εn → 0.
for n = 1, 2, . . .

Find an εn solution
(
xcn , yc

n
, wcn , zc

n
, ζc

n

1 , ζc
n

2

)
of (OMPV(cn)).

If ζc
n

1 + ζc
n

2 > (εn)
1
q ,

update c : cn+1 = Kcn and n : n = n + 1.
end if

end for

regularization and smoothing methods which, even under the strongest assumptions,
recover a solution of the original problem only in the limit of the range of the smooth-
ing/regularization parameter [13, 24]. An important issue in that case is how the
penalty parameter cn should be chosen. Since MPCC does not have bounded La-
grange multipliers at a solution, one cannot apply the update that takes into account
the local size of the Lagrange multipliers [3]. Here, we select cn based on a comparison

with (εn)
1/q

, where q ≥ 2 is an integer. In fact, when testing for the size of ζn1 , ζ
n
2 ,

one may want to compare it with the size of the solution of the quadratic subproblem
of an SQP method [1]. The equivalent test in that case would require q = 2, and one
can show that it does not locally interfere with superlinear convergence for a method
that uses exact second-order derivatives when it converges to a strongly stationary
point, as in [1]. That argument is tenuous and beyond the scope of this paper. Here
we simply assume that the parameter q is provided by the user, and the test takes
the form shown in Table 2.1.

Theorem 2.7. Consider the algorithm described in Table 2.1. Assume that the
problem (OMPV) satisfies A1, A2, and A3. Assume that, for a fixed cn, the sub-
problem (OMPV(cn)) is solved with a nonlinear programming algorithm that satisfies
Alg1. Assume that limn→∞ cnεn = 0. Assume that the algorithm does not diverge to
∞ and produces

(
xcn , yc

n

, wcn , zc
n

, ζc
n

1 , ζc
n

2

)
. Then either

1. the penalty parameter update rule is activated a finite number of times, and
then any accumulation point of

(
xcn , yc

n

, wcn , zc
n)

is a strongly stationary
point of (OMPV), or

2. the penalty parameter update rule is activated an infinite number of times, and
then any accumulation point of

(
xcn , yc

n

, wcn , zc
n)

is a C-stationary point
of (OMPV).

Proof. Part 1. Since the penalty parameter update rule is activated only a fi-
nite number of times, it follows that there exist a c∗ > 0 and an n0 such that the
penalty parameter satisfies cn = c∗ ∀n � n0. Therefore any accumulation point
(x∗, y∗, w∗, z∗, ζ∗1 , ζ

∗
2 ) of

(
xcn , yc

n

, wcn , zc
n

, ζc
n

1 , ζc
n

2

)
is a stationary point of (OMPV(c∗))

that verifies, from the test of the update rule, ζ∗1 = ζ∗2 = 0. It can be immediately
verified that such points are strongly stationary KKT points of (OMPV), much as in
[1, 3]. Since such verification is fairly straightforward from the above references, it is
omitted here.

Part 2. If the penalty parameter is updated an infinite number of times, it follows
that cn is increased to ∞, and, by applying Theorem 2.5, we get that any accumulation
point (x∗, y∗, w∗, z∗) of

(
xcn , yc

n

, wcn , zc
n)

is a C-stationary point of (OMPV).

3. When MPCC-LICQ holds, accumulation points are M-stationary
points. The convergence result can be improved when we consider stronger station-
ary conditions. In the rest of this section, we assume that the linear independence
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constraint qualification in an MPCC sense (MPCC-LICQ) holds at the solution of the
MPCC under consideration.

Definition (MPCC-LICQ). We say that the MPCC-LICQ holds at a feasible
(x, y, w, z) point of (OMPV) if the gradients of all active constraints of (OMPV) at
(x, y, w, z), with the exception of the complementarity constraint yTw � 0, are linearly
independent.

To accommodate the fact that a solution of a nonlinear program is never exactly
determined, we will work again with approximate optimality conditions.

Definition (χ active constraints). We say that a constraint g̃(x̃) � 0 (= 0) of a
nonlinear program is χ active at a point x̃∗ if we have that |g̃(x̃∗)| � χ.

Definition ((ε, χ) second-order stationary point). We say that the point x̃ =

(x, y, w, z, ζ1, ζ2), together with a Lagrange multiplier λ̃ = (λ , μ, θ+n, θ−n, ηy, ηw,
αc, α1, α2) is an (ε, χ) second-order point of (OMPV(c)) if

1. x̃ = (x, y, w, z, ζ1, ζ2), is an ε stationary point of (OMPV(c)) that satisfies
exactly the primal-dual complementarity involving the slack variables ηTy y =

0, ηTww = 0.
2. uTΛc

xx(x̃, λ̃)u > 0 for any u that is at the same time in the null space of the
gradients of the active bound constraints of (OMPV(c)) and null space of a
subset of the χ-active nonbound constraints of (OMPV(c)).

Here, Λc(x̃, λ̃) is the Lagrangian function of (OMPV(c)). For a general nonlinear
program that satisfies linear independence and strict complementarity at a solution,
the above condition is equivalent to second-order sufficient conditions. In most other
cases, it is weaker than second-order sufficient conditions.

We need the two sequences ε, χ to define our approximate second-order sufficient
point. If one uses ε to define the almost active constraints, and if all constraints that
are active at x̃∗ = (x∗, y∗, w∗, z∗, ζ∗1 , ζ

∗
2 ) are infeasible at x̃ = (x, y, w, z, ζ1, ζ2), and

if ε is too small, then no constraint will be ε active and the second condition of our
definition becomes too strong.

We denote by A(χ, x̃) the matrix formed by the gradients of the active bound
constraints and χ active nonbound constraints of (OMPV(c)). The second condition
of the above definition can be verified in the process—commonly encountered in active-
set methods—of solving a linear system with the following matrix:[

Λxx(x̃, λ̃) AT (χ, x̃)
A(χ, x̃) 0

]
.

Special versions of the symmetric indefinite factorization will reveal whether this
matrix has the inertia that is compatible with the second-order condition [5].

It thus seems possible to define an active-set approach that, for given ε > 0 and
χ > 0, determines an (ε, χ) second-order stationary point. Nevertheless, we are not
aware at this time of any software package that is guaranteed to provide such points.
Moreover, our definition is unlikely to work for algorithms such as interior point
approaches. We are currently investigating (1) ways of defining alternate approxi-
mate second-order stationary points that can accommodate approaches other than
active-set approaches, and (2) whether currently used active-set approaches satisfy
our assumptions.

Theorem 3.1. Assume that the problem (OMPV) satisfies A1, A2, and A3
and that every instance of the problem (OMPV(cn)) is solved with an algorithm that
satisfies Alg1. Assume that x̃n = (xn, yn, wn, zn, ζn1 , ζ

n
2 ) is an (εn, χn) second-order

stationary point of (OMPV(cn))∀n = 1, 2, . . . ,∞ and for sequences {cn} , {εn} , {χn}
that satisfy limn→∞ cn = ∞, limn→∞ εn = 0, limn→∞ χn = 0, and limn→∞ cnεn = 0.



134 MIHAI ANITESCU

Let (x∗, y∗, w∗, z∗, ζ∗1 , ζ
∗
2 ) be an accumulation point of this sequence. If (x∗, y∗, z∗, w∗)

satisfies MPCC-LICQ, then (x∗, y∗, w∗, z∗) must be an M-stationary point of (OMPV).

Proof. The argument from [24, Thm. 3.3] that was used to prove the similar result
for the case when εn = 0, χn = 0, applies here. We outline the main elements and
the way the argument continues to apply for approximate stationary points.

The limit point of the sequence x̃n = (xn, yn, wn, zn, ζn1 , ζ
n
2 ) is (x∗, y∗, w∗, z∗, ζ∗1 ,

ζ∗2 ). Using Theorem 2.5, we obtain that 0 = ζ∗1 = ζ∗2 and that (x∗, y∗, w∗, z∗), with
the associated MPCC multiplier, is a C-stationary point. Note that since MPCC-
LICQ holds, the MPCC multiplier must be unique. Assume now that the limit point
(x∗, y∗, w∗, z∗, 0, 0) is not an M-stationary point. This means that, for the unique
MPCC multiplier

(
λ∗, μ∗, θ∗, η̂∗y , η̂

∗
w

)
, there exists an index kC , kC ∈ {1, 2, . . . , nc}

such that η̂∗w,kC < 0 and η̂∗y,kC < 0.

If we follow the logic we went through to obtain (2.10), starting from (2.5), as
well as the definition of an ε stationary point, this means that for any n there exists a

multiplier λ̃
n

=
(
λn, μn, θ+n, θ−n, ηny , η

n
w, α

n
c , α

n
1 , α

n
2

)
of (OMPV(cn)) such that ynkC <

0, wn
kC < 0, ηny,kC = 0, ηnw,kC = 0, ζn2 > 0, αn

2 = 0. Therefore, the bound constraints
ykC � 0, wkC � 0 must be inactive at the current n, and we must also have that
αn
c = cn + tnα2 = cn + O(εn). Moreover, any nonbound constraint of (OMPV(cn))

that is χn active must be a relaxed active constraint of (OMPV) at (x∗, y∗, w∗, z∗).
In addition, following again the proof of Theorem 2.5, used to obtain (2.10), starting
from (2.5), we obtain that the MPCC multipliers corresponding to the index kC must
satisfy η̂∗y,kC = limn→∞ αn

cw
n
kc < 0, η̂∗w,kC = limn→∞ αn

c y
n
kc < 0. In particular, this

means that the sequence
wn

kc

yn
kc

is lower bounded away from 0.

Now choose a vector dn = (dnx , d
n
y , d

n
w, d

n
z ) that satisfies the following constraints:

∇xgi(x
n)dnx = 0, i : gi(x

∗) = 0,
∇xh(xn)dnx = 0,

∇(x,y,w,z)F (xn, yn, wn, zn)
(
dnx , d

n
y , d

n
w, d

n
z

)T
= 0,

dny,k = 0, k : y∗k = 0, k �= kC ,

dnw,k = 0, k : w∗
k = 0, k �= kC ,

dny,kC = 1,

dnw,kC = −wn
kC

yn
kC

.

Since the limit point (x∗, y∗, w∗, z∗) satisfies MPCC-LICQ, a vector dn = (dnx , d
n
y ,

dnw, d
n
z ) must exist for n sufficiently large. In addition, from (a) our observation that

any nonbound constraint of (OMPV(cn)) that is χn active must be a relaxed active
constraint of (OMPV) at (x∗, y∗, w∗, z∗), and (b) since the constraints ykC � 0, wkC �
0 are inactive at x̃n = (xn, yn, wn, zn, ζn1 , ζ

n
2 ), it follows that d̃n = (dnx , d

n
y , d

n
w, d

n
z , 0, 0)

is in the null space of the gradients of the active bound constraints and χn active
nonbound constraints. Consider the Lagrangian of (OMPV(c)),

Λc(x̃, λ̃) = f(x, y, w, z) + g(x)Tλ + h(x)Tμ + F (x, y, w, z)T (θ+ − θ−) + yT ηy
+ wT ηw + αcy

Tw + (c− eTnc+lθ
+ − eTnc+lθ

− − α1)ζ1 + (c− αc − α2)ζ2.

Following the assumption that x̃n = (xn, yn, wn, zn, ζn1 , ζ
n
2 ), together with the multi-

plier λ̃
n

=
(
λn, μn, θ+n, θ−n, ηny , η

n
w, α

n
c , α

n
1 , α

n
2

)
, is an (εn, χn) second-order stationary

point, we must have that d̃n,T∇x̃x̃Λcn(x̃n, λ̃n)d̃n � 0.
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Following the expression of the Lagrangian of (OMPV(c)) and the definition of
dn, and since λn, μn, θ+,n, θ−,n are bounded, we obtain that

d̃n,T∇x̃x̃Λcn(x̃n, λ̃n)d̃n = −αn
c

wn
kc

ynkc

+ O(1).

However, as we argued in the beginning of this proof, the fraction in the previous
equation is lower bounded away from 0, whereas we have that αn

c → ∞, which means
that lim sup d̃n,T∇x̃x̃Λcn(x̃n, λ̃n)d̃n < 0.

This contradicts the assumption that x̃n is an (εn, χn) second-order stationary
point, which in turn contradicts our assumption that (x∗, y∗, w∗, z∗) is not an M-
stationary point. Therefore, (x∗, y∗, w∗, z∗) is an M-stationary point, and the proof
is complete.

An important question is whether the result can be improved to show convergence
to a strongly stationary point when MPCC-LICQ holds. The M-stationarity result
can be enhanced when ULSC holds at the convergence point. The following theorem
goes back to a result from [13] for a smoothing method and has also been stated in [24]
for the regularization method, in which each subproblem is solved exactly (though, in
practice, this may take an infinite number of steps). We formally state this result in
the following.

Theorem 3.2. If, in addition to the assumptions of Theorem 3.1, we have
that ULSC holds at the accumulation point (x∗, y∗, w∗, z∗), then (x∗, y∗, w∗, z∗) is
a strongly stationary point and, as a result, a B-stationary point.

Proof. Since MPCC-LICQ holds at the solution, there exists a unique MPCC
multiplier that satisfies the M-stationarity conditions. From the uniqueness property,
the same multiplier must also satisfy ULSC, which, together with the M-stationarity
conditions, implies that (x∗, y∗, w∗, z∗) is a strongly stationary point of (OMPV).
Following [23, Thm. 4], we get that the point must also be a B-stationary point.

3.1. M-stationary points in finite arithmetic. In this subsection we discuss
whether M-stationary points and strongly stationary points can be distinguished in
finite arithmetic.

The following result is in the vein of backward error analysis, and it shows that
in any neighborhood of an M-stationary point there is a strongly stationary point of
a perturbed problem. The result is stated for (OMPV), though it can be immediately
extended to the entire MPCC class. Note that we use no other property of (OMPV)
except the twice continuous differentiability of the data.

Theorem 3.3. Assume that (x∗, y∗, w∗, z∗) is an M-stationary point of (OMPV).
Then, for any δ > 0, the following exist:

1. A perturbation fδ(x, y, w, z)of the objective function f(x, y, w, z) that satisfies∥∥∇x̃f
δ(x, y, w, z) −∇x̃f(x, y, w, z)

∥∥ � δ ∀ x̃ = (x, y, w, z) in a neighborhood
of (x∗, y∗, w∗, z∗).

2. A vector lδF that satisfies
∥∥lδF∥∥ � δ.

3. A point (xδ, yδ, wδ, zδ) that satisfies
∥∥(xδ, yδ, wδ, zδ) − (x∗, y∗, w∗, z∗)

∥∥ � δ
and that is a strongly stationary point for the perturbed problem

(δOMPV )

min
x,y,w,z

fδ(x, y, w, z)

s.t. g(x) � 0,
h(x) = 0,
F (x, y, w, z) = lδF ,
y, w � 0,
(yTw = 0) yTw � 0.
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Note. A pure backward error result would require that the M-stationary point
at hand be the strongly stationary point of a nearby problem, which is generally not
true because of the structure of the problem.

Proof. By the definition of an M-stationary point, it follows that there exists an
MPCC multiplier (λ, μ � 0, θ, η̂y, η̂w) at x̃ = (x∗, y∗, w∗, z∗) that satisfies

∇xf(x∗, y∗, w∗, z∗)T + ∇xh(x∗)Tλ
+∇xg(x

∗)Tμ + ∇xF (x∗, y∗, w∗, z∗)T θ = 0,
∇yf(x∗, y∗, w∗, z∗)T + η̂y + ∇yF (x∗, y∗, w∗, z∗)T θ = 0,
∇wf(x∗, y∗, w∗, z∗)T + η̂w + ∇wF (x∗, y∗, w∗, z∗)T θ = 0,
∇zf(x∗, y∗, w∗, z∗)T + ∇zF (x∗, y∗, w∗, z∗)T θ = 0,
g(x∗) � 0, h(x∗) = 0, F (x, y, w, z) = 0,
μ � 0, y � 0, w � 0,

yTw = 0, g(x)Tμ = 0,
∑nc

k=1 yk |η̂y,k| = 0,
∑nc

k=1 wk |η̂w,k| = 0,

in addition to the sign condition on the multipliers η̂y, η̂w associated with the variables
involved in the complementarity constraints. These conditions are

∀k = 1, 2, . . . , nC , η̂y,kη̂w,k � 0 and

{
η̂w,k < 0 ⇒ η̂y,k = 0,
η̂y,k < 0 ⇒ η̂w,k = 0.

To simplify the notation, we assume without loss of generality that the negative
multipliers appear only in the y variables. In turn, this assumption implies that there
is a partition K̃ ∪ K̃c = 1, 2, . . . , nC that satisfies

k ∈ K̃ ⇒ η̂y,k < 0, η̂w,k = 0,

k ∈ K̃c ⇒ η̂y,k � 0, η̂w,k � 0.

We now construct the family of points

x̃(t) = (x(t), y(t), w(t), z(t)),
x(t) = x∗, y(t) = y∗, z(t) = z∗,

wk(t) = w∗
k, k ∈ K̃c,

wk(t) = w∗
k − t, k ∈ K̃.

We have that the point x̃(t) satisfies

∇xf(x∗, y∗, w(t), z∗)T + ∇xh(x∗)Tλ
+∇xg(x

∗)Tμ + ∇xF (x∗, y∗, w(t), z∗)T θ = lx(t),
∇yf(x∗, y∗, w(t), z∗)T + η̂y + ∇yF (x∗, y∗, w(t), z∗)T θ = ly(t),
∇wf(x∗, y∗, w(t), z∗)T + η̂w + ∇wF (x∗, y∗, w(t), z∗)T θ = lw(t),

∇zf(x∗, y∗, w(t), z∗)T + ∇zF (x∗, y∗, w(t), z∗)T θ = lz(t),
g(x∗) � 0, h(x∗) = 0, F (x∗, y∗, w(t), z∗) = lF (t),

μ � 0, y∗ � 0, w(t) � 0, y∗,Tw(t) = 0,
g(x∗)Tμ = 0,

∑nc

k=1 y
∗
k |η̂y,k| = 0,

∑nc

k=1 w
∗
k |η̂w,k| = 0.

Since from A1 the data of (OMPV) are twice continuously differentiable, we have
that there exists cl > 0 depending only on the point (x∗, y∗, w∗, z∗) such that the
residuals satisfy ‖lx(t), ly(t), lw(t), lz(t), lF (t)‖ � clt∀ t sufficiently small. There exists

a tδ such that, ∀ t � t
δ

we have, at the same time,

‖(x(t), y(t), w(t), z(t)) − (x∗, y∗, w∗, z∗)‖ � δ and ‖lx(t), ly(t), lw(t), lz(t), lF (t)‖ � δ.
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After defining lδF = lF (tδ), fδ(x, y, w, z) = f(x, y, w, z) − xT lx(tδ) − yT ly(t
δ) −

wT lw(tδ) − zT lz(t
δ), and (xδ, yδ, wδ, zδ) = (x(tδ), y(tδ), w(tδ), z(tδ)), the conclusion

of the theorem follows.
If the point toward which we are converging is an M-stationary point that satisfies

MPCC-LICQ and that is not a strongly stationary point, then a descent direction can
be found [14]. In that sense, Theorem 3.1 is still weaker than the ideal result, which
is that if MPCC-LICQ holds at the point toward which we are converging, then that
point is strongly stationary and a B-stationary [14, 23].

However, the preceding theorem shows that, in finite arithmetic, one may not
be able use only the signs of the multipliers to predict whether we are converging
to a strongly stationary point (xδ, yδ, wδ, zδ) or to a proper M-stationary point (x∗,
y∗, w∗,z∗), where descent is still possible. This point will be demonstrated later
with a numerical example. To guarantee that one can escape a proper M-stationary
point, at least when MPCC-LICQ holds, one has to combine a nonlinear programming
algorithm with an active-set method of the type studied in [14]. How to robustly
switch between the two is the subject of future research.

4. Conditions for global convergence. To obtain a global convergence result,
we need to ensure that the iterates do not drift away to ∞. To achieve such a result,
we make two more assumptions about the problem and one about the algorithm used
to solve the relaxed problem (OMPV(c)).

A4. The penalty function ψ(x, y, w, z) = ||F (x, y, w, z)||∞+yTw has bounded level
sets over the set defined by the constraints g(x) ≤ 0, h(x) = 0, y ≤ 0, w ≤ 0.

A5. The objective function f(x, y, w, z) is bounded below over the same set.
Alg2. For any fixed value of c, the algorithm applied for solving the problem

(OMPV(c)) decreases the merit function f(x, y, w, z) + cψ(x, y, w, z).
Assumption Alg2 is quite natural in connection with the subproblem (OMPV(c)).

If the constraints g(x) and h(x) are linear, and if the algorithm applied is an SQP
algorithm that uses a positive definite matrix in the quadratic program (from a BFGS-
type approximation, for example), then one can show that for a fixed c the SQP
algorithm produces a sequence of decreasing values of f(x, y, w, z) + cψ(x, y, w, z),
much as in the case of the L∞ penalty function [3]. Assumption A5 is standard in most
global convergence results [8]. Assumption A4, however, seems to be quite restrictive
for general nonlinear programming, unless the feasible set is compact. Nevertheless,
we will show that, for the obstacle problem presented in section 5, the assumption
does hold. A similar condition was used to enforce boundedness of the iterates in [18],
for a different merit function, that did not enjoy the exactness property and could not
lead to the outcome of part 1 of Theorem 2.7 and can be expected to have a bounded
feasible set, which is the first prerequisite for A4 to hold. So for the case of MPCC,
A4 is not overly restrictive.

Theorem 4.1. Assume that (OMPV) satisfies A1–A5 and that the algorithm
used to solve the subproblems satisfies Alg1 and Alg2. Then the solution sequence
produced by the algorithm in Table 2.1 is bounded, and any accumulation point is a
C-stationary point.

Proof. Let Bf denote the lower bound of the objective function f(x, y, w, z),
which exists from A5. It then follows that the merit function Ψ(x, y, w, z, c) =
1
c (f(x, y, w, z) −Bf ) + ψ(x, y, w, z) is decreased at any step of the algorithm in Ta-
ble 2.1. When c is fixed, the decrease follows from Alg2. When c is increased,
Ψ(x, y, w, z, c) must decrease since, at that point, f(x, y, w, z) − Bf > 0. Therefore,
all the iterates (xn, yn, wn, zn) will satisfy ψ(xn, yn, wn, zn) < Ψ(xn,yn,wn, zn,cn) ≤
Ψ(x0, y0, w0, z0, c0). The conclusion follows from A4 and Theorem 2.5.
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We emphasize that the value of the lower bound Bf does not need to be known
for the decrease in the (unknown) merit function Ψ(x, y, w, z) to occur.

We note that global convergence results for methods that use a penalty term are
generally restricted to the case when the global solution of the subproblem is obtained
[8, Thm. 12.1.1]. In our case, local solutions of the relaxed/penalized subproblems
under the assumptions described here are sufficient.

5. The obstacle problem. As examples of problems that satisfy these conclu-
sions, we present several instances of the obstacle problem from [22]. This problem
concerns the optimization of an elastic membrane in contact with a rigid or elastic
obstacle. The design parameters quantify the shape of support of the membrane. The
discretized problem is the following:

(OBST)

min
x,y,w,z

f(x, z)

s.t. g(x) � 0,
−A(x)z + φ(x) = y,
k(φ(x) −A(x)z) + χ(x) − z = w,
y, w � 0,
(yTw = 0) yTw � 0.

Here all functions are differentiable with respect to their parameters. In addition,
for any x we have that the matrix A(x), which originates in the discretization of an
elliptic operator, is positive definite. The parameter k satisfies k � 0 and, if k = 0,
then the obstacle is rigid. The case k > 0 models the situation in which the obstacle
is flexible. The inequality constraints g(x) � 0 are box constraints on the design
parameters x.

Lemma 5.1. The problem (OBST) satisfies A1, A2, and A3.
Proof. Assumption A1 is satisfied immediately from the differentiability proper-

ties of all functions involved in the definition of the obstacle problem. The parameters
x satisfy box constraints, and therefore the functions g(x) are linear and always satisfy
A2.

To verify A3 for (OBST) in the (OMPV) framework, we have

F (x, y, w, z) =

(
y + A(x)z − φ(x),
w − k(φ(x) −A(x)z) − χ(x) + z

)

∇(y,w,z)F (x, y, w, z) =

(
I 0 A(x),
0 I I + kA(x)

)
.

We prove that the partition of ∇(y,w,z)F (x, y, w, z) into blocks corresponding to the
variables y, w, z is a mixed P partition, and thus A3 is satisfied. Take a vector
(ȳ, w̄, z̄)

T
that satisfies ∇(y,w,z)F (x, y, w, z) (ȳ, w̄, z̄)

T
= 0, that is,

ȳ + A(x)z̄ = 0, w̄ + (I + kA(x))z̄ = 0,

as well as ȳkw̄k � 0, k = 1, 2, . . . , nc. this implies that ȳT w̄ � 0. Solving for ȳ, w̄ from
the displayed equations, we see that this implies z̄TA(x)T (I + kA(x))z̄ � 0 which,
in turn, implies z̄TA(x)T z̄ + kz̄TA(x)TA(x)z̄ � 0. Since the matrix A(x) is positive
definite and k � 0, we obtain z̄ = 0, and subsequently ȳ = 0 and w̄ = 0. This proves
that A3 holds for (OBST) and completes the proof.

Concerning the level sets of ψ(x), we have the following lemma.
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Lemma 5.2. For any β > 0, we have that the set

Lβ = {(x, y, w, z) ∈ Rn+2nc+l|y ≤ 0, w ≤ 0, g(x) ≤ 0, ψ(x, y, w, z) < β}

is bounded. Therefore, problem (OBST) satisfies A4.
Proof. We start by assuming that the conclusion is false. This means there is a

β > 0 for which the level set Lβ is unbounded.
We first note that we have box constraints on the variables x, which means that

they can never be unbounded. Therefore, only the (y, w, z) part can be unbounded.
Thus, there exists a sequence x̃n = (xn, yn, wn, zn) such that Γn = ||(yn, wn, zn)|| →
∞ and ψ(xn, yn, wn, zn) < β. In turn, the last statement implies

||F (xn, yn, wn, zn)||∞ ≤ β, yn
T

wn ≤ β.(5.1)

Since the sequence

x̂n =

(
xn,

yn

Γn
,
wn

Γn
,
zn

Γn

)

is bounded, it admits a convergent subsequence. To simplify notation, we assume that
the whole sequence x̂n is convergent to a point (x, y, w, z), satisfying ||(y, w, z)|| = 1.

We divide the first equation in (5.1) by Γn, the second equation by (Γn)
2
, and we

take the limit in both as n → ∞. Since F (x, y, w, z) is linear in y, w, z, and since
the mappings χ(·) and φ(·) are continuous, we obtain that the limit point (x, y, w, z)
satisfies the relations

y + A(x)z = 0, w + kA(x)z + z = 0, wT y = 0.(5.2)

Solving for y and w from the first two equations, and replacing the results in the third
equation, we obtained zTA(x)T (kA(x) + I)z = 0. In turn, the fact that A(x) is a
positive definite matrix implies z = 0. Subsequently, from (5.2) we obtain w = y = 0.
This contradicts ||(y, w, z)|| = 1 and proves the claim.

We are now ready to state our main result for the obstacle problem.
Theorem 5.3. Assume that f(x, z), the objective function of (OBST) is bounded

below on the set g(x) ≤ 0, y ≤ 0, w ≤ 0. If the algorithm from Table 2.1 is applied to
(OBST) and the (OMPV(c)) subproblems are solved with an algorithm that satisfies
Alg1 and Alg2, then the sequence of iterates is bounded and any accumulation point
is a C-stationary point.

Proof. The result follows from Lemmas 5.1 and 5.2 and Theorem 4.1.

6. Numerical results. In this section we apply an algorithm like the one in
Table 2.1 to three instances of the obstacle problem. All problems have an objective
function that is nonnegative over the set defined by the parameter constraints and
the bound constraints on the variables y, w. Therefore Theorem 5.3 applies and, if
the algorithm we use satisfies Alg1 and Alg2, then any accumulation point of the
algorithm is a C-stationary point (and, from Theorem 2.7, even a strongly stationary
point if the penalty parameter remains bounded).

In their original form, the problems are similar to (OMPV) except that the con-
straints y, w ≤ 0 are replaced by y, w ≥ 0 [22]. One can immediately see that all
of the results in the preceding sections apply if we change the signs of the variables
y, w and correspondingly switch the signs of the multipliers ηw, ηy, η̂y, and η̂w. In all
problems, we deal with an elastic membrane hanging over an obstacle. The membrane
is attached to a support whose shape can change as a part of the optimization process.
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• The incidence set identification problem [22, sect. 9.4]. In this prob-
lem, the shape of the support must be changed so that the shape of the
contact region is as close as possible to a prescribed shape. The objective
function here is the discrepancy between the current contact region and the
sought after contact region. Therefore, in this problem the final objective
function should be as close as possible to zero. In Table 6.1, instances of this
problem are the is problems, which in reference [9] are called the incid-set

problems.
• The packaging problem with compliant obstacle [22, sect. 9.3]. In

this problem we try to find the shape of the support that will minimize
the area of the membrane, while keeping the membrane in contact with the
obstacle over at least a prescribed region. The obstacle here is compliant (it
can deform under pressure from the membrane). The objective function is
the area of the membrane. In Table 6.1, instances of this problem are the pc

problems, which in reference [9] are the pack-comp problems.
• The packaging problem with rigid obstacle [22, sect. 9.2]. This is the

same as the preceding problem except that now the obstacle is constrained to
be rigid. In Table 6.1, instances of this problem are the pr problems, which in
reference [9] are the pack-rig problems. The shape of the optimal membrane
for the problem pr-2-32 is displayed in Figure 6.1 both in a transparent
fashion on top of the parabolic obstacle and by itself with the final mesh
projected on the bottom plane.

The additional constraints of the problems that would not fit within A3 are
treated by means of a penalty function. We emphasize that this was not a choice
we made in order to have the problems fit our framework. The use of a penalty
function was the modeling choice from [22], and it was necessary there for the com-
putation of the generalized gradient. Therefore, the problems solved here have the
same formulation as [22].

For each problem we have six variants. We consider three different grid sizes, all
related to a finite element discretization: 8 × 8, 16 × 16, and 32 × 32. The names of
the associated problems contain 8, 16, or 32. We also consider two types of obstacles.
The first obstacle is linear [22, Ex. 9.1]. The corresponding problems have in their
names the digit 1. The second obstacle is parabolic [22, Ex. 9.2]. The corresponding
problems have in their names the digit 2.

The problems have been modeled using the AMPL modeling language [12], start-
ing from the AMPL model files from the MacMPEC library of Sven Leyffer [9, 17].
We have implemented the algorithm in Table 2.1 as an AMPL script. We chose the
following parameters: q = 2, K = 10, c0 = 10, and εn = 10−312−n. Note that
cn � 10n+1, which means that cnεn → 0, as required by our results. In addition, we
stop the algorithm in Table 2.1 when ζn1 + ζn2 ≤ 1e− 7.

To solve the nonlinear programming problem for fixed penalty parameter c, which
corresponds to the section following the label OMPV in Table 2.1, we have used the
interior point solver knitro [21]. To produce an εn stationary point, as required in
Table 2.1, we have set parameters opttol=feastol=εn. We have set the maximum
number of iterations of knitro to 4000.

Does knitro satisfy our assumptions? Since knitro is an interior point
algorithm, it satisfies the bound constraints in the definition of an ε stationary point
exactly. We note that knitro satisfies a weaker version of the property Alg1, where
MFCQ is replaced by LICQ [21]. Note, however, that Alg1 is merely a way to ensure
that an approximate KKT point of (OMPV(c)) can be found. In all our experiments,
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knitro always returned an ε stationary point with a prescribed ε > 0. We cannot a
priori guarantee that Alg2 holds for knitro for any problem, because the algorithm
uses a completely different technique to approach the optimal point from that used
by SQP algorithms with an exact penalty function, for which Alg2 can be shown to
hold [3]. Nevertheless, Alg2 did hold for the examples we have tried (at least with
respect to the first and last iterates for a fixed penalty parameter c). As a result,
Theorem 5.3 applies to give global convergence to C-stationary points.

The problem of verifying the assumptions of Theorem 3.1, by either an a priori
guarantee or an a posteriori test, is more difficult. We need to guarantee that the
outcome of a given algorithm satisfies the approximate second-order conditions. Our
definition of second-order stationary points is oriented toward active-set methods and
cannot be guaranteed for knitro. Unfortunately, it also involves the use of derivatives
that are not interactively provided in AMPL, and we could not test for it, or for a
variant of it that may have been appropriate for interior point methods. In addition,
in order to guarantee that the assumptions of Theorem 3.1 hold, we need to verify
that MPCC-LICQ holds, which is also difficult to do while using AMPL. Therefore,
the only test that we performed on the outcome, with respect to convergence to M-
stationary points, was to see whether the solution point and multipliers at hand satisfy
the M-stationarity condition.

For the following reasons, we did not choose an active-set software that was avail-
able to us to solve the subproblem (OMPV(c))—though it would seem appropriate
from the discussion following the definition of (ε, χ) second-order stationary points:

(1) Our attempts to solve the subproblems (OMPV(c)) by either lancelot or
minos were unsuccessful on problems for grids of size 16 and above (at least
in a reasonable amount of time).

(2) For the package SNOPT it has already been demonstrated that its elastic-mode
approach works on problems such as the one described here [9]. Similarly,
the package FilterSQP was proved to be efficient on problems like the one in
this work, due to the incorporation of a feasibility restoration phase.

(3) As far as we understand from the information available on the NEOS server [20],
neither the elastic mode of SNOPT nor the feasibility restoration of FilterSQP
can be turned off, at least not through the AMPL interface that we have used
to run our models. As a result, it did not seem likely that we would be able
to evaluate the benefit of our approach when used in conjunction with an
active-set algorithm.

We study whether we are approaching either a C-stationary point or an M-
stationary point. Following the proof of Theorem 2.5, once we have obtained the
Lagrange multipliers ηw, ηy of the constraints y, w ≤ 0 in (OMPV(c)), we can con-
struct the following approximation to the MPCC multipliers η̂w, η̂y:

η̂w,k = ηw,k + cyk, η̂y,k = ηy,k + cwk, k = 1, 2, . . . , nC .

This approximation is based on (2.5) and appears in the proof of the C-stationary
part of Theorem 2.5.

We now define the parameters

Cstat = min
k=1,2,...,nC

{η̂w,kη̂y,k}, Mstat = max
k=1,2,...,nC

min{η̂w,k, η̂y,k}.

To preserve the clarity of the presentation, we ignore as this point the superscript
n. Following the proof of Theorem 2.5, we get that, if c → ∞ and lim inf Cstat ≥ 0,
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Fig. 6.1. Solution of the obstacle problem with a rigid parabolic obstacle on a 32 × 32 mesh.

Table 6.1

Numerical results.

Problem Obj Uc Ut Cstat Mstat Feval KFeval
is-1-8 2.352e-08 0 5 4.10e-11 2.89e-09 204 390
is-1-16 8.639e-06 1 6 9.38e-08 7.85e-06 451 4001
is-1-32 5.904e-06 2 7 3.36e-08 5.52e-05 2906 1097
is-2-8 4.517e-03 1 6 5.12e-08 2.84e-07 302 1712
is-2-16 3.006e-03 1 6 1.27e-06 1.02e-03 434 4001
is-2-32 1.774e-03 2 5 1.01e-05 3.54e-03 2083 4001
pc-1-8 6.000e-01 1 5 6.32e-14 1.40e-03 75 4001
pc-1-16 6.169e-01 1 7 3.82e-21 5.65e-07 297 4001
pc-1-32 6.529e-01 2 6 9.60e-18 8.93e-05 4999 3081
pc-2-8 6.731e-01 1 5 1.01e-19 3.03e-06 78 1421
pc-2-16 7.271e-01 2 5 3.60e-16 1.77e-03 289 1358
pc-2-32 7.826e-01 2 6 1.84e-16 1.22e-04 645 1350
pr-1-8 7.879e-01 1 6 9.28e-18 1.03e-06 193 81
pr-1-16 8.260e-01 2 5 1.68e-16 1.14e-05 218 54
pr-1-32 8.508e-01 2 5 1.95e-17 1.17e-03 644 3040
pr-2-8 7.804e-01 1 6 3.20e-18 1.46e-06 183 33
pr-2-16 1.085e+00 3 6 2.32e-15 1.73e-05 342 208
pr-2-32 1.135e+00 3 6 1.36e-14 1.59e-04 661 2792

then any accumulation point of the algorithm in Table 2.1 is a C-stationary point.
In addition, when (OMPV) is formulated with the constraints y, w ≥ 0 (as we have
done in our AMPL files), the M-stationarity condition becomes η̂w,kη̂y,k ≥ 0 (C-
stationarity) and min{η̂w,k, η̂y,k} ≥ 0 for k = 1, 2, . . . , nc. As a consequence, when
lim sup Mstat ≤ 0, the limiting point is an M-stationary point.

The numerical results are organized in Table 6.1. We have displayed the name of
the problem (Problem), the final values of the objective function (Obj), the number
of penalty updates (Uc), the number of tolerance updates (Ut), the C-stationarity
indicator (Cstat), the M-stationarity indicator (Mstat), the number of function eval-
uations (Feval) needed by our implementation of the algorithm in Table 2.1, and the
number of function evaluations (KFeval) needed by knitro to solve (OMPV) directly.
The final tolerance parameter is ε = 10−312−Ut and the final penalty parameter is
c = 10−Uc−1. When knitro was used to solve the problems directly, it was used with
the default tolerance options opttol=feastol=1e-6.
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From Table 6.1 it cannot be claimed that one solver is constantly better than
the other (in terms of the number of function evaluations), though the elastic-mode
approach solves 2/3 of the problems faster than knitro. We see that knitro, when
applied directly to the chosen instances of the obstacle problem, stops with a maximum
number of iterations reached in five instances, which is a sign of lack of convergence.
Note that we went substantially beyond the 1,000 maximum iterations that represent
the default settings of knitro. However, our elastic-mode approach leads to resolution
of all the instances of these problems, as predicted by Theorem 4.1, although it also
uses knitro in the inner loop! This conclusion is in line with previous work that has
shown that the elastic-mode results in substantially more robust behavior of nonlinear
programming solvers when applied to MPCC [1, 9].

In verifying the conclusion of Theorems 2.7 and 3.1 for the numerical outcome at
hand, we have to decide whether c → ∞. In absence of any additional information,
such as whether the point toward which we are converging satisfies MPCC-LICQ and
whether strict complementarity holds, which cannot be extracted from those solvers
in a simple and robust manner, a robust test for this condition is difficult to design.
On the one hand, we can consider the values of the penalty parameter derived from
the value of Uc in Table 6.1, c = 10−Uc−1, to be sufficiently small as to indicate that
we have converged in all cases to strongly stationary points. This conclusion would
be in line with the fact that, in a statistical sense, this is the expected outcome [23],
as well as with preceding numerical investigations [9]. This outcome would confirm
the first case of Theorem 2.7. We note that the values of the objective function are
consistent with previous numerical experiments [9].

On the other hand, we see that Cstat � 0 in all cases, which validates the result of
Theorem 2.5. The conclusion about M-stationarity is less solidly founded. We notice
that Mstat is always less than 10−2, most of the times less than 10−4, and sometimes
as small as 10−8, whereas our stopping criterion required a feasibility of 10−7 in the
relaxed constraints. Attempts at requiring more stringent stopping criteria resulted in
failure or exceedingly long times of solving the subproblems. We cannot conclusively
state that lim sup Mstat is 0 (in the absence of a valid asymptotic test) though the
evidence seems to be leaning that way, at least for some of the numerical experiments.
We plan to study in the future the connection between such M-stationarity indicators
and the relevant tolerances.

As a side note, it is perhaps a little bit surprising that all the final values of
Mstat are positive, whereas negative values are what we are looking for in order to
ascertain M-stationarity. In any case, such an outcome does not contradict either of
our theoretical results.

On the issue of distinguishing between M-stationary points and strongly station-
ary points in finite arithmetic, we have observed what was predicted by Theorem 3.3.
For example, for problem pr-1-16 formulated with y ≥ 0 and w ≥ 0, the numeri-
cal results for index k = 19 were y19 = 1.039e − 05, w19 = 1.42e − 04, η̂y,19 = 0.14,
η̂w,19 = 1.03e−02. In absence of any additional information (such as whether MPCC-
LICQ holds, which cannot be tested for in AMPL), it is difficult to decide whether
the algorithm converges to an M-stationary point, at which descent is still possible, or
whether it converges to a strongly stationary point. The same situation, in general,
was noticed for all problems.

7. Conclusions. We have shown that any accumulation point of the elastic-
mode approach that solves subproblems inexactly, but with increasing accuracy, is a
C-stationary point of an optimization problem of parameterized mixed P variational
inequalities (Theorem 2.5). If, in addition, the accumulation point satisfies MPCC-
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LICQ and the solver used provides a point that approximately satisfies the second-
order conditions, then the resulting point is M-stationary (Theorem 3.1). We have
also shown that any M-stationary point of such problems is in the neighborhood of a
strongly stationary point of a perturbed problem for arbitrarily small perturbations
(Theorem 3.3). In practical terms, this means that strongly stationary points and
M-stationary points are difficult to distinguish in finite arithmetic.

In the process of guaranteeing that the iterates do not drift to infinity, we con-
struct a merit function with bounded level sets that is decreased at every step, even
when the penalty parameter is updated (Theorem 4.1). In turn, this ensures the
boundedness of the iterates of the algorithm. We have shown that optimization prob-
lems built around the obstacle problem [22, sect. 9] satisfy the problem assumptions
A1–A5 that we have used in proving our convergence results (Theorem 5.3). We have
implemented our algorithm and applied it to 18 instances of the obstacle problem from
the MacMPEC [17] library. The numerical results demonstrate our theoretical find-
ings as well as the significant increase in robustness that occurs when the elastic mode
is used with a nonlinear programming solver.
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1. Introduction and motivation. We consider the problem{
min
x∈Rn

f(x),

c(x) ≤ 0,
(1.1)

where f, c : Rn → R are convex functions which are, in general, nondifferentiable. We
note that there is no loss of generality in formulating (1.1) with only one constraint:
if necessary, c can be defined as the pointwise maximum of finitely many convex func-
tions, thus covering the case of multiple inequality constraints. In our development,
we assume that the Slater constraint qualification [28] holds; i.e., there exists x ∈ Rn

such that c(x) < 0. We also assume that an oracle is available, which for any given
x ∈ Rn computes the values f(x) and c(x), and one subgradient for each of the func-
tions, i.e., some gf ∈ ∂f(x) and some gc ∈ ∂c(x). We do not assume that there is any
control over which particular subgradients are computed by the oracle (for example,
for problems with more than one constraint, i.e., when c is defined by the maximum
operation, we may have subgradient information about only one constraint among
those with the largest value).

Nonsmooth optimization (NSO) problems are, in general, difficult to solve, even
when they are unconstrained. Among algorithms for NSO, we mention the subgradi-
ent [37], cutting-planes [6, 16], analytic center cutting-planes (ACCP) [12], and bundle
methods [14, 36]. Bundle and ACCP methods are stabilized versions of the cutting-
planes method, and they are currently recognized as the most robust and reliable NSO
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algorithms. ACCP methods are based on information given by a certain separation
procedure, which puts it somewhat outside of the oracle framework considered here.
In this paper we focus on bundle methods, specifically on their proximal form.

For unconstrained problems, iterates of a proximal bundle algorithm are generated
by solving a quadratic programming problem (QP). Each QP is defined by means
of a cutting-planes model of the objective function, stabilized by a quadratic term
centered at the best point obtained so far (which is referred to as the last descent or
serious step). An important feature of bundle methods is that the size of each QP
can be controlled via the so-called aggregation techniques; see, for instance, [3, Ch. 9]
and also section 2 below. We emphasize that the latter is crucial for any practical
implementation.

Constrained nonsmooth problems are more complex, and only a few practical
methods can be found in the literature. Convex problems with “easy” constraints
(such as bound or linear constraints) can be solved either by inserting the con-
straints directly into each QP or by projecting iterates onto the feasible set; see,
for instance, [11] and [20, 21]. For general convex constrained problems, such as prob-
lem (1.1) considered here, one possibility is to solve an equivalent unconstrained prob-
lem with an exact penalty objective function; see [18, 23]. This approach, however,
presents some drawbacks, which are typical whenever a penalty function is employed.
Specifically, estimating a suitable value of the penalty parameter is sometimes a deli-
cate task. Furthermore, if a large value of the parameter is required to guarantee the
exactness of a given penalty function, then numerical difficulties arise.

More recently, Fletcher and Leyffer [8] proposed the filter strategy [9] as an al-
ternative to the use of a penalty function in the framework of bundle methods for
solving (1.1). However, the development of [8] is quite involved and, in particular, the
resulting method appears considerably more complicated when compared, for exam-
ple, to standard bundle methods for the unconstrained case. Furthermore, techniques
for bundle compression and aggregation, although mentioned in [8], are not explicitly
addressed. As stated, the method of [8] does not guarantee that the number of con-
straints in the subproblems can be kept smaller than a given desired bound, even if
“inactive cuts” are removed from the bundle. Without this feature, a method cannot
be guaranteed to be practical.

For other bundle-type methods for (1.1) that do not use penalization, see [29, 30]
and [17, Ch. 5]. But it should be emphasized that in the cited methods all the serious
iterates, including the starting point, are required to be feasible. Therefore, there are
no concerns associated with the use of penalty functions and no need for alternative
strategies, such as filter methods. It should be noted that feasible methods suffer from
a serious drawback: computing a feasible point is required to start the algorithm. This
“phase I” general (nonsmooth) convex feasibility problem may be as difficult to solve
as (1.1) itself. As a result, the overall computational burden of solving the problem
may increase considerably. On the other hand, feasible methods can be useful in
applications in which problem function(s) may not be defined everywhere outside of
the feasible region. We point out that our method, if started from a feasible point,
stays feasible (see Proposition 4.1) and thus can operate “in feasible mode” if an
appropriate starting point is provided.

Before proceeding with our discussion, we introduce the improvement function
associated with problem (1.1). For a given x ∈ Rn, let

hx(y) := max{f(y) − f(x), c(y)}, y ∈ Rn.(1.2)

Among other things, it holds that x̄ is a solution to (1.1) if and only if x̄ solves the
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unconstrained problem of minimizing hx̄ (see Theorem 2.1 below). The use of hx̄ as
a theoretical tool in the convergence analysis of bundle-type methods can be traced
back to [29]; see also [17]. However, in none of these works is the improvement func-
tion used in the algorithms themselves. In addition, since in [29, 17] the infeasible
iterates are automatically declared “null steps,” the test to accept an iterate as the
next serious step involves the objective function f only. Thus the resulting sequence
of serious steps is both feasible and monotone in f . The piecewise linearization of the
improvement function has also been used in the methods of feasible directions for solv-
ing smooth problems (see, e.g., [39, 33]). However, those methods are again feasible
and the improvement function itself is not involved in the algorithms. To our knowl-
edge, the only algorithms where the improvement function has been used directly are
the (inexact) proximal point methods of [1]. In some sense, [1] can be considered as a
predecessor of the present paper, but keeping in mind the well-known important dif-
ferences between proximal point and bundle methods (conceptually solving proximal
subproblems, even if approximately, to obtain a new iterate versus accepting a new
iterate once a computationally realistic sufficient descent condition is satisfied).

Infeasible bundle methods are very rare. Prior to [8], we could find in the literature
only the “phase I–phase II” modification of the feasible method in [17, Ch. 5.7] and
the constrained level bundle methods of [25]. In [25], successive approximations of
the exact improvement function hx̄ are used in the algorithm. Specifically, in the
expression

hx̄(y) = max{f(y) − f(x̄), c(y)} = λf(y) + (1 − λ)c(y) − λf(x̄) for some λ ∈ [0, 1],

the values of λ and f(x̄) are estimated at each iteration. Those estimates are used
to define a certain gap function and an associated level parameter for the QP. It is
well known that level methods are especially suitable for those problems in which the
optimal value f(x̄) is either known or easy to estimate. This certainly is not true in
general. In fact, estimating the optimal value is a delicate issue, and inappropriately
chosen values may lead to infeasible QPs.

In this paper, we propose an infeasible proximal bundle method for solving (1.1),
which uses neither a penalty function nor a filter. With respect to [30, 17], the
advantage is that it is not necessary to compute a feasible point to start the algorithm.
Also, since serious steps can be infeasible, monotonicity in f is not enforced (outside of
the feasible set). Rather, there is a balance between the search for feasibility and the
reduction of the objective function. But this balance is followed in a manner different
from the filter strategy. We also emphasize that, compared to [8], our method is
much closer to the well-developed unconstrained bundle methods, and thus is easier
to implement. For example, we can manage the size of QPs by a suitable modification
of the standard aggregation techniques. Finally, compared to [25], QPs in our method
are always feasible independently of the choice of parameters.

Our approach can be viewed as an unconstrained proximal bundle method [14, 17,
3] applied to the function hx(·) directly, with the important distinction that x is the
last serious step, and thus, the function being minimized varies along the iterations;
see section 3 for details. We emphasize that serious steps need not be monotone in f
or feasible. Of course, the fact that the improvement function changes along the itera-
tions makes standard convergence results not applicable directly, and specific analysis
is needed. Actually, some subtle modifications are needed also in the bundle method
itself. Nevertheless, our approach is quite close to standard unconstrained bundle
methods. Apart from leading to relative ease in the computer implementation, this
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also opens the potential for extending various results obtained for the unconstrained
bundle methods to the constrained case, e.g., the variable metric [2, 26, 27] and quasi-
Newton [5, 32] techniques, methods with inexact data [13, 38], etc.

This paper is organized as follows. In section 2, we state some basic properties of
the improvement function and also give an overview of proximal bundle methods for
the unconstrained case, including the aggregation and compression techniques. This
is done in order to set the notation for the algorithm, and also to build a link from
the well-known unconstrained method to the constrained one. The algorithm itself is
stated in section 3, where some preliminary properties also are established. Conver-
gence analysis is provided in section 4, and computational experience is reported in
section 5.

Our notation is fairly standard. The Euclidean inner product in Rn is denoted
by 〈x, y〉 =

∑n
j=1 xjyj , and the associated norm by ‖ · ‖. The positive-part function

is denoted by x+ := max{x, 0}. For a set X in Rn, convX denotes its convex hull.
By ∂εh(x) we denote the ε-subdifferential of a convex function h at the point x ∈ Rn,
with ∂0h(x) = ∂h(x) being the usual subdifferential.

2. Preliminaries. We start with the properties of the improvement function to
be used in what follows. Next, we discuss some basics of the standard bundle methods,
mainly to fix notation and remind the reader of the principal relations. Also, we use
this discussion to point out where appropriate modifications would be needed when
passing from the unconstrained to the constrained case. No proofs are given in this
section. Proofs and calculations are worked out in detail for the constrained algorithm
in section 4.

2.1. The improvement function. Directly by the definition (1.2), the subdif-
ferential of the improvement function is given by

∂hx(y) =

⎧⎪⎨
⎪⎩
∂f(y) if f(y) − f(x) > c(y),

conv{∂f(y)
⋃
∂c(y)} if f(y) − f(x) = c(y),

∂c(y) if f(y) − f(x) < c(y).

(2.1)

In addition, we have that

hx(x) = c+(x) = max{c(x), 0} for all x ∈ Rn.

Finally (see, e.g., [17, Lem. 2.16, p. 17]), the following holds.
Theorem 2.1. Suppose that the Slater constraint qualification is satisfied for

(1.1). Then the following statements are equivalent:
(i) x̄ is a solution to (1.1);
(ii) min{hx̄(y) | y ∈ Rn} = hx̄(x̄) = 0;
(iii) 0 ∈ ∂hx̄(x̄), i.e., 0 ∈ ∂ϕ(x̄), where ϕ(·) := hx̄(·).

2.2. An overview of unconstrained bundle methods. Consider, for the
moment, the unconstrained problem

min
x∈Rn

h(x),

where h(·) is some fixed convex function. For the sake of simplicity, we also suppose
for now that there is no bundle compression/aggregation in the algorithm. We refer
the reader to [3, Ch. 9.3] for proofs of the relations stated in this subsection.
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Let � be the current iteration index. Bundle methods keep memory of the past
in a bundle of information

B� :=
⋃
i<�

{(yi, hi = h(yi), gih ∈ ∂h(yi))} and (xk, h(xk)), k = k(�),

where k(�) denotes the index of the last serious step preceding the iteration �. Serious
iterates, also called stability centers, form a subsequence {xk} ⊂ {yi} such that
{h(xk)} is strictly decreasing. This will be made more precise later.

We mention two peculiarities of our notation. When it is clear from the context,
we shall not explicitly specify the dependence of k on the current iteration index �.
Also, in text that follows we shall write i ∈ B� to mean that there exists an element
in the set B� indexed by i. Although this notation is formally improper, it does not
lead to any confusion, while simplifying some relations below.

The bundle of past information is used to define at each iteration a cutting-planes
model of the objective function,

ψ�(y) := max
i∈B�

{hi + 〈gih, y − yi〉}.

An equivalent expression, better suited for implementations, centers the cutting-
planes model at the stability center xk:

ψ�(y) = h(xk) + max
i∈B�

{−eki + 〈gih, y − xk〉},(2.2)

where the terms eki are the (nonnegative) linearization errors

eki := h(xk) − hi − 〈gih, xk − yi〉.
In particular,

gih ∈ ∂eki h(xk),

i.e., h(y) ≥ h(xk) + 〈gih, y − xk〉 − eki for all y ∈ Rn.
Since the linearization errors depend on xk, they need to be updated every time

xk changes (for this reason, they are indexed by both k and i). For further reference,
note that the linearization errors obviously depend also on h (h is fixed in this section,
but not in the rest of the paper). Thus in the update of the linearization errors in
our algorithm, we shall also have to account for an eventual change in h.

The advantage of expressing the model in the form of (2.2) is that it requires less
memory for storing the relevant information: the bundle becomes

B� =
⋃
i<�

{(eki ∈ R+, g
i
h ∈ ∂eki h(xk))} and (xk, h(xk)).

Given μ�, a positive proximal parameter, the next iterate y� is generated by solving
a QP reformulation of the problem

min
y∈Rn

ψ�(y) +
1

2
μ�‖y − xk‖2.

Clearly, y� is unique. Furthermore, it is characterized by the following conditions
(see [3, Lem. 9.8]):

y� = xk − 1

μ�
ĝ�, where ĝ� ∈ ∂ψ�(y

�),

ĝ� ∈ ∂ε̂k� h(xk), where ε̂k� = h(xk) − ψ�(y
�) − 1

μ�
‖ĝ�‖2 ≥ 0.
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An iterate y� is considered good enough to become the next serious step when
h(y�) provides a significant decrease (with respect to h(xk)), measured in terms of
a nominal decrease. Specifically, let m ∈ (0, 1) be a given parameter. The nominal
decrease is defined by

δ� := h(xk) − ψ�(y
�) − 1

2
μ�‖y� − xk‖2 = ε̂k� +

1

2μ�
‖ĝ�‖2 ≥ 0.

When y� satisfies the descent test

h(y�) ≤ h(xk) −mδ�,(2.3)

a serious step is declared: xk+1 = y�. Otherwise, y� is declared a null step and xk

remains unchanged.
The algorithm stops when δ� is small enough (when compared to a given toler-

ance). In this case, both ε̂k� and ‖ĝ�‖ are small and, since ĝ� ∈ ∂ε̂k� h(xk), for any

M > 0 and all y ∈ Rn such that ‖y−xk‖ ≤ M , the approximate optimality condition
h(y) ≥ h(xk) − ε̂k� −M‖ĝ�‖ holds.

We next consider the effect of compressing the bundle.

2.3. Aggregation technique. The number of constraints in the QP used to
generate y� is precisely the number of elements in the bundle B�. Obviously, one
has to keep this number computationally manageable. Thus, the bundle has to be
compressed when the number of elements reaches some chosen bound. This has to be
done without impairing convergence of the algorithm. For this purpose, the so-called
aggregate function is fundamental:

lk,�(y) := h(xk) − ε̂k� + 〈ĝ�, y − xk〉, k = k(�).

Note that this function can be defined directly from the aggregate couple (ε̂k� , ĝ
� ∈

∂ε̂k� h(xk)). Alternatively, the same information can be retrieved from all the “active”

bundle elements, i.e., those defining ψ�(y
�).

Before looping from � to � + 1, the next bundle B�+1 is defined. If the bundle
has reached its maximum allowed size, it must be compressed. Reducing the bundle
amounts to replacing (at iteration �+ 1) the cutting-planes model (2.2) with another
function, defined by a smaller number of cutting-planes, which we shall still denote
by ψ�+1. As pointed out in [7, sect. 4, eqs. (4.7)–(4.9)], one can use any collection of
functions satisfying (for all y ∈ Rn) the following three conditions:

ψ�(y) ≤ h(y) for all � ≥ 1,(2.4a)

lk(�),�(y) ≤ ψ�+1(y) for those � for which y� is a null step,(2.4b)

h� + 〈g�h, y − y�〉 ≤ ψ�+1(y) for those � for which y� is a null step.(2.4c)

We note that (2.4a) will not be automatic in our setting. Indeed, as already mentioned,
the function h will change after every serious step. As a consequence, (2.4a) can be
violated unless appropriate care is taken.

Suppose, however, that (2.4a) holds. In terms of bundle information, the remain-
ing conditions mean that it is enough for the new bundle to contain both the aggregate
information (to ensure (2.4b)) and the last generated information (to ensure (2.4c)).
These values are, respectively, (ε̂k� , ĝ

�) and (y�, h�, g
�
h ∈ ∂h(y�)). In particular, at

any iteration, the bundle can contain as few elements as we wish (as long as the two
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specified above are included). Note also that if the bundle is not compressed at the
current iteration, then the aggregate information is redundant (because it is already
contained in the bundle elements, which are active in the QP subproblem).

Accordingly, we shall write the next bundle in the form

B�+1 := Boracle
�+1

⋃
Bagg
�+1 and (xk, h(xk)), k = k(� + 1), the last serious iterate,

where the oracle bundle is any set such that

{(ek� , g�h)} ⊆ Boracle
�+1 ⊆

⋃
i≤�

{(eki ∈ R+, g
i
h ∈ ∂eki h(xk))},

while the aggregate bundle satisfies

{(ε̂k� , ĝ�)} ⊆ Bagg
�+1 ⊆

⋃
i≤�

{(ε̂ki ∈ R+, ĝ
i ∈ ∂ε̂ki h(xk))}.

The leftmost inclusions in the last two relations above need to be specified explicitly
only when there is bundle compression at the �th iteration (if there is no compression,
they hold automatically because of the rightmost inclusions). We note that, similarly
to updating the linearization errors eki , the quantities ε̂ki also need to be updated every
time k changes; see (2.5) and (3.6) below.

The next cutting-planes model is then defined by

ψ�+1(y) = h(xk) + max

{
max

i∈Boracle
�+1

{−eki + 〈gih, y − xk〉},

max
i∈Bagg

�+1

{−ε̂ki + 〈ĝi, y − xk〉}
}
, k = k(� + 1).

As already mentioned, every time a new serious step has been declared, both lin-
earization and aggregate errors need to be modified. The update aims at satisfying
the key relations

gih ∈ ∂eki h(xk+1) and ĝi ∈ ∂ε̂ki h(xk+1),

which should hold for all elements in the new bundle. The following simple updating
formulas guarantee the required properties (when h is fixed):{

ek+1
i := eki + h(xk+1) − h(xk) + 〈gih, xk − xk+1〉 if i ∈ Boracle

�+1 ,

ε̂k+1
i := ε̂ki + h(xk+1) − h(xk) + 〈ĝi, xk − xk+1〉 if i ∈ Bagg

�+1.
(2.5)

We next show how to adapt the unconstrained bundle methodology described above
to solving the constrained problem (1.1).

3. Defining the constrained algorithm. Given the last serious iterate xk

(we note that the starting point x0 is considered a serious iterate), we apply an
unconstrained proximal bundle method to the function h(·) := hk(·) = hxk(·) until
the next serious iterate xk+1 is generated. At this time, we change h(·) to hk+1(·) =
hxk+1(·), make the necessary changes to the bundle, and repeat the process. We point
out that the development is not straightforward. For one thing, it is possible that
f(xk+1) > f(xk). As is easy to observe, in that case we have hk+1(·) ≤ hk(·). As
a consequence, the accumulated cutting-planes model for hk(·) may not be a valid
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(lower) approximation for hk+1(·). Thus, the model has to be revised and adjusted
to ensure that conditions (2.4a)–(2.4c) (in particular, (2.4a)) are satisfied for the new
h(·) := hk+1(·). Note that this adjustment is independent of compressing the bundle,
which will require additional care.

In the following, we explain how to build the model ψ� satisfying (2.4a)–(2.4c),
even when h(·) changes at a serious step.

3.1. Bundle information. Since h(·) varies with k, past information relevant
for constructing the model is no longer just (ei, g

i
h). In particular, separate information

about the objective and constraint functions needs to be kept. This information is
(fi = f(yi), ci = c(yi)) and (gif ∈ ∂f(yi), gic ∈ ∂c(yi)), or, equivalently, (efki , ec

k
i , g

i
f ∈

∂efki
f(xk), gic ∈ ∂eck

i
c(xk)), where the linearization errors for f and c, respectively, are

efki := f(xk) − fi − 〈gif , xk − yi〉,
(3.1)

ecki := c(xk) − ci − 〈gic, xk − yi〉.

The purpose of keeping the bundle information separated is twofold:
• First, knowing (fi, ci) makes it possible to compute the function and subgra-

dient values for different functions h; see Lemma 3.1 below.
• Second, as shown in Lemma 3.2 below, separate linearization errors can be

updated by a simple formula, even when h changes.
Therefore, we define

B� := Boracle
�

⋃
Bagg
� and (xk, f(xk), c(xk)), k = k(�), the last serious iterate,

with Boracle
� ⊆

⋃
i<�

{(
fi, ci, efki , ec

k
i , g

i
f ∈ ∂efki

f(xk), gic ∈ ∂eck
i
c(xk)

)}
(3.2)

and Bagg
� ⊆

⋃
i<�

{(ε̂ki , ĝi ∈ ∂ε̂ki hk(x
k))}.

Lemma 3.1. In the notation of (3.1) and (3.2), for each i ∈ Boracle
� , define{

eki := efki + c+(xk) and gihk
:= gif if fi − f(xk) ≥ ci,

eki := ecki + c+(xk) − c(xk) and gihk
:= gic if fi − f(xk) < ci.

(3.3)

Then eki ≥ 0 and gihk
∈ ∂eki hk(x

k).

Proof. By (3.1) and the convexity of f and c, efki ≥ 0 and ecki ≥ 0. Since also

c+(xk) ≥ 0 and c+(xk) − c(xk) ≥ 0, (3.3) implies that eki ≥ 0.
Recalling that hk(x

k) = c+(xk), we have to show that for all y ∈ Rn, it holds
that hk(y) ≥ c+(xk) + 〈gihk

, y − xk〉 − eki . By using the definitions of hk, of the

subdifferential, and of the errors efki , ecki , we obtain that

hk(y) = max

{
f(y) − f(xk)

c(y)

≥ max

{
fi − f(xk) + 〈gif , y − yi〉
ci + 〈gic, y − yi〉

= max

{
〈gif , y − xk〉 − efki
c(xk) + 〈gic, y − xk〉 − ecki .
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By adding and subtracting c+(xk) in the right-hand side of the relation above, and
using the definition of gihk

, we obtain that

hk(y) ≥ c+(xk) + 〈gihk
, y − xk〉 −

{
(efki + c+(xk)) if fi − f(xk) ≥ ci,

(ecki + c+(xk) − c(xk)) if fi − f(xk) < ci.

The result now follows from the definition of eki in (3.3).
The cutting-planes model associated with (3.2), (3.3) is given by

ψ�(y) = c+(xk) + max

{
max

i∈Boracle
�

{−eki + 〈gihk
, y − xk〉},

(3.4)

max
i∈Bagg

�

{−ε̂ki + 〈ĝi, y − xk〉}
}
, k = k(�).

For this model to satisfy (2.4a)–(2.4c) when passing to the iteration �+1, we consider
separately the two cases of the �th iteration being a null step and the �th iteration
being a serious step.

Suppose first that the QP subproblem defined with ψ� given by (3.4) generates y�

as a null step. By construction, the new bundle satisfies (3.2) and (3.3) with � replaced
by � + 1 (k remains the same). Thus, Lemma 3.1 holds, and gihk

∈ ∂eki hk(x
k) for all

i ∈ Boracle
�+1 . Likewise, aggregate subgradients satisfy the inclusion ĝi ∈ ∂ε̂ki hk(x

k) for

all i ∈ Bagg
�+1. Therefore, (2.4a) (with � replaced by � + 1) is automatically satisfied.

Finally, for conditions (2.4b) and (2.4c) to hold, it is enough to make sure that

{(ek� , g�hk
∈ ∂ek� hk(x

k))} ⊆ Boracle
�+1 and

{(ε̂k� , ĝ� ∈ ∂ε̂k� hk(x
k))} ⊆ Bagg

�+1 if there is compression.

Those inclusions are also automatically satisfied if the bundle is managed as in any
standard method; see Step 4 in Algorithm 3.1 below.

Therefore, when there is a null step, the update of the bundle (and of the model)
does not present any problem. This is as expected, since the function h(·) = hk(·) is
fixed between consecutive serious steps. The situation changes when y� is declared a
serious step. Specifically, the aggregate bundle elements need a special update. We
discuss this case next.

3.2. Adjusting the model after a serious step. Suppose that for some it-
eration � the descent test is satisfied (i.e., condition (2.3) with h replaced by hk) so
that a new stability center xk+1 = y� is generated. This means, in particular, that at
the next iterate we start working with the new function hk+1(·) = hxk+1(·).

As mentioned in [7], conditions (2.4a)–(2.4c) guarantee that the bundle technique
applied to the new function h(·) = hk+1(·) produces a descent step after a finite
number of null steps, or else the point xk+1 is a minimum of hk+1(·). However,
condition (2.4a) (with � = � + 1) is not automatic in our setting, and the model may
need to be properly adjusted. Indeed, even though

ψ�(y) ≤ hk(y),

and c+(xk) + 〈ĝi, y − xk〉 − ε̂ki ≤ hk(y), i ∈ Bagg
� ,

the same inequalities may not hold with hk replaced by hk+1. Specifically, if f(xk) <
f(xk+1), which is possible, then we have that hk(y) ≥ hk+1(y). Thus, the key rela-
tions (2.4a)–(2.4c) are not guaranteed and, in general, do not hold.
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There are various ways to ensure (2.4a)–(2.4c) after a serious step is taken. In
fact, as discussed in [7], any approximation satisfying (2.4a) is acceptable—even a
bad one—because the future null steps satisfying (2.4b) and (2.4c) would eventually
build up a good approximation (of course, starting with a bad approximation is com-
putationally inefficient). We next present one approach to ensure that all bundle
elements correspond to appropriate approximate subgradients of the new function
hk+1 at xk+1 so that both convergence and computational efficiency are guaranteed.
For oracle bundle elements, we need only center (separate) linearization errors of f
and c at the new point xk+1. For the aggregate bundle elements, some special care is
needed.

Lemma 3.2. Let ψ� be defined by (3.4), using (3.2) and (3.3). Suppose that the
associated y� is declared a serious step, i.e., xk+1 = y�. Then the following holds:

(i) For each i ∈ Boracle
� , the linearization errors

efk+1
i

= efki + f(xk+1) − f(xk) + 〈gif , xk − xk+1〉,
ec

k+1
i = ecki + c(xk+1) − c(xk) + 〈gic, xk − xk+1〉

(3.5)

satisfy (3.1) with k = k + 1. As a result, gihk+1
∈ ∂ek+1

i
hk+1(x

k+1), where ek+1
i ≥ 0

and gihk+1
are defined in (3.3) with k replaced by k + 1.

(ii) For each i ∈ Bagg
� , define

ε̂k+1
i := ε̂ki + c+(xk+1) − c+(xk) + (f(xk+1) − f(xk))+ + 〈ĝi, xk − xk+1〉.(3.6)

Then ε̂k+1
i ≥ 0 and ĝi ∈ ∂ε̂k+1

i
hk+1(x

k+1).

Proof. Let i ∈ Boracle
� . Because gif ∈ ∂efki f(xk), for all y ∈ Rn we have that

f(y) ≥ f(xk) + 〈gif , y − xk〉 − efki
= f(xk+1) + 〈gif , y − xk+1〉

− (efki + f(xk+1) − f(xk) + 〈gif , xk − xk+1〉).

Hence, gif ∈ ∂efk+1

i

f(xk+1). By the same argument, gic ∈ ∂eck+1
i

c(xk+1). Since f and

c are convex, and efki and ecki are nonnegative, (3.5) implies that efk+1
i

, ec
k+1
i ≥ 0.

The remaining assertion of item (i) then follows by applying Lemma 3.1, where the
quantities (�, k, efki , ec

k
i ) are replaced by (� + 1, k + 1, efk+1

i
, ec

k+1
i ), respectively.

Now, let i ∈ Bagg
� . By (3.2), ĝi ∈ ∂ε̂ki hk(x

k). Hence, for all y ∈ Rn, it holds that

hk(y) ≥ hk(x
k) + 〈ĝi, y − xk〉 − ε̂ki = c+(xk) + 〈ĝi, y − xk〉 − ε̂ki .(3.7)

In particular, for y = xk+1, using the definitions of hk and ε̂k+1
i , (3.7) yields

max{f(xk+1) − f(xk), c(xk+1)} ≥ c+(xk) + 〈ĝi, xk+1 − xk〉 − ε̂ki

= −ε̂k+1
i + c+(xk+1) + (f(xk+1) − f(xk))+.

Thus, ε̂k+1
i ≥ c+(xk+1) + (f(xk+1) − f(xk))+ − max{f(xk+1) − f(xk), c(xk+1)} ≥ 0.

Now rewrite (3.7) as follows:

hk(y) ≥ c+(xk+1) + 〈ĝi, y − xk+1〉 −
(
ε̂ki + c+(xk+1) − c+(xk) + 〈ĝi, xk − xk+1〉

)
.
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Using (3.6), we obtain that

hk(y) ≥ hk+1(x
k+1) + 〈ĝi, y − xk+1〉 − (ε̂k+1

i − (f(xk+1) − f(xk))+).(3.8)

The assertion of item (ii) follows from (3.8) if we establish that

hk+1(y) ≥ hk(y) − (f(xk+1) − f(xk))+ for all y ∈ Rn.(3.9)

We now prove (3.9).
If f(xk+1) ≤ f(xk), it easily follows that hk+1(y) ≥ hk(y) for all y ∈ Rn. This

obviously implies (3.9). Suppose now that f(xk+1) > f(xk). For y ∈ Rn such
that f(y) − f(xk+1) ≥ c(y), we have that hk+1(y) − hk(y) = −f(xk+1) + f(xk) =
−(f(xk+1)−f(xk))+, and so (3.9) holds. If f(y)−f(xk+1) < c(y) and f(y)−f(xk) ≤
c(y), then hk+1(y) = hk(y) = c(y), implying (3.9). Finally, if f(y) − f(xk+1) < c(y)
and f(y) − f(xk) > c(y), we have that hk+1(y) > f(y) − f(xk+1) = hk(y) + f(xk) −
f(xk+1), which again gives (3.9). The proof is complete.

As a consequence of Lemma 3.2, regardless of whether the �th iteration produced
a null step or a serious step, if

Boracle
�+1 ⊆

⋃
i≤�

{(
fi, ci, efk+1

i
, ec

k+1
i , gif , g

i
c

)}
and Bagg

�+1 ⊆
⋃
i≤�

{(ε̂k+1
i , ĝi)},

then the model

ψ�+1(y) = c+(xk) + max

{
max

i∈Boracle
�+1

{−eki + 〈gihk
, y − xk〉},

max
i∈Bagg

�+1

{−ε̂ki + 〈ĝi, y − xk〉}
}
, k = k(� + 1),

satisfies (2.4a) with � replaced by �+1, with h(·) = hk(·), and with k = k(�+1). Fur-
thermore, if (ε̂k� , ĝ

�) ⊆ Bagg
�+1, then ψ�+1 satisfies (2.4b), and if (f�, c�, ef�, ec�, g

�
f , g

�
c) ⊆

Boracle
�+1 , then ψ�+1 satisfies (2.4c).

3.3. An infeasible constrained proximal bundle method. We are now in
a position to give the algorithm in full detail.

Algorithm 3.1 (infeasible constrained proximal bundle method (ICPBM)).
Step 0. Initialization.

Choose parameters m ∈ (0, 1), tol ≥ 0, and an integer |B|max ≥ 2.
Choose x0 ∈ Rn. Set y0 := x0, and compute (f0, c0, g

0
f , g

0
c ). Set k =

0, � = 1, ef0 := 0, ec0 := 0 and define the starting bundles Boracle
1 :=

{(ef00, ec
0
0, f0, c0, g

0
f , g

0
c )} and Bagg

1 := ∅.
Step 1. Quadratic programming subproblem.

Choose μ� > 0 and compute y� as the solution to

min
y∈Rn

ψ�(y) +
1

2
μ�‖y − xk‖2,(3.10)

where ψ� is defined by (3.4) and (3.3). Compute

ĝ� = μ�(x
k − y�), ε̂k� = c+(xk) − ψ�(y

�) − 1

μ�
‖ĝ�‖2, δ� = ε̂k� +

1

2μ�
‖ĝ�‖2.

Compute (f�, c�, g
�
f , g

�
c) and (efk� , ec

k
� ) using (3.1) written with i = �.
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Step 2. Stopping test.

If δ� ≤ tol, stop.
Step 3. Descent test.

Compute h� := hk(y
�) = max{f� − f(xk), c�}.

If h� ≤ c+(xk) −mδ�, then declare a serious step. Otherwise, declare a null
step.

Step 4. Bundle management.

Set Boracle
�+1 := Boracle

� and Bagg
�+1 := Bagg

� .
If the bundle has reached the maximum bundle size, i.e.,
if |Boracle

�+1 ∪ Bagg
�+1| = |B|max, then:

Delete at least two elements from Boracle
�+1 ∪ Bagg

�+1.

Insert the aggregate couple (ε̂k� , ĝ
�) in Bagg

�+1.

Append (efk� , ec
k
� , f�, c�, g

�
f , g

�
c) to Boracle

�+1 .
Step 5. Model adjustment (serious step).

If y� is a serious step, then:
Define the next stability center: (xk+1, f(xk+1), c(xk+1)) := (y�, f�, c�).
Update the linearization errors for i ∈ Boracle

�+1 using (3.5) in Lemma 3.2.
Update the aggregate errors for i ∈ Bagg

�+1 using (3.6) in Lemma 3.2.
Set k = k + 1.

Loop. Set � = � + 1 and go to Step 1.
Some remarks are in order. Recalling the definition of hk(·), we conclude that if

the descent test is satisfied and a serious step is declared, then it must hold that

f(xk+1) − f(xk) ≤ c+(xk) −mδ�(3.11)

and

c(xk+1) ≤ c+(xk) −mδ�.(3.12)

In particular, if xk is infeasible, then f(xk+1) > f(xk) is possible (since c+(xk) > 0).
Therefore, the method is not monotone with respect to f when outside of the feasible
region. However, outside of the feasible region it is monotone with respect to c because
c(xk+1) < c+(xk) = c(xk) for xk infeasible. This seems intuitively reasonable: while it
is natural to accept the increase in the objective function value in order to decrease
infeasibility, it is not so clear why one would want to decrease the objective function
at the expense of moving away from the feasible region. The situation reverses when
xk is feasible. In that case, c+(xk) = 0 so that f(xk+1) < f(xk). But although (3.12)
implies that xk+1 is feasible too, it is possible that c(xk+1) > c(xk) (except when c(xk)
is exactly zero). This also appears completely reasonable: while preserving feasibility,
we allow c to increase (so that the boundary of the feasible set can be approached),
while at the same time obtaining a decrease in the objective function.

In Algorithm 3.1, we do not specify any rule for choosing the proximal parameter
μ�. Conditions that μ� should satisfy for convergence are very mild, and they are
stated in the convergence results of section 4. That said, a sound strategy for choosing
this parameter is important for computational efficiency. Actually, this is yet another
advantage of having our development closely follow the well-established and well-
tested unconstrained bundle methods: we can use the update rules for the former,
which are already known to perform well in practice; see, e.g., [22, 26, 35].
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Subproblem (3.10) is handled by solving its equivalent quadratic programming for-
mulation

c+(xk) +

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
(y,t)∈Rn+1

t +
1

2
μ�‖y − xk‖2,

s.t. −eki + 〈gihk
, y − xk〉 ≤ t, i ∈ Boracle

� ,

−ε̂ki + 〈ĝi, y − xk〉 ≤ t, i ∈ Bagg
�

(3.13)

or the dual of this problem. The dual of (3.13) can be written as a QP on the
unit simplex, for which specialized and highly effective methods are available; see,
e.g., [10, 19]. The number of variables in the latter is precisely the number of elements
in the bundle, which shows the importance of Step 4 of Algorithm 3.1.

The following well-known characterization of the solution of (3.10) follows from [3,
Lem. 9.8]. Those relations have already been discussed in section 2, but here we state
them in the notation of Algorithm 3.1.

Lemma 3.3. In the setting of Algorithm 3.1, it holds that
(i) y� = xk − 1

μ�
ĝ�, where ĝ� ∈ ∂ψ�(y

�).

(ii) ĝ� ∈ ∂ε̂k� hk(x
k), where ε̂k� ≥ 0.

In particular, it follows that δ� ≥ 0 in Algorithm 3.1. Moreover, if δ� = 0 for
some k, then ε̂k� = 0 and ĝ� = 0. Hence, 0 ∈ ∂hk(x

k), and xk is a solution to (1.1)
by Theorem 2.1.

4. Convergence results. We assume from now on that the stopping tolerance
tol is set to zero, δ� > 0 for all �, and thus Algorithm 3.1 does not terminate and
generates an infinite sequence of iterates. As usual in the convergence analysis of
bundle methods, we consider the following two possible cases: the number of serious
steps is either infinite or finite (in the second case, the last generated serious step is
followed by an infinite number of null steps).

In what follows, D denotes the feasible set of (1.1), i.e.,

D := {x ∈ Rn | c(x) ≤ 0}.

Given an index k of a serious step, let �(k) be the index of y�, which produced this
serious step, i.e., y�(k) = xk. Finally, the set Ls := {� | y� is a serious step} collects
the indices of serious steps in the sequence {y�}.

Proposition 4.1. For any serious iteration index k0 ≥ 0, it holds that

xk ∈ {x ∈ Rn | c(x) ≤ c+(xk0)} for all k ≥ k0.

In particular, if xk1 ∈ D for some k1 ≥ 0, then xk ∈ D for all k ≥ k1.
Proof. Fix an arbitrary k0 ≥ 0. If k0 is the last serious step (i.e., all the subsequent

steps are declared null), then the first assertion is trivial.
Suppose now that there exists the (k0 + 1)st serious step. If xk0 ∈ D, then (3.12)

implies that c(xk0+1) < c+(xk0) = c(xk0). Furthermore, if xk ∈ D for all k ≥ k0, then
repeating the above argument we conclude that the sequence {c(xk)} is nonincreasing.
In particular, c(xk) ≤ c(xk0) = c+(xk0) for all k ≥ k0.

Suppose now that xk1 ∈ D for some k1. If k1 is the last serious step, the second
assertion is trivial. If there exists the (k1 + 1)st serious step, then (3.12) implies that
c(xk1+1) ≤ −mδ�(k1+1) < 0. Using (3.12) recursively, we conclude that c(xk) < 0 =

c+(xk1) for all k > k1, i.e., xk ∈ D. Thus the second assertion holds.
Noting that c(xk) < c(xk0) = c+(xk0) for k0 ≤ k ≤ k1, and that c(xk) < 0 ≤

c+(xk0) for k > k1, concludes the proof.
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Proposition 4.2. Let f be bounded below on D, and suppose that Algorithm 3.1
generates an infinite number of serious steps. Then {ε̂k� }�∈Ls → 0. Furthermore,

(i) if

∑
�∈Ls

1

μ�
= +∞,(4.1)

then zero is an accumulation point of the sequence {ĝ�}�∈Ls
.

(ii) if for some μ̄ > 0 it holds that

μ� ≤ μ̄, � ∈ Ls,(4.2)

then {ĝ�}�∈Ls
→ 0.

Proof. We first show that ∑
�∈Ls

δ� < +∞.(4.3)

By Proposition 4.1, either xk ∈ D for all k, or there exists some index k1 such that
xk ∈ D for all k ≥ k1. We examine the two possibilities separately.

In the first case, (3.12) gives that

mδ�(k+1) ≤ c(xk) − c(xk+1), k ≥ 0.(4.4)

Thus, the sequence {c(xk)} is decreasing, and since xk ∈ D for all k, this sequence is
bounded below (by zero). It follows that it converges to some c̄ ≥ 0 and, furthermore,
that c(xk) ≥ c̄ for all k. Therefore, summing up the relation (4.4) over all � ∈ Ls, we
obtain that

∑
�∈Ls

δ� ≤
c(x0) − c̄

m
.

Consider now the second case, i.e., xk ∈ D for k ≥ k1 (and let k1 be the first index
such that xk1 ∈ D). Then (3.11) yields

mδ�(k+1) ≤ f(xk) − f(xk+1), k ≥ k1.(4.5)

Hence, the sequence {f(xk)}k≥k1 is decreasing and bounded below by f̄ = inf{f(x) |
x ∈ D}. Recall that for k < k1, xk ∈ D, and thus (4.4) holds. Summing up the
relations in (4.4) and (4.5), we obtain that

∑
�∈Ls

δ� =
∑

�∈Ls, �<�(k1)

δ� +
∑

�∈Ls, �≥�(k1)

δ� ≤
1

m
(c(x0) − c(xk1−1) + f(xk1) − f̄).

This completes the proof of (4.3).
By the definition of δ� in Algorithm 3.1, for all � it holds that

1

2μ�
‖ĝ�‖2 ≤ δ� and ε̂k� ≤ δ�.(4.6)

By (4.3), {δ�}�∈Ls → 0. It immediately follows that {ε̂k� }�∈Ls → 0. If (4.2) holds, it
clearly follows also that {ĝ�}�∈Ls → 0.
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To prove item (i), suppose that the sequence {‖ĝ�‖}�∈Ls
is bounded away from

zero. Then, by (4.6) and (4.1), we obtain that
∑

�∈Ls
δ� = +∞, in contradiction

with (4.3).
We next exhibit the conditions under which the serious iterates are bounded.
Proposition 4.3. Suppose that problem (1.1) has a solution x̄ and that Algo-

rithm 3.1 generates an infinite sequence of serious steps. Then the sequence {xk} is
bounded if either of the following conditions is satisfied:

(i) The feasible set D is bounded,
or

(ii) there exists some iteration index k1 such that f(x̄) ≤ f(xk) + c+(xk) for all
k ≥ k1 (in particular, this is true if xk1 ∈ D for some k1) and μ� ≥ μ̂, � ∈ Ls for
some μ̂ > 0.

Proof. Since D is a level set of c, it follows that if (i) holds, then the convexity
of c implies that all the level sets of c are bounded. Boundedness of {xk} now follows
from the first assertion of Proposition 4.1.

Suppose now that (ii) holds. (Observe that if xk1 ∈ D for some k1, then xk ∈ D
for all k ≥ k1 by Proposition 4.1. In that case, f(x̄) ≤ f(xk) = f(xk) + c+(xk) holds
automatically.) For � = �(k + 1), we have that

‖xk+1 − x̄‖2 = ‖xk − x̄‖2 − 2

μ�
〈ĝ�, xk − x̄〉 +

1

μ2
�

‖ĝ�‖2

≤ ‖xk − x̄‖2 +
2

μ�

(
hk(x̄) − hk(x

k) + ε̂k� +
1

2μ�
‖ĝ�‖2

)
(4.7)

= ‖xk − x̄‖2 +
2

μ�
(hk(x̄) − hk(x

k) + δ�),

where we have used the fact that xk+1 − xk = y� − xk = ĝ�/μ� and ĝ� ∈ ∂ε̂k� hk(x
k)

(see Lemma 3.3) and the definition of δ� in Algorithm 3.1.
Observe further that

hk(x̄) − hk(x
k) = max{f(x̄) − f(xk), c(x̄)} − c+(xk).

The quantity above is clearly nonpositive if f(x̄)−f(xk)−c+(xk) ≤ 0. This inequality
is ensured by the second condition in (ii) for all k ≥ k1. In that case, (4.7) (using also
that μ� ≥ μ̂ > 0) yields

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2 +
2

μ̂
δ�, k ≥ k1, � = �(k + 1) ∈ Ls.(4.8)

By (4.3) and [34, Lem. 2, p. 44], we conclude that the sequence {‖xk+1−x̄‖} converges.
Hence, the sequence {xk} is bounded.

The assumption that the feasible set of (1.1) is bounded was also imposed in [8,
20, 23, 25, 29]. According to Proposition 4.3, we do not need this assumption if
the iterates enter the feasible region. Methods in [17] are all feasible, except for
the “phase I–phase II” modifications briefly sketched in [17, Ch. 5.7]. The main
convergence result therein is [17, Thm. 5.7.4], which does not assume boundedness
of the feasible set, but also does not establish the existence of accumulation points
for infeasible sequences of serious steps. Rather, the analysis concerns properties of
accumulation points, without claiming their existence.

We next present the final convergence result for the case of the infinite number
of serious steps.
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Theorem 4.4. Assume that (1.1) satisfies the Slater constraint qualification and
that its solution set is nonempty. Suppose that Algorithm 3.1 generates an infinite
sequence of serious steps, which is bounded (this holds, for example, under any of the
two assumptions of Proposition 4.3).

If condition (4.1) holds, then the sequence {xk} has an accumulation point which
is a solution to (1.1).

If condition (4.2) holds, then all the accumulation points of {xk} are solutions
to (1.1).

If either (4.1) or (4.2) holds, then in the setting of Proposition 4.3(ii), the whole
sequence {xk} converges to a solution to (1.1).

Proof. Fix an arbitrary y ∈ Rn. By Lemma 3.3, for any serious step index k, it
holds that

hxk(y) ≥ c+(xk) + 〈ĝ�, y − xk〉 − ε̂k� , � = �(k) ∈ Ls.(4.9)

If (4.1) holds, there exists a subsequence of {ĝ�}�∈Ls converging to zero (by Proposi-
tion 4.2). Also, {ε̂k� }�∈Ls → 0. Since {xk} is bounded, taking a further subsequence
(if necessary), and passing to the limit in (4.9), we obtain that

hx̄(y) ≥ c+(x̄) + 〈0, y − x̄〉 − 0 = c+(x̄) = hx̄(x̄),

where x̄ is an accumulation point of {xk}. Since y ∈ Rn is arbitrary, the above
means that

min{hx̄(y) | y ∈ Rn} = hx̄(x̄) = c+(x̄).(4.10)

According to Theorem 2.1, it remains to prove that

hx̄(x̄) = c+(x̄) = 0.

If c+(x̄) > 0, by continuity it holds that c+(y) = c(y) > f(y) − f(x̄) for all y
in some neighborhood of x̄. Hence, in such a neighborhood, hx̄(y) = c+(y). It
follows from (4.10) that c+(·) has a local minimum at x̄, with c+(x̄) > 0. Since
c+(·) is convex, this minimum must be also global, which contradicts the fact that
D = {x ∈ Rn | c+(x) = 0} = ∅.

If (4.2) holds, then {ĝ�}�∈Ls → 0, and we can repeat the above argument by
passing to the limit along any convergent subsequence of {xk}.

Finally, in the setting of Proposition 4.3(ii), we can choose x̄ in (4.8) as an
accumulation point of {xk}, which is a solution to (1.1). Then {‖xk − x̄‖} conv-
erges. Since it has a subsequence converging to zero, it must be the case that {xk} →
x̄.

We conclude by considering the case when the number of serious steps is finite,
i.e., there exists �ast = max{� | � ∈ Ls}. We denote the corresponding last serious
iteration by k�ast. Then the function h(·) = hxk�ast (·) is fixed from that point on,
and the algorithm generates only null steps. The fact that xk�ast is a solution to (1.1)
can be proved similarly to standard results on bundle methods; see, e.g., [7]. Note,
however, that unlike [7] we do not assume that the proximal parameter is fixed after
the last serious step.

Theorem 4.5. Assume that (1.1) satisfies the Slater constraint qualification.
Suppose that Algorithm 3.1 takes a finite number of serious steps. If μ̄ ≥ μ�+1 ≥ μ�

for all � ≥ �ast, then xk�ast is a solution to (1.1).
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Proof. In what follows, we consider � ≥ �ast and denote h(·) = hxk�ast (·). Observe
first that for any y ∈ Rn,

lk,�(y) = h(xk�ast) − ε̂k� + 〈ĝ�, y − xk�ast〉
= ψ�(y

�) + μ�〈xk�ast − y�, y − y�〉.

In particular, lk,�(y
�) = ψ�(y

�) and, further,

lk,�(y) +
1

2
μ�‖y − xk�ast‖2

(4.11)

= ψ�(y
�) +

1

2
μ�‖y� − xk�ast‖2 +

1

2
μ�‖y − y�‖2, y ∈ Rn.

We have that

h(xk�ast) ≥ ψ�+1(x
k�ast)

≥ ψ�+1(y
�+1) +

1

2
μ�+1‖y�+1 − xk�ast‖2

(4.12)

≥ lk,�(y
�+1) +

1

2
μ�‖y�+1 − xk�ast‖2

= ψ�(y
�) +

1

2
μ�‖y� − xk�ast‖2 +

1

2
μ�‖y�+1 − y�‖2,

where the first inequality holds by (2.4a), the second inequality by the definition of
y�+1, the third by (2.4b) and μ�+1 ≥ μ�, and the equality holds by (4.11).

It follows from (4.12) that the sequence {ψ�(y
�) + 1

2μ�‖y� − xk�ast‖2} is nonde-
creasing and bounded above. Hence, it converges. Fixing y = xk�ast in (4.11), we
have that

h(xk�ast) ≥ lk,�(x
k�ast) =

(
ψ�(y

�) +
1

2
μ�‖y� − xk�ast‖2

)
+

1

2
μ�‖y� − xk�ast‖2,

where the inequality holds by (2.4a) and (2.4b). Since {ψ�(y
�) + 1

2μ�‖y� − xk�ast‖2}
converges, it follows that {y�} is bounded. Also, since {μ�} is bounded below by
μ�ast > 0, (4.12) implies that

{y�+1 − y�} −→ 0, � −→ ∞.(4.13)

Since {y�} is bounded, the convex function h can be considered Lipschitz-continuous
(on the bounded set of interest), and we further have that {ĝ�} is bounded on that
set. Hence,

L‖y�+1 − y�‖ ≥ h(y�+1) − h(y�)

≥ ψ�+1(y
�+1) − h(y�)

≥ 〈ĝ�, y�+1 − y�〉,

where the second inequality holds by (2.4a) and the third by (2.4c). Thus (4.13)
implies that

{h(y�) − ψ�+1(y
�+1)} −→ 0, � −→ ∞.(4.14)
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Let ȳ be any accumulation point of {y�}, i.e., {y�i} → ȳ as i → ∞. Note that,
by (4.13), we have that {y�i−1} → ȳ. Then (4.14) and the continuity of h imply that

{ψ�i(y
�i)} −→ h(ȳ), i −→ ∞.(4.15)

Moreover, for any y ∈ Rn, we have that

h(y) ≥ ψ�(y) ≥ ψ�(y
�) + 〈ĝ�, y − y�〉 = ψ�(y

�) + μ�〈xk�ast − y�, y − y�〉,

where the first inequality holds by (2.4a) and the other relations hold by Lemma 3.3.
Passing to the limit along the specified subsequence as i → ∞, and using (4.15), we
conclude that

h(y) ≥ h(ȳ) + μ̃〈xk�ast − ȳ, y − ȳ〉, y ∈ Rn,

where μ̃ is the limit of the (nondecreasing and bounded above) sequence {μ�}. It
follows that

μ̃(xk�ast − ȳ) ∈ ∂h(ȳ),(4.16)

or equivalently,

ȳ is the solution to min
y∈Rn

h(y) +
1

2
μ̃‖y − xk�ast‖2.

In particular, the latter means that

h(ȳ) +
1

2
μ̃‖ȳ − xk�ast‖2 ≤ h(xk�ast).(4.17)

On the other hand, since the descent test never holds for � ≥ �ast, we obtain that

h(y�) − h(xk�ast) > −mδ�

= −m

(
h(xk�ast) − ψ�(y

�) − 1

2
μ�‖y� − xk�ast‖2

)
≥ −m(h(xk�ast) − ψ�(y

�)).

Passing to the limit along the specified subsequence as i → ∞, and using (4.15), we
obtain that

0 ≥ (1 −m)(h(xk�ast) − h(ȳ)).

As m ∈ (0, 1), we have that h(xk�ast) ≤ h(ȳ). But then (4.17) implies that ȳ = xk�ast .
Recalling (4.16), we have that 0 ∈ ∂h(xk�ast), where h(·) = hxk�ast (·). By Theorem 2.1,
xk�ast is a solution to (1.1).

5. Preliminary computational experience. For our numerical assessment,
we use the following set of academic problems:

• CHAIN, a problem that minimizes a linear function over a piecewise quadratic
constraint set. The physical interpretation of this problem is to find the equilibrium
of a bidimensional chain formed by 20 links. The chain has end points fixed at the
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Table 5.1

Some problem data.

Name n f(x̄) Feasible x0 Infeasible x0

CHAIN 38 −9.103962328 see (5.1a) see (5.1b)

MAXQUAD 10 −0.368166 xi = 0 xi = 10

LOCAT 4 23.88676767 (15, 22, 26, 11) xi = 10

MINSUM 6 68.82956 (0, 0, 0, 0, 3, 0) xi = 10

ROSEN 4 −44 xi = 0 (−1, 2,−3,−4)

HILBERT 50 0 − xi = 10

coordinates (0, 0) and (1, 0). The length of each link should be less than 0.10; see [25,
p. 146]. To choose the starting point, we consider two chains lying on the horizontal
axis with end points as above, but different lengths:

Feasible: 20 identical links, each one of length 0.10.(5.1a)

Infeasible: 20 identical links, each one of length 0.12.(5.1b)

• MAXQUAD, a problem in which the piecewise quadratic objective function is
taken from [24, p. 151], and the constraint is given by c(x) = max{maxi=1,... ,10

|xi| ≤ 0.05,
∑10

i=1 xi ≤ 0.05}.
• LOCAT, a minimax location problem of dimension 4 with the objective function

given by the maximum of weighted normed functions, and with a piecewise quadratic
constraint [4].

• MINSUM, a minsum location problem of dimension 6, with the objective function
given by a weighted sum of norms, and a linear constraint [4].

• ROSEN, the Rosen–Susuki problem from [15, p. 66]. It has dimension 4, solution
x̄ = (0, 1, 2,−1), f(x) = x2

1 + x2
2 + 2x2

3 + x2
4 − 5x1 − 5x2 − 21x3 + 7x4, and

c(x) = max

⎧⎪⎨
⎪⎩
x2

1 + x2
2 + x2

3 + x2
4 + x1 − x2 + x3 − x4 − 8

x2
1 + 2x2

2 + x2
3 + 2x2

4 − x1 − x4 − 10

x2
1 + x2

2 + x2
3 + 2x1 − x2 − x4 − 5

⎫⎪⎬
⎪⎭ .

• HILBERT, a Hilbert-like feasibility problem of dimension n. For f(x) ≡ 0, the

constraint is given by c(x) = maxi≤n{maxk≤n |
∑n

=1
xj−1

i+k+j−2 |}, so x̄ = (1, . . . , 1) is
the solution.

Table 5.1 shows some additional relevant data for the problems, including the
dimensionality, optimal value, and starting points. For each of the problems we used
two starting points: feasible and infeasible. The exception is HILBERT, which is a
feasibility problem, and so only an infeasible starting point is of interest.

Since all these problems have known optimal values, the exact improvement func-
tion hx̄ is available. For comparison purposes, we first solve the unconstrained
problem of minimizing hx̄ using n1cv2, the proximal bundle method for uncon-
strained problems described in [26] (with QP subproblems solved by the method de-
scribed in [19]) and available upon request from www-rocq.inria.fr/estime/modulopt/
optimization-routines/n1cv2.html. These runs can be thought of as providing an ideal
situation, in which the constrained optimization problem (1.1) is replaced by a single
(equivalent) unconstrained problem. The obtained results can therefore be used as
a benchmark for icpbm, whose implementation was built on top of n1cv2 and, in
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Table 5.2

Summary of results.

CHAIN MAXQUAD LOCAT MINSUM ROSEN HILBERT

Iter Acc Iter Acc Iter Acc Iter Acc Iter Acc Iter Acc

n1cv2

x0 feas. 112 4 65 4 22 6 57 6 20 6 - -

n1cv2

x0 infeas. 167 4 97 5 33 6 63 6 22 6 31 7

icpbm

x0 feas. 210 5 160 6 19 6 86 5 38 5 - -

icpbm

x0 infeas. 361 4 241 5 30 6 115 5 37 5 29 5

particular, employs the same warm start-ups and update rules for all parameters,
including the crucial update of μ�.

All runs were performed on a 400 MHz Pentium II with 128 Mb RAM. The size
of the bundle was limited to 100 elements. Optimality is declared when

ε̂k� ≤ 10−4 and ‖ĝ�‖2 ≤ 10−8.

We note that the above split stopping criterion is generally preferable to the one based
on δ�, because the split criterion does not depend on μ�.

Our numerical results are reported in Table 5.2. For each run, and for both
algorithms, we give the total number of iterations (i.e., calls to the oracle) and the
final accuracy with respect to the (known) optimal value of the problem (i.e., the
number of exact digits in the final objective function value). In all cases, the final
value of the constraint obtained with icpbm was less than 10−4.

In our opinion, Table 5.2 shows a reasonable performance of icpbm. In all the
cases, the method succeeds in obtaining a reasonably high accuracy, at the price of less
than three times the number of oracle calls required by n1cv2 to solve the “ideal” un-
constrained problem of minimizing hx̄. Furthermore, the results for HILBERT (whose
objective function is constant) confirm that the two codes are almost equally efficient
when solving a problem of the same complexity (in that case, in some sense uncon-
strained). With respect to the influence of starting points, icpbm’s behavior does not
seem much affected by the choice of an infeasible x0. The slowest convergence is ob-
served in CHAIN and MAXQUAD. We conjecture that some undesirable bound interferes
with these problems (a similar behavior is observed for n1cv2).

In our opinion, comparing our numerical results with those obtained by other
authors is problematic, even if some of our test problems seem similar to theirs. First
of all, when discussing numerical results in NSO, an important issue arises, which
is sometimes referred to as the “curse of nondifferentiability.” Namely, because of
discontinuity of the subdifferential, even the same code can produce very different
outputs when running on different computational platforms; see [3, p. 102]. This phe-
nomenon, together with the lack of a standard, universally accepted NSO problems
library, makes broad numerical comparisons difficult. Thus some caution should be
exercised when making the conclusions. Nevertheless, the limited experience reported
above suggests that the approach presented in this paper is computationally viable.
But to be fair, we should mention that our results appear worse than those reported
in [23] for some of the same problems. However, we note that even our results for
minimizing the fixed “ideal” unconstrained function hx̄ by n1cv2 are worse than what



166 CLAUDIA SAGASTIZÁBAL AND MIKHAIL SOLODOV

0 5 10 15
  15

  10

  5

0

5

10

15

Last Iterations

C
on

st
ra

in
t V

al
ue

xo infeasible 

xo feasible 
_

_

_

Fig. 5.1. Constraint values for LOCAT.

is reported in [23]. For example, while on average the five algorithms in [23] solve
MAXQUAD in 33/42 iterations (for the feasible/infeasible starting point, respectively),
n1cv2 needs 65/97 iterations to minimize hx̄. We do not have a specific explana-
tion, as this could be caused by various implementational differences, all secondary
to the ideas of the respective methods themselves: rules for choosing the proximal
parameter, linesearch rules, bundle selection rules, oracle rules for choosing subgra-
dients, treating linear constraints and bounds inside or outside of QP subproblems,
etc.

In particular, one implementational difference, which can be significant, is that
in [23] some linear constraints are inserted into the QP subproblems, while we do not
make a distinction between linear and nonlinear constraints. In fact, the results of
ours that compare better to the results in [23] are precisely the two problems which do
not have any linear constraints, i.e., LOCAT and ROSEN (19/30 and 38/37 iterations for
icpbm versus 12/15 and 22/30 iterations on average for the five algorithms in [23]).
For this reason, we made a more thorough study of the performance of icpbm on
these two problems. Specifically, we analyze whether the algorithm is closely follow-
ing the (curved) boundary of the feasible set, a behavior that is known to prevent
fast convergence. Figures 5.1 and 5.2 show, for LOCAT and ROSEN, respectively, the
(last iterates of the) constraint values generated by icbpm, starting from feasible and
infeasible points.

In Table 5.2 we see that the faster convergence is achieved for LOCAT, which, as
shown in Figure 5.1, is not generating iterates close to the boundary of the feasible
set. By contrast, this phenomenon does occur in ROSEN: note that the scale in the
vertical axis of Figure 5.1 is 10 times larger than in Figure 5.2.

We next analyze the effect of constraint scaling, which is a general concern in con-
strained optimization. We ran icpbm on nine instances of the test problem LOCAT, with
the constraints multiplied by a factor in the range {0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100}.
We kept the same stopping tolerances as for the unscaled problem and obtained, for
all instances, between 6 and 9 digits of accuracy, with (unscaled) constraint values of
the order of 10−3 or better.

Figure 5.3 shows, for both feasible and infeasible starting points, icpbm’s total
number of iterations in relation to the scaling factor, displayed in the semilogarithmic
scale. As expected, the number of iterations increases as the factor gets bigger.
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However, the overall behavior of the algorithm is not dramatically changed, especially
for the infeasible starting point. More precisely, the average number of iterations for
the 9 instances with a feasible starting point is 28, about a 50% increase over the 19
iterations for the unscaled case in Table 5.2. In contrast, the infeasible starting point,
which could be thought of as more difficult, gave an average number of iterations
equal to 32, versus 30 iterations needed for the unscaled case in Table 5.2.

To conclude, we note that in [31, sec. 5] a bundle algorithm for one-dimensional
problems is presented, where an appropriate modification in the definition of lineariza-
tion errors makes directions independent of constraint scaling. Those ideas are also
valid in Rn, and therefore could be incorporated in icpbm, if scaling is of concern.

6. Concluding remarks. We have presented a new idea for handling con-
straints in nonsmooth convex minimization. Among the features of this approach,
which can be useful, we mention the following:

• the method can start from infeasible points;
• the method does not use penalty functions, and thus does not require estimating

a suitable value of penalty parameter;
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• the method does not use complex filter technologies;
• the method is close in spirit and structure to standard unconstrained bundle

methods, and thus can build on the available software and theory (e.g., aggregation
and compression techniques);

• convergence is established under mild assumptions.
Our preliminary numerical results show the viability of the method, although imple-
mentational improvements are both possible and necessary.

An interesting subject of future research could be an extension of the method to
the nonconvex case. This, however, seems to be a nontrivial task, since underlying the
method are properties of the improvement function defined by (1.2), which strongly
rely on convexity. But if a suitable extension of Theorem 2.1 to the nonconvex case
can be found, then one can try to extend the algorithm by using the subgradient
locality measures, instead of the linearization errors, along the lines of [17, 29].

Acknowledgments. We thank the two anonymous referees for careful reading
of our first version and for constructive suggestions.
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metric proximal point methods, Math. Programming Ser. A, 68 (1995), pp. 15–47.
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Abstract. A new nonlinear conjugate gradient method and an associated implementation, based
on an inexact line search, are proposed and analyzed. With exact line search, our method reduces
to a nonlinear version of the Hestenes–Stiefel conjugate gradient scheme. For any (inexact) line
search, our scheme satisfies the descent condition gT

kdk ≤ − 7
8
‖gk‖2. Moreover, a global convergence

result is established when the line search fulfills the Wolfe conditions. A new line search scheme
is developed that is efficient and highly accurate. Efficiency is achieved by exploiting properties of
linear interpolants in a neighborhood of a local minimizer. High accuracy is achieved by using a
convergence criterion, which we call the “approximate Wolfe” conditions, obtained by replacing the
sufficient decrease criterion in the Wolfe conditions with an approximation that can be evaluated with
greater precision in a neighborhood of a local minimum than the usual sufficient decrease criterion.
Numerical comparisons are given with both L-BFGS and conjugate gradient methods using the
unconstrained optimization problems in the CUTE library.
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1. Introduction. We develop a new nonlinear conjugate gradient algorithm for
the unconstrained optimization problem

min {f(x) : x ∈ �n},(1.1)

where f : Rn �→ R is continuously differentiable. The iterates x0, x1, x2, . . . satisfy
the recurrence

xk+1 = xk + αkdk,

where the stepsize αk is positive and the directions dk are generated by the rule

dk+1 = −gk+1 + βN
k dk, d0 = −g0,(1.2)

βN
k =

1

dT
kyk

(
yk − 2dk

‖yk‖2

dT
kyk

)T

gk+1.(1.3)

Here ‖ · ‖ is the Euclidean norm, gk = ∇f(xk)
T, and yk = gk+1 − gk; the gradient

∇f(xk) of f at xk is a row vector and gk is a column vector. If f is a quadratic and
αk is chosen to achieve the exact minimum of f in the direction dk, then dT

kgk+1 = 0,
and the formula (1.3) for βN

k reduces to the Hestenes–Stiefel scheme [22]. In this
paper, however, we consider general nonlinear functions and an inexact line search.

As explained in our survey paper [19], the nonlinear conjugate gradient scheme
developed and analyzed in this paper is one member of a one-parameter family of con-
jugate gradient methods with guaranteed descent. Different choices for the parameter
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correspond to differences in the relative importance of conjugacy versus descent. The
specific scheme analyzed in this paper is closely connected with the memoryless quasi-
Newton scheme of Perry [30] and Shanno [36]. In particular, the scheme (1.2)–(1.3)
can be obtained by deleting a term in the Perry–Shanno scheme. If dk+1 is the
direction generated by the new scheme (1.2)–(1.3), then the direction dPS

k+1 of the
Perry–Shanno scheme can be expressed as

dPS
k+1 =

yT
k sk

‖yk‖2

(
dk+1 +

dT
kgk+1

dT
kyk

yk

)
,(1.4)

where sk = xk+1 − xk. We observe in section 2 that the dk+1 term in (1.4) dom-
inates the yk term to the right when the cosine of the angle between dk and gk+1

is sufficiently small and f is strongly convex. In this case, the directions generated
by the new scheme are approximate multiples of dPS

k+1. The Perry–Shanno scheme,
analyzed further in [34, 37, 39], has global convergence for convex functions and for
an inexact line search [36], but in general, it does not necessarily converge, even when
the line search is exact [33]. Of course, the Perry–Shanno scheme is convergent if
restarts are employed; however, the speed of convergence can decrease. Han, Liu, and
Yin [21] proved that if a standard Wolfe line search is employed, then convergence
to a stationary point is achieved when limk→∞ ‖yk‖2 = 0 and the gradient of f is
Lipschitz continuous.

Although we are able to prove a global convergence result for (1.2)–(1.3) when
f is strongly convex, our analysis breaks down for a general nonlinear function since
βN
k can be negative. Similar to the approach [13, 20, 38] taken for the Polak–Ribière–

Polyak [31, 32] version of the conjugate gradient method, we establish convergence for
general nonlinear functions by restricting the lower value of βN

k . Although restricting
βN
k to be nonnegative ensures convergence, the resulting iterates may differ signifi-

cantly from those of (1.2)–(1.3), and convergence speed may be reduced, especially
when f is quadratic. In our restricted scheme, we dynamically adjust the lower bound
on βN

k in order to make the lower bound smaller as the iterates converge:

dk+1 = −gk+1 + β̄N
k dk, d0 = −g0,(1.5)

β̄N
k = max

{
βN
k , ηk

}
, ηk =

−1

‖dk‖min{η, ‖gk‖}
,(1.6)

where η > 0 is a constant; we took η = .01 in the experiments of section 5.
For this modified scheme, we prove a global convergence result with inexact line

search. When ‖gk‖ tends to zero as k grows, it follows that ηk in (1.6) tends to −∞ as
k grows when dk is bounded. Moreover, for strongly convex functions, we show that
dk is bounded. In this case, where dk is bounded, the scheme (1.5)–(1.6) is essentially
the scheme (1.2)–(1.3) when k is large since ηk tends to −∞.

Another method related to (1.2)–(1.3) is the Dai–Liao version [7] of the conjugate
gradient method, in which βN

k in (1.2) is replaced with

βDL
k =

1

dT
kyk

(yk − tsk)
Tgk+1,(1.7)

where t > 0 is a constant parameter. Numerical results are reported in [7] for t = 0.1
and t = 1; for different choices of t, the numerical results are quite different. The
method (1.2)–(1.3) can be viewed as an adaptive version of (1.7) corresponding to
t = 2‖yk‖2/sT

kyk.
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With conjugate gradient methods, the line search typically requires sufficient
accuracy to ensure that the search directions yield descent [6, 16]. Moreover, it has
been shown [9] that for the Fletcher–Reeves [12] and Polak–Ribière–Polyak [31, 32]
conjugate gradient methods, a line search that satisfies the strong Wolfe conditions
may not yield a direction of descent for a suitable choice of the Wolfe line search
parameters, even for the function f(x) = λ‖x‖2, where λ > 0 is a constant. An
attractive feature of the new conjugate gradient scheme, which we now establish, is
that the search directions always yield descent when dT

kyk 	= 0, a condition which is
satisfied when f is strongly convex, or the line search satisfies the Wolfe conditions.

Theorem 1.1. If dT
kyk 	= 0 and

dk+1 = −gk+1 + τdk, d0 = −g0,(1.8)

for any τ ∈ [βN
k ,max{βN

k , 0}], then

gT
k+1dk+1 ≤ −7

8
‖gk+1‖2.(1.9)

Proof. Since d0 = −g0, we have gT
0 d0 = −‖g0‖2, which satisfies (1.9). Suppose

τ = βN
k . Multiplying (1.8) by gT

k+1, we have

gT
k+1dk+1 = −‖gk+1‖2 + βN

k gT
k+1dk

= −‖gk+1‖2 + gT
k+1dk

(
yT
kgk+1

dT
kyk

− 2
‖yk‖2gT

k+1dk

(dT
kyk)2

)

=
yT
kgk+1(d

T
kyk)(g

T
k+1dk) − ‖gk+1‖2(dT

kyk)
2 − 2‖yk‖2(gT

k+1dk)
2

(dT
kyk)2

.(1.10)

We apply the inequality

uTv ≤ 1

2
(‖u‖2 + ‖v‖2)

to the first term in (1.10) with

u =
1

2
(dT

kyk)gk+1 and v = 2(gT
k+1dk)yk

to obtain (1.9). On the other hand, if τ 	= βN
k , then βN

k ≤ τ ≤ 0. After multiplying
(1.8) by gT

k+1, we have

gT
k+1dk+1 = −‖gk+1‖2 + τgT

k+1dk.

If gT
k+1dk ≥ 0, then (1.9) follows immediately since τ ≤ 0. If gT

k+1dk < 0, then

gT
k+1dk+1 = −‖gk+1‖2 + τgT

k+1dk ≤ −‖gk+1‖2 + βN
k gT

k+1dk

since βN
k ≤ τ ≤ 0. Hence, (1.9) follows by our previous analysis.

By taking τ = βN
k , we see that the directions generated by (1.2)–(1.3) are descent

directions when dT
kyk 	= 0. Since ηk in (1.6) is negative, it follows that

β̄N
k = max

{
βN
k , ηk

}
∈ [βN

k ,max{βN
k , 0}].
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Hence, the direction given by (1.5) and (1.6) is a descent direction. Dai and Yuan
[8, 10] present conjugate gradient schemes with the property that dT

k+1gk+1 < 0 when

dT
kyk > 0. If f is strongly convex or the line search satisfies the Wolfe conditions,

then dT
kyk > 0 and the Dai–Yuan schemes yield descent. Note that in (1.9) we bound

dT
k+1gk+1 by −(7/8)||gk+1||2, while for the schemes [8, 10], the negativity of dT

k+1gk+1

is established.
Our paper is organized as follows: In section 2 we prove convergence of (1.2)–(1.3)

for strongly convex functions, while in section 3 we prove convergence of (1.5)–(1.6) for
more general nonlinear functions. In section 4 we develop a new line search that is both
efficient and highly accurate. This line search exploits properties of linear interpolants
to achieve rapid convergence of the line search. High accuracy is achieved by replacing
the sufficient decrease criterion in the Wolfe conditions with an approximation that
can be evaluated with greater precision in a neighborhood of a local minimum. In
section 5 we compare the Dolan–Moré [11] performance profile of the new conjugate
gradient scheme to the profiles for the L-BFGS (limited memory Broyden–Fletcher–
Goldfarb–Shanno) quasi-Newton method [25, 28], the Polak–Ribière–Polyak PRP+
method [13], and the Dai–Yuan schemes [8, 10] using the unconstrained problems in
the test problem library CUTE (constrained and unconstrained testing environment)
[4].

2. Convergence analysis for strongly convex functions. Although the
search directions generated by either (1.2)–(1.3) or (1.5)–(1.6) are always descent
directions, we need to constrain the choice of αk to ensure convergence. We consider
line searches that satisfy either the Goldstein conditions [14],

δ1αkg
T
kdk ≤ f(xk + αkdk) − f(xk) ≤ δ2αkg

T
kdk,(2.1)

where 0 < δ2 < 1
2 < δ1 < 1 and αk > 0, or the Wolfe conditions [40, 41],

f(xk + αkdk) − f(xk) ≤ δαkg
T
kdk,(2.2)

gT
k+1dk ≥ σgT

kdk,(2.3)

where 0 < δ ≤ σ < 1. As in [8], we do not require the “strong Wolfe” condition
|gT

k+1dk| ≤ −σgT
kdk, which is often used to prove convergence of nonlinear conjugate

gradient methods.
Lemma 2.1. Suppose that dk is a descent direction and ∇f satisfies the Lipschitz

condition

‖∇f(x) −∇f(xk)‖ ≤ L‖x − xk‖

for all x on the line segment connecting xk and xk+1, where L is a constant. If the
line search satisfies the Goldstein conditions, then

αk ≥ (1 − δ1)

L

|gT
kdk|

‖dk‖2
.(2.4)

If the line search satisfies the Wolfe conditions, then

αk ≥ 1 − σ

L

|gT
kdk|

‖dk‖2
.(2.5)

Proof. For the convenience of the reader, we include a proof of these well-known
results. If the Goldstein conditions hold, then by (2.1) and the mean value theorem,
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we have

δ1αkg
T
kdk ≤ f(xk + αkdk) − f(xk)

= αk∇f(xk + ξdk)dk

≤ αkg
T
kdk + Lα2

k‖dk‖2,

where ξ ∈ [0, αk]. Rearranging this inequality gives (2.4).
Subtracting gT

kdk from both sides of (2.3) using the Lipschitz condition gives

(σ − 1)gT
kdk ≤ (gk+1 − gk)

Tdk ≤ αkL‖dk‖2.

Since dk is a descent direction and σ < 1, (2.5) follows immediately.
We now prove convergence of the unrestricted scheme (1.2)–(1.3) for the case

when f is strongly convex.
Theorem 2.2. Suppose that f is strongly convex and Lipschitz continuous on

the level set

L = {x ∈ Rn : f(x) ≤ f(x0)}.(2.6)

That is, there exist constants L and μ > 0 such that

‖∇f(x) −∇f(y)‖ ≤ L‖x − y‖ and(2.7)

μ‖x − y‖2 ≤ (∇f(x) −∇f(y))(x − y)

for all x and y ∈ L. If the conjugate gradient method (1.2)–(1.3) is implemented using
a line search that satisfies either the Wolfe or the Goldstein conditions in each step,
then either gk = 0 for some k, or

lim
k→∞

gk = 0.(2.8)

Proof. Suppose that gk 	= 0 for all k. By the strong convexity assumption,

yT
kdk = (gk+1 − gk)

Tdk ≥ μαk‖dk‖2.(2.9)

Theorem 1.1 and the assumption gk 	= 0 imply that dk 	= 0. Since αk > 0, it follows
from (2.9) that yT

kdk > 0. Since f is strongly convex over L, f is bounded from
below. After summing over k the upper bound in either (2.1) or (2.2), we conclude
that

∞∑
k=0

αkg
T
kdk > −∞.

Combining this with the lower bound for αk given in Lemma 2.1 and the descent
property (1.9) gives

∞∑
k=0

‖gk‖4

‖dk‖2
< ∞.(2.10)

By Lipschitz continuity (2.7),

‖yk‖ = ‖gk+1 − gk‖ = ‖∇f(xk + αkdk) −∇f(xk)‖ ≤ Lαk‖dk‖.(2.11)
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Utilizing (2.9) and (1.3), we have

|βN
k | =

∣∣∣∣yT
kgk+1

dT
kyk

− 2
‖yk‖2dT

kgk+1

(dT
kyk)2

∣∣∣∣
≤ ‖yk‖‖gk+1‖

μαk‖dk‖2
+ 2

‖yk‖2‖dk‖‖gk+1‖
μ2α2

k‖dk‖4

≤ Lαk‖dk‖‖gk+1‖
μαk‖dk‖2

+ 2
L2α2

k‖dk‖3‖gk+1‖
μ2α2

k‖dk‖4

≤
(
L

μ
+

2L2

μ2

)
‖gk+1‖
‖dk‖

.(2.12)

Hence, we have

‖dk+1‖ ≤ ‖gk+1‖ + |βN
k |‖dk‖ ≤

(
1 +

L

μ
+

2L2

μ2

)
‖gk+1‖.

Inserting this upper bound for dk in (2.10) yields

∞∑
k=1

‖gk‖2 < ∞,

which completes the proof.

We now observe that the directions generated by the new conjugate gradient up-
date (1.2) point approximately in the Perry–Shanno direction (1.4) when f is strongly
convex and the cosine of the angle between dk and gk+1 is sufficiently small. By (2.9)
and (2.11), we have

|dT
kgk+1|
|dT

kyk|
‖yk‖ ≤ L

μ
|uT

kgk+1| = c1ε‖gk+1‖,(2.13)

where uk = dk/‖dk‖ is the unit vector in the direction dk, ε is the cosine of the angle
between dk and gk+1, and c1 = L/μ. By the definition of dk+1 in (1.2), we have

‖dk+1‖2 ≥ ‖gk+1‖2 − 2βN
k dT

kgk+1.(2.14)

By the bound for βN
k in (2.12),

|βN
k dT

kgk+1| ≤ c2|uT
kgk+1|‖gk+1‖ = c2ε‖gk+1‖2,(2.15)

where c2 is the constant appearing in (2.12). Combining (2.14) and (2.15), we have

‖dk+1‖ ≥
√

1 − 2c2ε‖gk+1‖.

This lower bound for ‖dk+1‖ and the upper bound (2.13) for the yk term in (1.4)
imply that the ratio between them is bounded by c1ε/

√
1 − 2c2ε. As a result, when

ε is small, the direction generated by (1.2) is approximately a multiple of the Perry–
Shanno direction (1.4).
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3. Convergence analysis for general nonlinear functions. Our analysis of
(1.5)–(1.6) for general nonlinear functions exploits insights developed by Gilbert and
Nocedal in their analysis [13] of the PRP+ scheme. Similar to the approach taken
in [13], we establish a bound for the change uk+1 − uk in the normalized direction
uk = dk/‖dk‖, which we use to conclude, by contradiction, that the gradients cannot
be bounded away from zero. The following theorem is the analogue of [13, Lem. 4.1];
it differs in the treatment of the direction update formula (1.5).

Lemma 3.1. If the level set (2.6) is bounded and the Lipschitz condition (2.7)
holds, then for the scheme (1.5)–(1.6) and a line search that satisfies the Wolfe con-
ditions (2.2)–(2.3), we have

dk 	= 0 for each k and

∞∑
k=0

‖uk+1 − uk‖2 < ∞

whenever inf {‖gk‖ : k ≥ 0} > 0.
Proof. Define γ = inf {‖gk‖ : k ≥ 0}. Since γ > 0 by assumption, it follows from

the descent property, Theorem 1.1, that dk 	= 0 for each k. Since L is bounded, f is
bounded from below, and by (2.2) and (2.5), the following Zoutendijk condition [42]
holds:

∞∑
k=0

(gT
kdk)

2

‖dk‖2
< ∞.

Again, the descent property yields

γ4
∞∑
k=0

1

‖dk‖2
≤

∞∑
k=0

‖gk‖4

‖dk‖2
≤ 64

49

∞∑
k=0

(gT
kdk)

2

‖dk‖2
< ∞.(3.1)

Define the quantities

β+
k = max{β̄N

k , 0}, β−
k = min{β̄N

k , 0}, rk =
−gk + β−

k−1dk−1

‖dk‖
, δk = β+

k−1

‖dk−1‖
‖dk‖

.

By (1.5)–(1.6), we have

uk =
dk

‖dk‖
=

−gk + (β+
k−1 + β−

k−1)dk−1

‖dk‖
= rk + δkuk−1.

Since the uk are unit vectors,

‖rk‖ = ‖uk − δkuk−1‖ = ‖δkuk − uk−1‖.

Since δk > 0, it follows that

‖uk − uk−1‖ ≤ ‖(1 + δk)(uk − uk−1)‖
≤ ‖uk − δkuk−1‖ + ‖δkuk − uk−1‖
= 2‖rk‖.(3.2)

By the definition of β−
k and the fact that ηk < 0 and β̄N

k ≥ ηk in (1.6), we have the
following bound for the numerator of rk:
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‖ − gk + β−
k−1dk−1‖ ≤ ‖gk‖ − min{β̄N

k−1, 0}‖dk−1‖
≤ ‖gk‖ − ηk−1‖dk−1‖

≤ ‖gk‖ +
1

‖dk−1‖min{η, γ}‖dk−1‖

≤ Γ +
1

min{η, γ} ,(3.3)

where

Γ = max
x∈L

‖∇f(x)‖.(3.4)

Let c denote the expression Γ + 1/min{η, γ} in (3.3). This bound for the numerator
of rk coupled with (3.2) gives

‖uk − uk−1‖ ≤ 2‖rk‖ ≤ 2c

‖dk‖
.(3.5)

Finally, by squaring (3.5), summing over k, and utilizing (3.1), we complete the
proof.

Theorem 3.2. If the level set (2.6) is bounded and the Lipschitz condition (2.7)
holds, then for the scheme (1.5)–(1.6) and a line search that satisfies the Wolfe con-
ditions (2.2)–(2.3), either gk = 0 for some k, or

lim inf
k→∞

‖gk‖ = 0.(3.6)

Proof. We suppose that both gk 	= 0 for all k and lim infk→∞ ‖gk‖ > 0. In the
following, we obtain a contradiction. Defining γ = inf {‖gk‖ : k ≥ 0}, we have γ > 0
due to (3.6) and the fact that gk 	= 0 for all k. The proof is divided into the following
three steps:

I. A bound for β̄N
k . By the Wolfe condition gT

k+1dk ≥ σgT
kdk, we have

yT
kdk = (gk+1 − gk)

Tdk ≥ (σ − 1)gT
kdk = −(1 − σ)gT

kdk.(3.7)

By Theorem 1.1,

−gT
kdk ≥ 7

8
‖gk‖2 ≥ 7

8
γ2.

Combining this with (3.7) gives

yT
kdk ≥ (1 − σ)

7

8
γ2.(3.8)

Also, observe that

gT
k+1dk = yT

kdk + gT
kdk < yT

kdk.(3.9)

Again, the Wolfe condition gives

gT
k+1dk ≥ σgT

kdk = −σyT
kdk + σgT

k+1dk.(3.10)

Since σ < 1, we can rearrange (3.10) to obtain

gT
k+1dk ≥ −σ

1 − σ
yT
kdk.
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Combining this lower bound for gT
k+1dk with the upper bound (3.9) yields

∣∣∣∣∣g
T
k+1dk

yT
kdk

∣∣∣∣∣ ≤ max

{
σ

1 − σ
, 1

}
.(3.11)

By the definition of β̄N
k in (1.6), we have

β̄N
k = βN

k if βN
k ≥ 0 and 0 ≥ β̄N

k ≥ βN
k if βN

k < 0.

Hence, |β̄N
k | ≤ |βN

k | for each k. We now insert the upper bound (3.11) for |gT
k+1dk|/|yT

kdk|,
the lower bound (3.8) for yT

kdk, and the Lipschitz estimate (2.11) for yk into the
expression (1.3) to obtain

|β̄N
k | ≤ |βN

k |

≤ 1

|dT
kyk|

(
|yT

kgk+1| + 2‖yk‖2 |gT
k+1dk|
|yT

kdk|

)

≤ 8

7

1

(1 − σ)γ2

(
LΓ‖sk‖ + 2L2‖sk‖2 max

{
σ

1 − σ
, 1

})
≤ C‖sk‖,(3.12)

where Γ is defined in (3.4), and where C is defined as follows:

C =
8

7

1

(1 − σ)γ2

(
LΓ + 2L2Dmax

{
σ

1 − σ
, 1

})
,(3.13)

D = max{‖y − z‖ : y, z ∈ L}.(3.14)

Here D is the diameter of L.

II. A bound on the steps sk. This is a modified version of [13, Thm. 4.3]. Observe
that for any l ≥ k,

xl − xk =

l−1∑
j=k

xj+1 − xj =

l−1∑
j=k

‖sj‖uj =

l−1∑
j=k

‖sj‖uk +

l−1∑
j=k

‖sj‖(uj − uk).

By the triangle inequality,

l−1∑
j=k

‖sj‖ ≤ ‖xl − xk‖ +

l−1∑
j=k

‖sj‖‖uj − uk‖ ≤ D +

l−1∑
j=k

‖sj‖‖uj − uk‖.(3.15)

Let Δ be a positive integer, chosen large enough that

Δ ≥ 4CD,(3.16)

where C and D appear in (3.13) and (3.14). Choose k0 large enough that

∑
i≥k0

‖ui+1 − ui‖2 ≤ 1

4Δ
.(3.17)
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By Lemma 3.1, k0 can be chosen in this way. If j > k ≥ k0 and j − k ≤ Δ, then by
(3.17) and the Cauchy–Schwarz inequality, we have

‖uj − uk‖ ≤
j−1∑
i=k

‖ui+1 − ui‖

≤
√
j − k

(
j−1∑
i=k

‖ui+1 − ui‖2

)1/2

≤
√

Δ

(
1

4Δ

)1/2

=
1

2
.

Combining this with (3.15) yields

l−1∑
j=k

‖sj‖ ≤ 2D,(3.18)

when l > k ≥ k0 and l − k ≤ Δ.
III. A bound on the directions dl. By (1.5) and the bound on β̄N

k given in step I,
we have

‖dl‖2 ≤ (‖gl‖ + |β̄N
l−1|‖dl−1‖)2 ≤ 2Γ2 + 2C2‖sl−1‖2‖dl−1‖2,

where Γ is the bound on the gradient given in (3.4). Defining Si = 2C2‖si‖2, we
conclude that for l > k0,

‖dl‖2 ≤ 2Γ2

⎛
⎝ l∑

i=k0+1

l−1∏
j=i

Sj

⎞
⎠ + ‖dk0‖2

l−1∏
j=k0

Sj .(3.19)

Above, the product is defined to be 1 whenever the index range is vacuous. Let us
consider as follows a product of Δ consecutive Sj , where k ≥ k0:

k+Δ−1∏
j=k

Sj =

k+Δ−1∏
j=k

2C2‖sj‖2 =

⎛
⎝k+Δ−1∏

j=k

√
2C‖sj‖

⎞
⎠

2

≤
(∑k+Δ−1

j=k

√
2C‖sj‖

Δ

)2Δ

≤
(

2
√

2CD

Δ

)2Δ

≤ 1

2Δ
.

The first inequality above is the arithmetic-geometric mean inequality, the second is
due to (3.18), and the third comes from (3.16). Since the product of Δ consecutive
Sj is bounded by 1/2Δ, it follows that the sum in (3.19) is bounded, and the bound
is independent of l. This bound for ‖dl‖, independent of l > k0, contradicts (3.1).
Hence, γ = lim infk→∞ ‖gk‖ = 0.

4. Line search. The line search is an important factor in the overall efficiency
of any optimization algorithm. Papers focusing on the development of efficient line
search algorithms include [1, 2, 16, 24, 26, 27]. The algorithm [27] of Moré and Thuente
is used widely; it is incorporated in the L-BFGS limited memory quasi-Newton code
of Nocedal and in the PRP+ conjugate gradient code of Liu, Nocedal, and Waltz.
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Fig. 4.1. Numerical and exact graphs of F (x) = 1 − 2x + x2 near x = 1.

The approach we use to find a point satisfying the Wolfe conditions (2.2)–(2.3)
is somewhat different from the earlier work cited. To begin, we note that there is a
fundamental numerical issue connected with the first Wolfe condition, (2.2). In Figure
4.1 we plot F (x) = 1 − 2x + x2 in a neighborhood of x = 1.

The graph, generated by a MATLAB program using a Sun workstation, is ob-
tained by evaluating F at 10,000 values of x between 1−2.5×10−8 and 1+2.5×10−8

and by connecting the computed points on the graph by straight line segments. The
true graph is the parabola in Figure 4.1, while the computed graph is piecewise con-
stant.

When devising an algorithm to minimize a smooth function, we often visualize the
graph as smooth. But, in actuality, the computer’s representation of the function is
piecewise constant. Observe that there is an interval of width 1.8× 10−8 surrounding
x = 1, where F vanishes. Each point in this interval is a minimizer of the computer’s
F . In contrast, the true F has a unique minimum at x = 1. The interval around
x = 1, where F is flat, is much wider than the machine epsilon 2.2 × 10−16. This
relatively large flat region is a result of subtracting nearly equal numbers when F
is evaluated. In particular, near x = 1, 1 − 2x is near −1, while x2 is near +1.
Hence, when the computer adds 1 − 2x to x2, it is, in essence, subtracting nearly
equal numbers. It is well known that there is a large relative error when nearly equal
numbers are subtracted; the width of the flat interval near x = 1 is on the order of
the square root of the machine epsilon (see [15]).

Now consider the function φ(α) = f(xk +αdk). If φ(0) corresponds to a point in
the flat part of Figure 4.1 near x = 1, then the first Wolfe condition, (2.2), is never
satisfied, assuming dk is a descent direction, since the right side of (2.2) is always
negative and the left side can be only nonnegative. On the other hand, when we
compute with 16 significant digits, we would like to be able to compute a solution
to the optimization problem with 16-digit accuracy. We can achieve this accuracy
by looking for a zero of the derivative. In Figure 4.2 we plot the derivative F ′(x) =
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Fig. 4.2. The numerical graph of the derivative F ′(x) = 2(x− 1) near x = 1.

2(x−1) of the function in Figure 4.1 near x = 1. Since the interval where F ′ vanishes
has width 1.6 × 10−16, we can locate the zero of F ′ (Figure 4.2) with accuracy on
the order of the machine epsilon 2.2 × 10−16, while the minimum of F in Figure 4.1
is determined with accuracy on the order of the square root of the machine epsilon.
Figures 4.1 and 4.2 are extracted from [17].

This leads us to introduce the approximate Wolfe conditions,

(2δ − 1)φ′(0) ≥ φ′(αk) ≥ σφ′(0),(4.1)

where δ < min{.5, σ}. The second inequality in (4.1) is identical to the second Wolfe
condition, (2.3). The first inequality in (4.1) is identical to the first Wolfe condition,
(2.2), when f is quadratic. For general f , we now show that the first inequality in (4.1)
and the first Wolfe condition agree to the order of α2

k. The interpolating (quadratic)
polynomial q that matches φ(α) at α = 0, and φ′(α) at α = 0 and α = αk, is

q(α) =
φ′(αk) − φ′(0)

2αk
α2 + φ′(0)α + φ(0).

For such an interpolating polynomial, |q(α)−φ(α)| = O(α3). After replacing φ with q
in the first Wolfe condition, we obtain the first inequality in (4.1) (with an error term
of order α2

k). We emphasize that this first inequality is an approximation to the first
Wolfe condition. On the other hand, this approximation can be evaluated with greater
precision than the original condition when the iterates are near a local minimizer,
since the approximate Wolfe conditions are expressed in terms of a derivative, not the
difference of function values.

With these insights, we terminate the line search when either of the following
conditions holds:

T1. The original Wolfe conditions (2.2)–(2.3) are satisfied.
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T2. The approximate Wolfe conditions (4.1) are satisfied and

φ(αk) ≤ φ(0) + εk,(4.2)

where εk ≥ 0 is an estimate for the error in the value of f at iteration k.
For the experiments in section 5, we took

εk = ε|f(xk)|,(4.3)

where ε is a (small) fixed parameter. We would like to satisfy the original Wolfe
conditions, so we terminate the line search whenever they are satisfied. On the other
hand, when xk+1 and xk are close together, numerical errors may make it impossible
to satisfy (2.2). If the function value at α = αk is not much larger than the function
value at α = 0, then we view the iterates as close together, and we terminate when
the approximate Wolfe conditions are satisfied.

We satisfy the termination criterion by constructing a nested sequence of (brack-
eting) intervals, which converge to a point satisfying either T1 or T2. A typical
interval [a, b] in the nested sequence satisfies the following opposite slope condition:

φ(a) ≤ φ(0) + εk, φ′(a) < 0, φ′(b) ≥ 0.(4.4)

Given a parameter θ ∈ (0, 1), the interval update rules are specified in the following
procedure “interval update.” The input of this procedure is the current bracketing
interval [a, b] and a point c generated by either a secant step or a bisection step, as will
be explained shortly. The output of the procedure is the updated bracketing interval
[ā, b̄].

Interval update. [ā, b̄] = update (a, b, c).
U0. If c 	∈ (a, b), then ā = a, b̄ = b, and return.
U1. If φ′(c) ≥ 0, then ā = a, b̄ = c, and return.
U2. If φ′(c) < 0 and φ(c) ≤ φ(0) + εk, then ā = c, b̄ = b, and return.

U3. If φ′(c) < 0 and φ(c) > φ(0) + εk, then set â = a, b̂ = c, and do the following:

a. Set d = (1 − θ)â + θb̂; if φ′(d) ≥ 0, then set b̄ = d, ā = â, and return.
b. If φ′(d) < 0 and φ(d) ≤ φ(0) + εk, then set â = d and go to step a.

c. If φ′(d) < 0 and φ(d) > φ(0) + εk, then set b̂ = d and go to step a.
After completing U1–U3, we obtain a new interval [ā, b̄] ⊂ [a, b] whose endpoints

satisfy (4.4). The loop embedded in U3a–c should terminate since the interval width

b̂− â tends to zero and, at â and b̂, the following conditions hold:

φ′(â) < 0, φ(â) ≤ φ(0) + εk,

φ′(b̂) < 0, φ(b̂) > φ(0) + εk.

The input c for the update routine is generated by polynomial interpolation. The
interpolation is done in a special way to ensure that the line search interval shrinks
quickly. In Figure 4.3, where φ′ is concave, an initial secant step using function values
at a and b yields a point b̄ to the right of the zero. A second secant step using function
values at b̄ and b yields a point ā to the left of the zero. On the other hand, if φ′

is convex as shown in Figure 4.4, then an initial secant step using function values at
a and b yields a point ā to the left of the zero. A second secant step using function
values at a and ā yields a point b̄ to the right of the zero. Hence, whether φ′ is convex
or concave, a pair of secant steps, implemented in this way, will update one side of
the interval, bracketing the zero, and then the other side.
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Fig. 4.3. A pair of secant steps applied to a concave φ′.
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Fig. 4.4. A pair of secant steps applied to a convex φ′.

If c is obtained from a secant step based on function values at a and b, then we
write

c = secant (a, b) =
aφ′(b) − bφ′(a)

φ′(b) − φ′(a)
.

In general, we do not know whether φ′ is convex or concave. Consequently, the pair
of secant steps is generated by a routine denoted secant2 defined in the following way.
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Double secant step. [ā, b̄] = secant2 (a, b).
S1. c = secant (a, b) and [A,B] = update (a, b, c).
S2. If c = B, then c̄ = secant (b,B).
S3. If c = A, then c̄ = secant (a,A).
S4. If c = A or c = B, then [ā, b̄] = update (A,B, c̄). Otherwise, [ā, b̄] = [A,B].
If we assume the initial interval [a, b] in the secant step satisfies (4.4), then c lies

between a and b. If c = B, then U1 is satisfied and φ′ is nonnegative at both b and
B. In this case, corresponding to Figure 4.3, we attempt a secant step based on the
values of φ′ at b and B. The attempted secant step fails if c̄ lies out the interval [a, b],
in which case the update simply returns the initial interval [A,B]. If c = A in S3,
then U2 is satisfied and φ′ is negative at both a and A. In this case, corresponding
to Figure 4.4, we attempt a secant step based on the values of φ′ at a and A.

Assuming φ is not monotone, an initial interval [a, b] = [a0, b0] satisfying (4.4) can
be generated by sampling φ(α) for various choices of α. Starting from this interval,
and initializing k = 0, we now give a complete statement of the line search used for
the numerical experiments in section 5, beginning with a list of the parameters.

Line search/CG DESCENT parameters.
δ - range (0, .5), used in the Wolfe conditions (2.2) and (4.1)
σ - range [δ, 1), used in the Wolfe conditions (2.3) and (4.1)
ε - range [0,∞), used in the approximate Wolfe termination (T2)
θ - range (0, 1), used in the update rules when the potential intervals [a, c] or

[c, b] violate the opposite slope condition contained in (4.4)
γ - range (0, 1), determines when a bisection step is performed (L2 below)
η - range (0,∞), used in the lower bound for βN

k in (1.6).
Algorithm. Line search.
L0. Terminate the line search if either (T1) or (T2) is satisfied.
L1. [a, b] = secant2(ak, bk).
L2. If b− a > γ(bk − ak), then c = (a + b)/2 and [a, b] = update (a, b, c).
L3. Increment k, set [ak, bk] = [a, b], and go to L0.

The line search is terminated whenever a point is generated for which either T1 or
T2 holds.

Theorem 4.1. Suppose that φ is continuously differentiable on an interval
[a0, b0], where (4.4) holds. If δ < 1/2, then the line search algorithm terminates
at a point satisfying either T1 or T2.

Proof. Due to the bisection step L2, the interval width bk − ak tends to zero.
Since each interval [ak, bk] satisfies the opposite slope condition (4.4), we conclude
that φ′(ak) approaches 0. Hence, T2 holds for k sufficiently large.

We now analyze the convergence rate of the secant2 iteration. Since the root
convergence order [29] of the secant method is (1 +

√
5)/2, the order of convergence

for a double secant step is (1 +
√

5)2/4. However, the iteration secant2 is not a
conventional double secant step since the most recent iterates are not always used
to compute the next iterate; our special secant iteration was devised to first update
one side of the bracketing interval and then the other side. This behavior is more
attractive than a high convergence order. We now show that the convergence order
of secant2 is 1 +

√
2 ≈ 2.4, slightly less than (1 +

√
5)2/4 ≈ 2.6.

Theorem 4.2. Suppose that φ is three times continuously differentiable near a
local minimizer α∗, with φ′′(α∗) > 0 and φ′′′(α∗) 	= 0. Then for a0 and b0 sufficiently
close to α∗ with a0 ≤ α∗ ≤ b0, the iteration

[ak+1, bk+1] = secant2(ak, bk)
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converges to α∗. Moreover, the interval width |bk − ak| tends to zero with root con-
vergence order 1 +

√
2.

Proof. Suppose that φ′′′(α∗) > 0. The case φ′′′(α∗) < 0 is treated in a similar
way. Our double secant step, as seen in Figure 4.4, is

ak+1 = secant (ak, bk) and bk+1 = secant (ak, ak+1).(4.5)

It is well known (e.g., see [3, p. 49]) that the error in the secant step c = secant (a, b)
can be expressed as

c− α∗ = (a− α∗)(b− α∗)
φ′′′(ξ)

2φ′′(ξ̄)
,

where ξ, ξ̄ ∈ [a, b]. Hence, for our double secant step, we have[
α∗ − ak+1

bk+1 − α∗

]
=

[
Ck(α

∗ − ak)(bk − α∗)
Dk(α

∗ − ak)
2(bk − α∗)

]
,(4.6)

where Ck and Dk are constants depending on the second and third derivatives of φ near
α∗; Ck approaches φ′′′(α∗)/2φ′′(α∗) as ak and bk approach α∗, while Dk approaches
C2

k .
Let Ek denote the error vector

Ek =

[
ak − α∗

bk − α∗

]
.

Given any λ ∈ (0, 1), it follows from (4.6) that there exists a neighborhood N of α∗

with the property that whenever ak < α∗ < bk with ak and bk ∈ N , Ck and Dk

are bounded and ‖Ek+1‖ ≤ λ‖Ek‖. Consequently, the iteration (4.5) is convergent
whenever a0 < α∗ < b0 with a0 and b0 ∈ N .

Let C̄ and D̄ denote the maximum values for Ck and Dk, respectively, when ak
and bk ∈ N , and consider the following recurrence:[

Ak+1

Bk+1

]
=

[
C̄AkBk

D̄A2
kBk

]
, where

[
A0

B0

]
=

[
α∗ − a0

b0 − α∗

]
.(4.7)

Since Ck ≤ C̄ and Dk ≤ D̄, it follows that α∗ − ak ≤ Ak and bk − α∗ ≤ Bk for
each k. In other words, Ak and Bk generated by (4.7) bound the error in ak and bk,
respectively.

Defining the variables

vk = log(Ak

√
D̄) and wk = log(C̄Bk),

we have [
vk+1

wk+1

]
=

[
1 1
2 1

] [
vk
wk

]
.(4.8)

The solution is[
vk
wk

]
=

2v0 +
√

2w0

4
(1 +

√
2)k

[
1√
2

]
+

−2v0 +
√

2w0

4
(1 −

√
2)k

[
−1√

2

]
.



186 WILLIAM W. HAGER AND HONGCHAO ZHANG

Observe that both v0 and w0 are negative when a0 and b0 are near α. Since 1+
√

2 >
|1 −

√
2|, we conclude that for k large enough,[

vk
wk

]
≤ 2v0 +

√
2w0

8
(1 +

√
2)k

[
1√
2

]
.

Hence, the root convergence order is 1 +
√

2. Since

bk − ak ≤ |bk − α∗| + |ak − α∗|,

bk − ak converges to zero with root convergence order 1 +
√

2.

5. Numerical comparisons. In this section we compare the CPU time perfor-
mance of the new conjugate gradient method, denoted CG DESCENT, to the L-BFGS
limited memory quasi-Newton method of Nocedal [28] and Liu and Nocedal [25], and
to other conjugate gradient methods as well. Comparisons based on other metrics,
such as number of iterations or number of function/gradient evaluations, are given in
[18], where extensive numerical testing of the methods is done. We considered both
the PRP+ version of the conjugate gradient method, developed by Gilbert and No-
cedal [13], where the βk associated with the Polak–Ribière–Polyak conjugate gradient
method [31, 32] is kept nonnegative, and versions of the conjugate gradient method
developed by Dai and Yuan in [8, 10], denoted CGDY and DYHS, which achieve de-
scent for any line search that satisfies the Wolfe conditions (2.2)–(2.3). The hybrid
conjugate gradient method DYHS uses

βk = max{0,min{βHS
k , βDY

k }},

where βHS
k is the choice of Hestenes and Stiefel [22] and βDY

k appears in [8]. The test
problems are the unconstrained problems in the CUTE [4] test problem library.

The L-BFGS and PRP+ codes were obtained from Jorge Nocedal’s Web page
at http://www.ece.northwestern.edu/∼nocedal/software.html. The L-BFGS code is
authored by Jorge Nocedal, while the PRP+ code is coauthored by Guanghui Liu,
Jorge Nocedal, and Richard Waltz. In the documentation for the L-BFGS code,
it is recommended that between 3 and 7 pairs of vectors be used for the memory.
Hence, we chose 5 pairs of vectors for the memory. The line search in both codes is a
modification of subroutine CSRCH of Moré and Thuente [27], which employs various
polynomial interpolation schemes and safeguards in satisfying the strong Wolfe line
search conditions.

We also manufactured a new L-BFGS code by replacing the Moré–Thuente line
search with the new line search presented in our paper. We call this new code L-
BFGS∗. The new line search would need to be modified for use in the PRP+ code to
ensure descent. Hence, we retained the Moré–Thuente line search in the PRP+ code.
Since the conjugate gradient algorithms of Dai and Yuan achieve descent for any line
search that satisfies the Wolfe conditions, we are able to use the new line search in
our experiments with CGDY and with DYHS. All codes were written in Fortran and
compiled with f77 (default compiler settings) on a Sun workstation.

For our line search algorithm, we used the following values for the parameters:

δ = .1, σ = .9, ε = 10−6, θ = .5, γ = .66, η = .01.

Our rationale for these choices was the following: The constraints on δ and σ are
0 < δ ≤ σ < 1 and δ < .5. As δ approaches 0 and σ approaches 1, the line search
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terminates more quickly. The chosen values δ = .1 and σ = .9 represent a compromise
between our desire for rapid termination and our desire to improve the function value.
When using the approximate Wolfe conditions, we would like to achieve decay in the
function value, if numerically possible. Hence, we made the small choice ε = 10−6

for the error tolerance in (4.3). When restricting βk in (1.6), we would like to avoid
truncation if possible, since the fastest convergence for a quadratic function is obtained
when there is no truncation at all. The choice η = .01 leads to infrequent truncation
of βk. The choice γ = .66 ensures that the length of the interval [a, b] decreases by a
factor of 2/3 in each iteration of the line search algorithm. The choice θ = .5 in the
update procedure corresponds to the use of bisection. Our starting guess for step αk

in the line search was obtained by minimizing a quadratic interpolant.
In the first set of experiments, we stopped whenever

(a) ‖∇f(xk)‖∞ ≤ 10−6 or (b) αkg
T
kdk ≤ 10−20|f(xk+1)|,(5.1)

where ‖ · ‖∞ denotes the maximum absolute component of a vector. In all but three
cases, the iterations stopped when (a) was satisfied—the second criterion essentially
says that the estimated change in the function value is insignificant compared to the
function value itself.

The CPU time in seconds and the number of iterations, function evaluations, and
gradient evaluations for each of the methods are posted on the following Web site:
http://www.math.ufl.edu/∼hager/papers/CG. In running the numerical experiments,
we checked whether different codes converged to different local minimizers; we only
provide data for problems in which all six codes converged to the same local minimizer.
The numerical results are now analyzed.

The performance of the six algorithms, relative to CPU time, was evaluated using
the profiles of Dolan and Moré [11]. That is, for each method, we plot the fraction P
of problems for which the method is within a factor τ of the best time. In Figure 5.1,
we compare the performance of the four codes CG DESCENT, L-BFGS∗, L-BFGS,
and PRP+. The left side of the figure gives the percentage of the test problems for
which a method is the fastest; the right side gives the percentage of the test problems
that were successfully solved by each of the methods. The top curve is the method
that solved the most problems in a time that was within a factor τ of the best time.
Since the top curve in Figure 5.1 corresponds to CG DESCENT, this algorithm is
clearly the fastest for this set of 113 test problems with dimensions ranging from 50
to 10,000. In particular, CG DESCENT is fastest for about 60% (68 out of 113) of
the test problems, and it ultimately solves 100% of the test problems. Since L-BFGS∗

(fastest for 29 problems) performed better than L-BFGS (fastest for 17 problems),
the new line search led to improved performance. Nonetheless, L-BFGS∗ was still
dominated by CG DESCENT.

In Figure 5.2 we compare the performance of the four conjugate gradient algo-
rithms. Observe that CG DESCENT is the fastest of the four algorithms. Since
CGDY, DYHS, and CG DESCENT use the same line search, Figure 5.2 indicates
that the search direction of CG DESCENT yields quicker descent than the search
directions of CGDY and DYHS. Also, DYHS is more efficient than CGDY. Since each
of these six codes differs in the amount of linear algebra required in each iteration
and in the relative number of function and gradient evaluations, different codes will
be superior in different problem sets. In particular, the fourth ranked PRP+ code in
Figure 5.1 still achieved the fastest time in 6 of the 113 test problems.

In our next series of experiments, shown in Table 5.1, we explore the ability of
the algorithms and line search to accurately solve the test problems.
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Fig. 5.2. Performance profiles of conjugate gradient methods.

In this series of experiments, we repeatedly solve six test problems, increasing
the specified accuracy in each run. For the initial run, the stopping condition was
‖gk‖∞ ≤ 10−2, and in the last run, the stopping condition was ‖gk‖∞ ≤ 10−12. The
test problems used in these experiments, and their dimensions, were the following:
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Table 5.1

Solution time versus tolerance.

Tolerance Algorithm Problem

‖gk‖∞ #1 #2 #3 #4 #5 #6

CG DESCENT 5.22 2.32 0.86 0.00 1.57 10.04
10−2 L-BFGS∗ 4.19 1.57 0.75 0.01 1.81 14.80

L-BFGS 4.24 2.01 0.99 0.00 2.46 16.48
PRP+ 6.77 3.55 1.43 0.00 3.04 17.80

CG DESCENT 9.20 5.27 2.09 0.00 2.26 17.13
10−3 L-BFGS∗ 6.72 6.18 2.42 0.01 2.65 19.46

L-BFGS 6.88 7.46 2.65 0.00 3.30 22.63
PRP+ 12.79 7.16 3.61 0.00 4.26 24.13

CG DESCENT 10.79 5.76 5.04 0.00 3.23 25.26
10−4 L-BFGS∗ 11.56 10.87 6.33 0.01 3.49 31.12

L-BFGS 12.24 10.92 6.77 0.00 4.11 33.36
PRP+ 15.97 11.40 8.13 0.00 5.01 F

CG DESCENT 14.26 7.94 7.97 0.00 4.27 27.49
10−5 L-BFGS∗ 17.14 16.05 10.21 0.01 4.33 36.30

L-BFGS 16.60 16.99 10.97 0.00 4.90 F
PRP+ 21.54 12.09 12.31 0.00 6.22 F

CG DESCENT 16.68 8.49 9.80 5.71 5.42 32.03
10−6 L-BFGS∗ 21.43 19.07 14.58 9.01 5.08 46.86

L-BFGS 21.81 21.08 13.97 7.78 5.83 F
PRP+ 24.58 12.81 15.33 8.07 7.95 F

CG DESCENT 20.31 11.47 11.93 5.81 5.93 39.79
10−7 L-BFGS∗ 26.69 25.74 17.30 12.00 6.10 54.43

L-BFGS 26.47 F 17.37 9.98 6.39 F
PRP+ 31.17 F 17.34 8.50 9.50 F

CG DESCENT 23.22 12.88 14.09 9.68 6.49 47.50
10−8 L-BFGS∗ 28.18 33.19 20.16 16.58 6.73 63.42

L-BFGS 32.23 F 20.48 14.85 7.67 F
PRP+ 33.75 F 19.83 F 10.86 F

CG DESCENT 27.92 13.32 16.80 12.34 7.46 56.68
10−9 L-BFGS∗ 32.19 38.51 26.50 26.08 7.67 72.39

L-BFGS 33.64 F F F 8.50 F
PRP+ F F F F 11.74 F

CG DESCENT 33.25 13.89 21.18 13.21 8.11 65.47
10−10 L-BFGS∗ 34.16 50.60 29.79 33.60 8.22 79.08

L-BFGS 39.12 F F F 9.53 F
PRP+ F F F F 13.56 F

CG DESCENT 38.80 14.38 25.58 13.39 9.12 77.03
10−11 L-BFGS∗ 36.78 55.70 34.81 39.02 9.14 88.86

L-BFGS F F F F 9.99 F
PRP+ F F F F 14.44 F

CG DESCENT 42.51 15.62 27.54 13.38 9.77 78.31
10−12 L-BFGS∗ 41.73 60.89 39.29 43.95 9.97 101.36

L-BFGS F F F F 10.54 F
PRP+ F F F F 15.96 F

1. FMINSURF (5625)
2. NONCVXU2 (1000)
3. DIXMAANE (6000)
4. FLETCBV2 (1000)
5. SCHMVETT (10000)
6. CURLY10 (1000)

These problems were chosen somewhat randomly; however, we did not include
any problem for which the optimal cost was zero. When the optimal cost is zero
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while the minimizer x is not zero, the estimate ε|f(xk)| for the error in function value
(which we used in the previous experiments) can be very poor as the iterates approach
the minimizer (where f vanishes). These six problems all have nonzero optimal cost.
The times reported in Table 5.1 differ slightly from the times reported at the Web site
http://www.math.ufl.edu/∼hager/papers/CG due to timer errors and the fact that
the computer runs were done at different times. In Table 5.1, F means that the line
search terminated before the convergence tolerance for ‖gk‖ was satisfied. According
to the documentation for the line search in the L-BFGS and PRP+ codes, “Rounding
errors prevent further progress. There may not be a step which satisfies the sufficient
decrease and curvature conditions. Tolerances may be too small.”

As can be seen in Table 5.1, the line search based on the Wolfe conditions (used in
the L-BFGS and PRP+ codes) fails much sooner than the line search based on both
the Wolfe and the approximate Wolfe conditions (used in CG DESCENT and L-
BFGS∗). Roughly speaking, a line search based on the Wolfe conditions can compute
a solution with accuracy on the order of the square root of the machine epsilon,
while a line search that also includes the approximate Wolfe conditions can compute
a solution with accuracy on the order of the machine epsilon.

6. Conclusions. We have presented a new conjugate gradient algorithm for
solving unconstrained optimization problems. Although the update formulas (1.2)–
(1.3) and (1.5)–(1.6) are more complicated than previous formulas, the scheme is
relatively robust in numerical experiments. We prove that it satisfies the descent con-
dition gT

kdk ≤ − 7
8‖gk‖2, independent of the line search procedure, as long as dT

kyk 	=
0. For (1.5)–(1.6), we prove global convergence under the standard (not strong)
Wolfe conditions. A new line search was introduced that utilizes the “approximate
Wolfe” conditions; this approximation provides a more accurate way to check the
usual Wolfe conditions when the iterates are near a local minimizer. Our line search
algorithm exploits a double secant step, denoted secant2, shown in Figures 4.3 and
4.4, that is designed to achieve rapid decay in the width of the interval which brack-
ets an acceptable step. The convergence order of secant2, given in Theorem 4.2, is
1 +

√
2. The performance profile for our conjugate gradient algorithm (1.5)–(1.6),

implemented with our new line search algorithm, was higher than those of the well-
established L-BFGS and PRP+ methods for a test set consisting of 113 problems
from the CUTE library.
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Rev. Française Informat. Recherche Opérationnelle, 3 (1969), pp. 35–43.

[32] B. T. Polyak, The conjugate gradient method in extreme problems, USSR Comp. Math. Math.
Phys., 9 (1969), pp. 94–112.

[33] M. J. D. Powell, Nonconvex minimization calculations and the conjugate gradient method,
in Numerical Analysis, Lecture Notes in Math. 1066, D. F. Griffiths, ed., Springer, Berlin,
1984, pp. 122–141.



192 WILLIAM W. HAGER AND HONGCHAO ZHANG

[34] M. J. D. Powell, Restart procedures for the conjugate gradient method, Math. Programming,
12 (1977), pp. 241–254.

[35] A. Ramasubramaniam, Unconstrained Optimization by a Globally Convergent High Precision
Conjugate Gradient Method, Master’s thesis, Department of Mathematics, University of
Florida, Gainesville, FL, 2000.

[36] D. F. Shanno, On the convergence of a new conjugate gradient algorithm, SIAM J. Numer.
Anal., 15 (1978), pp. 1247–1257.

[37] D. F. Shanno, Globally convergent conjugate gradient algorithms, Math. Programming, 33
(1985), pp. 61–67.

[38] C. Wang, J. Han, and L. Wang, Global convergence of the Polak–Ribière and Hestenes–Stiefel
conjugate gradient methods for the unconstrained nonlinear optimization, OR Trans., 4
(2000), pp. 1–7.

[39] D. F. Shanno and K. H. Phua, Remark on algorithm 500, ACM Trans. Math. Software, 6
(1980), pp. 618–622.

[40] P. Wolfe, Convergence conditions for ascent methods, SIAM Rev., 11 (1969), pp. 226–235.
[41] P. Wolfe, Convergence conditions for ascent methods. II: Some corrections, SIAM Rev., 13

(1971), pp. 185–188.
[42] G. Zoutendijk, Nonlinear programming, computational methods, in Integer and Nonlinear

Programming, J. Abadie, ed., North–Holland, Amsterdam, 1970, pp. 37–86.



SIAM J. OPTIM. c© 2005 Society for Industrial and Applied Mathematics
Vol. 16, No. 1, pp. 193–219

A NEW VERIFIED OPTIMIZATION TECHNIQUE FOR THE
“PACKING CIRCLES IN A UNIT SQUARE” PROBLEMS∗
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Abstract. This paper presents a new verified optimization method for the problem of finding the
densest packings of nonoverlapping equal circles in a square. In order to provide reliable numerical
results, the developed algorithm is based on interval analysis. As one of the most efficient parts
of the algorithm, an interval-based version of a previous elimination procedure is introduced. This
method represents the remaining areas still of interest as polygons fully calculated in a reliable
way. Currently the most promising strategy of finding optimal circle packing configurations is to
partition the original problem into subproblems. Still, as a result of the highly increasing number
of subproblems, earlier computer-aided methods were not able to solve problem instances where the
number of circles was greater than 27. The present paper provides a carefully developed technique
resolving this difficulty by eliminating large groups of subproblems together. As a demonstration
of the capabilities of the new algorithm the problems of packing 28, 29, and 30 circles were solved
within very tight tolerance values. Our verified procedure decreased the uncertainty in the location
of the optimal packings by more than 700 orders of magnitude in all cases.

Key words. interval arithmetic, branch-and-bound method, circle packing, optimality proof
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1. Introduction. The so-called optimal packing of equal circles into a square
problem class is an interesting part of geometrical optimization. Circle packing has
several real-life applications, e.g., cutting out a given number of identical circle-shaped
objects from some kind of material with a minimal amount of waste. In addition,
proving the optimality of a packing configuration is a serious theoretical challenge
from both the mathematical and the computational points of view.

The paper is organized as follows: In section 2 we discuss the general definition
of the problem and give a brief historical overview focusing mostly on the computer-
aided methods which form the basis of the present algorithm. Section 3 contains the
basic definitions and properties of interval analysis. In section 4 a general interval
branch-and-bound (B&B) frame algorithm is introduced. After that, crucial parts
of the B&B algorithm are discussed in detail, as those designed specifically for circle
packing problems. As a specification step, section 5 introduces a new elimination
procedure based on a prior noninterval one known from the literature. In section 6
the questions of finding global solutions are discussed and new methods for eliminating
tile combinations are investigated. In section 7 we propose an efficient way of handling
occurrences of free (not fixed) circles in optimal packings. Finally, in section 8 the
results of the previous sections are applied by solving the packing problems of 28, 29,
and 30 circles. The presented numerical results demonstrate how the algorithm works
in the successive elimination steps.
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194 MIHÁLY CSABA MARKÓT AND TIBOR CSENDES

2. Problem definition and history. The basic problem we consider is the fol-
lowing: place a given number n of equal circles without overlapping into a unit square
maximizing the diameter of the circles as the objective function. With a slight mod-
ification, the problem can be formulated in the following way: place a given number
n of points into the unit square maximizing the minimal distance between the pairs of
points. It can be shown that for a fixed n ≥ 2 the above two problems are equivalent
in the sense that there is a bijective mapping between the feasible solutions of the cir-
cle and point packing problems, and, moreover, there exists a strictly monotonically
increasing function transforming the objective function of the circle packing problem
into the respective objective function of the point packing problem. The proof of the
above statements is based on simple geometric transformations (for details see, e.g.,
[23]). This means that an optimal solution of the circle packing problem is determined
by an optimal solution of the point packing problem, and vice versa. Thus, we can
consider the more simple point packing problem:

maximize min
1≤i �=j≤n

√
(xi − xj)

2
+ (yi − yj)

2
,(2.1)

s.t. 0 ≤ xi, yi ≤ 1, i = 1, 2, . . . , n,

where the unit square is [0, 1]2, and the ith point is located at (xi, yi). The integer
n ≥ 2 is a parameter of the problem class; thus, one can refer to a particular point
packing problem instance by specifying n. (Note that we still often call the problem
circle packing.)

Due to the monotonicity of the square root function, in practice we solve the
problem of maximizing

fn : R2n → R, fn(x, y) = min
1≤i �=j≤n

(xi − xj)
2

+ (yi − yj)
2
,(2.2)

with 0 ≤ xi, yi ≤ 1, i = 1, 2, . . . , n, saving the evaluation of the interval square root
operations. In this way we compute distance values only if they are explicitly required.

Until now, the optimal packings of 2, . . . , 9, 14, 16, 25, and 36 circles are proved
in a theoretical way. On the other hand, computer-assisted optimality proofs exist
for n ≤ 20 [5, 6, 20] and for 21 ≤ n ≤ 27 [19]. Recently, [11] reported that the
objective function value of the currently known best packings are correct within the
tolerance value of 10−5 for n = 10, . . . , 35, 37, 38 (without determining the location
of all the optimizers). These computer methods use floating-point arithmetic and
bound rounding errors only during the geometric steps of the algorithms. In contrast,
the present paper introduces a fully interval arithmetic–based procedure providing
the enclosures of both the possible optimizers and the optimum values with high
accuracy. The source code and the control scripts of the algorithm are available at
http://www.inf.u-szeged.hu/˜markot/packcirc.htm.

3. Interval analysis. Our algorithm uses interval computations to produce reli-
able numerical solutions. This requires a brief survey on the basic interval definitions
and properties (for more details see [8, 16, 21]).

The set of compact intervals is denoted by I, where for all A ∈ I intervals A =
[A,A] = {a ∈ R | A ≤ a ≤ A}. Here A,A ∈ R mean the lower and upper bounds of
A, respectively. In case A = A we call A a point interval. For a given set of reals
D ⊆ R, I(D) denotes the set of all intervals in D. The width of an interval is defined
by w(A) := A−A.
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The real arithmetic operations can be extended for intervals by applying the
general definition A ◦B := {a ◦ b | a ∈ A, b ∈ B}.

Let ϕ : D ⊆ R → R be a real elementary function which is continuous on all A ∈
I(D). The interval extension of ϕ is defined by Φ : I(D) → I, Φ(A) := {ϕ(a) | a ∈ A}.
The interval extension of a given elementary function can be determined, for example,
by invoking monotonicity properties.

A vector of n intervals is called an n-dimensional interval (or simply a box):
X = (X1, X2, . . . , Xn), X ∈ In, and Xi ∈ I for i = 1, 2, . . . , n. Moreover, for a given
set of n-dimensional vectors D ⊆ Rn, let I(D) denote the set of n-dimensional boxes
in D. The extension of operations and functions for multidimensional intervals is
defined componentwise, similarly as for real vectors.

In order to define interval extensions for compound real functions, we define
the interval inclusion functions. We call F : I(D) → I an inclusion function of
f : D ⊆ Rn → R if f(X) = {f(x) |x ∈ X} ⊆ F (X) holds for all X ∈ I(D). In the
previous definition f(X) denotes the range of f over X. One of the possible ways of
constructing such interval functions is the so-called natural interval extension: in the
real-type function expression the variables are replaced by intervals, and, moreover,
the operators and elementary functions are replaced by the corresponding interval
ones.

Beyond the theoretical reliability of the interval computations, the inclusion prop-
erties should be provided even in cases when finite precision floating-point computer
arithmetic is used. Namely, nonrepresentable intervals should be handled to control
rounding errors. This task is usually done by the computational environment us-
ing exactly representable floating-point numbers (also called machine numbers) and
applying directed outward rounding procedures.

4. An interval B&B algorithm. In this section an interval B&B method is
introduced for computing all the global maximizers and the f∗ maximum value of the
global optimization problem

max
z∈Z0

f(z),(4.1)

where f : Rn → R is a continuous objective function and Z0 ∈ In is the search
interval. In the algorithm the interval inclusion function F (Z) of f(z) is used. At
each iteration cycle (between step 2 and step 11 of Algorithm 1), choose a box Z
from the boxes stored in the WorkTree and split it into two parts U1 and U2 (step
5). Then for both U i try to delete some parts of U i which cannot contain a global
optimizer point (steps 7 to 9). If the remaining part of U i (denoted also by U i in
the algorithm) fulfills the termination criterion, put it into the ResultList (step 10).
Otherwise store the remaining part of U i for further splittings (step 11).

In order to avoid repeated interval function evaluations, each box Z is stored
together with F (Z). The ResultList is implemented as a single-linked list and is
organized according to the first-in, first-out (FIFO) insertion strategy. The boxes still
to be processed are placed in a balanced binary search tree, namely, in an AVL-tree
called WorkTree. The tree elements are sorted in decreasing order of their F (Z)
values. Moreover, elements having the same F (Z) values are stored at the same node
of the tree in a single-linked list. The latter list type has the same properties as
the ResultList. The search tree representation offers Insert() for insertion, Delete()
for deletion, and Head() for returning the first element stored in the tree. That is,
Head() implements an interval selection method choosing a box with maximal F (Z)
for subdivision: this method is also known as the Moore–Skelboe selection rule.
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Algorithm 1. Global Optimization.

Inputs: – f : the objective function,
– Z0: the search box,
– ε: tolerance value for the stopping criterion.

Outputs: – Maximum: enclosure of the global maximum value,
– ResultList: set of candidates for a global maximizer.

1: Z := Z0; WorkTree := {(Z,F (Z))}; Set an initial f̃ cutoff value.
2: while (WorkTree is not empty) do
3: (Z,F (Z)) := Head(WorkTree);
4: Delete(Head(WorkTree));
5: Bisection(Z,U1, U2);
6: for i := 1 to 2 do
7: Try to improve f̃ ;
8: Apply accelerating devices for U i;
9: if (U i can be deleted as a whole) then continue with the next i;

10: if (w(F (U i)) < ε) then Insert(ResultList, (U i, F (U i)));
11: else Insert(WorkTree, (U i, F (U i)));
12: Maximum := (f̃ , max{F (Z) | (Z,F (Z)) ∈ ResultList});
13: Return Maximum, ResultList;

In the following, we specify some further details of the algorithm such as the eval-
uation of F (Z), the bisection strategy (step 5), and the accelerating devices (step 8).

An interval inclusion function for the packing circles problems. In [12] an inclusion
function was already given, as follows.

Theorem 4.1 (see [12]). Let (X,Y ) ⊆ [0, 1]2n, and let Dij = (Xi −Xj)
2

+

(Yi − Yj)
2

for all i, j ∈ {1, 2, . . . , n}, i �= j. Then an inclusion function of fn(x, y)
over the 2n-dimensional box (X,Y ) is given by

Fn(X,Y ) :=
[

min
1≤i �=j≤n

Dij , min
1≤i �=j≤n

Dij

]
.

Bisection step. In step 5 we split the leading box Z perpendicular to its widest
component. If two or more components have the same width, we choose the one having
the smallest index. This is the classical subdivision method. The investigation of some
more sophisticated rules (see, e.g., [3, 15]) for circle packing problems can be a subject
of further study.

Accelerating devices. In step 8 several tests are performed to delete some parts of
U i which cannot contain global maximizer points. In some cases the whole box can be
rejected. In order to test whether the investigated regions contain a global maximizer,
we assume that a guaranteed lower bound f̃ of the global maximum value exists. In
general, e.g., f̃ := F (Z0) is computed. For practical considerations we will use the
notation f̃0 and f̃ as the lower bounds of the objective functions in (2.1) and (2.2),
respectively. In the present algorithm the initial f̃ value was determined as follows:
we performed an interval function evaluation (with natural interval extension) over a
machine point representation of the currently best-known packing, and set f̃ as the
lower bound of the result interval. The corresponding f̃0 was obtained by an interval
square root evaluation:

fs :=

√
f̃ ∈ I, f̃0 := fs.(4.2)
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In Algorithm 1 the following accelerating tests are applied:

(i) Cutoff test for U i. After computing the inclusions F (U i) over the boxes
U i, i = 1, 2, U i can be eliminated if F (U i) < f̃ . Note that if f̃ is improved in step 7,
then one can discard all the elements (Z,F (Z)) of the WorkTree for which F (Z) < f̃
holds. As the experiences show, the improvement of f̃ can be a very hard task for
circle packing problems, requiring the verified results of some sophisticated search
methods (see, e.g., those in [1, 4, 17]). Nevertheless, in cases when the goal is to
verify the optimality of a given packing, the utilization of an appropriate initial f̃ can
be enough.

(ii) Elimination of inactive regions within U i. Assume we have a validated f̃0

value. Considering U i in the form of (X,Y ) ⊆ [0, 1]2n, one can consider (Xi, Yi) ⊆
[0, 1]2 as a rectangle in the unit square containing the ith point to be placed. Then
from each (Xi, Yi) we can iteratively delete those points which have a distance smaller
than f̃0 to all points of another rectangle (Xj , Yj), i �= j. This procedure may result
in either the shrinking or the rejection of U i. With regard to its importance, this
method will be discussed in detail in section 5.

Further interval-based accelerating devices designed for circle packing problems
can be found in [12], but those were not included in the present algorithm.

5. Method of active areas using polygons. This accelerating test is known
from the literature (see, e.g., [5, 18, 19]) as a part of noninterval-type methods. The
key idea of this method was already given in section 4. First, we outline a possible
basis algorithm (Algorithm 2): Consider a box (X,Y ) ⊆ [0, 1]2n. The ith component
of X and Y ((Xi, Yi) ⊆ [0, 1]2) is called the ith initial active region, i = 1, . . . , n.
During the procedure the Ri active regions of the different components are reduced
iteratively, until either one of the active regions becomes empty or a pregiven iteration
limit (Itmax) is reached. In the first case the whole box (X,Y ) can be erased (step 5).
In the latter case a new box (X ′, Y ′) containing the remaining regions will be stored
(steps 7 and 8). The most important part of Algorithm 2 is step 4, in which we delete
some points (forming a so-called inactive region) of Ri having distance smaller than
f̃ from each point of Rj .

One crucial part of the algorithm is the representation of the intermediate active
areas (i.e., the Ri regions). One can easily show that a set of points within a two-
dimensional geometric object having a distance at least f̃0 from all points of another
object may be nonconvex or nonconnected. Nevertheless, a good approximation of
the active and inactive point sets is vital to erasing as large inactive sets as possible.
In [5] the initial active regions are quantized into many rectangular pieces, applying
splittings both in horizontal and in vertical directions, and the set of eliminated and
remaining pieces were representing the inactive and active point sets, respectively. In
[18] a similar approach was applied but using only splittings in one direction. Until
now, the most effective realization is the one of Nurmela and Österg̊ard [19], which
approximates the active and inactive regions by polygons. Although in a method
working basically with multidimensional intervals the latter solution is more difficult
to implement, we found that this extra effort resulted in an outstanding improve-
ment in the computational efficiency as compared to the method using rectangular
approximations. Moreover, the branching step of the current B&B frame algorithm
generates rectangular splittings in a moderate way, mixing the advantages of the
different approaches.

The method of [19] is based on the following lemma and theorem.

Lemma 5.1 (see [19]). If a point p is at a distance less than f̃0 from all the
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Algorithm 2. Method of active areas.

Inputs: – f̃0: a validated lower bound of the global maximum of (2.1),
– (X,Y ) ⊆ [0, 1]2n: the box to be reduced,
– Itmax: the iteration limit.

Output: – (X ′, Y ′) ⊆ [0, 1]2n: a box containing the remaining areas.

1: for i := 1 to n do Ri := (Xi, Yi);
2: for i := 1 to Itmax do
3: for all (i, j), 1 ≤ i, j ≤ n, i �= j do
4: R′

i := Diminish ij((Ri, Rj), f̃0); {comment: reduce Ri to R′
i}

5: if (R′
i = ∅) then return “(X ′, Y ′) is empty”;

6: Ri := R′
i;

7: for i := 1 to n do (X ′
i, Y

′
i ) := Rectangular enclosure(Ri);

8: return (X ′, Y ′);

vertices of a polygon R, it is at a distance less than f̃0 from all points of R.
Theorem 5.2 (see [19]). Assume that p1, . . . , pk are distinct points on the bound-

ary of a polygon Ri, that the line segments plpl+1 for 2 ≤ l ≤ k − 2 are edges of Ri,
and that p1p2 and pk−1pk lay on the edges of Ri. If the points pi, 1 ≤ i ≤ k, are at
a distance less than f̃0 from all vertices of Rj, then the points in the polygon formed

by p1, p2, . . . , pk are at a distance less than f̃0 from all points of Rj.
We introduce a numerically reliable area reduction method based on the above

assertions. Due to the length and complexity of the algorithm, we will skip the
technical details; these will be presented in a forthcoming paper [14]. (Keep in mind
that we intend to present a computer-aided proof ; that is, it is necessary to make the
algorithmic details available and to perform a proof of correctness of the algorithms.)

Assuming exact computations, one can easily see that if the polygons Ri, i =
1, . . . , n, are initialized as convex sets (as it is in the current method; see Algorithm 2,
step 1), then they remain convex after each elementary reduction made by Theo-
rem 5.2. However, with finite precision arithmetic the points p1 and pk cannot be
evaluated exactly. In the method of Nurmela and Österg̊ard the evaluated points
p1 and pk are corrected by estimating the possible computation error, while in the
present method proper rectangles as the guaranteed enclosures of p1 and pk are com-
puted. However, both methods may result in concave, or even self-intersecting, Ri

polygons. To avoid the difficulty of representing and handling extremely irregular
sets, we make some restrictions for the shape of the polygons; namely, we assume
that the remaining regions satisfy the invariance criterion below (implicitly defining
what we call “polygon” in what follows).

Invariance criterion. During the whole running of the interval implementa-
tion of Algorithm 2, each Ri, i = 1, . . . , n (called remaining region or remaining poly-
gon), is either a point p1, a line segment p1p2, or a “simple” polygon (p1, . . . , pk), k ≥
3, i.e., a polygon with edges p1p2, . . . , pk−1pk, pkp1, such that each pair of edges has
at most one joint point as the joint endpoint of two consecutive edges.

Notice that the above criterion allows also nonconvex polygons to form a remain-
ing region. Algorithm 3 shows our designed interval algorithm for implementing an
elementary area reduction method. In the algorithmic description we use the notation
d(x, y) for the euclidean distance between two points x, y ∈ R2.

In Algorithm 3 we consider several cases depending on the number of nodes of
the polygon to be reduced: s = 1 is handled in steps 4 and 5, while s = 2 and
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Algorithm 3. Diminish ij—the reliable version.

Inputs: – Ri = Ri(b1, b2, . . . , bs): the polygon to be reduced,
– Rj = Rj(a1, a2, . . . , at): the polygon used for reducing Ri,

– f̃0: a validated lower bound of the global maximum of (2.1).
Output: – R′

i: the remaining polygon of Ri.

1: for l := 1 to s do
2: if (it is guaranteed that d(bl, am) < f̃0 for all m = 1, . . . , t) then mark bl with

a “−” flag;
3: else mark bl with a “+” flag;
4: if (all the bl have “−”) then return “R′

i is empty”;
5: else if (all the bl have “+”) then return R′

i := Ri;
6: Find a sequence of consecutive vertices bl with “−”, denoted by p2, . . . , pk−1.
7: if (s = 2) then {comment: Ri is a line segment}
8: Denote the node of Ri differing from p2 by p0;
9: Find an enclosure P1 ∈ I2 of a point p1 such that p1 is on the line segment p0p2,

and d(p1, am) < f̃0 for all m = 1, . . . , t.
10: Build R′

i from P1, p2;
11: else {comment: s ≥ 3}
12: Denote the preceding node of p2 in Ri by p0;
13: Denote the succeeding node of pk−1 in Ri by pk+1;
14: Find an enclosure P1 ∈ I2 of a point p1 such that p1 is on the line segment p0p2,

and d(p1, am) < f̃0 for all m = 1, . . . , t.
15: Find an enclosure Pk ∈ I2 of a point pk such that pk is on the line segment

pk−1pk+1, and d(pk, am) < f̃0 for all m = 1, . . . , t.
16: Let d1 = pk+1, . . . , ds−k+2 = p0 be the consecutive vertices of Ri not chosen in

step 6;
17: Build R′

i from P1, Pk, d1, . . . , ds−k+2;
18: return R′

i;

s ≥ 3 are considered in steps 7 to 10 and steps 11 to 17, respectively. We represent
polygons commonly as a sequence of consecutive vertices, but we assume that the
coordinates of the vertices are machine numbers. (We start the elimination procedure
with such polygons; see Algorithm 2, step 1.) Each execution of the interval version of
Algorithm 3 results in either an empty polygon (step 4) if we can provide a guarantee
that each vertex of Ri is at a distance less than f̃0 from Rj ; or a polygon (step 5 or
18) which contains the polygon that would be obtained assuming exact arithmetic.

Note that p0 = pk+1 may hold in steps 12 and 13; in this case we construct R′
i

without duplicating this point in the result polygon.
There are several crucial parts of Algorithm 3 making the procedure reliable. We

give only a short overview on them; for details see [14]. The first problem to be resolved
is to mark the vertices of Ri correctly, i.e., to verify the validity of the if condition of
step 2. The second is to compute inclusion rectangles for some appropriate p1 and pk
points (steps 9, 14, 15) we would get if we used exact arithmetic. Finally, we have to
build resulting polygons R′

i in steps 10 and 17 satisfying the invariance criterion and
enclosing all points we must keep.

The invariance criterion of the resulting polygon is reached basically during the
latter task by testing several separation properties. Consider Figure 5.1, which shows
an example of executing Algorithm 3 for s = 2 and s ≥ 3, respectively. (Now we
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Fig. 5.1. The polygon Ri and the enclosures P1, P2 in the method of active areas with interval
computations. Cases s = 2 (left) and s ≥ 3 with s = 9, k = 7 (right).

sketch the key idea only when s ≥ 3, since s = 2 is merely a special case of this.)
After creating P1 and P2 we can test whether the convex hull conv(P1, Pk) of them
is strictly separated from the set of vertices d2, . . . , ds−k+1 by the line given by p0

and pk+1 (we do not allow even touching the line). If so, then the polygons formed
by d1, . . . , ds−k+2 and by conv(p0, pk+1, P1, Pk) both satisfy the invariance criterion.
Moreover, their union (which can be obtained by concatenating the corresponding
vertices) also satisfies the criterion and forms a remaining polygon.

After making a more elaborative analysis on Algorithm 3, we can prove its cor-
rectness as a reliable method of eliminating inactive regions.

Theorem 5.3 (see [14]). The interval implementation of Algorithm 3 eliminates
only those points from Ri which are guaranteed to be at a distance less than f̃0 from
all points of Rj.

Corollary 5.4 (see [14]). Algorithm 2 deletes only those (x, y) ∈ R2n feasible
points for which fn(x, y) < f̃ holds.

6. A global elimination procedure. Now we have a reliable B&B method for
solving circle packing problem instances as global optimization problems. However,
some difficulties would arise if one ran Algorithm 1 on the whole initial search box
[0, 1]2n. The result would consist of at least n! solutions showing the same packing
pattern, and differing from each other only in the indexing of the result components.
In other words, in the optimization frame procedure the points will be permuted, but
these permutations give the same solution in the geometrical sense. The other possible
problem is that each solution can be transformed into symmetric, but numerically
different, solutions (by reflections and rotations), which also increase the number of
obtained result elements unnecessarily. The predecessor [12] of the currently used
interval method (which approximated the active areas by rectangular cells instead of
polygons) was able to solve packing problems only up to n = 5 within several hours
of CPU time when the permutation and symmetry problems were not resolved.

One possible solution for the above difficulties can be reached, for example, by the
lexicographical ordering of the components. This was realized in an imposed form of
the earlier introduced noninterval-based computer-aided proofs (see [5, 18, 19]). The
method is called tiling. In what follows we give an overview on the tiling method, and
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after that we make a proposal to overcome its drawback for large numbers of circles
and extend the optimality proof for previously unsolved problem instances.

6.1. Tiling methods. Assuming that a lower bound f̃ for the maximum value
of the considered point packing problem instance is given, split the unit square into
regions (tiles) in such a way that the squared distance between any two points in each
tile is less than f̃ (or the distance between any two points in each tile is less than f̃0).
Then for each packing configuration attaining objective function value greater than
or equal to f̃ , each tile can contain obviously at most one point of the packing. The
optimality of a given packing can be proved by running the search procedure on all
possible tile combinations.

Remark 1. For many optimization problems only an approximation or a bound
of the optimum value is required by the user. We can validate such pregiven ap-
proximations when we use tiling: if all the tile combinations can fully be eliminated
considering a hypothetical bound as a cutoff value, then it can be regarded as an
upper bound of the global optimum.

An interesting question arising is how to split the unit square to produce combi-
nations which are easy to represent and handle and, in addition, to keep the number
of combinations as small as possible. Our interval-based method prefers rectangu-
lar tiles applied also by the earlier strategies. When splitting the unit square into
k× l rectangles (in a regular way), the minimal number of initial tile combinations is
determined by

min
{(

k·l
n

)
| k, l ≥ 1 integers, (1/k2 + 1/l2)1/2 < f̃0

}
.

In the previous studies the initial tile combinations were eliminated sequentially
one after the other. However, the highly increasing number of those combinations
made problem instances n ≥ 28 unsolvable with this strategy in an acceptable time
limit. For example, for n = 27 a 6×6 tiling can be applied, resulting in (3627) ≈ 9.4 ·107

initial time combinations. The paper [19] does not present computational details, but
the optimality proof for this case was completed in about one month of CPU time
(performing simple floating-point computations instead of the about 4–35 times slower
interval arithmetic). For n = 28 at least a 7×6 tiling is needed, thus, (4228) ≈ 5.3 ·1010

combinations must be checked. As in earlier studies, symmetry properties would help
to reduce this number, but afterwards we would still have more than 1.3 · 1010 cases.

The main idea of the proposed procedure is the following: the largest part of
the combinations may be eliminated in a relatively easy way considering only local
relations within the combinations. In detail, if one can discover patterns of tiles which
cannot contain components of an optimal solution, then several tile combinations (i.e.,
higher-dimensional subproblems) containing any of these patterns can be discarded
quickly. Let us denote by P (n,X1, . . . , Xn, Y1, . . . , Yn) a point packing problem in-
stance where n is the number of points to be packed, Xi, Yi ∈ I, i = 1, . . . n, are the
components of the starting box, and the objective function is given by (2.2). The sim-
ple theorem below shows how to apply a result achieved on a 2m-dimensional packing
problem for a higher-dimensional problem with 2n dimensions, n ≥ m ≥ 2.

Theorem 6.1. Let n ≥ m ≥ 2 be integers and let

Pm = P (m,Z1, . . . , Zm,W1, . . . ,Wm) = P (m, (Z,W )),

Pn = P (n,X1, . . . , Xn, Y1, . . . , Yn) = P (n, (X,Y ))

be point packing problem instances (Xi, Yi, Zi,Wi ∈ I;Xi, Yi, Zi,Wi ⊆ [0, 1]). Run
Algorithm 1 on Pm using a hypothetic f̃ cutoff value in the accelerating devices and
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skipping step 7, and stop after an arbitrary, preset number of iteration steps. De-
note by (Z ′

1, . . . , Z
′
m,W ′

1, . . . , W ′
m) := (Z ′,W ′) the componentwise hull of all the

elements placed on the WorkTree and on the ResultList. Assume that there exists
an invertible, distance-preserving geometrical transformation ϕ with ϕ(Zi) = Xi and
ϕ(Wi) = Yi for all i = 1, . . . ,m. Then for each point packing (x, y) ∈ R2n satisfying
(x, y) ∈ (X,Y ) and fn(x, y) ≥ f̃ , the statement

(x, y) ∈ (ϕ(Z ′
1), . . . , ϕ(Z ′

m), Xm+1, . . . , Xn,

ϕ(W ′
1), . . . , ϕ(W ′

m), Ym+1, . . . , Yn) := (X ′, Y ′)

also holds.

Proof. Perform an indirect proof and assume that a feasible solution (x, y) ∈ R2n

of Pn with fn(x, y) ≥ f̃ is discarded when modifying the starting box of Pn, i.e.,
(x, y) ∈ (X,Y ), but (x, y) �∈ (X ′, Y ′). Additionally, let (z, w) = (ϕ−1(x1), . . . , ϕ

−1(xm),
ϕ−1(y1), . . . ϕ

−1(ym)) ∈ R2m. Notice that (x, y) �∈ (X ′, Y ′) implies (z, w) �∈ (Z ′,W ′)
by the indirect assumption, and, moreover,

f̃ ≤ fn(x, y) ≤ fm(x1, . . . , xm, y1, . . . ym) = fm(z, w).(6.1)

The second inequality of (6.1) follows from (2.2), and (6.1) is implied by the distance-
preserving property of ϕ−1. Consequently, Algorithm 1 deleted the feasible solution
(z, w) of Pm for which f̃ ≤ fm(z, w) holds. But this is a contradiction, since all the
accelerating devices of Algorithm 1 erase only those feasible solutions for which the
objective function value is less than f̃ . This completes the proof.

The meaning of Theorem 6.1 is the following: assume that we are able to reduce
some search regions on a tile set S′. When processing a higher-dimensional subprob-
lem on a tile set S containing the image of S′, it is enough to consider the image of
those of the remaining regions of S′ as the particular components of S. Mostly we
apply the theorem in the special case when ϕ is the identity, i.e., when the tile set of
the higher-dimensional problem is the superset of the tile set of the smaller problem.

As a consequence of the theorem, if it is proved that S′ cannot contain point
packings attaining at least f̃ function value, then all the higher-dimensional problems
with tile set S, S′ ⊆ S can be eliminated at once (when using the same f̃). The latter
fact is formalized below with the notation of Theorem 6.1.

Corollary 6.2. Let ϕ be the identity transformation and assume that Al-
gorithm 1 stops with an empty WorkTree and with an empty ResultList; i.e., the
whole search region (Z,W ) = (Z1, . . . , Zm,W1, . . . ,Wm) = (X1, . . . , Xm, Y1, . . . , Ym)
is eliminated by the accelerating devices using (the same) f̃ . Then (X,Y ) does not
contain any (x, y) ∈ R2n vectors for which fn(x, y) ≥ f̃ holds.

Remark 2. In order to apply Theorem 6.1 correctly, we have to take care of the
following important facts:

(i) w(Zi) = w(Xi) and w(Wi) = w(Yi) for all i = 1, . . . ,m should be provided.
This assumption does not necessarily hold if one tries to split the unit square in a
regular way using floating-point numbers. The solution is the enlargement of the unit
square in such a way that the resulting bounds of the tiles are exactly representable
machine numbers (e.g., small integers).

(ii) We use shifting and rotating operators as ϕ, but even in these simple cases we
have to apply the transformations in an interval way to obtain a guaranteed enclosure
of the transformed objects.
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6.2. Basic algorithms for the optimality proofs. Our optimality proofs are
based on Theorem 6.1 and have the following basic idea: first we find feasible patterns
of tiles and remaining areas on some small subsets of the whole set of tiles and then
we process bigger and bigger subsets while using the results of the previous steps.
Thus, our method is not fully automated, it consists of several phases, and each phase
depends on the result of the previous phases. (However, the whole method is easily
controlled by short command scripts associated to each phase.)

Obviously, there are several ways of “growing” the considered search regions until
we reach the enclosures of the global maximizers as our final destination. We introduce
two basic algorithms executed in our computer-aided proofs. We discuss them in gen-
eral, i.e., for an arbitrary n and for a regular k×l splitting (with k rows and l columns)
of the square. We assume that the columns are numbered 1, . . . , l from left to right.

To discuss the algorithms in detail let us introduce some new notation and
abbreviations. In the beginning of each phase we determine some sets of tile combi-
nations consisting either of the remaining areas of the previous phases (or its trans-
formations) or of full tiles. These sets are denoted by Sm

s..f , where s ≤ f, s, f ∈
{1, . . . , l}, m ∈ {0, 1, . . . , n}, symbolizing that a number of m remaining or full tile
regions are considered and the regions are chosen from columns s, s + 1, . . . , f . (In
the example of n = 29, we first generate S15

1..3, that is, all the combinations of 15
tiles where the tiles are chosen from the leftmost 3 columns of the square.) More-
over, for a set M = {m1, . . . ,mk} ⊆ {0, 1, . . . , n}, let SM

s..f = ∪k
i=1S

mi

s..f . The el-
ements of the sets Sm

s..f are processed sequentially by the optimization algorithm

using f̃ . With the exception of the final phase, we stop the optimization algorithm
after a certain number of iterations. As a result, some combinations can be fully
or partly eliminated. The resulting new sets are denoted by S̄m

s..f . The sets S̄m
s..f

form the input components of the subsequent phases. We will use the notation
m1

s1..f1
Sm
s..f , 1 ≤ s ≤ s1 ≤ f1 ≤ f ≤ l, 0 ≤ m1 ≤ m ≤ n, as that of the subset of

Sm
s..f in which each element contains exactly m1 tile regions from columns s1, . . . , f1.

Note that the elements of the sets Sm
s..f , S̄m

s..f , m1

s1..f1
Sm
s..f , and m1

s1..f1
S̄m
s..f are in general

only enclosures of the corresponding exact remaining areas.

Remark 3. In each phase of our optimality proof we accelerate Algorithm 1 by
calling the method of active areas immediately to the initial search region. In many
cases, this results in the elimination of the whole search box before doing any bisection.
(Obviously, this modification has no effect on the correctness of Theorem 6.1.)

Algorithm 4 (called Grow) takes the set S̄m
1..c for a given pair (c,m), i.e., all

the current remaining areas where m tiles are chosen from the first c columns and
produces a new set m

1..cS
m+i
1..(c+1). The procedure takes all the combinations A ∈ S̄m

1..c

(step 3) and adds a suitable (see Remark 4) number i of new tiles to them in all the
possible ways. With the aid of the sets S̄n−m

c+1..l, in step 6 we test whether pattern B
can be valid in column (c+ 1). If this is the case, each result combination A′ (step 7)
can be tested further since we have additional information on the possible remaining
areas in columns 2, . . . , (c + 1). Namely, S̄i+j

2..(c+1) can be generated from the given

S̄i+j
1..c by applying Theorem 6.1 (performing a shifting transformation). In case there

is no remaining combination with pattern P in S̄i+j
2..(c+1) (tested in step 9), we can

immediately ignore A′ by Corollary 6.2. Otherwise we intersect A′ with C ∈ S̄i+j
2..(c+1)

on the tile positions corresponding to P (step 10) and apply Theorem 6.1 again to
the result A′′: we store A′′ in the output set only if none of its components are empty
(steps 11 and 12).
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Algorithm 4. Grow: add one column.

Inputs: – n: the number of points to be packed,
– k, l: the square is divided into k rows and l columns regularly,
– c, 1 ≤ c ≤ l: a column index,
– S̄t

1..c for all 0 ≤ t ≤ ck,
– S̄t

c+1..l for all 0 ≤ t ≤ (l − c)k (if available),
– m, 1 ≤ m ≤ ck: the elements of S̄m

1..c will be extended by adding
one column,

– i: the number of tiles to be added from column c + 1.

Output: – m
1..cS

m+i
1..(c+1): the output set.

1: Initialization: m
1..cS

m+i
1..(c+1) := ∅;

2: Generate Si
(c+1)..(c+1) from full tiles;

3: for all (A ∈ S̄m
1..c) do

4: Let j be the number of regions in columns 2, . . . , c of A;
5: for all (B ∈ Si

(c+1)..(c+1)) do

6: if (S̄n−m
c+1..l is available and there exists an element of it having the same tile

pattern as B in column c + 1) then
7: Let A′ be the concatenation of A and B;
8: Let P be the set of tile positions in columns 2, . . . , (c + 1) of A′;
9: if (a C ∈ S̄i+j

2..(c+1) exists with tile positions P ) then

10: Intersect A′ and C on positions P resulting A′′;
11: if (none of the components of A′′ is empty) then
12: Add A′′ to m

1..cS
m+i
1..(c+1).

Figure 6.1 demonstrates how the algorithm works for k = l = 4, c = 2, m =
5, i = 3 and for j = 3 in the main loop. In each part of the figure solid lines denote
the boundaries of the considered combinations.

Remark 4. In practice, Algorithm 4 is performed on some relevant m values. In
order to cover all the valid tile combinations on the first c + 1 columns, we have to
compute a lower ml and an upper mu bound on the number of tiles m+i of the output,
i.e., to associate a set of i values to each m. A possible choice for a lower bound is m;
however, we may increase this number if we have a kind of complementary information:
assume that it is guaranteed that all the point packings x ∈ R2n, fn(x) ≥ f̃ can contain
at most t points in columns (c+2), . . . , l. In other words, we know that St0

c+2..l = ∅ (or

S̄t0
c+2..l = ∅) for each t0 > t. Then ml can be set to max(m,n − t). An upper bound

on m + i can be determined by mu := min(m + k, n). Summarizing these results,
Algorithm 4 must be performed to all i with max(0, n− t−m) ≤ i ≤ min(k, n−m)
for each m.

Algorithm 5, called Join, joins the elements of two sets of tile combinations pair-
wise. This algorithm also inputs a given parameter pair (c,m). It is assumed that the
possible remaining regions are known when locating m points in the first c columns.
Moreover, we have all the possibilities to add some points in the (c + 1)th column
for all the elements of S̄m

1..c; thus, we know the sets m
1..cS̄

m1

1..(c+1), e.g., by Algorithm 4.

Similarly, the sets n−m
(c+1)..lS̄

m2

c..l are also assumed to be known. (In practice, the latter

sets are evaluated from n−m
1..(l−c)S̄

m2

1..(l−c+1) applying a rotation by 180 degrees around

the midpoint of the search square for each element, since we “grow” tile combina-
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Fig. 6.1. An example of adding a new column for k = l = 4, c = 2, m = 5, i = 3, j = 3.

Algorithm 5. Join: join remaining areas.

Inputs: – n: the number of points to be packed,
– k, l: the square is divided into k rows and l columns regularly,
– c, 1 ≤ c ≤ l − 1: a column index,
– m, 0 ≤ m ≤ ck,
– m

1..cS̄
m1

1..(c+1) for all m1, m ≤ m1 ≤ n,

– n−m
(c+1)..lS̄

m2

c..l for all m2, n−m ≤ m2 ≤ n.

Output: – m
1..cS

n
1..l: the output set.

1: Initialization: m
1..cS

n
1..l := ∅;

2: for m1 := m to n do
3: for all (A ∈ m

1..cS̄
m1

1..(c+1)) do

4: Let j be the number of regions in column c of A;
5: Let P be the set of tile positions in columns c and (c + 1) of A;
6: for all (C ∈ n−m

(c+1)..lS̄
n−m+j
c..l ) do

7: Let P ′ be the set of tile positions in columns c and (c + 1) of C;
8: if (P = P ′) then
9: Intersect A and C on positions P resulting A′;

10: if (none of the components of A′ are empty) then
11: Add A′ to m

1..cS
n
1..l.
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Fig. 6.2. An example of joining the remaining areas for n = 11, k = l = 4, c = 2, m = 6 and
for m1 = 8, j = 3.

tions from left to right, starting from column 1.) Consequently, the input sets can be
intersected in tile positions from columns c and c + 1.

Algorithm 5 works as follows: we take all the elements A from m
1..cS̄

m1

1..(c+1) (step

3). Then for each A we determine all those combinations C ∈ n−m
(c+1)..lS̄

n−m+j
c..l which

have the same tile positions in columns c and c+ 1 as A (steps 5–8). If the condition
of step 8 holds, then we join A and C by Theorem 6.1 (step 9), and finally, similarly to
Algorithm 4, we store the result only if all of its components are nonempty (steps 10
and 11). The output set contains all those remaining areas of the considered packing
problem for which exactly m tiles are chosen from the leftmost c columns. Figure 6.2
shows an example of executing Algorithm 5 for n = 11, k = l = 4, c = 2, m = 6 and
for m1 = 8, j = 3.

Notice that Algorithm 5 can be generalized on the base of the number i of in-
tersecting columns. Similar representations with i = 0, . . . , l − 1 are possible. In the
present paper only i = 2 is considered since it proved to be enough for the discussed
problem instances. However, in general it may be worth it to apply many different i
values.

7. A method for handling free circles. Let us introduce the following defi-
nition.

Definition 7.1. Consider the point packing problem class with the distance
function and objective function given by (2.2). Consider an optimal point packing,
i.e., a vector (x, y) = (x1, . . . , xn, y1, . . . , yn) ∈ R2n for which fn is maximal. We call
a point pk = (xk, yk), k ∈ {1, . . . , n}, of this optimal packing to be a free point, or,
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equivalently, a free circle center, if there exists a half line H with the endpoint pk and
there exists a positive number ε, such that

fn(x, y) = fn(x1, . . . , x
′
k, . . . , xn, y1, . . . , y

′
k, . . . , yn)

for all (x′
k, y

′
k) ∈ H ∩Nε(pk), where Nε(pk) denotes the ε-neighborhood of pk.

Note that by the equivalence of the point packing and circle packing problems
each free point in an optimal point packing is identified by the center of a free circle
of the corresponding optimal packing of circles and vice versa. The meaning of the
above definition is straightforward: we say a circle is free in the optimal packing if
the center of this circle can be slightly perturbed without losing the optimality of the
packing. It is also obvious that the handling of free circles is crucial when solving
circle packing problems, since they pose a continuum (and usually a positive measure)
set of equivalent global optimizers.

In advanced phases of the B&B algorithm, the enclosure of such a set usually
appears as a region extremely bigger than the others (and it is subdivided probably
unnecessarily), but it is almost useless as a reducing region. It is apparent that one
can consider only a single canonical value instead of such a point set. The following
method shows how to apply a simple criterion to temporarily replace some parts of
the search region with single points (without losing any optimal solutions).

1. Let (X1, . . . , Xn, Y1, . . . , Yn) = (X,Y ) ∈ I2n enclose all the remaining boxes
(i.e., all the candidates stored either in the WorkTree or in the ResultList) after
a certain number of iteration loops when executing Algorithm 1 (or its accelerated
version; see Remark 3). We assume that either the WorkTree or the ResultList is not
empty. Moreover, let f̃ be the current cutoff value used in the algorithm.

2. Assume that there exist machine representable points pk1 , . . . , pkt , pks ∈
(Xks

, Yks), s ∈ {1, . . . , t}, in t different components of (X,Y ), such that for each ks

D(pks
, (Xj , Yj)) > F (X,Y ) ≥ f̃(7.1)

holds for all j ∈ {1, . . . , n}, j �= ks. Let K denote the set of indices {k1, . . . , kt}.
3. Replace the components (Xi, Yi) of (X,Y ) with the point intervals pi for each

i ∈ K. Run Algorithm 1 on the resulting (X ′, Y ′) box, ignoring the improvement step
of f̃ , i.e., using the earlier found best lower bound, and stop it after a certain number
of iteration steps.

4. Let (X ′′, Y ′′) ∈ I2n enclose all the remaining boxes. The components of the
output box of the procedure are then given by (Xi, Yi) for i ∈ K and (X ′′

j , Y
′′
j ) for

each j �∈ K; i.e., the latter components can be diminished as compared to (Xj , Yj).
The idea behind the proposed method is the following: Assume that optimal point

packings exist in (X,Y ). Then clearly F (X,Y ) ≥ f∗ holds. Consider a set of points
{pj | pj ∈ (Xj , Yj), j �∈ K} with a minimal pairwise distance f∗. Notice that by (7.1)
this set can be expanded with {pi, i ∈ K} to obtain an optimal packing. Moreover,
for each i ∈ K, d(pi, pj) > F (X,Y ) ≥ f∗ occurs for all j ∈ {1, . . . , n}, j �= i, which
implies the existence of an ε > 0 such that d(p′i, pj) > f∗ for all p′i ∈ Nε(pi). In other
words, each pi is a free point of each such packing.

Theorem 7.2. The above procedure for shrinking the remaining regions is correct
in the sense that all the optimal packings in (X,Y ) are also present in the output box
of the procedure.

Proof. Let us use the abbreviations Z := (X,Y ) and Z ′ := (X ′, Y ′). Consider a
box V ′ ⊆ Z ′ eliminated by Algorithm 1 using f̃ in step 3 of the above method. Recall
that V ′

i = pi for all i ∈ K. Let V ⊆ Z be given by Vj := V ′
j for j �∈ K and by Vi := Zi
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for the other components. It is enough to show that V would also be eliminated by
Algorithm 1 using f̃ (i.e., that V cannot contain global optimizers).

First, assume that V ′ is eliminated by the method of active areas. Notice that
from (7.1) each area reduction is made only between components j1, j2 �∈ K. Clearly,
if a component V ′

s can be fully erased by such regions, then it could also be eliminated
in V by the same test, since in V all the particular reducing regions of V ′ are also
present.

Second, consider the case when V ′ is deleted by the cutoff test. We first prove
two simple consequences of (7.1):

D(pi, Zj) > f̃ ⇒ D(pi, V
′
j ) = D(V ′

i , V
′
j ) > f̃,(7.2)

D(pi, Zj) > f̃ ⇒ D(Zi, Vj) = D(Vi, Vj) > f̃(7.3)

for all i ∈ K, j ∈ {1, . . . , n}, i �= j, V ′
j ⊆ Zj , and Vj ⊆ Zj .

Both statements can easily be proved in an indirect way by applying the fact
that D is an inclusion function of the distance function d. Assuming the converse
of the conclusions of (7.2) and (7.3), respectively, we could state d(pi, (xj , yj)) ≤ f̃ ,
where (xj , yj) is arbitrarily chosen from V ′

j for (7.2) and from Vj for (7.3). But due
to (xj , yj) ∈ Zj , this contradicts the premise of both (7.2) and (7.3).

Since V ′ is deleted by the cutoff test, we obtain

f̃ > F (V ′) = min
1≤i �=j≤n

D(V ′
i , V

′
j ) = min

1≤i�=j≤n
i�∈K,j �∈K

D(V ′
i , V

′
j ) = min

1≤i�=j≤n
i�∈K,j �∈K

D(Vi, Vj)

= min
1≤i �=j≤n

D(Vi, Vj) = F (V ).

Here the conclusions of (7.2) and (7.3) are applied in the second and fourth
equations, respectively, while the third equation follows from the construction of V .
Thus, from the first and last statements of the chain we obtained that V can also be
deleted using the same cutoff value. This completes the proof.

According to our computational experience, the use of single values instead of
regions was indispensable in achieving high precision verified solutions for the circle
packing problems. The above method is performed in practice in the following way: for
each component (Xi, Yi), i ∈ {1, . . . , n}, a stochastic search is applied for finding a ma-
chine representable point pi ∈ (Xi, Yi) for which g(i) = min1≤j≤n,j �=i D(pi, (Xj , Yj))
is maximal. The search procedure we used was the stochastic optimization method
GLOBAL [2]. If g(i) > F (X,Y ) ≥ f̃ holds for the best g(i) value found, then it is
ensured that (7.1) also holds. (Notice, that the obtained pi is reliable since g(i) is
computed by interval arithmetic.)

8. Optimality for n = 28, 29, and 30.

8.1. Hardware and software environment. The optimization procedure was
carried out on a PC with an Intel Pentium IV 1400 MHz processor and 1 Gbyte RAM
running under the Linux operating system. The global optimization frame algorithm
is based on the Toolbox for C–XSC libraries [7], while the low-level interval arithmetic
routines were implemented by PROFIL/BIAS [9]. Additionally, the multiple precision
extension of PROFIL [10] is also built in to determine f̃ and to have correctly rounded
decimal numbers in those I/O routines which communicate with the user. (During
the intermediate phases of our algorithm we used binary I/O routines.)
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8.2. The global procedure. The currently known best packings for the inves-
tigated cases were published in [4] (for n = 28 points) and in [17] (for n = 29 and 30,
respectively). The solution points and the corresponding function values can be found
in [22], where the result components are rounded to 13 decimal digits. In order to
obtain higher precision for the initial values of f̃ , the structures of the best packings
were investigated. These structures describe which points are located on the sides
of the square and which pairs of points have minimal distances. The structures are
formally given by systems of equations. Since the exact solutions of these systems are
not known for n = 28, 29, we solved them numerically by Maple to a precision of 20
digits. The guaranteed enclosures of the objective function values on these more pre-
cise approximate results were then determined by a simple function evaluation with
multiple precision intermediate interval data.

In contrast, the coordinates of the best known packing of 30 points have the exact
form of (qd+ par(p+ 1)(1− 4d), pa), where d = (20−

√
10)/75, a = 1/5, par denotes

the parity function, and p ∈ {0, . . . , 5}, q ∈ {0, . . . , 4}. Moreover, the maximum
value is exactly d. An enclosure of d was determined by a simple multiple-precision
expression evaluation.

From the above function enclosures we obtained the following f̃0 lower bounds
for the objective function (2.1):

f̃0,28 = 0.2305354936426673,

f̃0,29 = 0.2268829007442089,

f̃0,30 = 0.2245029645310881.

These allowed us to split the search space into 7 × 6 uniform cells as initial tiles for
all three problems.

The original point packing problem was modified in two steps: first, we considered
squared distances instead of distances between points (see section 1) and then we
enlarged the search space from [0, 1] × [0, 1] to [0, 42] × [0, 42]—as was suggested by
the first part of Remark 2. At the same time we evaluated the f̃ values

f̃28 = 93.7506267944766227,

f̃29 = 90.8034005467881010,

f̃30 = 88.9083890308478496

used during the whole computation.
Since the global procedure runs almost identically for the three problem instances,

we introduce it only in the example of n = 29. (In [13] a similar report is given for
n = 28.) In any case, detailed computational results are given for all three problems
in Tables 8.1, 8.2, and 8.3, respectively. The results are grouped by the successive
processing phases.

According to our previous suggestions, with the exception of the last phase we
stopped the B&B algorithm after a preset number of iterations on each input combi-
nation. This number was 3 in the first three phases and 10,000 in the fourth (refining)
phase.

Phase 1. First we evaluated S̄m
1..3 for some m. The initial sets Sm

1..3 were built
from full tile combinations, since we had no previous information about the possible
configurations. Notice that it is not worth it to evaluate the above sets when m is
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Table 8.1

Computational details of solving the packing problem of n = 28 points. The two columns on
the left show the name and the size of the input sets of the global optimization process: these sets
are full tile combinations in Phase 1, the resulting sets of Algorithm 4 in Phase 2, the resulting sets
of Algorithm 5 in Phase 3, the aggregated resulting sets of Phase 3 in Phase 4, and the only box to
be refined in Phase 5, respectively. The middle group of columns contains the CPU time (CPUt, in
seconds), the number of function evaluations (NFE), and the number of executions of the method
of active areas (NMAA) while processing the elements of the corresponding S sets. The column set
on the right shows the name and the size of the output sets of the optimization method.

S |S| CPUt NFE NMAA S̄ |S̄|
Phase 1

S14
1..3 116 280 958 54 846 60 249 S̄14

1..3 17 799

S15
1..3 54 264 139 4 401 16 658 S̄15

1..3 1 082

S16
1..3 20 349 24 27 5 253 S̄16

1..3 0

S13
1..3 203 490 2 526 232 268 174 995 S̄13

1..3 77 852

Phase 2

13
1..3S

17
1..4 588 703 57 072 4 641 519 3 004 399 13

1..3S̄
17
1..4 390 402

13
1..3S

18
1..4 632 289 47 620 2 843 863 2 214 934 13

1..3S̄
18
1..4 226 564

13
1..3S

19
1..4 43 729 1 174 56 620 81 812 13

1..3S̄
19
1..4 3 044

13
1..3S

20
1..4 0 - - - 13

1..3S̄
20
1..4 0

14
1..3S

17
1..4 438 207 35 565 2 734 521 1 894 823 14

1..3S̄
17
1..4 231 820

14
1..3S

18
1..4 354 167 22 466 1 312 522 1 090 923 14

1..3S̄
18
1..4 103 582

14
1..3S

19
1..4 88 508 2 909 143 263 177 416 14

1..3S̄
19
1..4 9 478

14
1..3S

20
1..4 2 540 13 12 2 550 14

1..3S̄
20
1..4 0

14
1..3S

21
1..4 0 - - - 14

1..3S̄
21
1..4 0

15
1..3S

17
1..4 21 844 1 276 95 333 74 306 15

1..3S̄
17
1..4 7 816

15
1..3S

18
1..4 26 904 1 230 66 376 65 169 15

1..3S̄
18
1..4 4 962

15
1..3S

19
1..4 14 134 312 13 370 22 543 15

1..3S̄
19
1..4 853

15
1..3S

20
1..4 2 870 24 530 3 217 15

1..3S̄
20
1..4 31

15
1..3S

21
1..4 0 - - - 15

1..3S̄
21
1..4 0

15
1..3S

22
1..4 0 - - - 15

1..3S̄
22
1..4 0

Phase 3

13
1..3S

28
1..6 243 762 2 147 6 910 249 347 13

1..3S̄
28
1..6 56

14
1..3S

28
1..6 998 204 9 107 38 614 1 028 665 14

1..3S̄
28
1..6 506

Phase 4

S28
1..6 562 4 248 213 692 125 743 S̄28

1..6 6

Phase 5

S28
1..6 1 1 854 139 334 72 982 S̄28

1..6 1

∑
3 850 807 190 664 12 598 021 10 365 984 1 075 854

“small,” since we may not achieve significant reductions of the active areas for such
m values. On the other hand, S̄m0

1..3 = ∅ implies that S̄m
1..3 = ∅ for all m ≥ m0 by

Corollary 6.2. We can utilize the previous observations if we evaluate the sequence

S̄
�n/2	
1..3 , S̄

�n/2	+1
1..3 , . . . , S̄

�n/2	+t
1..3 until we obtain S̄

�n/2	+t
1..3 = ∅. Then we evaluate the



OPTIMIZATION TECHNIQUE FOR CIRCLE PACKING PROBLEMS 211

Table 8.2

Computational details of solving the packing problem of n = 29 points. The table is organized
in the same way as Table 8.1.

S |S| CPUt NFE NMAA S̄ |S̄|
Phase 1

S15
1..3 54 264 305 14 928 22 758 S̄15

1..3 4 194

S16
1..3 20 349 50 395 5 518 S̄16

1..3 40

S17
1..3 5 985 8 0 1 574 S̄17

1..3 0

S14
1..3 116 280 1 618 104 620 86 973 S̄14

1..3 33 794

S13
1..3 203 490 3 454 338 771 230 121 S̄13

1..3 112 824

Phase 2

13
1..3S

18
1..4 318 042 42 945 2 660 219 1 712 120 13

1..3S̄
18
1..4 221 087

13
1..3S

19
1..4 111 682 8 323 475 178 391 266 13

1..3S̄
19
1..4 35 833

13
1..3S

20
1..4 0 - - - 13

1..3S̄
20
1..4 0

14
1..3S

18
1..4 691 320 77 284 4 638 570 3 182 171 14

1..3S̄
18
1..4 383 148

14
1..3S

19
1..4 248 188 18 399 1 049 402 848 878 14

1..3S̄
19
1..4 80 553

14
1..3S

20
1..4 20 685 492 15 298 31 861 14

1..3S̄
20
1..4 520

14
1..3S

21
1..4 0 - - - 14

1..3S̄
21
1..4 0

15
1..3S

18
1..4 113 761 10 142 605 305 448 297 15

1..3S̄
18
1..4 49 428

15
1..3S

19
1..4 73 971 4 357 241 322 216 327 15

1..3S̄
19
1..4 18 064

15
1..3S

20
1..4 20 303 605 21 069 34 290 15

1..3S̄
20
1..4 1 137

15
1..3S

21
1..4 652 3 2 654 15

1..3S̄
21
1..4 0

15
1..3S

22
1..4 0 - - - 15

1..3S̄
22
1..4 0

16
1..3S

18
1..4 689 33 1 839 1 742 16

1..3S̄
18
1..4 130

16
1..3S

19
1..4 855 20 999 1 471 16

1..3S̄
19
1..4 60

16
1..3S

20
1..4 557 4 55 601 16

1..3S̄
20
1..4 0

16
1..3S

21
1..4 114 0 0 114 16

1..3S̄
21
1..4 0

16
1..3S

22
1..4 0 - - - 16

1..3S̄
22
1..4 0

16
1..3S

23
1..4 0 - - - 16

1..3S̄
23
1..4 0

Phase 3

13
1..3S

29
1..6 2 349 17 67 2 400 13

1..3S̄
29
1..6 1

14
1..3S

29
1..6 860 709 6 875 21 410 878 061 14

1..3S̄
29
1..6 180

Phase 4

S29
1..6 181 3 785 157 168 80 731 S̄29

1..6 4

Phase 5

S29
1..6 1 3 166 107 S̄29

1..6 1
∑

2 864 427 178 722 10 346 783 8 178 035 940 998

sets S̄

n/2�
1..3 (only if n is odd), S̄


n/2�−1
1..3 , . . . , S̄


n/2�−t+1
1..3 . For n = 29, �n/2� = 15 and

�n/2� = 14; thus, only S̄M1
1..3,M1 = {15, 16, 17, 14, 13}, was computed because S̄17

1..3

has proved to be empty. During the subsequent phases the sets S̄m
1..3,m ≤ 12, were

considered to be consisting of full tiles.

Acceleration of Phase 1. We reduced the necessary computational effort by filter-
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Table 8.3

Computational details of solving the packing problem of n = 30 points. The table is organized
in the same way as Table 8.1.

S |S| CPUt NFE NMAA S̄ |S̄|
Phase 1

S15
1..3 54 264 499 27 566 30 132 S̄15

1..3 7 974

S16
1..3 20 349 91 1 561 6 318 S̄16

1..3 255

S17
1..3 5 985 13 20 1 590 S̄17

1..3 0

S14
1..3 116 280 2 248 146 498 109 752 S̄14

1..3 47 003

Phase 2

14
1..3S

18
1..4 0 - - - 14

1..3S̄
18
1..4 0

14
1..3S

19
1..4 414 511 40 089 2 298 205 1 685 461 14

1..3S̄
19
1..4 182 441

14
1..3S

20
1..4 53 774 3 110 117 194 129 588 14

1..3S̄
20
1..4 7 146

14
1..3S

21
1..4 0 - - - 14

1..3S̄
21
1..4 0

15
1..3S

18
1..4 53 490 7 289 432 161 281 500 15

1..3S̄
18
1..4 37 167

15
1..3S

19
1..4 191 328 14 536 814 390 653 867 15

1..3S̄
19
1..4 63 213

15
1..3S

20
1..4 58 757 3 602 133 421 141 579 15

1..3S̄
20
1..4 8 812

15
1..3S

21
1..4 3 899 45 564 4 357 15

1..3S̄
21
1..4 7

15
1..3S

22
1..4 0 - - - 15

1..3S̄
22
1..4 0

16
1..3S

18
1..4 3 055 311 17 255 12 708 16

1..3S̄
18
1..4 1 359

16
1..3S

19
1..4 7 170 368 19 367 18 519 16

1..3S̄
19
1..4 1 359

16
1..3S

20
1..4 4 697 153 4 878 7 983 16

1..3S̄
20
1..4 263

16
1..3S

21
1..4 1 186 13 206 1 342 16

1..3S̄
21
1..4 7

16
1..3S

22
1..4 20 0 0 20 16

1..3S̄
22
1..4 0

16
1..3S

23
1..4 0 - - - 16

1..3S̄
23
1..4 0

Phase 3

14
1..3S

30
1..6 16 799 104 10 16 807 14

1..3S̄
30
1..6 0

15
1..3S

30
1..6 239 430 2 068 3 197 242 002 15

1..3S̄
30
1..6 36

Phase 4

S30
1..6 36 1 391 79 916 39 935 S̄30

1..6 2

Phase 5

S30
1..6 1 0 18 7 S̄30

1..6 1
∑

1 245 031 75 930 4 096 427 3 383 467 357 045

ing out symmetric cases from each set Sm
1..3. We applied the following transformations:

reflections to the axes x = 10.5 and y = 21 and reflection to the point (10.5, 21). Each
full tile combination is identified by a binary string; thus, the filtering procedure can
be done by simple transformations on these strings. After the elimination procedure
made on Sm

1..3, the inverse transformations have to be applied for the remaining areas
to generate the correct S̄m

1..3.

Phase 2. At this point we had S̄m
1..3 for 0 ≤ m ≤ 21. We evaluated m

1..3S̄
m+i
1..4 for

each necessary (m, i) pairs in two steps: first, we computed m
1..3S

m+i
1..4 by Algorithm 4

and then ran the optimization algorithm on these sets to obtain m
1..3S̄

m+i
1..4 . The pa-
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rameters m and i were determined in the following way (cf. Remark 4).

We had to deal only with m ∈ M2 = {13, 14, 15, 16}, where M2 was the result
of Phase 1; i.e., we added one column to each element of the set S̄M2

1..3. According to
Remark 4, a lower bound ml of the number of output tiles m+ i could be determined
by a process similar to Phase 1: S̄12

5..6 proved to be empty (but S̄11
5..6 did not). Thus,

we had to choose at least ml = 18 tiles from the first 4 columns. The upper bounds
for m + i were given by m + 7 for each m.

Phase 3. It is easy to see that we could proceed with adding other columns to
the result patterns of Phase 2. Instead, we found that already at this time we had
enough local information to join our remaining combinations by Algorithm 5 and to
obtain a relatively small set of combinations consisting of 29 tiles.

As a result of Phase 2, we knew i
1..3S̄

mi
1..4 for all 18 ≤ mi ≤ 29, i ∈ M2. (Recall

that we did not need to consider mi values with i ≤ mi < 18.) Since the above
sets are nonempty only when m13 ∈ M13 = {18, 19}, m14 ∈ M14 = {18, 19, 20},
m15 ∈ M15 = {18, 19, 20}, and m16 ∈ M16 = {18, 19}, respectively, it was enough
to consider these mi values when applying Algorithm 5. As was suggested in the
discussion of Algorithm 5, the other input sets i

4..6S̄
Mi
3..6, i ∈ M2, were evaluated from

i
1..3S̄

Mi
1..4 by rotating each element 180 degrees around the midpoint (21, 21) of the

square.

Thus, in Phase 3 we had to join 13
1..3S̄

M13
1..4 with 16

4..6S̄
M16
3..6 (this process is called

Join(13, 16) in what follows) and, similarly, join 14
1..3S̄

M14
1..4 with 15

4..6S̄
M15
3..6 (Join(14, 15)),

then join 15
1..3S̄

M15
1..4 with 14

4..6S̄
M14
3..6 (Join(15, 14)), and, finally, join 16

1..3S̄
M16
1..4 with 13

4..6S̄
M13
3..6

(Join(16, 13)). The resulting sets M2
1..3S

29
1..6 had to be processed by the optimization

algorithm sequentially. Since we stated that for a solution having objective function
value greater than or equal to f̃ only 13, 14, 15, or 16 tiles can be chosen from each
half of the search region, the union of the resulting sets

13
1..3S̄

29
1..6 ∪ 14

1..3S̄
29
1..6 ∪ 15

1..3S̄
29
1..6 ∪ 16

1..3S̄
29
1..6

can be considered as S29
1..6, i.e., a set which contains all the global maximizers.

Acceleration of Phase 3. Again, symmetry properties were applied to reduce the
necessary computations. Namely, without loss of generality we can assume that in
each element of S29

1..6 the left half of the search square contains more active regions
than the right one (keeping in mind that points located on the vertical halving line
segment are considered to be contained in both half squares). Consequently, we need
not execute Join(15, 14) and Join(16, 13) when Join(14, 15) and Join(13, 16) are al-
ready done. Another possibility of exploiting symmetry is applied for even n numbers:
for example, in Join(14, 14) for n = 28 we assumed that column 3 does not contain
fewer regions than column 4; i.e., Join(14, 14) could be restricted to join each 14

1..3S̄
i
1..4

with each 14
4..6S̄

j
3..6 only when j ≥ i. A similar acceleration was done for n = 30 in

Join(15, 15). (We presented only two very simple cases for filtering symmetric com-
binations, which can easily be controlled in our implementation. Obviously, one can
develop more sophisticated methods resulting in larger filtering improvements.)

Phase 4. According to the previous remarks, only the two resulting sets 13
1..3S̄

29
1..6

and 14
1..3S̄

29
1..6 were put into a set S29

1..6 to be refined. Since this set may contain a lot of
equivalent solutions, we still did not use the original stopping criterion of Algorithm 1.
Instead, we increased the maximal number of allowed iteration steps from 3 to 10,000.
As a result, we managed to reduce the number of remaining combinations to 6 for
n = 28, to 4 for n = 29, and to 2 for n = 30.
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Phase 5. After Phase 4 it was possible to check all the remaining regions one
by one. (However, for some n values, a much bigger number of combinations may
remain; thus, we are planning to automatize this step in the future.) For the problem
of packing 29 points the first two combinations were leading to symmetric packings
(since the initial tile combinations of them were symmetric), and so did the other two
combinations. But we found that the initial tile sets of the first group could not be
transformed to the tile sets of the second group of combinations. The reason of this
is that the 7 × 6 splitting is not invariant to rotations by ±90 degrees around the
midpoint of the square.

However, it was easy to see that if we split the square into 6 × 7 regular tiles,
each remaining region of one of the latter two combinations was located in different
tiles of the new splitting, and the new tile set corresponding to this combination was
symmetric to the patterns of the first two combinations. Consequently, it was enough
to consider one of the four combinations in the further investigations. (One can
guess that four combinations should exist for both groups of remaining subproblems.
Indeed, it is easy to check that the additional combinations were filtered at Phase 3
by the mentioned symmetry rules.)

In the cases of 28 and 30 points, similar observations were made, resulting in the
same consequence, i.e., that one can deal only with one combination. We obtained
the first main result of our study: Let n ∈ {28, 29, 30}. Apart from symmetric cases,
one initial tile combination contains all the globally optimal solutions of the packing
problem of n points. We shortly improve this statement by proving that all the global
solutions are located in a very small area within the particular tile combination.

As a further refinement of the only remaining box, the method for guessing free
points and shrinking several components of the remaining regions was applied (see
section 7). We obtained that for n = 28 only the 12th component could be replaced
by a point, for n = 29 only the 5th component, while for n = 30 no components could
be replaced. (These facts are in accordance with the location of the free points of the
best-known packings.) The only remaining regions were then refined by Algorithm 1
using the stopping criterion parameter of ε = 10−10. As was also stated in [12], the
cost of this local investigation was relatively small as compared to the global part of
our whole procedure. Finally, after transforming the enclosures of the result boxes
back to the original point packing problem, we obtained the tightest currently known
enclosures of the global maximum values, which are

F ∗
28 = [0.2305354936426673, 0.2305354936426743], w(F ∗

28) ≈ 7 · 10−15,

F ∗
29 = [0.2268829007442089, 0.2268829007442240], w(F ∗

29) ≈ 2 · 10−14,

F ∗
30 = [0.2245029645310881, 0.2245029645310903], w(F ∗

30) ≈ 2 · 10−15.

The enclosure of the particular global maximizers (X,Y )∗n are reported in Ta-
bles 8.4, 8.5 and 8.6, respectively. The precision of the components are highlighted
by underscores. Our conclusions are the following: Let n ∈ {28, 29, 30}. Apart from
symmetric cases, all the global optimizers of the packing problem of n points are lo-
cated in the reported boxes having very tight components (with the exception of the
components enclosing possibly free points for n = 28, 29). Moreover, the reported en-
closures confirm that the structure of the currently known best packings are optimal
within the precision of w(F ∗

n). In other words, all the exact global optimizers are
located in (X,Y )∗28, (X,Y )∗29, and (X,Y )∗30, and the exact global optima differ from
the currently best known function values by at most w(F ∗

n).
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Table 8.4

The enclosure of the global maximizer point for packing 28 points.

i Xi Yi

1. [0.0000000000000000, 0.0000000000000142] , [0.0000000000000000, 0.0000000000000182]

2. [0.0000000000000000, 0.0000000000000723] , [0.2833357019511142, 0.2833357019512377]

3. [0.0000000000000000, 0.0000000000000617] , [0.5138711955937813, 0.5138711955939050]

4. [0.0000000000000000, 0.0000000000000689] , [0.7444066892364485, 0.7444066892365722]

5. [0.0000000000000000, 0.0000000000000094] , [0.9999999999999859, 1.0000000000000000]

6. [0.1818703764471228, 0.1818703764471709] , [0.1416678509755570, 0.1416678509756246]

7. [0.1996495939685054, 0.1996495939687475] , [0.3986034487723758, 0.3986034487725656]

8. [0.1996495939685047, 0.1996495939686531] , [0.6291389424150430, 0.6291389424152327]

9. [0.1918713858351473, 0.1918713858351900] , [0.8722033446182193, 0.8722033446182866]

10. [0.3637407528942488, 0.3637407528964056] , [0.0000000000000000, 0.0000000000015377]

11. [0.3815199704156590, 0.3815199704157629] , [0.2569355977967746, 0.2569355977969572]

12. [0.3992990052060252, 0.4023815131388759] , [0.5089492733445356, 0.5138712298523256]

13. [0.3915209798036835, 0.3915209798037213] , [0.7569355977968880, 0.7569355977969508]

14. [0.3837427716702937, 0.3837427716703746] , [0.9999999999999370, 1.0000000000000000]

15. [0.5633903468627852, 0.5633903468641770] , [0.1152677468208971, 0.1152677468228100]

16. [0.5839312817244451, 0.5839312817244956] , [0.3672817571470099, 0.3672817571470896]

17. [0.5911705737722300, 0.5911705737722556] , [0.6416678509755755, 0.6416678509756131]

18. [0.5833923656388268, 0.5833923656389046] , [0.8847322531786048, 0.8847322531787316]

19. [0.7630399408313210, 0.7630399408318696] , [0.0000000000000000, 0.0000000000001518]

20. [0.7694645063572478, 0.7694645063573329] , [0.2304459563257084, 0.2304459563258553]

21. [0.7727203431310999, 0.7727203431311068] , [0.4995893688792053, 0.4995893688792224]

22. [0.7830419596073901, 0.7830419596074357] , [0.7694645063572883, 0.7694645063573327]

23. [0.7830419596073660, 0.7830419596074357] , [0.9999999999999551, 1.0000000000000000]

24. [0.9935754344739882, 0.9935754344745461] , [0.0000000000000000, 0.0000000000000352]

25. [0.9999999999999152, 1.0000000000000000] , [0.2304459563257084, 0.2304459563257429]

26. [0.9999999999999947, 1.0000000000000000] , [0.4609814499683757, 0.4609814499684068]

27. [0.9999999999999551, 1.0000000000000000] , [0.6915169436110431, 0.6915169436111594]

28. [0.9999999999999316, 1.0000000000000000] , [0.9220524372537104, 0.9220524372539002]

It is also worth mentioning that our verified procedure decreased the uncertainty
in the location of the optimal packing by as much as

log

(
w([0, 1])2n/

n∏
i=1

w(X∗
n)w(Y ∗

n )

)
,

i.e., more than 711, 764, and 872 orders of magnitude, respectively.
As Tables 8.1 to 8.3 show, the total time complexity of the optimality proof

was approximately 53, 50, and 21 hours for the packing of 28, 29, and 30 points,
respectively. Notice that the CPU time of those parts of the method not indicated
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Table 8.5

The enclosure of the global maximizer point for packing 29 points.

i Xi Yi

1. [0.0000000000000000, 0.0000000000000246] , [0.0000000000000000, 0.0000000000000393]

2. [0.0000000000000000, 0.0000000000000217] , [0.2268829007442089, 0.2268829007442435]

3. [0.0000000000000000, 0.0000000000000199] , [0.4537658014884179, 0.4537658014884444]

4. [0.0000000000000000, 0.0000000000000136] , [0.6806487022326268, 0.6806487022326528]

5. [0.0000000000000000, 0.0532481705058822] , [0.9073423366158249, 1.0000000000000000]

6. [0.2009548756284472, 0.2009548756284715] , [0.1053232576939058, 0.1053232576939296]

7. [0.2009548756284483, 0.2009548756284689] , [0.3322061584381170, 0.3322061584381365]

8. [0.2009548756284484, 0.2009548756284683] , [0.5590890591823258, 0.5590890591823453]

9. [0.2009548756284486, 0.2009548756284655] , [0.7859719599265345, 0.7859719599265537]

10. [0.2762399917698153, 0.2762399917698536] , [0.9999999999999868, 1.0000000000000000]

11. [0.4019097512568943, 0.4019097512569189] , [0.0000000000000000, 0.0000000000000215]

12. [0.4019097512568967, 0.4019097512569177] , [0.2268829007442089, 0.2268829007442285]

13. [0.4019097512568968, 0.4019097512569169] , [0.4537658014884179, 0.4537658014884354]

14. [0.4019097512568973, 0.4019097512569210] , [0.6806487022326268, 0.6806487022326512]

15. [0.5983961069856828, 0.5983961069857054] , [0.1134414503720853, 0.1134414503721164]

16. [0.5983961069856840, 0.5983961069857049] , [0.3403243511162964, 0.3403243511163233]

17. [0.5983961069856844, 0.5983961069857049] , [0.5672072518605076, 0.5672072518605315]

18. [0.5983961069856861, 0.5983961069857088] , [0.7940901526047168, 0.7940901526047401]

19. [0.5031228925140242, 0.5031228925140623] , [0.9999999999999830, 1.0000000000000000]

20. [0.7948824627144688, 0.7948824627144926] , [0.0000000000000000, 0.0000000000000197]

21. [0.7948824627144706, 0.7948824627144921] , [0.2268829007442089, 0.2268829007442256]

22. [0.7948824627144710, 0.7948824627144921] , [0.4537658014884178, 0.4537658014884334]

23. [0.7948824627144749, 0.7948824627144919] , [0.6806487022326267, 0.6806487022326419]

24. [0.7290826584835373, 0.7290826584837260] , [0.9795541003348881, 0.9795541003356186]

25. [0.9999999999999812, 1.0000000000000000] , [0.0969672447170968, 0.0969672447171463]

26. [0.9999999999999812, 1.0000000000000000] , [0.3238501454613097, 0.3238501454613550]

27. [0.9999999999999820, 1.0000000000000000] , [0.5507330462055206, 0.5507330462055635]

28. [0.9999999999999859, 1.0000000000000000] , [0.7776159469497363, 0.7776159469497720]

29. [0.9550424244530482, 0.9550424244532232] , [0.9999999999999683, 1.0000000000000000]

in the tables (such as the determination of ml in Phase 2 and the execution time of
Algorithms 4 and 5) took about only one additional minute for each problem instance.
The total time complexities are remarkably less than the forecasted execution times
(i.e., one or even more decades) of the earlier methods. The memory complexity of our
procedure was small in most parts of the method, since the results of the intermediate
phases can be saved to storage devices. Moreover, due to the sequential and quick
processing of the tile combinations, the main optimization method required small
amount of memory. In several cases, the memory requirement of Algorithms 4 and 5
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Table 8.6

The enclosure of the global maximizer point for packing 30 points.

i Xi Yi

1. [0.1019881418756426, 0.1019881418756476] , [0.0000000000000000, 0.0000000000000026]

2. [0.0000000000000000, 0.0000000000000026] , [0.1999999999999995, 0.2000000000000022]

3. [0.1019881418756451, 0.1019881418756477] , [0.3999999999999989, 0.4000000000000017]

4. [0.0000000000000000, 0.0000000000000025] , [0.5999999999999984, 0.6000000000000011]

5. [0.1019881418756451, 0.1019881418756478] , [0.7999999999999978, 0.8000000000000006]

6. [0.0000000000000000, 0.0000000000000045] , [0.9999999999999972, 1.0000000000000000]

7. [0.3264911064067307, 0.3264911064067357] , [0.0000000000000000, 0.0000000000000028]

8. [0.2245029645310881, 0.2245029645310907] , [0.1999999999999995, 0.2000000000000022]

9. [0.3264911064067332, 0.3264911064067358] , [0.3999999999999989, 0.4000000000000017]

10. [0.2245029645310881, 0.2245029645310905] , [0.5999999999999984, 0.6000000000000011]

11. [0.3264911064067332, 0.3264911064067359] , [0.7999999999999978, 0.8000000000000006]

12. [0.2245029645310881, 0.2245029645310926] , [0.9999999999999972, 1.0000000000000000]

13. [0.4490059290621762, 0.4490059290621788] , [0.1999999999999995, 0.2000000000000021]

14. [0.4490059290621762, 0.4490059290621786] , [0.5999999999999984, 0.6000000000000011]

15. [0.4490059290621762, 0.4490059290621807] , [0.9999999999999972, 1.0000000000000000]

16. [0.5509940709378189, 0.5509940709378239] , [0.0000000000000000, 0.0000000000000025]

17. [0.5509940709378213, 0.5509940709378240] , [0.3999999999999989, 0.4000000000000016]

18. [0.5509940709378213, 0.5509940709378240] , [0.7999999999999978, 0.8000000000000006]

19. [0.7754970354689073, 0.7754970354689120] , [0.0000000000000000, 0.0000000000000024]

20. [0.6735088935932643, 0.6735088935932668] , [0.1999999999999995, 0.2000000000000020]

21. [0.7754970354689095, 0.7754970354689120] , [0.3999999999999990, 0.4000000000000015]

22. [0.6735088935932643, 0.6735088935932666] , [0.5999999999999986, 0.6000000000000011]

23. [0.7754970354689095, 0.7754970354689120] , [0.7999999999999981, 0.8000000000000006]

24. [0.6735088935932643, 0.6735088935932688] , [0.9999999999999976, 1.0000000000000000]

25. [0.9999999999999955, 1.0000000000000000] , [0.0000000000000000, 0.0000000000000023]

26. [0.8980118581243525, 0.8980118581243549] , [0.1999999999999995, 0.2000000000000019]

27. [0.9999999999999976, 1.0000000000000000] , [0.3999999999999991, 0.4000000000000015]

28. [0.8980118581243525, 0.8980118581243548] , [0.5999999999999987, 0.6000000000000011]

29. [0.9999999999999977, 1.0000000000000000] , [0.7999999999999981, 0.8000000000000006]

30. [0.8980118581243525, 0.8980118581243570] , [0.9999999999999976, 1.0000000000000000]

was large for large sets of input combinations; however, our main memory was still
enough to store all necessary combinations at one time to avoid swapping.

9. Summary and future work. We introduced a verified, interval arithmetic-
based optimization method for solving circle (point) packing problems. Each part of
our method was discussed through detailed algorithmic descriptions and theorems of
correctness. We solved the previously unsolved problem instances of packing 28, 29,
and 30 points. It was shown that the earlier found best configurations are globally
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optimal within very tight tolerance values. We reported the boxes enclosing the exact
optimizers and stated that the current best function value differs from the maximum
by at most 7 · 10−15, 2 · 10−14, and 2 · 10−15 for n = 28, 29, and 30, respectively.

Our method contained two key procedures: On the one hand, we developed a very
efficient area reduction algorithm. This method was based on the interval adaptation
of the earlier known polygon representation procedure. On the other hand, a very
effective technique based on subsets of tile combinations was introduced for handling
and eliminating groups of subproblems together. As a result, the total computational
time was extremely smaller than the predicted time complexity of the earlier methods.

The basic elements of the proposed method will very probably play a role in fur-
ther studies of both circle packing problems for n ≥ 31 and the generalizations of the
problem class. In the next unsolved case, n = 31, already a 7 × 7 tile splitting can
be applied, which will probably require an additional intermediate phase for “grow-
ing” the dimensionality of the considered subproblems. Thus, we are planning to
develop our accelerated method for eliminating tile combinations in a more general
way. The first part of this work would consist of programming features, such as ex-
tending Algorithm 4 to include the ability of adding new rows of tiles and modifying
Algorithm 5 to handle general intersecting tile positions of the combinations to be
joined. By using this more general approach, more sophisticated multiphase methods
could be designed, reducing the total cost of processing intermediate tile combina-
tions, and opening the way for solving much harder circle packing problems and their
generalizations.
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1. Introduction. Given a loopless connected graph G, a vector c ∈ R
E(G)
+ of

nonnegative edge costs, a set of required nodes VR ⊆ V (G), and a set of required edges
ER ⊆ E(G), the general routing problem (GRP) consists of finding a closed walk in
G containing the required nodes and edges, such that the sum of the edge costs is
minimized [15, 11]. The GRP includes as a special case the rural postman problem
(RPP), obtained when VR = ∅. If ER = ∅ and VR = V (G), we obtain the graphical
traveling salesman problem (GTSP). The RPP and GTSP (hence also the GRP) are
NP-hard combinatorial optimization problems [11, 7].

There exists a preprocessing procedure for the GRP which allows us to assume
without loss of generality that VR = V (G), e.g., [3, 2]. In this paper we consider only
this case and assume that all nodes are required.

A semitour [5, 6] is a vector x ∈ Z
E(G)
+ , with the property that x + χER is a

spanning closed walk (which is equivalent to being a feasible solution to the GRP
because VR = V (G)). Here χF denotes the characteristic vector of a set F , i.e.,
χF
e = 1 if e ∈ F , and χF

e = 0 otherwise. Clearly, finding a minimum cost feasible
solution to the GRP is equivalent to finding a semitour x with minimum cost cx :=∑

e∈E(G) cexe. The unbounded polyhedron which is the convex hull of all semitours

has been extensively studied [5, 6, 12, 13].

Before we characterize the set of semitours, we introduce some more terminology.
First, we define the parity of a node u ∈ V (G) as

(1.1) t(u) :=

{
0 if |δ(u) ∩ ER| is even,

1 otherwise.
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Here, for a node set U , we denote by δ(U) the set of edges with precisely one end
node in U and abbreviate δ({u}) by δ(u). Hence, t(u) = 1, if there is an odd number
of required edges incident to u, and t(u) = 0, if the number is even. Further, consider
the subgraph of G with node set V (G) and edge set ER. Its connected components
are called R-components, and the node set of an R-component is called an R-set. The
R-sets form a partition of the node set V (G). We denote the set of all R-sets by C.
We also define the graph GC, which results from shrinking each R-set to a single node
while deleting loops but keeping parallel edges. The node of GC which results from
the R-set C is again denoted by C, i.e., we assume that the node set of GC is C. The
edge set of GC is a subset of E(G), consisting of all edges which have their end nodes
in different R-sets. We call these edges R-external, and we call edges of G with both
end nodes in the same R-set R-internal. The set of all R-internal edges is denoted by
Eint(G). If a set C ∈ C is a singleton set C = {v}, then we say that v is R-isolated.

The following system characterizes the set of semitours [5, 6]:

x(δ(u)) = t(u) mod 2 for all u ∈ V (G),(1.2a)

x(δ(S)) ≥ 2 for all S =
⋃

C∈S
C, ∅ �= S � C,(1.2b)

x ∈ Z
E(G)
+ ,(1.2c)

where, for any set of edges F ⊆ E, we let x(F ) :=
∑

f∈F xf . We denote the set of
all semitours, i.e., the set of all solutions to system (1.2a–c), by S ∞. The (modular)
equations (1.2a) are called parity constraints, and the inequalities (1.2b) are called
connectivity inequalities.

For this characterization of semitours we need only the R-set partition C and
the parities, but not the required edges. In fact, for symmetry reasons, it will prove
useful to restrict the attention to some axioms on the triple (G,C, t), and forget about
required edges altogether. Let the addition in the 2-element group GF(2) = {0, 1} be
denoted by “⊕.” We call a triple Γ := (G,C, t) a GRP-structure, if

1. G is a connected graph, C is a partition of V (G), and t is a mapping

t : V (G) → {0, 1};

2. for each C ∈ C, the induced subgraph G[C] is connected;
3. for each C ∈ C, the parity of the set C, which is defined as

t(C) :=
⊕
u∈C

t(u),

is zero. A mapping t : V (G) → {0, 1} with this property is called a parity
function.

Note that, with this definition, we could assume that G is a simple graph. If the
graph on which the GRP instance is defined is not simple, we can delete from each set
of parallel edges all but the edge with least cost, even if that involves the deletion of
required edges, as long as the original set ER is used in (1.1). This is possible because
we define the GRP-structure without using required edges. Thus every GRP-instance
defines a GRP-structure with a simple graph, and every GRP-structure with a simple
graph can be derived from at least one GRP-instance (although there may be many
different sets of required edges which define the same GRP-structure). However, we
will replace G by a graph which has parallel edges by construction, so we do not
require G to be simple here.

For the remainder of the paper, we will forget about required edges. This in fact
simplifies the arguments in many places.
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The Ghiani–Laporte polytope. Ghiani and Laporte [8] showed that there
exists a spanning tree of GC, whose edge set we denote by T , with the property that
min{cx | x ∈ S ∞} = min{cx | x ∈ S ∞, x ≤ 1 + χT }, where we denote the all-ones
vector of appropriate length by 1. This means that we can bound the number of times
an edge is contained in a semitour by 1 if the edge is not in the tree T , and by 2 if
it is. In fact, Ghiani and Laporte [8] proved that any minimum spanning tree of GC,
with respect to the cost vector c restricted to the R-external edges, has this property.

Let GT := G+T denote the graph which results, if we duplicate in G, each of the
edges of the tree T . By considering semitours on GT instead of on G, we can restrict
our attention to semitours x with x ≤ 1. For the rest of the paper, we replace G by
GT , or, from a practical viewpoint, we assume that the duplication of the edges has
been performed by some preprocessing procedure. Having agreed on that, we write

S(Γ ) :=
{
x ∈ {0, 1}E(G) | x satisfies (1.2a–c)

}
,

GRP(Γ ) := conv
(
S(Γ )

)
.

The 0/1-polytope GRP(Γ ) was introduced in [8]. Therefore we call it the Ghiani–
Laporte polytope. Ghiani and Laporte [8] gave an IP-formulation for optimizing over
GRP(Γ ). Besides the trivial inequalities x ≥ 0 (where 0 is the all-zero vector of
appropriate length) and x ≤ 1, it consists of the connectivity inequalities (1.2b) and
the so-called cocircuit inequalities,

(1.3) x(δ(U) \ F ) − x(F ) ≥ 1 − |F |
for ∅ �= U � V (G) and F ⊆ δ(U) with |F | + t(U) odd.

These inequalities are valid for GRP(Γ ) [8]. For the IP-formulation, only the cocircuit
inequalities where U is a singleton node are needed. In their simplest form, namely,
if F = ∅, cocircuit inequalities are also called R-odd cut inequalities [5].

Computational experiments have been performed for both the unbounded poly-
hedron conv(S ∞) [4] and the formulation by Ghiani and Laporte [8, 19]. The results
indicate that the 0/1-variable formulation is promising. One of the results of [19] is
that of the 40 GRP instances investigated in [4], only 18 remain for which the optimal
lower bound cannot be achieved by a pure cutting plane algorithm using only the
two basic kinds of inequalities which are described in [8]. With the exception of only
six instances, the same or, in many cases, a better lower bound than in [4] can be
achieved using the IP-formulation by Ghiani and Laporte and only two of the four
nonbasic classes of inequalities used in [4].

Overview of the paper. In this paper, we investigate the Ghiani–Laporte poly-
tope. The remainder of this paper is organized as follows. Section 2 introduces a
switching technique, by which we can extend any valid inequality to a whole class
of inequalities, and each member of the class defines a face of the same dimension
as that of the face induced by the original inequality. In section 3, we expand the
switching idea of the second section and obtain even larger classes of valid inequalities.
Here we cannot be certain that the inequalities in the larger class define faces of high
dimensions, so this question has to be settled for each class individually.

Sections 4 and 5 show examples of switched inequalities, and address the question
of facet defining property. In section 4 we describe switched variants of the so-called
honeycomb [6] inequalities, while section 5 is dedicated to the switched forms of the
so-called path-bridge inequalities [12]. We prove facet-defining property of switched
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path-bridge inequalities by giving an intriguing geometric relation between the face
induced by a switched path-bridge inequality on Γ , and the face induced by a certain
classical path-bridge inequality on a modified GRP-structure Γ ′.

Finally, in the last section, we show how separation routines for the original path-
bridge inequalities can be used to find violated switched path-bridge inequalities.
We also give a polynomial time separation algorithm for so-called switched simple
2-regular path-bridges.

2. Symmetry and isomorphism of GRP polytopes. We now introduce a
transformation method which allows us to create new facets from known ones. We
refer to [20] for terminology related to polytopes. What follows is based on ideas for
the cycle polytope in [1]. Let m be a positive integer. For y ∈ {0, 1}m we define the
following mapping:

fy : Rm → Rm : x �→ y + x[y], where (x[y])e :=

{
xe if ye = 0

−xe if ye = 1
.

Remark 2.1. The mapping fy is an affine isomorphism. For two vectors y1, y2 ∈
{0, 1}m, fy1⊕y2

is equal to the composition of the mappings fy1 and fy2 , while f0 is
the identity mapping.

Let Γ = (G,C, t) be a GRP-structure and y ∈ {0, 1}E(G)
such that

(2.1) ye = 0 for all e �∈ Eint(G).

Define ty : v �→ t(v) ⊕
⊕

e∈δ(v) ye and Γy := (G,C, ty). Then Γy is a GRP-structure
and we have

(2.2) x ∈ S(Γ ) if and only if fy(x) ∈ S(Γy).

Note that Γ0 = Γ and Γy1⊕y2 = (Γy1)y2 . A consequence is the following proposition.
Proposition 2.2. Let y and Γy be as just described. The mapping fy is an

isomorphism between the polytopes GRP(Γ ) and GRP(Γy).
Proof. From (2.2) it follows that fy is a bijection between the vertices of the

two polytopes. Since fy is an affine isomorphism, this implies the correctness of the
proposition.

We can apply the proposition in two ways. If

(2.3)
⊕

e∈δ(v)

ye = 0 for every v ∈ V (G),

then the parities remain unchanged and we can study symmetries of the polytope
GRP(Γ ).

Corollary 2.3. The symmetry group of GRP(Γ ) includes a subgroup isomor-
phic to {0, 1}r, where r := |Eint(G)| − |C|.

Proof. The subgroup H of {0, 1}E(G)
consisting of all y ∈ {0, 1}E(G)

which
satisfy (2.1) and (2.3) is just the cycle space of the subgraph of G induced by
Eint(G), and r is the dimension of that space. Hence, the group {0, 1}r is isomorphic to
H.

If we drop condition (2.3), then we have isomorphisms between polytopes arising
from different parity functions.
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Corollary 2.4. Let G be a graph and let C be a partition of its node set.
All polytopes GRP(Γ ), with Γ = (G,C, t) for an arbitrary parity function t, are
isomorphic.

In terms of required edges, this last corollary states that if two sets of required
edges define the same R-sets, then their Ghiani–Laporte polytopes are isomorphic.

The practical value of Proposition 2.2 is the following. Given an inequality ax ≥ α
and a vector y as above, consider the inequality a[y] x ≥ α − ya. We say that the
inequality ax ≥ α is switched to obtain the inequality a[y] x ≥ α − ya. The slacks of
the two inequalities are related by the isomorphism fy,

(2.4) α− ya − a[y] fy(x) = α− ax.

With this relation, we obtain the following proposition as an immediate conse-
quence of Proposition 2.2.

Proposition 2.5.

a. The inequality ax ≥ α is valid for GRP(Γ ) if and only if a[y] x ≥ α − ya is
valid for GRP(Γy).

b. The mapping fy is an isomorphism between the face of GRP(Γ ) induced by
ax ≥ α and the face of GRP(Γy) induced by a[y] x ≥ α− ya.

In particular, the inequality ax ≥ α is facet-defining for GRP(Γ ) if and only if a[y] x ≥
α− ya is facet-defining for GRP(Γy).

If y ranges over all elements of {0, 1}E(G)
which satisfy (2.1) and (2.3), then the

switched inequalities a[y] x ≥ α− ya form a symmetry class of the original inequality
ax ≥ α.

If, more generally, bx ≥ β is any inequality, and there exists a y with (2.1) and
an inequality ax ≥ α which is valid (facet-defining) for GRP(Γy) such that b = a[y]

and β = α − ya, then we know that bx ≥ β is valid (facet-defining) for GRP(Γ ). In
particular, when examining the polytope and facets, we can assume without loss of
generality that all nodes have even parity, i.e., t(u) = 0 for all u ∈ V (G).

3. Relaxation of valid inequalities. We describe the operation of merging
R-sets. Let Γ = (G,C, t) be a GRP-structure and f ∈ E(G). Let Cf

1 and Cf
2 be the

R-sets which contain the end nodes of f . Then the R-set partition which results from
merging along f is defined as

C ◦ f := C \
{
Cf

1 , C
f
2

}
∪
{
Cf

1 ∪ Cf
2

}
.

This means that the sets Cf
1 and Cf

2 of the partition are replaced by their union

Cf
1 ∪ Cf

2 . Let F be a set of edges of G. The R-set partition C ◦ F is defined
successively for all f ∈ F in any order merging along f .

We have S(Γ ) ⊆ S(G,C ◦ F, t), so going from C to C ◦ F is a relaxation.

Now we abbreviate y := χF ∈ {0, 1}E(G)
and define ΓF := (G,C ◦ F, ty). Suppose

that ax ≥ α is a valid inequality for GRP(ΓF ). Then it follows from Proposition 2.5
that the inequality a[y] x ≥ α − ya is valid for GRP(G,C ◦ F, t). It follows trivially
that the inequality is also valid for GRP(Γ ).

We still say that the derived inequality a[y] x ≥ α − ya is obtained by switching
the valid inequality ax ≥ α. The switching method of section 2 clearly is the special
case when F ⊆ Eint. Only in this case do we get the facet-defining property of
a[y] x ≥ α− ya for free, if ax ≥ α is facet-defining. If F contains an R-external edge,
it is not guaranteed that the switched inequality defines a face of high dimension.
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However, we note that there are cases when the classical form of the so-called path-
bridge inequalities, which we will define in section 5, is dominated by a switched
variant.1 Moreover, in [18], we show that switched path-bridge inequalities even
dominate connectivity inequalities (1.2b) in certain situations. We will address the
issue of facet-defining property of switched forms of some classes of valid inequalities
in the next two sections.

Remark 3.1. Using the notion of required edges and assuming that the edges in
F are not required, the switching process can be described as follows:

1. Make the edges in F required.
2. Find an inequality ax ≥ α which is valid in this new situation.
3. Switch the inequality ax ≥ α according to section 2. The resulting inequality

is valid for the polytope defined with the original set of required edges.

The analogy fails if F ∩ ER �= ∅.
Remark 3.2. All the classical inequalities discussed in this paper have in common

that they require a GRP-structure with at least some nontrivial R-sets, i.e., R-sets C
with |C| ≥ 2. However, if the set F is chosen appropriately, the resulting inequalities
are valid for the 0/1-polytope of the graphical TSP, i.e., the polytope which is defined
as the convex hull of all incidence vectors of spanning (connected) Eulerian subgraphs
of the graph G. Thus our results have consequences for the polytope (and therefore
the solution) of the TSP.

We close this section with two trivial examples. First, the trivial inequalities are
related by switching: xe ≤ 1 can be obtained by switching the inequality xe ≥ 0.
Second, all cocircuit inequalities are switched R-odd-cut inequalities. The switching
technique thus allows a new understanding of the cocircuit inequalities.

4. Switched honeycomb inequalities. Honeycomb (HC-) inequalities were
first discussed in [6]. We briefly review the definition, but we avoid the notion of
required edges and instead will speak only of the R-set partition and parity function.
This is a prerequisite for using the switching idea. The general definition involves
sequential lifting to compute some coefficients. For simplicity, we deal with the case
when sequential lifting is not necessary (condition 5 below). We then show what
switched honeycombs look like.

Let there be numbers 0 < L < K and na ≥ 2, a = 1, . . . , L, and a partition of
V (G) into sets

Ba
b for b = 1, . . . , na and a = 1, . . . , L,

Ba
1 for a = L + 1, . . . ,K.

We construct a graph GB by shrinking in G each of the sets Ba
b into one node which

we will again denote by Ba
b . Thus GB has K−L+n1 + · · ·+nL nodes. Further, let T

be a spanning tree in GB . See Figure 4.1 for an illustration. The following conditions
are expected to hold:

1. For any a = 1, . . . , L, the distance distT (Ba
b1
, Ba

b2
) between any two distinct

nodes Ba
b1

and Ba
b2

in the tree T is greater than or equal to three.
2. Each of the sets

⋃na

b=1 B
a
b , for a = 1, . . . , L, and Ba

1 , a = L + 1, . . . ,K, is a
union of R-sets.

3. The sets Ba
b are even, i.e., t(Ba

b ) = 0.

1Personal communication with A. Letchford, 2001.
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= union of R-sets

B1
1

B1
3

B1
2

B2
1

B2
2

B1
4

B2
3

B3
1

B4
1B5

1

B6
1

B7
1

(a) Honeycomb configuration with L = 2 and K = 7.

A

Z

B1
1

Bp
1

B1
2

Bp
npB1

n1

(b) Path-bridge configuration.

Fig. 4.1. Definition of honeycomb and path-bridge configurations.

4. For a ∈ {1, . . . , L}, consider the graph Ga with node set {1, . . . , na}, and
where two nodes i, j are neighbors if the sets Ba

i and Ba
j are linked by an

R-internal edge in G. The graph Ga must be connected.
5. The leaves of the tree T are precisely the nodes Ba

b , b = 1, . . . , na, a =
1, . . . , L.

The condition in [6] which uses required edges is replaced by conditions 3 and 4. A
node partition and tree of this kind is called a honeycomb configuration.

The coefficients of the honeycomb inequality ax ≥ 2(K−1) are defined as follows:

ae :=

⎧⎪⎨
⎪⎩

distT (Ba
b1 , B

a
b2) − 2 if e ∈ (Ba

b1 : Ba
b2), with b1 �= b2,

distT (Ba1

b1
, Ba2

b2
) if e ∈ (Ba1

b1
: Ba2

b2
), with a1 �= a2,

0 otherwise (i.e., e ∈ E(Ba
b )).

It can be shown that the HC-inequalities define facets of the 0/1-polytope under
the following conditions (see [17]; we note that neither condition is necessary):

• for all Ba
b , Ba′

b′ which are adjacent in T we have
∣∣(Ba

b : Ba′

b′ )
∣∣ ≥ 2, and

• every induced subgraph G[Bp
j ] is a single node or 8-edge connected.

For the definition of the switched HC-inequalities, in addition to the partition of
the node set into sets Ba

b , we need sets of edges F a, a = 1, . . . , L, such that for each
f ∈ F a there exist two distinct b1(f), b2(f) ∈ {1, . . . , na} with f ∈ (Ba

b1(f) : Ba
b2(f));

see Figure 4.2. We replace items 3 and 4 by the following:

3a. The relation t(Ba
b )+ |F a ∩ δ(Ba

b )| = 0 mod 2 holds for each b = 1, . . . , na and
a = 1, . . . , L.

4a. For a ∈ {1, . . . , L} consider the graph Ga with node set {1, . . . , na}, and
where two nodes i, j are neighbors if the sets Ba

i and Ba
j are linked by an

R-internal edge or an edge in F a. The graph Ga must be connected.
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b1(f)

b2(f)

odd

f

Fig. 4.2. Switched honeycomb.

We give the coefficients of the switched honeycomb inequality:

(4.1) ae :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

distT (Ba
b1 , B

a
b2) − 2 if e ∈ (Ba

b1 : Ba
b2) \ F

a, for b1 �= b2,

2 − distT (Ba
b1(f), B

a
b2(f)) if e ∈ F a,

distT (Ba1

b1
, Ba2

b2
) if e ∈ (Ba1

b1
: Ba2

b2
), for a1 �= a2,

0 otherwise.

The right-hand side is

(4.2) α := 2(K − 1) + 2
∑
a

|F a| −
∑
a

∑
f∈Fa

distT (Ba
b1(f), B

a
b2(f)).

The switched honeycomb inequality ax ≥ α is valid for the Ghiani–Laporte polytope.
By Proposition 2.5, the inequality defines a face of GRP(Γ ) which has the same
dimension as the face of GRP(ΓχF∩Eint ) induced by the inequality a′x ≥ α′, where
a′ and α′ are defined as in (4.1) and (4.2), but with F a replaced by F a \ Eint for all
a. Hence, if F ⊆ Eint, then Proposition 2.5 shows that the inequality defines a facet
of the polytope under the conditions mentioned above for the classical honeycomb
inequalities. For the case that F \ Eint �= ∅, it can be shown that the switched
honeycomb inequalities define facets of GRP(Γ ) under the same conditions (see [19]).

5. Switched path-bridge inequalities. The TSP’s path inequalities [7] have
scions among the valid inequalities of the GRP, as explored in [12], where it is shown
that the path-bridge (PB-) inequalities define facets of the unbounded GRP polyhe-
dron under weak conditions.

Let P ≥ 1 and np ≥ 2, p = 1, . . . , P , be integers and let there be a partition
of the node set of G into sets A, Z, Bj

p, j = 1, . . . , np, p = 1, . . . , P . The following
conditions must hold:

1. Each of the Bp
j , j = 1, . . . , np, p = 1, . . . , P , is a union of R-sets.

2. For the parities we need P +t(A) = 1 mod 2. If A is a union of R-sets (which
implies that Z is also), the relation P ≥ 3 must hold.

For ease of notation we let Bp
0 := A and Bp

np+1 := Z for all p = 1, . . . , P . We say that

Bp
0 , . . . , B

p
np+1 is the pth path of the configuration. See Figure 4.1 for an illustration.
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Define coefficients on the edges as follows:
(5.1)

ae :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if e ∈ (A : Z),
|l−j|
np−1 if e ∈ (Bp

j : Bp
l ) for (j, l) �= (0, np), (np, 0),

1
np−1 + 1

nq−1 +
∣∣∣ j−1
np−1 − l−1

nq−1

∣∣∣ if e ∈ (Bp
j : Bq

l ) for p �= q

and (j, l) �= (0, nq), (np, 0),

0 if e ∈ E(Bp
j ) for all j, p.

The right-hand side of the inequality is α := 1 +
∑P

p=1
np+1
np−1 . Under the conditions

stated above, it is valid for the GRP polyhedron and polytope. If we allow P = 0,
the definition includes the R-odd cut inequalities.

It can be shown that the PB-inequalities define facets of the 0/1-polytope under
the following conditions (see [17]):

•
∣∣(Bp

j : Bp
j+1)

∣∣ ≥ 2 for all j = 0, . . . , np and all p, and
• every induced subgraph G[Bp

j ] is a single node or 8-edge connected.

A path-bridge inequality is called n-regular (or simply regular) if np = n for
p = 1, . . . , P . It is called simple if

∣∣Bp
j

∣∣ = 1 for all j = 1, . . . , np, p = 1, . . . , P .

We come to the description of switched path-bridge inequalities. Let P , np, A, Z,
Bp

j be as above and F ⊆ (A : Z), but with condition 2 replaced by

2a. P + t(A) + |F | = 1 mod 2, and if A is a union of R-sets, then P + |F | ≥ 3
must hold.

Let a be the vector of coefficients as defined in (5.1), but with the coefficients on

edges f ∈ F changed from 1 to −1. Then ax ≥ 1 − |F | +
∑P

p=1
np+1
np−1 is a switched

PB-inequality and hence valid for GRP(Γ ). If we allow P = 0, then the definition
includes the cocircuit inequalities (1.3) as a subclass. We note that the simplest
form of switched PB-inequalities, namely, the switched 2-regular PBs, were found
independently by Letchford.2

It can be shown that the switched PB-inequalities define facets of the polytope
under the same conditions which are sufficient for the classical PB-inequalities to
define facets (see above). We will give a stronger result for the facet-defining property
of switched PB-inequalities based on a more elegant argument. We can assume that
the set F does not include R-internal edges, because we can use Proposition 2.5 for
these edges. The idea of the following theorem is to turn one edge f ∈ F into a path.
It can be used inductively.

Let P , np, A, Z, Bp
j , and F as just defined and let ax ≥ α be the corresponding

switched PB-inequality. Let f ∈ F be an R-external edge.

Construct a graph Gf out of G in the following manner. Denote the end nodes of
f by w0 and w3. Replace f by two nodes w1, w2 and six edges ei, i = 0, . . . , 5, where
the end nodes of ei are wi/2 and wi/2+1 (see Figure 5.1 for an illustration). Define a

partition Cf of the node set of Gf by

Cf := C ∪ {{w1}, {w2}}

and a parity function by letting tf (v) := t(v) for all v ∈ V (G) and tf (wi) := 0 for
i = 1, 2. Let Γ f := (Gf ,Cf , tf ).

2Personal communication, 2001.
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A

Z

e5

B1
1

Bp
1

B1
2

Bp
npB1

n1

w0

w3

w2

e3

w1

e1

e4

e0

e2f

Fig. 5.1. Illustration for Theorem 5.1.

We modify the path-bridge configuration on Γ to obtain a path-bridge configu-
ration on Γ f by adding an extra path P + 1:

BP+1
0 := A, BP+1

1 := {w1}, BP+1
2 := {w2}, Z =: BP+1

3 .

Let afy ≥ αf denote the modified switched PB-inequality.
Theorem 5.1. If GRP(Γ ) is full-dimensional, then the original switched PB-

inequality ax ≥ α is facet-defining for GRP(Γ ) if the modified switched PB-inequality
afy ≥ αf defines a facet of GRP(Γ f ).

It may be said that the conditions imposed in this theorem are fortunate, because
for classical PB-inequalities to define facets, the condition that

∣∣(Bp
j : Bp

j+1)
∣∣ ≥ 2, for

j = 0, . . . , np, is sufficient (see above).
The proof of Theorem 5.1 relates the faces induced by the two inequalities ax ≥

α and afy ≥ αf geometrically. This relation uses the following mapping and is
established in the lemma below. Define the affine mapping

h : RE(G)\{f}∪{e0,...,e5} → RE(G)

by letting, for all e ∈ E(G),

(
h(y)

)
e

:=

{
4 − y({e0, . . . , e5}) if e = f,

ye if e ∈ E(G) \ {f}.

Lemma 5.2. The affine mapping h maps the face of GRP(Γ f ) induced by the
modified switched path-bridge inequality afy ≥ αf onto the face of GRP(Γ ) induced
by the original switched path-bridge inequality ax ≥ α.

Proof. First of all we show that for all y ∈ RE(Gf ), if x := h(y), we have
α− ax = αf − afy . Note that for all edges in e ∈ E(G) \ {f} = E(Gf ) \ {e0, . . . , e5}
the coefficients of the two inequalities are equal, ae = afe , and xe = ye holds, too. For
i = 0, . . . , 5, we have afei = 1. For the right-hand sides we have αf = α + 4. From
xf = 4 − y({e0, . . . , e5}) it follows that

α− ax = α−
∑

e∈E(G)\{f}
aexe + xf

= α−
∑

e∈E(Gf )\{e0,...,e5}

afeye + 4 − y({e0, . . . , e5}) = αf − afy.
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Now we prove that, if y ∈ S(Γ f ) satisfies the modified inequality with equality,
i.e., afy = αf , then x := h(y) ∈ S(Γ ). We have the following implications:

y ({e0, . . . , e5}) = 3 ⇒ xf = 1,

y ({e0, . . . , e5}) = 4 ⇒ xf = 0.

This would imply x = h(y) ∈ {0, 1}E(G), if no other values of y({e0, . . . , e5}) occurred.
But first y({e0, . . . , e5}) ≥ 3 is a consequence of

y(δ(w1)) ≥ 2, y(δ(w2)) ≥ 2, and y(δ({w1, w2})) ≥ 2.

And second, if y({e0, . . . , e5}) = 6 (the value 5 is impossible for parity reasons), then
afy = α cannot hold, since the “cheapest” way to connect the remaining sets Bp

j ,
p �= P + 1 would be to select exactly the two edges with the smallest coefficient out
of δ(Bp

j ). This is possible by taking exactly one edge in each of the sets (Bp
j : Bp

j+1),

j = 0, . . . , np, which adds up to
∑

p	=P+1
np+1
np−1 . If all edges g ∈ F \ {f} lie in xg = 1,

then it follows that

afy ≥
P∑

p=1

np + 1

np − 1
+ 6 − |F \ {f}| >

P∑
p=1

np + 1

np − 1
+ 3 + 1 − |F \ {f}| = αf ,

which proves that y({e0, . . . , e5}) ∈ {3, 4} and hence x ∈ {0, 1}E(G).
We come to show that x satisfies the parity constraints. From y({e0, . . . , e5}) =

3 it follows that y({e2k, e2k+1}) = 1 for all k, and y({e0, . . . , e5}) = 4 implies
y({e2k, e2k+1}) ∈ {0, 2} for all k. Consequently, the relation

y(δ(v)) = x(δ(v)) mod 2

holds for all v ∈ V (G).
To see that x is a semitour, the connectivity condition remains to be shown. Let

S be a union of R-sets in C. We have to show x(δ(S)) ≥ 2. If f �∈ δ(S), then x(δ(S)) =
y(δ(S)) ≥ 2. Otherwise we can find S′ ⊆ V (Gf ) with δ(S′)\{e0, . . . , e5} = δ(S)\{f}
and δ(S′) ∩ {e0, . . . , e5} �= ∅. From y(δ(S′)) ≥ 2 it then follows that x(δ(S)) ≥ 2.

Finally, we note that for every x ∈ S(Γ ) there exists y ∈ S(Γ f ) with h(y) = x.
Hence the restriction of h to the faces is surjective. This completes the proof of the
lemma.

Now we can tackle the proof of Theorem 5.1. Let P be the face of GRP(Γ )
defined by ax ≥ α, and let P f be the facet of GRP(Γ f ) defined by afy ≥ αf . Since
by Lemma 5.2 h(P f ) = P , and since the kernel of the matrix M which defines the
affine mapping h equals 5, we have

dimP = dimh(P f ) ≥ dimP f − 5 = |E(G) \ {f} ∪ {e0, . . . , e5}| − 1− 5 = |E(G)| − 1.

Hence, ax ≥ α defines a facet of GRP(Γ ), if the polytope is full-dimensional.
To complete the proof, we give the argument which shows that GRP(Γ f ) has

full dimension. If we contract the edges e2, e3, e4, e5 we get a GRP-structure Γ ′,
which differs from Γ only in that the edge f is duplicated in G′. It is easy to verify
that GRP(Γ ′) has full dimension, because this is the case for GRP(Γ ). In [17], we
show that a pair of parallel edges can be contracted without losing full-dimensionality
of the polytope. Hence the full-dimensionality of GRP(Γ f ) follows from the full-
dimensionality of GRP(Γ ′).

It may be worth mentioning the similarity of the construction of inserting three
edges to the one used by Letchford [13] in a different context for the unbounded GRP
polyhedron conv(S ∞).
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6. Separation algorithms for switched path-bridge inequalities. A sep-
aration algorithm for a class of inequalities is a procedure which, given a point x,
produces a violated inequality of this class or decides that none exists (see, e.g., [10]).
In practice, heuristic separation routines are often used, which may succeed in finding
a violated inequality, but they may fail even if there exist violated inequalities of the
class.

The general case. In order to use the new facets in a cutting-plane algorithm
to solve the GRP, a separation algorithm is needed. In this section we show how any
separation algorithm for classical path-bridge inequalities can be used to separate the
class of switched path-bridge inequalities with F ⊆ Eint(G) (section 2).

We start with a lemma whose proof we omit because it is technical and not very
insightful. Then we will describe the algorithmic consequence of this lemma.

Lemma 6.1. Suppose G,C, t is given. Let x ∈ RE, x ≥ 0 be a vector which sat-
isfies all connectivity inequalities (1.2b) and violates a classical PB-inequality. Then
the relation

x(A : Z) < 1

holds, where A and Z refer to the sets of the PB-configuration as defined in section
5.

Let there be given a GRP-structure Γ and a vector x which satisfies all connec-
tivity inequalities. We derive a GRP-structure Γ̂ = (Ĝ, Ĉ, t̂) and a vector x̂, which
satisfies all connectivity inequalities on Γ̂ , with the property that x violates a switched
PB-inequality with F ⊆ Eint(G) if and only if x̂ violates a classical PB-inequality de-
fined on Γ̂ . Thus we can use any separation algorithm or heuristic on Γ̂ and x̂ to
produce a violated switched PB-inequality. The construction of Γ̂ is inspired by [16].

For every e ∈ Eint(G), we denote by ψ0(e), ψ1(e) ∈ V (G) the two end nodes of e.
We construct the graph Ĝ from G by splitting every edge e ∈ Eint(G) and replacing
it with a new node ke and two edges {ψ0(e), ke}, {ke, ψ1(e)}. We let x̂{ψ0(e),ke} = xe

and x̂{ke,ψ1(e)} = 1 − xe. For e �∈ Eint(G), we define x̂e = xe. The R-sets Ĉ are
constructed from C by inserting every split node ke in the same set which contains
the end nodes of e.

Next we assign parities to the edges of Ĝ. We call the edge {ke, ψ1(e)} odd for
all e ∈ Eint(G). All other edges are called even. For v ∈ V (G) we let rv denote the
number of odd edges incident to v in Ĝ, and we define the new parities by

t̂(v) :=

{
t(v) + rv mod 2 if v ∈ V (G),

1 if v = ke for an e.

We have defined a GRP-structure Γ̂ , and x̂ satisfies all connectivity constraints.
Proposition 6.2. A switched path-bridge inequality with F ⊆ Eint on Γ is

violated by x if and only if x̂ violates a classical path-bridge inequality on Γ̂ .
Proof. Let Â, Ẑ, B̂p

j be a PB-configuration on Ĝ and âz ≥ α̂ be the corresponding

PB-inequality which is violated by x̂. We let A := Â ∩ V (G), Z := Ẑ ∩ V (G), and
Bp

j := B̂p
j ∩ V (G). Further, we denote by F the set of edges of G such that the edge

{ke, ψ1(e)} of Ĝ is in (Â : Ẑ). In this way, a switched PB-configuration is defined,
and the slack of the inequality equals α̂− âx̂.

On the other hand, if x violates a switched PB-inequality, a PB-inequality on Ĝ
violated by x̂ can be constructed in the same straightforward way.
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Two different separation heuristics for PB-inequalities are described in [2, 4]. A
polynomial time exact separation routine for simple 2-regular PB-inequalities was
introduced by Letchford in [12]. Hence, the class of the switched simple 2-regular
PB-inequalities with F ⊆ Eint can be separated in polynomial time. Letchford’s
separation routine can be modified to run in time O(n̂2m̂ log(n̂2/m̂)), where n̂ is the
number of nodes and m̂ is the number of edges of Ĝ. In the next section, we will show
how the class of all switched simple 2-regular PB-inequalities, i.e., without restriction
on the set F , can be separated into an even better worst case time.

Switched simple 2-regular path-bridge inequalities. We now propose a
separation algorithm for switched simple 2-regular PB-inequalities which runs in time
O(n2m log(n2/m)). Let a handle H ⊆ V (G), and teeth T1, . . . , TP ⊆ V (G), p ≥ 0,
and a set of edges F ⊆ δ(H) be given. Assume that the following conditions hold:

1. t(H) + P + |F | = 1 mod 2.
2. Tp = {u, v} for R-isolated nodes u ∈ H and v ∈ H, and E(Tp) �= ∅.
3. The P + 1 sets F , E(Tp), p = 1, . . . , P are pairwise disjoint.

The inequality

(6.1) x(δ(H) \ F ) − x(F ) +

P∑
p=1

x(δ(Tp)) ≥ 3P − |F | + 1

is valid for GRP(Γ ). The inequalities of this type include the switched 2-regular PB-
inequalities. By a technical but standard uncrossing argument, it is possible to obtain
a violated switched 2-regular PB-inequality from a violated inequality (6.1).

For the separation of (6.1), we define a simple graph Gs by removing from G all
but one edge in each set of parallel edges of G. This means that Gs has a node set
V (Gs) = V (G) and {u, v} ∈ E(Gs) if and only if u and v are neighbors in G. Suppose
that u, v ∈ V (G) are adjacent. We define

θ{u,v} :=

{
x(δ({u, v})) + x(u : v) − 3 if u and v are both R-isolated, and

∞ otherwise.

As pointed out in [12], θ ≥ 0 holds if all connectivity inequalities are satisfied. Now
we let

x0
{u,v} := minF⊆(u:v)

|F | even

(
x
(
(u : v) \ F

)
+ |F | − x(F )

)
,

x1
{u,v} := min

[
θ{u,v}, minF⊆(u:v)

|F | odd

(
x
(
(u : v) \ F

)
+ |F | − x(F )

)]
.

As an immediate consequence of these definitions, we have the following proposition.
Proposition 6.3. There exists a violated switched simple 2-regular PB inequality

if and only if there exists a cut δ(W ) in Gs and a set of edges F ⊆ δ(W ) such that
x0(δ(W ) \ F ) + x1(F ) < 1.

We note that x0
{u,v} + x1

{u,v} ≥ 1 for all {u, v} ∈ E(G). We could use the
blossom separation algorithm for capacitated matching problems of Padberg and Rao
[16], which requires that we compute O(|E(Gs)|) maximum flows on a graph with
O(|E(G)|) edges in the worst case. Using the algorithm described in [14], this problem
can be solved in the time which is required to perform |V (Gs)| max-flow computations
on Gs.
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Corollary 6.4. Switched simple 2-regular PB-inequalities can be separated in
time O(n2m log(n2/m)), where n := |V (G)| and m := |E(G)|.

Proof. This is the worst-case running time of performing n max-flow computations
on a graph with n nodes and m edges if the well-known pre-flow push algorithm [9]
is used to solve the max-flow problems.

Of course, we would not expect to find many pairs u, v with more than one edge
in (u : v). This may be different if, prior to invoking the separation routine, shrinking
operations have been performed on the graph, for example those described in [4]
for the classical simple 2-regular PB-inequalities. Another possibility is to separate
switched simple 2-regular path-inequalities, which are the special case of switched
simple 2-regular PB-inequalities that occurs when both A and Z are unions of R-sets
(compare [7, 6]).

Corollary 6.5. Switched simple 2-regular path-inequalities can be separated in
time O(n2m log(n2/m)), where n := |C| and m := |E(GC)|.

Proof. Use the above algorithm after shrinking each R-set into a single
node.

Acknowledgment. We thank the referees for their valuable comments which
greatly improved the presentation of this paper.

REFERENCES

[1] F. Barahona and M. Grötschel, On the cycle polytope of a binary matroid, J. Combin.
Theory Ser. B, 40 (1986), pp. 40–62.

[2] E. Benavent, A. Corberán, and J. M. Sanchis, Linear programming based methods for solv-
ing arc routing problems, in Arc Routing: Theory, Solutions, and Applications, M. Dror,
ed., Kluwer Academic Publishers, Boston, 2000, pp. 231–275.

[3] N. Christofides, V. Campos, A. Corberán, and E. Mota, An Algorithm for the Rural
Postman Problem on a Graph, Technical report, Imperial College, London, 1981.

[4] A. Corberán, A. N. Letchford, and J. M. Sanchis, A cutting plane algorithm for the
general routing problem, Math. Program. Ser A, 90 (2001), pp. 291–316.

[5] A. Corberán and J. M. Sanchis, A polyhedral approach to the rural postman problem, Eur.
J. Oper. Res., 79 (1994), pp. 95–114.

[6] A. Corberán and J. M. Sanchis, The general routing problem polyhedron: Facets from the
RPP and GTSP polyhedra., Eur. J. Oper. Res., 108 (1998), pp. 538–550.
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Abstract. In this paper we introduce a new primal-dual technique for convergence analysis of
gradient schemes for nonsmooth convex optimization. As an example of its application, we derive
a primal-dual gradient method for a special class of structured nonsmooth optimization problems,
which ensures a rate of convergence of order O( 1

k
), where k is the iteration count. Another example

is a gradient scheme, which minimizes a nonsmooth strongly convex function with known structure
with rate of convergence O( 1

k2 ). In both cases the efficiency of the methods is higher than the
corresponding black-box lower complexity bounds by an order of magnitude.
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1. Introduction. This paper continues the research started in [3], where it was
shown that some structured nonsmooth optimization problems can be solved with
efficiency estimates O( 1

ε ), where ε is the desired accuracy of the solution. This com-
plexity is much better than the theoretical lower complexity bound O( 1

ε2 ) (see [2]).
This improvement, of course, is possible because of a certain relaxation of the standard
black-box assumption: it was assumed that our problem had an explicit and quite
simple minimax structure. The numerical scheme proposed in [3] had a drawback,
which decreases its practical efficiency: the number of steps must be fixed in advance,
chosen in accordance with a worst-case complexity analysis.

In this paper we propose several new primal-dual gradient schemes for the same
class of problems as those in [3]. However, our schemes now are free from the above
deficiency. They are derived from a new primal-dual symmetric technique for conver-
gence analysis, which we call the excessive gap condition.

The paper is organized as follows. In section 2 we introduce our model of opti-
mization problem and recall several useful facts from [3]. In section 3 we describe
the excessive gap condition. In sections 4 and 5 we present two different strategies
for maintaining the condition during the optimization process. In section 6 we give
the convergence result of order O( 1

k ), where k is the iteration counter. This conver-
gence result is valid for all nonsmooth functions, described by our model. However,
if we assume more (namely, the strong convexity of the primal objective), then the
convergence can be improved up to O( 1

k2 ). This improvement is presented in sec-
tion 7. Note that both complexity results improve the corresponding general lower
complexity bound by an order of magnitude.

In what follows we work with different primal and dual spaces equipped by cor-
responding norms. For the sake of notation, we apply the following convention. The
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(primal) finite-dimensional real vector space is always denoted by E, possibly with
an index. This space is endowed with a norm ‖·‖, which has the same index as the
corresponding space. The space of linear functions on E is denoted by E∗. For s ∈ E∗

and x ∈ E we denote by 〈s, x〉 the value of s at x. The scalar product 〈·, ·〉 is marked
by the same index as E. The norm for the dual space is defined in the standard way:

‖s‖∗ = max
‖x‖=1

〈s, x〉.

For operator A : E1 → E∗
2 we define the adjoint operator A∗ : E2 → E∗

1 by
identity

〈Ax, u〉2 ≡ 〈A∗u, x〉1 ∀x ∈ E1, u ∈ E2.

The norm of such an operator is defined as follows:

‖A‖1,2 = max
‖x‖1=1

max
‖u‖2=1

〈Ax, u〉2.

Clearly,

‖A‖1,2 = ‖A∗‖2,1 = max
‖x‖1=1

‖Ax‖∗2 = max
‖u‖2=1

‖A∗u‖∗1.

Hence, for any h ∈ E1 we have

‖Ah‖∗2 ≤ ‖A‖1,2 · ‖h‖1.(1.1)

Further, recall that function d(x) is called strongly convex on a closed convex set
Q if for any α ∈ [0, 1] we have

d(αx + (1 − α)y) ≤ αd(x) + (1 − α)d(y) − 1

2
α(1 − α)σ‖x− y‖2, x, y ∈ Q.

In this inequality, the constant σ is called the (strong) convexity parameter of d. We
often use the following property of strongly convex functions:

d(x) ≥ d(x∗) +
1

2
σ‖x− x∗‖2, x ∈ Q,(1.2)

where x∗ = arg minx∈Q d(x). If d is differentiable, the equivalent definitions of strong
convexity are as follows (see, for example, [4, section 2.1.3]):

d(y) ≥ d(x) + 〈∇d(x), y − x〉 +
1

2
σ‖y − x‖2

1, x, y ∈ Q,(1.3)

〈∇d(x) −∇d(y), x− y〉 ≥ σ‖x− y‖2, x, y ∈ Q.(1.4)

Finally, we say that function f(x) has a Lipschitz-continuous gradient on a convex
set Q if

‖∇f(x) −∇f(y)‖∗ ≤ L‖x− y‖, x, y ∈ Q,

for some constant L ≥ 0. Then

f(y) ≤ f(x) + 〈∇f(x), y − x〉 +
1

2
L‖y − x‖2, x, y ∈ Q(1.5)

(see, for example, [4, section 2.1.1]).
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2. A class of structured problems. In this paper we are interested in the
minimization problem

Find f∗ = min
x∈Q1

f(x),(2.1)

where Q1 is a bounded closed convex set in a finite-dimensional real vector space
E1 and f(x) is a continuous convex function on Q1. We do not assume f to be
differentiable.

Very often, the structure of the objective function in (2.1) is known. Let us
assume that this structure can be described by the following model (see [3] for different
examples):

f(x) = f̂(x) + max
u∈Q2

{〈Ax, u〉2 − φ̂(u)},(2.2)

where function f̂(x) is continuous and convex on Q1, Q2 is a closed convex bounded

set in a finite-dimensional real vector space E2, φ̂(u) is a continuous convex function
on Q2, and the linear operator A maps E1 to E∗

2 . In this case, problem (2.1) can be
written in an adjoint form:

max
u∈Q2

φ(u),

φ(u) = −φ̂(u) + min
x∈Q1

{〈Ax, u〉2 + f̂(x)}.
(2.3)

We assume that this representation is completely similar to (2.1) in the following
sense. The methods described in this paper are implementable only if the optimization
problems involved in the definitions of functions f(x) and φ(u) can be solved in a

closed form. So, we assume that the structures of the objects f̂ , φ̂, Q1, and Q2 are
simple enough. We also assume that the functions f̂ and φ̂ have Lipschitz-continuous
gradients with Lipschitz constants L1(f̂) and L2(φ̂), respectively.

Let us show that the knowledge of structure (2.2) can help in solving problems
(2.1) and (2.3). As in [3], we are going to use this structure for constructing a smooth
approximation of the objective functions.

Consider a prox-function d2(u) of the set Q2. This means that d2(u) is continuous
and strongly convex on Q2 with a strong convexity parameter σ2 > 0. Denote by

u0 = arg min
u∈Q2

d2(u)

the prox-center of the function d2(·). Without loss of generality we assume that
d2(u0) = 0. Thus, in view of (1.2), for any u ∈ Q2 we have

d2(u) ≥ 1

2
σ2‖u− u0‖2

2.(2.4)

Let μ2 be a positive smoothness parameter. Consider the following function:

fμ2(x) = f̂(x) + max
u∈Q2

{〈Ax, u〉2 − φ̂(u) − μ2d2(u)}.(2.5)

Denote by uμ2
(x) the optimal solution of above problem. Since function d2(u) is

strongly convex, this solution is unique. In accordance with Danskin’s theorem, the
gradient of fμ2 is well defined by

∇fμ2(x) = ∇f̂(x) + A∗uμ2(x).(2.6)
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Moreover, this gradient is Lipschitz-continuous with the constant

L1(fμ2
) = L1(f̂) +

1

σ2μ2
‖A‖2

1,2(2.7)

(see, for example, Theorem 1 in [3]).
Similarly, let us consider a prox-function d1(x) of the set Q1, which has convexity

parameter σ1, and the prox-center x0 with d1(x0) = 0. By (1.2), for any x ∈ Q1 we
have

d1(x) ≥ 1

2
σ1‖x− x0‖2

1.(2.8)

Let μ1 be a positive smoothness parameter. Consider

φμ1(u) = −φ̂(u) + min
x∈Q1

{〈Ax, u〉2 + f̂(x) + μ1d1(x)}.(2.9)

Since the second term in the above definition is a minimum of linear functions, φμ1(u)
is concave. Denote by xμ1(u) the unique optimal solution of the above problem. In
accordance with Danskins’s theorem and Theorem 1 in [3], the gradient

∇φμ1
(u) = −∇φ̂(u) + Axμ1(u)(2.10)

is Lipschitz-continuous with the constant

L2(φμ1
) = L2(φ̂) +

1

σ1μ1
‖A‖2

1,2.(2.11)

3. Excessive gap condition. Note that for any x ∈ Q1 and u ∈ Q2 we have

φ(u) ≤ f(x),(3.1)

and our assumptions guarantee no duality gap for (2.1), (2.3). However, fμ2(x) ≤ f(x)
and φ(u) ≤ φμ1(u). That opens up a possibility to satisfy the following excessive gap
condition:

fμ2(x̄) ≤ φμ1(ū)(3.2)

by certain x̄ ∈ Q1 and ū ∈ Q2. It is clear that (3.2) provides us with an upper bound
on the quality of the primal-dual pair (x̄, ū).

Lemma 3.1. Let x̄ ∈ Q1 and ū ∈ Q2 satisfy (3.2). Then

0 ≤ max{f(x̄) − f∗, f∗ − φ(ū)} ≤ f(x̄) − φ(ū) ≤ μ1D1 + μ2D2,(3.3)

where D1 = maxx∈Q1 d1(x) and D2 = maxu∈Q2 d2(u).
Proof. Indeed, for any x̄ ∈ Q1, ū ∈ Q2 we have f(x̄)−μ2D2 ≤ fμ2(x̄) ≤ φμ1(ū) ≤

φ(ū) + μ1D1. It remains to apply (3.1).
Our goal is to justify a process for updating recursively the pair (x̄, ū), which keeps

satisfying inequality (3.2) as μ1 and μ2 go to zero. This can be done in two different
ways, which correspond to two different auxiliary problems we must be ready to solve
at each iteration. Before we start our analysis, let us prove one useful inequality.

Lemma 3.2. For any x and ȳ from Q1 we have

fμ2
(ȳ) + 〈∇fμ2

(ȳ), x− ȳ〉1 ≤ f̂(x) + 〈Ax, uμ2
(ȳ)〉2 − φ̂(uμ2

(ȳ)).(3.4)

Proof. Let us take arbitrary x and ȳ from Q1. Denote ū = uμ2(ȳ). Then

fμ2(ȳ) + 〈∇fμ2(ȳ), x− ȳ〉1
(by (2.5), (2.6)) = f̂(ȳ) + 〈Aȳ, ū〉2 − φ̂(ū) − μ2d2(ū) + 〈∇f̂(ȳ) + A∗ū, x− ȳ〉1

(by convexity of f̂) ≤ f̂(x) + 〈Ax, ū〉2 − φ̂(ū).
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4. Gradient mapping. Let us justify a possibility to satisfy the excessive gap
condition (3.2) at some starting primal-dual pair. For x ∈ Q1 define the primal
gradient mapping:

Tμ2(x) = arg min
y∈Q1

{
〈∇fμ2(x), y − x〉1 +

1

2
L1(fμ2)‖y − x‖2

1

}
.(4.1)

Lemma 4.1. Let us choose an arbitrary μ2 > 0. For prox-center x0 define

x̄ = Tμ2
(x0), ū = uμ2

(x0).(4.2)

Then the excessive gap condition (3.2) is satisfied for any

μ1 ≥ 1

σ1
L1(fμ2).(4.3)

Proof. Denote x̄ = Tμ2
(x0), L1 = L1(fμ2), and ū = uμ2(x0). Since the gradient

∇fμ2 is Lipschitz-continuous, by (1.5) we have

fμ2(x̄) ≤ fμ2(x0) + 〈∇fμ2(x0), x̄− x0〉1 +
1

2
L1‖x̄− x0‖2

1

(by (4.1)) = min
x∈Q1

{
fμ2(x0) + 〈∇fμ2(x0), x− x0〉1 +

1

2
L1‖x− x0‖2

1

}

(by (3.4), (4.3)) ≤ min
x∈Q1

{
f̂(x) + 〈Ax, ū〉2 − φ̂(ū) +

1

2
μ1σ1‖x− x0‖2

1

}

(by (2.8)) ≤ −φ̂(ū) + min
x∈Q1

{f̂(x) + 〈Ax, ū〉2 + μ1d1(x)} = φμ1(ū).

Thus, condition (3.2) can be satisfied for some primal-dual pair. Let us show
how we can update points x̄ and ū in order to keep (3.2) valid for smaller values of
μ1 and μ2. Note that in view of the symmetry of the situation, at the first step of
the process we can try to decrease only μ1, keeping μ2 unchanged. After that, at the
second step, we update μ2 and keep μ1, and so on. The main advantage of such a
switching strategy is that we need to find a justification only for the first step. The
proof for the second one will be symmetric.

Theorem 4.2. Let points x̄ ∈ Q1 and ū ∈ Q2 satisfy the excessive gap condition
(3.2) for some positive μ1 and μ2. Let us fix τ ∈ (0, 1) and choose μ+

1 = (1 − τ)μ1,

x̂ = (1 − τ)x̄ + τxμ1(ū),

ū+ = (1 − τ)ū + τuμ2(x̂),

x̄+ = Tμ2
(x̂).

(4.4)

Then the pair (x̄+, ū+) satisfies condition (3.2) with smoothness parameters μ+
1 and

μ2, provided that τ is chosen in accordance with the following relation:

τ2

1 − τ
≤ μ1σ1

L1(fμ2)
.(4.5)

Proof. Denote û = uμ2
(x̂) and x1 = xμ1

(ū). Since φ̂ is convex, in view of the
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second line in (4.4) we have φ̂(ū+) ≤ (1 − τ)φ̂(ū) + τ φ̂(û). Therefore

φμ+
1
(ū+) = min

x∈Q1

{
(1 − τ)μ1d1(x) + 〈Ax, (1 − τ)ū + τ û〉2 + f̂(x)

}
− φ̂(ū+)

≥ min
x∈Q1

{
(1 − τ)

[
μ1d1(x) + 〈Ax, ū〉2 + f̂(x) − φ̂(ū)

]
1

+ τ
[
f̂(x) + 〈Ax, û〉2 − φ̂(û)

]
2

}
.

Note that in view of condition (3.2) and the first line in (4.4) we have

φμ1(ū) ≥ fμ2(x̄) ≥ fμ2(x̂) + 〈∇fμ2
(x̂), x̄− x̂〉1 = fμ2

(x̂) + τ〈∇fμ2
(x̂), x̄− x1〉1.

Therefore, in view of property (1.2) and definition (2.9) we can estimate the expression
in the first brackets as follows:

[ · ]1 ≥ φμ1(ū) +
1

2
μ1σ1‖x− x1‖2

1

(by (3.2)) ≥ fμ2
(x̄) +

1

2
μ1σ1‖x− x1‖2

1

(f is convex) ≥ fμ2(x̂) + 〈∇fμ2(x̂), x̄− x̂〉1 +
1

2
μ1σ1‖x− x1‖2

1

(line 1, (4.4)) = fμ2(x̂) + τ〈∇fμ2(x̂), x̄− x1〉1 +
1

2
μ1σ1‖x− x1‖2

1.

In view of (3.4), for the second pair of brackets we have

[ · ]2 ≥ fμ2
(x̂) + 〈∇fμ2

(x̂), x− x̂〉1

(line 1, (4.4)) = fμ2(x̂) + 〈∇fμ2(x̂), x− x1 + (1 − τ)(x1 − x̄)〉1.

Thus, putting everything together, we complete the proof as follows:

φμ+
1
(ū+) ≥ min

x∈Q1

{
fμ2

(x̂) + τ〈∇fμ2
(x̂), x− x1〉1 +

1

2
(1 − τ)μ1σ1‖x− x1‖2

1

}

(by (4.5)) ≥ min
x∈Q1

{
fμ2(x̂) + τ〈∇fμ2(x̂), x− x1〉1 +

1

2
τ2L1(fμ2)‖x− x1‖2

1

}

(y = x̄ + τ(x− x̄)) = min
y∈x̄+τ(Q1−x̄)

{
fμ2(x̂) + 〈∇fμ2(x̂), y − x̂〉1 +

1

2
L1(fμ2)‖y − x̂‖2

1

}

(Q1 is convex) ≥ min
y∈Q1

{
fμ2

(x̂) + 〈∇fμ2
(x̂), y − x̂〉1 +

1

2
L1(fμ2

)‖y − x̂‖2
1

}

(line 3, (4.4)) = fμ2
(x̂) + 〈∇fμ2

(x̂), x̄+ − x̂〉1 +
1

2
L1(fμ2

)‖x̄+ − x̂‖2
1

(by (1.5)) ≥ fμ2(x̄+).

5. Bregman projection. Let us assume for simplicity that d1(x) is differen-
tiable. Then for any x ∈ Q1 we have

〈∇d1(x0), x− x0〉1 ≥ 0.(5.1)
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For x and z from Q1 denote the Bregman distance between z and x as

ξ1(z, x) = d1(x) − d1(z) − 〈∇d1(z), x− z〉1.

If z is fixed, then ξ(z, x) is strongly convex in x. Moreover, in view of (1.3)

ξ1(z, x) ≥ 1

2
σ1‖x− z‖2

1.(5.2)

Define the Bregman projection of some g ∈ E∗
1 onto the set Q1 as follows:

V1(z, g) = arg min
x∈Q1

{〈g, x− z〉1 + ξ1(z, x)}.(5.3)

As compared with the gradient mapping, the Bregman projection has several advan-
tages. First, it is uniquely defined. Second, the optimization problem in (5.3) involves
the same objects as (2.9). So, there are more chances for it to be easily solvable (see
section 5.3 in [3] for an example).

Let us show that the Bregman projection can also be used for finding a primal-
dual pair, which satisfies the excessive gap condition (3.2).

Lemma 5.1. Let us choose an arbitrary μ2 > 0. Denote γ = σ1

L1(fμ2
) and set

x̄ = V1(x0, γ∇fμ2(x0)), ū = uμ2
(x0).(5.4)

Then the excessive gap condition is satisfied for any μ1 ≥ γ−1.
Proof. Indeed, in view of (1.5) we have

fμ2(x̄) ≤ fμ2(x0) + 〈∇fμ2(x0), x̄− x0〉1 +
1

2
L1(fμ2)‖x̄− x0‖2

1

= fμ2
(x0) +

1

γ

[
γ〈∇fμ2

(x0), x̄− x0〉1 +
1

2
σ1‖x̄− x0‖2

1

]

(by (5.2)) ≤ fμ2(x0) +
1

γ
[〈γ∇fμ2

(x0), x̄− x0〉1 + ξ1(x0, x̄)]

(by (5.3), (5.4)) = fμ2
(x0) +

1

γ
min
x∈Q1

{〈γ∇fμ2(x0), x− x0〉1 + ξ1(x0, x)}

= min
x∈Q1

{
fμ2(x0) + 〈∇fμ2(x0), x− x0〉1 +

1

γ
ξ1(x0, x)

}

(by (5.1)) ≤ min
x∈Q1

{
fμ2

(x0) + 〈∇fμ2
(x0), x− x0〉1 +

1

γ
d1(x)

}

(using (3.4)) ≤ min
x∈Q1

{
f̂(x) + 〈Ax, uμ2(x0)〉 − φ̂(uμ2(x0)) +

1

γ
d1(x)

}

(by (2.9)) = φγ−1(uμ2
(x0)) ≤ φμ1

(uμ2
(x0)).

As in section 4, we present a justification only for the first (primal) step of the
switching primal-dual strategy for maintaining the excessive gap condition (3.2) while
the parameters μ1 and μ2 go to zero.

Theorem 5.2. Let points x̄ ∈ Q1 and ū ∈ Q2 satisfy the excessive gap condition
(3.2) for some positive μ1 and μ2. Let us choose τ ∈ (0, 1) in accordance with (4.5)
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and set

x̂ = (1 − τ)x̄ + τxμ1(ū),

ū+ = (1 − τ)ū + τuμ2(x̂),

x̃ = V1

(
xμ1(ū),

τ

(1 − τ)μ1
∇fμ2(x̂)

)
,

x̄+ = (1 − τ)x̄ + τ x̃,

μ+
1 = (1 − τ)μ1.

(5.5)

Then the pair (x̄+, ū+) satisfies (3.2) with the smoothness parameters μ+
1 and μ2.

Proof. Denote û = uμ2(x̂) and x1 = xμ1(ū). In view of the rules (5.5), convexity

of φ̂, and inequality (3.4), we have

(1 − τ)μ1d1(x) + 〈Ax, (1 − τ)ū + τ û〉2 + f̂(x) − φ̂(ū+)

≥ (1 − τ)
[
μ1d1(x) + 〈Ax, ū〉2 + f̂(x) − φ̂(ū)

]
+ τ [f̂(x) + 〈Ax, û〉2 − φ̂(û)]

≥ (1 − τ)
[
μ1d1(x) + 〈Ax, ū〉2 + f̂(x) − φ̂(ū)

]
1

+ τ [fμ2
(x̂) + 〈∇fμ2(x̂), x− x̂〉1]2.

The first order optimality conditions for point x1 are as follows:

〈μ1∇d1(x1) + A∗ū + ∇f̂(x1), x− x1〉1 ≥ 0, x ∈ Q1.(5.6)

Therefore, using convexity of f̂ and fμ2
, we can estimate the term [ · ]1 as follows:

[ · ]1 = μ1 (ξ(x1, x) + d1(x1) + 〈∇d1(x1), x− x1〉1) + 〈Ax, ū〉2 + f̂(x) − φ̂(ū)

(by (5.6)) ≥ μ1ξ(x1, x) + μ1d1(x1) + 〈Ax1, ū〉2 + f̂(x) − 〈∇f̂(x1), x− x1〉1 − φ̂(ū)

≥ μ1ξ(x1, x) + μ1d1(x1) + 〈Ax1, ū〉2 + f̂(x1) − φ̂(ū)

(by (2.9)) = μ1ξ(x1, x) + φμ1(ū)

(by (3.2)) ≥ μ1ξ(x1, x) + fμ2(x̄)

≥ μ1ξ(x1, x) + fμ2
(x̂) + 〈∇fμ2

(x̂), x̄− x̂〉1.
Thus, we can continue:

φμ+
1
(ū+) = min

x∈Q1

{
(1 − τ)μ1d1(x) + 〈Ax, (1 − τ)ū + τ û〉2 + f̂(x)

}
− φ̂(ū+)

≥ min
x∈Q1

{(1 − τ)μ1ξ(x1, x) + fμ2(x̂) + 〈∇fμ2(x̂), (1 − τ)x̄ + τx− x̂〉1}

(line 1, (5.5)) = min
x∈Q1

{(1 − τ)μ1ξ(x1, x) + fμ2(x̂) + τ〈∇fμ2(x̂), x− x1〉1}

(line 3, (5.5)) = (1 − τ)μ1ξ(x1, x̃) + fμ2(x̂) + τ〈∇fμ2(x̂), x̃− x1〉1

(by (5.2)) ≥ 1

2
(1 − τ)μ1σ1‖x̃− x1‖2

1 + fμ2(x̂) + τ〈∇fμ2(x̂), x̃− x1〉1

(by (4.5)) ≥ 1

2
τ2L1(fμ2)‖x̃− x1‖2

1 + fμ2(x̂) + τ〈∇fμ2(x̂), x̃− x1〉1

(line 4, (5.5)) =
1

2
L1(fμ2

)‖x̄+ − x̂‖2
1 + fμ2

(x̂) + 〈∇fμ2
(x̂), x̄+ − x̂〉1

(by (1.5)) ≥ fμ2(x̄+).
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6. Convergence analysis. In sections 4 and 5 we have seen that the smoothness
parameters μ1 and μ2 can be decreased by a switching strategy. Thus, in order to
convert the results of Theorems 4.2 and 5.2 in an algorithmic scheme we only need
to point out a strategy for updating these parameters, which is compatible with the
condition (4.5). In this section we do that for an important case, L1(f̂) = L2(φ̂) = 0.

It is convenient to represent the smoothness parameters as follows:

μ1 = λ1 · ‖A‖1,2 ·
√

D2

σ1σ2D1
, μ2 = λ2 · ‖A‖1,2 ·

√
D1

σ1σ2D2
.(6.1)

Then the estimate (3.3) for the duality gap becomes symmetric:

f(x̄) − φ(ū) ≤ (λ1 + λ2) · ‖A‖1,2 ·
√

D1D2

σ1σ2
.(6.2)

Since by (2.7), L1(fμ2) = 1
σ2μ2

‖A‖2
1,2, the condition (4.5) becomes problem indepen-

dent:

τ2

1 − τ
≤ μ1μ2 ·

σ1σ2

‖A‖2
1,2

= λ1λ2.(6.3)

Let us write down the switching algorithmic scheme in an explicit form. It is
convenient to have a permanent iteration counter. In this case at even iterations
we apply the primal update (4.4) (or (5.5)), and at odd iterations we apply the
corresponding dual update. Since at even iterations λ2 is not changing, and at odd
iterations λ1 is not changing, it is convenient to put their new values in the same
sequence {αk}∞k=−1. Let us fix the following relations between the sequences:

k = 2l : λ1,k = αk−1, λ2,k = αk,
k = 2l + 1 : λ1,k = αk, λ2,k = αk−1.

(6.4)

Then the parameters τk define the reduction rate of the sequence {αk}∞k=−1.
Lemma 6.1. For all k ≥ 0 we have αk+1 = (1 − τk)αk−1.
Proof. Indeed, in accordance with (6.4), if k = 2l, then

αk+1 = λ1,k+1 = (1 − τk)λ1,k = (1 − τk)αk−1.

Also, if k = 2l + 1, then αk+1 = λ2,k+1 = (1 − τk)λ2,k = (1 − τk)αk−1.
Corollary 6.2. In terms of the sequence {αk}∞k=−1 the condition (6.3) looks as

follows:

(αk+1 − αk−1)
2 ≤ αk+1αkα

2
k−1, k ≥ 0.(6.5)

Proof. In view of (6.4) we always have λ1,kλ2,k = αkαk−1. Since τk = 1 − αk+1

αk−1
,

we get (6.5).
Clearly, condition (6.5) is satisfied by

αk =
2

k + 2
, k ≥ −1.(6.6)

Then

τk = 1 − αk+1

αk−1
=

2

k + 3
, k ≥ 0.(6.7)
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Now we are ready to write down the algorithmic scheme. Let us do that for the
gradient mapping update (4.4). In this scheme we use the sequences {μ1,k}∞k=−1 and
{μ2,k}∞k=−1, generated in accordance with rules (6.1), (6.4), and (6.6).

Method 1.

1. Initialization:
Choose x̄0 and ū0 in accordance with (4.2) with μ1 = μ1,0 and μ2 = μ2,0.

2. Iterations (k ≥ 0):
a) Set τk = 2

k+3 .
b) If k is even, then generate (x̄k+1, ūk+1) from (x̄k, ūk) using (4.4).
c) If k is odd, then generate (x̄k+1, ūk+1) from (x̄k, ūk) using the

symmetric dual variant of (4.4).
Theorem 6.3. Let the sequences {x̄k}∞k=0 and {ūk}∞k=0 be generated by Method 1.

Then each pair of points satisfies the excessive gap condition. Therefore

f(x̄k) − φ(ūk) ≤
4‖A‖1,2

k + 1

√
D1D2

σ1σ2
.(6.8)

Proof. In accordance with our choice of parameters,

μ1,0μ2,0 = λ1,0λ2,0 ·
‖A‖2

1,2

σ1σ2
=

2μ2,0

σ1
L1(fμ2,0

) >
μ2,0

σ1
L1(fμ2,0

).

Hence, in view of Lemma 4.1 the pair (x̄0, ū0) satisfies the excessive gap condition.
We have already checked that the sequence {τk}∞k=0 defined by (6.7) satisfies the
conditions of Theorem 4.2. Therefore the excessive gap conditions will be valid for
the sequences generated by Method 1. It remains to use inequality (6.2).

Clearly, the same statement is valid for the method based on the updating scheme
(5.5).

7. Minimizing a strongly convex function. Consider now the model (2.2),
which satisfies the following assumption.

Assumption 1. In representation (2.2) function f̂(x) is strongly convex with
strong convexity parameter σ̂ > 0.

Let us prove the following variant of Danskin’s theorem.
Lemma 7.1. Under Assumption 1, function φ(u) defined by (2.3) is concave and

differentiable. Moreover, its gradient

∇φ(u) = −∇φ̂(u) + Ax0(u),(7.1)

with x0(u) defined by (2.9), is Lipschitz-continuous with the constant

L2(φ) =
1

σ̂
‖A‖2

1,2 + L2(φ̂).(7.2)

Proof. Denote φ̃(u) = minx∈Q1 {〈Ax, u〉2 + f̂(x)}. This function is concave as a

minimum of linear functions. Since f̂ is strongly convex, the solution of the above
minimization problem is unique. Therefore φ̃(u) is differentiable and ∇φ̃(u) = Ax0(u).

Consider two points u1 and u2. From the first order optimality conditions for
(2.3) we have

〈A∗u1 + ∇f̂(x0(u1)), x0(u2) − x0(u1)〉1 ≥ 0,

〈A∗u2 + ∇f̂(x0(u2)), x0(u1) − x0(u2)〉1 ≥ 0.
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Adding these inequalities and using strong convexity of f̂(·), we continue as follows:

〈Ax0(u2) −Ax0(u1), u1 − u2〉2 ≥ 〈∇f̂(x0(u1)) −∇f̂(x0(u2)), x0(u1) − x0(u2)〉1

(by (1.4)) ≥ σ̂‖x0(u1) − x0(u2)‖2
1

(by (1.1)) ≥ σ̂

‖A‖2
1,2

(
‖∇φ̃(u1) −∇φ̃(u2)‖∗2

)2

.

Thus, ‖∇φ̃(u1) −∇φ̃(u2)‖∗2 ≤ 1
σ̂‖A‖2

1,2 · ‖u1 − u2‖2, and (7.2) follows.
Lemma 7.2. For any u and û from Q2 we have

φ(û) + 〈∇φ(û), u− û〉2 ≥ −φ̂(u) + 〈Ax0(û), u〉2 + f̂(x0(û)).(7.3)

Proof. Let us take arbitrary u and û from Q2. Denote x̂ = x0(û). Then

φ(û) + 〈∇φ(û), u− û〉2 = −φ̂(û) + 〈Ax̂, û〉2 + f̂(x̂) + 〈−∇φ̂(û) + Ax̂, u− û〉2

(φ̂ is convex) ≥ −φ̂(u) + 〈Ax̂, u〉2 + f̂(x̂).

In this section we derive an optimization scheme from the following variant of the
excessive gap condition:

fμ2
(x̄) ≤ φ(ū)(7.4)

for some x̄ ∈ Q1 and ū in Q2.
This condition can be seen as a variant of condition (3.2) with μ1 = 0. However,

in this section we prefer not to use the results of the previous sections since our
assumptions are now different. For example, we no longer need the set Q1 to be
bounded.

Lemma 7.3. Let points x̄ from Q1 and ū from Q2 satisfy (7.4). Then

0 ≤ f(x̄) − φ(ū) ≤ μ2D2.(7.5)

Proof. Indeed, for any x ∈ Q1 we have fμ2(x) ≥ f(x) − μ2D2.
Define the adjoint gradient mapping as follows:

V (u) = arg max
v∈Q2

{
〈∇φ(u), v − u〉2 −

1

2
L2(φ)‖v − u‖2

2

}
.(7.6)

Lemma 7.4. The excessive gap condition (7.4) is valid for μ2 = 1
σ2
L2(φ) and

x̄ = x0(u0), ū = V (u0).(7.7)

Proof. Indeed, in view of Lemma 7.1 and (1.5) we get the following relations:

φ(V (u0)) ≥ φ(u0) + 〈∇φ(u0), V (u0) − u0〉2 −
1

2
L2(φ)‖V (u0) − u0‖2

2

(by (7.6)) = max
u∈Q2

{
φ(u0) + 〈∇φ(u0), u− u0〉2 −

1

2
L2(φ)‖u− u0‖2

2

}

(by (2.3) and (7.1)) = max
u∈Q2

{
− φ̂(u0) + 〈Ax0(u0), u0〉2 + f̂(x0(u0))

+ 〈Ax0(u0) −∇φ̂(u0), u− u0〉2 −
1

2
μ2σ2‖u− u0‖2

2

}

(φ̂ is convex and (2.4)) ≥ max
u∈Q2

{
−φ̂(u) + f̂(x0(u0)) + 〈Ax0(u0), u〉2 − μ2d2(u)

}
(by (2.5)) = fμ2

(x0(u0)).
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Theorem 7.5. Let points x̄ ∈ Q1 and ū ∈ Q2 satisfy the excessive gap condition
(7.4) for some positive μ2. Let us fix τ ∈ (0, 1) and choose μ+

2 = (1 − τ)μ2,

û = (1 − τ)ū + τuμ2
(x̄),

x̄+ = (1 − τ)x̄ + τx0(û),

ū+ = V (û).

(7.8)

Then the pair (x̄+, ū+) satisfies condition (7.4) with smoothness parameter μ2, pro-
vided that τ is chosen in accordance with the following relation:

τ2

1 − τ
≤ μ2σ2

L2(φ)
.(7.9)

Proof. Denote x̂ = x0(û) and u2 = uμ2(x̄). In view of the second line of (7.8) and
(2.5) we have

fμ+
2
(x̄+) = f̂(x̄+) + max

u∈Q2

{
〈A((1 − τ)x̄ + τ x̂), u〉2 − φ̂(u) − (1 − τ)μ2d2(u)

}

(f̂ is convex) ≤ max
u∈Q2

{
(1 − τ)

[
f̂(x̄) + 〈Ax̄, u〉2 − φ̂(u) − μ2d2(u)

]

+ τ [f̂(x̂) + 〈Ax̂, u〉2 − φ̂(u)]
}

(by (1.2)) ≤ max
u∈Q2

{
(1 − τ)

[
fμ2(x̄) − 1

2
μ2σ2‖u− u2‖2

2

]

(by (7.3)) + τ [φ(û) + 〈∇φ(û), u− û〉2]
}
.

Since φ is concave, by (7.4) we obtain

fμ2(x̄) ≤ φ(ū) ≤ φ(û) + 〈∇φ(û), ū− û〉2

(line 1, (7.8)) = φ(û) + τ〈∇φ(û), ū− u2〉2.

Hence, we can finish the proof as follows:

fμ+
2
(x̄+) ≤ max

u∈Q2

{
φ(û) + τ〈∇φ(û), u− u2〉2 −

1

2
(1 − τ)μ2σ2‖u− u2‖2

2

}

(by (7.9)) ≤ max
u∈Q2

{
φ(û) + τ〈∇φ(û), u− u2〉2 −

1

2
τ2L2(φ)‖u− u2‖2

2

}

(v = ū + τ(u− ū)) = max
v∈ū+τ(Q2−ū)

{
φ(û) + 〈∇φ(û), v − û〉2 −

1

2
L2(φ)‖v − û‖2

2

}

(Q2 is convex) ≤ max
v∈Q2

{
φ(û) + 〈∇φ(û), v − û〉2 −

1

2
L2(φ)‖v − û‖2

2

}

(by (7.6)) = φ(û) + 〈∇φ(û), ū+ − û〉2 −
1

2
L2(φ)‖ū+ − û‖2

2

(by (1.5)) ≤ φ(ū+).

Now we can justify the following minimization scheme.
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Method 2.

1. Initialization:
Set μ2,0 = 2

σ2
L2(φ), x̄0 = x0(u0) and ū0 = V (u0).

2. For k ≥ 0 iterate:
Set τk = 2

k+3 and ûk = (1 − τk)ūk + τkuμ2,k
(x̄k).

Update μ2,k+1 = (1 − τk)μ2,k,

x̄k+1 = (1 − τk)x̄k + τkx0(ûk),

ūk+1 = V (ûk).

Theorem 7.6. Let problem (2.1) satisfy Assumption 1. Then the pairs (x̄k, ūk)
generated by Method 2 satisfy the following inequality:

f(x̄k) − φ(ūk) ≤
4L2(φ)D2

(k + 1)(k + 2)σ2
,(7.10)

where L2(φ) is given by (7.2).
Proof. Indeed, in view of Theorem 7.5 and Lemma 7.4 we need only justify that

the sequences {μ2,k}∞k=0 and {τk}∞k=0 satisfy relation (7.9). This is straightforward
because of relation

μ2,k =
4L2(φ)

(k + 1)(k + 2)σ2
,

which is valid for all k ≥ 0.
Let us conclude the paper with an example. Consider the problem

f(x) =
1

2
‖x‖2

1 + max
1≤j≤m

[fj + 〈gj , x− xj〉1] → min : x ∈ E1.(7.11)

Problems of this type arise, for example, at each iteration of the bundle method [1].
Let E1 = Rn and we choose

‖x‖2
1 =

n∑
i=1

(x(i))2, x ∈ E1.

Then this problem can be solved by Method 2.
Indeed, we can represent the objective function in (7.11) in the form (2.2) using

the following objects:

E2 = Rm, Q2 = Δm =

⎧⎨
⎩u ∈ Rm

+ :

m∑
j=1

u(j) = 1

⎫⎬
⎭ ,

f̂(x) =
1

2
‖x‖2

1, φ̂(u) = 〈b, u〉2, b(j) = 〈gj , xj〉1 − fj , j = 1, . . . ,m,

AT = (a1, . . . , am).

Thus, σ̂ = 1 and L2(φ̂) = 0. Let us choose for E2 the following norm:

‖u‖2 =

m∑
j=1

|u(j)|.



248 YU. NESTEROV

Then we can use the entropy distance function (see [3]):

d2(u) = lnm +

m∑
j=1

u(j) lnu(j), u0 =

(
1

m
, . . . ,

1

m

)
,

for which σ2 = 1 and D2 = lnm. Note that in this case

‖A‖1,2 = max
1≤j≤m

‖gj‖∗1.

Thus, Method 2 as applied to problem (7.11) converges with the following rate:

f(x̄k) − φ(ūk) ≤
4 lnm

(k + 1)(k + 2)
· max
1≤j≤m

(‖gj‖∗1)
2
.

Let us study the complexity of this scheme for our example. At each iteration we
need to compute the following objects.

1. Computation of uμ2(x̄). This is the solution of the following problem:

max
u

⎧⎨
⎩

m∑
j=1

u(j)s(j)(x̄) − μ2d2(u) : u ∈ Q2

⎫⎬
⎭

with s(j)(x̄) = fj + 〈gj , x̄ − xj〉, j = 1, . . . ,m. In accordance with (4.14) in
[3, Lemma 4], this solution can be found in a closed form:

u(j)
μ2

(x̄) = es
(j)(x̄)/μ2 ·

[
m∑
l=1

es
(l)(x̄)/μ2

]−1

, j = 1, . . . ,m.

2. Computation of x0(û). In our case this is a solution to the problem

min
x

{
〈Ax, û〉2 +

1

2
‖x‖2

1 : x ∈ E1

}
.

Hence, the answer is very simple: x0(û) = −AT û.
3. Computation of V (û). In our case

φ(ū) = min
x∈E1

⎧⎨
⎩

m∑
j=1

u(j)[fj + 〈gj , x− xj〉1] +
1

2
‖x‖2

1

⎫⎬
⎭

= −〈b, u〉2 −
1

2

(
‖AT û‖∗1

)2
.

Thus, ∇φ(ū) = −b − AAT û. Now we can compute V (û) by (7.6). In [3,
section 5.1], it is shown that the complexity of finding V (ū) is of the order
O(m lnm).

We have seen that all computations at each iteration of Method 2 as applied
to problem (7.11) are very cheap. The most expensive part of the iteration is the
multiplication of the matrix A by a vector. In a straightforward implementation we
need three such multiplications per iteration. However, a simple modification of the
order of operations can reduce this amount to two.
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Abstract. In this paper we use the penalty approach to study three constrained minimization
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1. Introduction. In this paper we use the penalty approach to study three
constrained nonconvex minimization problems with Lipschitzian (on bounded sets)
cost functions. The first is an equality constrained problem in a Banach space with
a locally Lipschitzian constraint function; the second is an inequality constrained
problem in a Banach space with a locally Lipschitzian constraint function; and the
third is a problem in a finite-dimensional space with mixed constraints and smooth
constraint functions.

A penalty function is said to have the exact penalty property [3] if there exists
a penalty coefficient for which a solution of an unconstrained penalized problem is a
solution of the corresponding constrained problem. In this paper we establish a very
simple sufficient condition for the exact penalty property.

Let (X, || · ||) be a Banach space, (X∗, || · ||∗) its dual space, and let f : X → R1

be a locally Lipschitzian function. For each x ∈ X, let

f0(x, h) = lim sup
t→0+,y→x

[f(y + th) − f(y)]/t, h ∈ X,

be the Clarke generalized directional derivative of f at the point x [1]; let

∂f(x) = {l ∈ X∗ : f0(x, h) ≥ l(h) for all h ∈ X}

be the Clarke generalized gradient of f at x [1]; and set

Ξf (x) = inf{f0(x, h) : h ∈ X and ||h|| = 1}

(see [5]).
A point x ∈ X is called a critical point of f if 0 ∈ ∂f(x). It is not difficult to see

that x ∈ X is a critical point of f if and only if Ξf (x) ≥ 0.
A real number c ∈ R1 is called a critical value of f if there exists a critical point

x of f such that f(x) = c.
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It is known [1, Chap. 2, sect. 2.3] that ∂(−f)(x) = −∂f(x) for any x ∈ X. This
equality implies that x ∈ X is a critical point of f if and only if x is a critical point of
−f and implies that c ∈ R1 is a critical value of f if and only if −c is a critical value
of −f .

For each function f : X → R1, set inf(f) = inf{f(z) : z ∈ X}. For each x ∈ X
and each B ⊂ X, put

d(x,B) = inf{||x− y|| : y ∈ B}.

Consider a minimization problem h(z) → min, z ∈ X, where h : X → R1 is a
continuous bounded from below function. If the space X is infinite-dimensional, then
the existence of solutions of the problem is not guaranteed and in this situation we
consider δ-approximate solutions. Namely, x ∈ X is a δ-approximate solution of the
problem h(z) → min, z ∈ X, where δ > 0, if h(x) ≤ inf(h) + δ.

Let f : X → R1 be a function which is Lipschitzian on all bounded subsets of X
and which satisfies the growth condition

lim
||x||→∞

f(x) = ∞.(1.1)

Clearly, f is bounded from below. Let g : X → R1 be a locally Lipschitzian function
which satisfies the following Palais–Smale (PS) condition [4, 5].

If {xi}∞i=1 ⊂ X, the sequence {g(xi)}∞i=1 is bounded, and if

lim inf
i→∞

Ξg(xi) ≥ 0,

then there is a norm convergent subsequence of {xi}∞i=1.
Let c ∈ R1 be such that g−1(c) is nonempty.
We consider the constrained problems

f(x) → min subject to x ∈ g−1(c)(Pe)

and

f(x) → min subject to x ∈ g−1((−∞, c]).(Pi)

We associate with these two problems the corresponding families of unconstrained
minimization problems

f(x) + λ|g(x) − c| → min, x ∈ X,(Pλe)

and

f(x) + λmax{g(x) − c, 0} → min, x ∈ X,(Pλi)

where λ > 0.
The main result of this paper (Theorem 1.1) stated below implies that if the space

X is finite-dimensional, c is not a critical value of g and that, if λ is sufficiently large,
then any solution of problem (Pλe) is a solution of problem (Pe) and any solution of
problem (Pλi) is a solution of problem (Pi). If the space X is infinite-dimensional,
then the existence of solutions of problems (Pλe) and (Pλi) is not guaranteed. In this
case, Theorem 1.1 implies that if c is not a critical value of g, then for each ε > 0
there exists δ(ε) > 0, which depends only on ε such that the following property holds.
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If λ ≥ λ̄ and x is a δ-approximate solution of (Pλe) ((Pλi), resp.), then there
exists a (λ̄ε)-approximate solution of (Pe) ((Pi), resp.) such that ||y − x|| ≤ ε.

Here λ̄ is a positive constant which does not depend on ε.
Set

inf(f ; c) = inf{f(z) : z ∈ g−1(c)},(1.2)

inf(f ; (−∞, c]) = inf{f(z) : z ∈ X and g(z) ≤ c}.(1.3)

We now state the main result of the paper.
Theorem 1.1. Assume that the number c is not a critical value of the function

g. Then there exist positive numbers λ0 and λ1 such that for each ε > 0 there exists
δ ∈ (0, ε) such that the following assertions hold:

1. If λ > λ0, and if x ∈ X satisfies

f(x) + λ|g(x) − c| ≤ inf{f(z) + λ|g(z) − c| : z ∈ X} + δ,

then there exists y ∈ g−1(c) such that

||y − x|| ≤ ε and f(y) ≤ inf(f ; c) + λ1ε.

2. If λ > λ0, and if x ∈ X satisfies

f(x) + λmax{g(x) − c, 0} ≤ inf{f(z) + λmax{g(z) − c, 0} : z ∈ X} + δ,

then there exists y ∈ g−1((−∞, c]) such that

||y − x|| ≤ ε and f(y) ≤ inf(f ; (−∞, c]) + λ1ε.

Theorem 1.1 will be proved in section 2. In this section we present several impor-
tant results which follow from Theorem 1.1. We will prove these results in section 2.
Theorem 1.1 implies the following result.

Theorem 1.2. Assume that the number c is not a critical value of the function
g. Then there exists λ0 > 0 such that the following assertions hold:

1. For each λ > λ0, and for each sequence {xi}∞i=1 ⊂ X which satisfies

lim
i→∞

[f(xi) + λ|g(xi) − c|] = inf{f(z) + λ|g(z) − c| : z ∈ X},

there exists a sequence {yi}∞i=1 ⊂ g−1(c) such that

lim
i→∞

f(yi) = inf(f ; c) and lim
i→∞

||yi − xi|| = 0.

2. For each λ > λ0, and for each sequence {xi}∞i=1 ⊂ X which satisfies

lim
i→∞

[f(xi) + λmax{g(xi) − c, 0}] = inf{f(z) + λmax{g(z) − c, 0} : z ∈ X},

there exists a sequence {yi}∞i=1 ⊂ g−1((−∞, c]) such that

lim
i→∞

f(yi) = inf(f ; (−∞, c]) and lim
i→∞

||yi − xi|| = 0.

Assertion 1 of Theorem 1.2 implies the following result.
Theorem 1.3. Assume that the number c is not a critical value of the function

g and that there exists x̄ ∈ g−1(c) for which the following conditions hold:
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• f(x̄) = inf(f ; c);
• any sequence {xn}∞n=1 ⊂ g−1(c) that satisfies limn→∞ f(xn) = inf(f ; c) con-

verges to x̄ in the norm topology.
Then there exists λ0 > 0 such that for each λ > λ0 the point x̄ is a unique solution of
the minimization problem

f(z) + λ|g(z) − c| → min, z ∈ X.

Assertion 2 of Theorem 1.2 implies the following result.
Theorem 1.4. Assume that the number c is not a critical value of the function

g and that there exists x̄ ∈ g−1((−∞, c]) for which the following conditions hold:
• f(x̄) = inf(f ; (−∞, c]);
• any sequence {xn}∞n=1 ⊂ g−1((−∞, c]) that satisfies limn→∞ f(xn) =

inf(f ; (−∞, c]) converges to x̄ in the norm topology.
Then there exists λ0 > 0 such that for each λ > λ0 the point x̄ is a unique solution of
the minimization problem

f(z) + λmax{g(z) − c, 0} → min, z ∈ X.

The next result follows from Theorem 1.2.
Theorem 1.5. Assume that X = Rn and that the number c is not a critical

value of the function g. Then there exists λ0 > 0 such that the following assertions
hold:

1. If λ > λ0, and if x is a solution of the minimization problem

f(z) + λ|g(z) − c| → min, z ∈ X,

then x ∈ g−1(c) and f(x) = inf(f ; c).
2. If λ > λ0, and if x is a solution of the minimization problem

f(z) + λmax{g(z) − c, 0} → min, z ∈ X,

then g(x) ≤ c and f(x) = inf(f ; (−∞, c]).
Example 1. Assume that X = Rn, g ∈ C1(Rn), and that the gradient of g is not

zero at any point x ∈ Rn. Then Theorems 1.1, 1.2, and 1.5 hold.
Example 2. Assume that X = Rn, g is convex and bounded from below, and

c > inf(g). Then Theorems 1.1, 1.2, and 1.5 hold.
Now we give an example which shows that exactness fails when c is a critical

value of g.
Example 3. Let X = R1 and consider the minimization problem

f(x) → min, x ∈ R1, g(x) = 0,

where f(x) = (x− 10)2, x ∈ R1, and

g(x) = (x− 1)2, x ∈ [1,∞), g(x) = (x + 1)2, x ∈ (−∞,−1], g(x) = 0, x ∈ (−1, 1).

This problem is equivalent to the problem

f(x) → min, x ∈ R1, g(x) ≤ 0.

Clearly, zero is a critical value of g and x̄ = 1 is a unique solution of the problem.
We show that, for each λ > 0, inf(f + λg) < f(1) = 81. Fix λ > 0. For each

x ∈ [1,min{2, 1 + 4/λ}],
(f + λg)′(x) = 2(x− 10) + 2λ(x− 1) ≤ −16 + 2λ(x− 1) ≤ −16 + 2λ(4/λ) = −8.

This relation implies that inf(f + λg) < f(1).
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2. Proofs of Theorems 1.1–1.4.
Proof of Theorem 1.1. We prove assertions 1 and 2 simultaneously.
Set

A = g−1(c) in the case of assertion 1

and

A = g−1((−∞, c]) in the case of assertion 2.

For each λ > 0 define a function ψλ : X → R1 as

ψλ(z) = f(z) + λ|g(z) − c|, z ∈ X,(2.1)

in the case of assertion 1 and as

ψλ(z) = f(z) + λmax{g(z) − c, 0}, z ∈ X,(2.2)

in the case of assertion 2.
Clearly, the function ψλ is locally Lipschitzian for all λ > 0.
We show that there exists λ0 > 0 such that the following property holds.
(P1) For each ε ∈ (0, 1) there exists δ ∈ (0, ε) such that for each λ > λ0, and for

each x ∈ X which satisfies

ψλ(x) ≤ inf(ψλ) + δ,

there exists y ∈ A for which ||y − x|| ≤ ε.
Let us assume the converse. Then for each natural number k there exist

εk ∈ (0, 1), λk > k, and xk ∈ X(2.3)

such that

ψλk
(xk) ≤ inf(ψλk

) + 2−1εkk
−2,(2.4)

d(xk, A) ≥ εk.(2.5)

Let k be a natural number. It follows from (2.4) and Ekeland’s variational prin-
ciple [2] that there exists yk ∈ X such that

ψλk
(yk) ≤ ψλk

(xk),(2.6)

||yk − xk|| ≤ 2−1k−1εk,(2.7)

ψλk
(yk) ≤ ψλk

(z) + k−1||z − yk|| for all z ∈ X.(2.8)

By (2.5) and (2.7),

yk �∈ A for all natural numbers k.(2.9)

In the case of assertion 2, we obtain that

g(yk) > c for all natural numbers k.(2.10)
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In the case of assertion 1, we obtain that, for each natural number k,

either g(yk) > c or g(yk) < c.

In the case of assertion 1, by extracting a subsequence and re-indexing we may assume
that either g(yk) > c for all natural numbers k or g(yk) < c for all natural numbers
k. Replacing g with −g and c with −c, if necessary, we may assume without loss of
generality that (2.10) is valid in the case of assertion 1 too. Now (2.10) is valid in
both cases.

Let k be a natural number. It follows from (2.8) that

0 ∈ ∂ψλk
(yk) + {z ∈ X∗ : ||z|| ≤ 1/k}.(2.11)

By (2.1), (2.2), and (2.10),

∂ψλk
(yk) = ∂(f + λkg)(yk) ⊂ f(yk) + λk∂g(yk).(2.12)

Relations (2.11) and (2.12) imply that

0 ∈ ∂g(yk) + λ−1
k ∂f(yk) + λ−1

k {z ∈ X∗ : ||z|| ≤ 1/k}.(2.13)

It follows from (2.1)–(2.4), (2.6), and (2.10) that, for each natural number k,

f(yk) ≤ f(yk) + λ(g(yk) − c) = ψλk
(yk) ≤ inf(ψλk

) + 1

≤ inf{ψλk
(z) : z ∈ A} + 1 = inf{f(z) : z ∈ A} + 1.

In view of this inequality and growth condition (1.1), the sequence {yk}∞k=1 is
bounded. Since f is Lipschitzian on bounded subsets of X, it follows from the bound-
edness of the sequence {yk}∞k=1 that there exists L > 0 such that

∂f(yk) ⊂ {l ∈ X∗ : ||l|| ≤ L}(2.14)

for each natural number k.
It follows from (2.1)–(2.4), (2.6), and (2.10), that, for each natural number k,

f(yk) + λk(g(yk) − c) = ψλk
(yk) ≤ ψλk

(xk) ≤ inf(ψλk
) + 1

≤ inf{ψλk
(z) : z ∈ A} + 1 = inf{f(z) : z ∈ A} + 1.

(2.15)

By (2.3), (2.10), and (2.15), for each integer k ≥ 1,

0 < g(yk) − c ≤ λ−1
k [inf{f(z) : z ∈ A} − inf(f) + 1] → 0 as k → ∞.

Therefore

lim
k→∞

g(yk) = c.(2.16)

By (2.3), (2.13), and (2.14), for each integer k ≥ 1,

0 ∈ ∂g(yk) + λ−1
k {l ∈ X∗ : ||l|| ≤ L} + {l ∈ X∗ : ||l|| ≤ k−1}

⊂ ∂g(yk) + {l ∈ X∗ : ||l| ≤ k−1(1 + L)}.
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This inclusion implies that

lim inf
k→∞

Ξg(yk) ≥ 0.(2.17)

It follows from (2.16), (2.17), and the PS condition that there exists a strictly in-
creasing sequence of natural numbers {kj}∞j=1 such that {ykj

}∞j=1 converges in the
norm topology to y∗ ∈ X. In view of (2.16), g(y∗) = c. Inequality (2.17) and upper
semicontinuity of the Clarke generalized directional derivative g0(ξ, η) with respect to
ξ imply that Ξg(y∗) ≥ 0 and 0 ∈ ∂g(y∗). Since g(y∗) = c, we obtain that c is a critical
value of g, which is a contradiction. The contradiction proves that there exists λ0 > 0
such that property (P1) holds.

In view of growth condition (1.1), there exists K1 > 0 such that

||x|| ≤ K1 for each x ∈ X satisfying f(x) ≤ inf{f(z) : z ∈ A} + 1.(2.18)

Since f is Lipschitzian on bounded subsets of X, there exists λ1 > 2 such that

||f(x1) − f(x2)|| ≤ 2−1λ1||x1 − x2||(2.19)

for each x1, x2 ∈ X satisfying ||xi|| ≤ K1 + 1, i = 1, 2.
Assume that ε ∈ (0, 1). Let δ ∈ (0, ε) be guaranteed by property (P1). Now

assume that

λ > λ0, x ∈ X and ψλ(x) ≤ inf(ψλ) + δ.(2.20)

By property (P1) there exists y ∈ X such that

y ∈ A and ||y − x|| ≤ ε.(2.21)

It follows from (2.1), (2.2), and (2.20) that

f(x) ≤ ψλ(x) ≤ inf(ψλ) + δ ≤ inf(ψλ) + 1

≤ inf{ψλ(z) : z ∈ A} + 1 = inf{f(z) : z ∈ A} + 1.(2.22)

Relations (2.18) and (2.22) imply that

||x|| ≤ K1.(2.23)

By (2.21) and (2.23),

||y|| ≤ ||x|| + ||y − x|| ≤ K1 + 1.(2.24)

In view of (2.23), (2.24), the choice of λ1 (see (2.19)), (2.21), (2.23), and (2.24),

|f(y) − f(x)| ≤ 2−1λ1||y − x|| ≤ 2−1λ1ε.(2.25)

It follows from (2.1), (2.2), (2.20), (2.25), and the inequalities δ < ε and λ1 > 2 that

f(y) ≤ 2−1λ1ε + f(x) ≤ 2−1λ1ε + ψλ(x) ≤ 2−1λ1ε + inf(ψλ) + δ

≤ λ1ε + inf{f(z) : z ∈ A}.

Theorem 1.1 is proved.
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Proof of Theorem 1.2. We prove assertions 1 and 2 simultaneously. Let positive
numbers λ0 and λ1 be guaranteed by Theorem 1.1. For each λ > 0, define a function
ψλ : X → R1 by (2.1) in the case of assertion 1 and by (2.2) in the case of assertion
2. Set A = g−1(c) in the case of assertion 1 and A = g−1((−∞, c]) in the case of
assertion 2.

Assume that λ > λ0 and that a sequence {xi}∞i=1 ⊂ X satisfies

lim
i→∞

ψλ(xi) = inf(ψλ).(2.26)

It follows from the choice of λ0 that for each integer j ≥ 1 there exists δj > 0 such
that the following property holds.

(P2) If x ∈ X satisfies ψλ(x) ≤ inf(ψλ) + δj , then there exists y ∈ A such that
||y − x|| ≤ 1/j.

By (2.26) there exists a strictly increasing sequence of natural numbers {tj}∞j=1

such that, for each integer j ≥ 1,

ψλ(xi) ≤ inf(ψλ) + δj for all integers i ≥ tj .(2.27)

It follows from property (P2) and (2.27) that, for each integer j ≥ 1,

d(xi, A) ≤ 1/j for all integers i ≥ tj .

This implies that there exists a sequence {yi}∞i=1 ⊂ A such that

lim
i→∞

||yi − xi|| = 0.(2.28)

In view of growth condition (1.1) and (2.26), the sequence {xi}∞i=1 is bounded. Since
f is Lipschitzian on bounded subsets of X, it follows from (2.1), (2.2), (2.26), and
(2.28) that

inf{f(z) : z ∈ A} ≥ inf(ψλ) = lim
i→∞

ψλ(xi) ≥ lim sup
i→∞

f(xi) = lim sup
i→∞

f(yi).

Together with the inclusion {yi}∞i=1 ⊂ A, this relation implies that limi→∞ f(yi) =
inf{f(z) : z ∈ A}. Theorem 1.2 is proved.

Proofs of Theorems 1.3 and 1.4. We prove Theorems 1.3 and 1.4 simultaneously.
Let a positive number λ0 be guaranteed by Theorem 1.2. For each λ > 0 define a
function ψλ : X → R1 by (2.1) in the case of Theorem 1.3 and by (2.2) in the case
of Theorem 1.4. Set A = g−1(c) in the case of Theorem 1.3 and A = g−1((−∞, c]) in
the case of Theorem 1.4.

Let λ > λ0. Assume that a sequence {xi}∞i=1 ⊂ X satisfies

lim
i→∞

ψλ(xi) = inf(ψλ).(2.29)

In view of Theorem 1.2, there exists a sequence

{yi}∞i=1 ⊂ A(2.30)

such that

lim
i→∞

||yi − xi|| = 0(2.31)
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and

lim
i→∞

f(yi) = inf{f(z) : z ∈ A}.(2.32)

Relations (2.30) and (2.32) imply that limi→∞ ||yi − x̄|| = 0. Together with (2.31),
this equality implies that

lim
i→∞

||xi − x̄|| = 0.(2.33)

Thus we have shown that if {xi}∞i=1 ⊂ X satisfies (2.29), then (2.33) is true. This
implies that x̄ is a unique solution of the minimization problem ψλ(z) → min, z ∈ X.
Theorems 1.3 and 1.4 are proved.

3. An optimization problem with mixed constraints in a finite-dimensional
space. Let p be a nonnegative integer; let m,n be natural numbers such that p ≤
m ≤ n; let X = Rn with the Euclidean norm; and let

I1 = {i : i is an integer such that 1 ≤ i ≤ p},
I2 = {i : i is an integer such that p < i ≤ m}.

(Note that one of the sets I1, I2 may be empty.)
For each h : Rn → R1 set inf(h) = inf{h(z) : z ∈ Rn}. For each h ∈ C1(Rn) put

∇h(z) = (∂h/∂z1(z), . . . , ∂h/∂zn(z)), z ∈ Rn.

Assume that f0 : Rn → R1 is a locally Lipschitzian function which satisfies the
growth condition

lim
||x||→∞

f0(x) = ∞.(3.1)

Let F = (f1, . . . , fm) : Rn → Rm and let fi ∈ C1(Rn), i = 1, . . . ,m. The points
of Rn at which the rank of F is less than m are called critical points of F . A point
c ∈ Rm such that F−1(c) contains at least one critical point is called a critical value
of F .

Let c = (c1, . . . , cm) ∈ Rm. In this section we consider the optimization problem

f0(x) → min(P)

subject to x ∈ Rn, fi(x) = ci, i ∈ I1, fj(x) ≤ cj , j ∈ I2.

Set

A = {z ∈ Rn : fi(z) = ci, i ∈ I1, and fj(z) ≤ cj , j ∈ I2}.(3.2)

We assume that A �= ∅. Since f0 satisfies growth condition (3.1), problem (P) has a
solution. Set

inf(f0;A) = inf{f0(z) : z ∈ A}.

For each vector γ = (γ1, . . . , γm) ∈ (0,∞)m, define

ψγ(z) = f0(z) +
∑
i∈I1

γi|fi(z) − ci| +
∑
i∈I2

γi max{fi(z) − ci, 0}, z ∈ Rn.(3.3)
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Clearly, for each γ ∈ (0,∞)m the function ψγ is locally Lipschitzian, and the problem

ψγ(z) → min, z ∈ Rn,

has a solution.
In this section we establish the following result.
Theorem 3.1. Assume that the following condition holds:
• For each finite strictly increasing sequence of natural numbers {ji}qi=1 that

satisfies

I1 ⊂ {j1, . . . , jq} ⊂ {1, . . . ,m},

the point (cj1 , . . . , cjq ) is not a critical value of the mapping (fj1 , . . . , fjq ) :
Rn → Rq.

• Let γ = (γ1, . . . , γm) ∈ (0,∞)m. Then there exists λ0 > 0 such that if λ > λ0,
and if x ∈ Rn satisfies

ψλγ(x) = inf(ψλγ),

then fi(x) = ci, i ∈ I1, fj(x) ≤ cj , j ∈ I2, and f0(x) = inf(f ;A).
Proof. Let us assume the converse. Then there exist a sequence {λk}∞k=1 ⊂ (0,∞)

and a sequence {x(k)}∞k=1 ⊂ Rn such that

λk ≥ k for all natural numbers k,(3.4)

ψλkγ(x(k)) = inf(ψλkγ) for all natural numbers k,(3.5)

x(k) �∈ A for all natural numbers k.(3.6)

For each natural number k, set

I1k+ = {i ∈ I1 : fi(x
(k)) > ci}, I1k− = {i ∈ I1 : fi(x

(k)) < ci},(3.7)

I2k+ = {i ∈ I2 : fi(x
(k)) > ci}, I2k− = {i ∈ I2 : fi(x

(k)) < ci}.

By (3.2), (3.6), and (3.7),

I1k+ ∪ I1k− ∪ I2k+ �= ∅ for all integers k ≥ 1.(3.8)

Extracting a subsequence and re-indexing, we may assume without loss of generality
that, for all natural numbers k,

I1k+ = I11+, I1k− = I11−, I2k+ = I21+, I2k− = I21−.

Set

I11 = I1 \ (I11+ ∪ I11−), I21 = I2 \ (I21+ ∪ I21−).(3.9)

It follows from (3.3) and (3.5) that, for each natural number k,

inf{f0(z) : z ∈ A} = inf{ψλkγ(z) : z ∈ A} ≥ inf(ψλkγ)

= ψλkγ(x(k)) = f0(x
(k)) +

∑
i∈I1

λkγi|fi(x(k)) − ci| +
∑
i∈I2

λkγi max{fi(x(k)) − ci, 0}.

(3.10)
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Relation (3.10) implies that

f0(x
(k)) ≤ inf{f0(z) : z ∈ A} for all natural numbers k.(3.11)

Since f0 satisfies growth condition (3.1), it follows from (3.11) that the sequence
{x(k)}∞k=1 is bounded. Extracting a subsequence and re-indexing, we may assume
without loss of generality that there exists

x̄ = lim
k→∞

x(k).(3.12)

Since f0 is locally Lipschitzian, there exists a number L > 0 such that

∂f0(x
(k)) ⊂ {l ∈ Rn : ||l|| ≤ L} for all natural numbers k.(3.13)

Let i ∈ I1. It follows from (3.10) and (3.12) that

|fi(x̄) − ci| = lim
k→∞

|fi(x(k)) − ci| ≤ lim sup
k→∞

λ−1
k γ−1

i [inf(f0;A) − inf(f0)] = 0.

Therefore

fi(x̄) = ci for all i ∈ I1.(3.14)

Let i ∈ I2. It follows from (3.10) and (3.12) that

max{fi(x̄) − ci, 0} = lim
k→∞

max{fi(x(k)) − ci, 0}

≤ lim sup
k→∞

λ−1
k γ−1

i [inf(f0;A) − inf(f0)] = 0.

Therefore

fi(x̄) ≤ ci for all i ∈ I2.(3.15)

It follows from (3.3), (3.5), (3.7), and (3.9) that, for each integer k ≥ 1,

0 ∈ ∂ψλkγ(x(k)) ⊂ ∂f0(x
(k)) +

∑
i∈I11+

λkγi∇fi(x
(k)) −

∑
i∈I11−

λkγi∇fi(x
(k))

+
∑
i∈I11

λkγi{α∇fi(x
(k)) : α ∈ [−1, 1]}

+
∑

i∈I21+

λkγi∇fi(x
(k))

+
∑
i∈I21

λkγi{α∇fi(x
(k)) : α ∈ [0, 1]}.

(3.16)

In view of (3.13) and (3.16), for each integer k ≥ 1,⎡
⎣ ∑
i∈I11+

γi∇fi(x
(k)) −

∑
i∈I11−

γi∇fi(x
(k)) +

∑
i∈I21+

γi∇fi(x
(k))

+
∑
i∈I11

{α∇fi(x
(k)) : α ∈ [−γi, γi]} +

∑
i∈I21

{α∇fi(x
(k)) : α ∈ [0, γi]}

]

∩{l ∈ Rn : ||l|| ≤ L/λk} �= ∅.
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Therefore, for each natural number k and each i ∈ I11 ∪ I21, there exists

αki ∈ [−γi, γi](3.17)

such that ∥∥∥∥∥∥
∑

i∈I11+

γi∇fi(x
(k)) −

∑
i∈I11−

γi∇fi(x
(k)) +

∑
i∈I21+

γi∇fi(x
(k))

+
∑

i∈I11∪I21

αki∇fi(x
(k))

∥∥∥∥∥ ≤ L/λk.(3.18)

Extracting a subsequence and re-indexing, we may assume without loss of generality
that, for each i ∈ I11 ∪ I21, there exists

αi = lim
k→∞

αki.(3.19)

It follows from (3.18), (3.19), (3.12), and (3.4) that∑
i∈I11+

γi∇fi(x̄) −
∑

i∈I11−

γi∇fi(x̄) +
∑

i∈I21+

γi∇fi(x̄)

+
∑

i∈I11∪I21

αi∇fi(x̄) = 0.(3.20)

By (3.7), (3.9), and (3.15),

fi(x̄) = ci, i ∈ I21+ ∪ I21.

Together with (3.14), this implies that

fi(x̄) = ci, i ∈ I1 ∪ I21+ ∪ I21.(3.21)

If I21+ ∪ I21 = ∅, define

F̃ = (f1, . . . , fp) : Rn → Rp, c̃ = (c1, . . . , cp).

If I21+ ∪ I21 �= ∅, set

F̃ = (f1, . . . , fp, fj1 , . . . , fjq ) : Rn → Rp+q, c̃ = (c1, . . . , cp, cj1 , . . . , cjq ),

where {ji}qi=1 is a strictly increasing sequence of integers such that {j1, . . . , jq} =

I21+∪ I21. In view of (3.20) and (3.8), x̄ is a critical point of F̃ . Together with (3.21),
this implies that c̃ is a critical value of F̃ , which is a contradiction. The contradiction
proves Theorem 3.1.

Note that in the proof of Theorem 3.1 we did not use the results of the previous
sections. Now we explain why we did not try to apply them.

Let us consider a particular case of the problem studied in this section with I2 = ∅,
p = m, and c = 0. Thus we have the optimization problem

f0(x) → min

subject to x ∈ Rn, fi(x) = 0, i ∈ I1.
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We assume that all the functions fi, i ∈ I1, are linear and that they are linear
independent. Clearly, Theorem 3.1 holds for this problem. The problem

f0(z) +
∑
i∈I1

λγi|fi(z)| → min, z ∈ X,

where λ > 0 and γi > 0, i ∈ I1, is the corresponding unconstrained penalized problem.
We cannot apply the results of section 1 since zero is a critical value of the function

g(z) =
∑
i∈I1

γi|fi(z)|, z ∈ Rn.
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LARGE SCALE TRUST-REGION SUBPROBLEM∗
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Abstract. We propose two algorithms for computing the local-nonglobal minimizer of a quadratic
function subject to a constraint set that is a Euclidean sphere. We also discuss the case where the
constraint set is a Euclidean ball. At each iteration of the algorithms, we compute the two smallest
eigenvalues of a parametric matrix using an ARPACK subroutine. Only matrix-vector multiplica-
tions are required. Hence, we are able to exploit the possible sparsity of the Hessian matrix of the
quadratic objective, making the algorithms suitable for large problems. This improves previous ap-
proaches based on matrix factorizations. We also give a geometric relationship, based on extremal
ellipsoids, between the global and the local-nonglobal minimizers of the quadratic function under the
given sphere constraint.
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1. Introduction. Consider the following quadratic minimization problems:

(TRS)
min
x

xTAx− 2aTx

s.t. ‖x‖ ≤ Δ,
(1.1)

and

(TRS=)
min
x

xTAx− 2aTx

s.t. ‖x‖ = Δ.
(1.2)

Here, A is an n × n symmetric (possibly indefinite) matrix, a is an n-vector, x is
the n-vector of unknowns, and the ball radius Δ is a positive scalar. All matrix and
vector entries are real. Without loss of generality, we assume in this paper, unless
mentioned otherwise, that Δ = 1, since we may scale the matrix A, the vector a, and
the vector x, respectively, by Δ2, Δ, and 1/Δ so that we end up minimizing over the
unit ball. This is done to simplify the notation.

Problem (1.1) is referred to as the trust-region subproblem (denoted TRS). How-
ever, we will mainly consider the neighboring problem (1.2), where the inequality con-
straint is replaced by an equality constraint. Computing a solution for either problem
has been well studied (among many references [6, 9, 15, 18, 21, 22, 25, 27, 28]). Such
solutions will be referred to as global minimizers of problem (1.1) or (1.2). However,
each problem may possess a local minimizer which is not a global minimizer. This
feasible solution will be referred to as a local-nonglobal minimizer. In a paper by
Mart́ınez [16], this local-nonglobal minimizer is well characterized. In particular, it
is shown that such a minimizer may not exist, but when it does, it is unique. An
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algorithm for computing such a point or declaring it does not exist, and requiring
Choleski or LU factorizations, or spectral decompositions of matrices of the same di-
mension and as dense as the matrix A, is proposed. Therefore, if A is a large but
sparse matrix, this algorithm may be unable to exploit the potential sparsity of the
matrix A.

In a paper by Rendl and Wolkowicz [21], an algorithm was proposed for computing
a global minimizer of problem (1.1) or (1.2) and exploiting the sparsity of the matrix
A. The algorithm is based on a reformulation of problem (1.2) in terms of a parametric
eigenvalue problems. The parametric matrices which appear in these problems have
eigenvalues which interlace the eigenvalues of A.

In this paper, we build on this algorithm to propose two methods for either
computing a local-nonglobal minimizers of problem (1.2), if it exists, or proving such
a minimizer does not exist. The main efforts of the methods lie in computing the first
two eigenvalues of parametric matrices, and only matrix-vector product are required.
In this sense, the algorithms are matrix-free. We discuss how we may compute a
local-nonglobal minimizer of problem (1.1) in the appendix. Since a local-nonglobal
minimizer of problem (1.1) is also a local-nonglobal minimizer of problem (1.2), the
main idea is to compute the latter local-nonglobal minimizer and monitor the sign of
the Lagrange multiplier.

The interest in a local-nonglobal minimizer of problem (1.1) is that it may be a
global minimizer of the following problem:

min
x

xTAx− 2aTx

s.t. h(x) ≤ 0,
‖x‖ ≤ Δ,

(1.3)

where h : Rn → Rm. Indeed, if x∗ is a global minimizer of the latter problem and
h(x∗) < 0, then clearly x∗ is a local minimizer of problem (1.1). In this case, x∗ is a
local-nonglobal minimizer of problem (1.1) if all global minimizers of problem (1.1) do
not satisfy the first constraint of problem (1.3). An important special case known as
the two trust-region subproblem is when h is a convex quadratic [1, 11]. This problem
appears while computing the Celis–Dennis–Tapia problem [5, 20, 31] in a sequential
quadratic programming approach for solving nonlinear programs. It also appears as
a subproblem in the numerical solution of parameter identification problems of the
form

min
x

‖F (x) − y‖2

s.t. ‖x‖ ≤ Δ;

see [10, 11]. For this subproblem, the constraints in (1.3) are two ball constraints.
More generally, Mart́ınez and Santos [17] described an algorithm for minimizing a
differentiable function over a Euclidean ball, where minimizing a quadratic function
over the intersection of two Euclidean balls also appears as a subproblem.

It is important to mention, even in the case where h is a convex quadratic, that
there are no known polynomial time algorithms for computing the global minimum of
problem (1.3). It is not known either if the problem is NP-hard. Therefore, in general
one may only expect approximate solutions. However, in special cases, it is possible
to compute a solution as close as we want to the exact solution. For example, the
paper of Ye and Zhang [30] combines the matrix decomposition result of Sturm and
Zhang [26] and semidefinite relaxation to show that some cases of the two trust-region
subproblem may be solved. They even propose an algorithm, for the two trust-region
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subproblem, which follows the path of solutions of a family of parametrized problems.
However, no convergence result is proved for this algorithm, but it is illustrated on
some examples.

1.1. Outline. The paper is organized as follow: In section 2 we state some of the
results proved by Mart́ınez [16] which will be of use for our assumptions and analysis.
The beginning of section 3 gives some insights of the ideas that are used in the two
methods we propose for computing the local-nonglobal minimizer of problem (1.2).
We recall the parametric eigenvalue problem that is used in the algorithm of Rendl
and Wolkowicz and extend the ideas behind their algorithm to our needs. We also
recast problem (1.2) in terms of a new parametric eigenvalue problem, where we make
use of extremal ellipsoids. Each of these two reformulations of problem (1.2) induces
an algorithm for computing a local-nonglobal minimizer. In section 3.1, we give a
geometric view of some of the results obtained by Mart́ınez [16] on global and local-
nonglobal minimizers when the trust-region radius is taken to infinity. In sections 3.2
and 3.3, based on our new parametric eigenvalue problem and the one introduced
by Rendl and Wolkowicz, we derive two algorithms for computing a local-nonglobal
minimizer. In each of these two sections, convergence results are given and the local-
nonglobal minimizer is related to a local minimizer of some well-chosen function. We
give concluding remarks in section 4 and preliminary numerical results obtained by
comparing the two algorithms developed in this paper. The paper mainly focuses on
the local-nonglobal minimizer of problem (1.2), but we indicate in an appendix how
one can compute a local-nonglobal minimizer of problem (1.1).

1.2. Notation. We will use the following standard notation throughout the pa-
per. All norms are two-norms. The identity matrix is I. The space of n × m real
matrices is denoted by Mn,m. For M ∈ Mn,m, we denote its transpose by MT . If
n = m, we denote its inverse by M−1 and its determinant by det(M). Given an n×n
symmetric matrix S, λj(S) denotes the jth smallest eigenvalue of S, where 1 ≤ j ≤ n.
Thus λ1(S) ≤ λ2(S) ≤ · · · ≤ λn(S). If S is positive semidefinite (definite), we use
S � 0 (S � 0). If S � 0, we denote its square root by S1/2 and the inverse of the
latter matrix by S−1/2. When we write x ↘ a, we mean x converges to a and x > a.
Similarly, x ↗ a means x converges to a and x < a. For a function f : R 
→ R, we
define

f(a+) := lim
x↘a

f(x), f(a−) := lim
x↗a

f(x).

2. Background results. We start by surveying the work of Mart́ınez [16].
Hence, the reader is referred to this paper for the corresponding proofs of the lemmas
and theorems which appear in this section.

The first theorem states the classical necessary optimality conditions for local
minimizers of problem (1.2).

Theorem 2.1. Assume that x∗ is a local minimizer of (1.2). Then there exists
a unique Lagrange multiplier λ∗ ∈ R such that

(A− λ∗I)x∗ = a(2.1)

and

wT (A− λ∗I)w ≥ 0(2.2)

for all w ∈ Rn such that wTx∗ = 0.
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It is well known, if x∗ is a global minimizer of problem (1.2), that its Lagrange
multiplier λ∗ lies in the interval (−∞, λ1(A)]; see, e.g., [7, 23]. There exist bounds
on the Lagrange multiplier of a local-nonglobal minimizer which depend as well on
eigenvalues of A.

Lemma 2.2. If x∗ is a local-nonglobal minimizer of (1.2), then (2.1) holds with
λ∗ ∈ (λ1(A), λ2(A)).

Global minimizers of problem (1.2) always exist, since a continuous function is
minimized over a compact set. However, it is not always the case that a local-nonglobal
minimizer exists for this problem. In particular, we have the two following cases for
which no such point exists. The first case is an obvious consequence of the previous
lemma.

Corollary 2.3. If λ1(A) = λ2(A), then there are no local-nonglobal minimizer
of problem (1.2).

Lemma 2.4. If a is orthogonal to an eigenvector of A for the eigenvalue λ1(A),
then there are no local-nonglobal minimizer of problem (1.2).

The situation where a is orthogonal to all eigenvectors of A for the eigenvalue
λ1(A) is commonly referred as the hard case in the literature concerned with com-
puting a global minimizer of problem (1.2). However, the previous lemma states this
cannot happen if a local-nonglobal minimizer exists.

Define, for λ ∈ (λ1(A), λ2(A)),

ϕ(λ) := ‖(A− λI)−1a‖2.(2.3)

Let

A = QDQT(2.4)

be an orthonormal diagonalization of A; i.e., the columns of Q are orthonormal eigen-
vectors of A and D is a diagonal matrix with the eigenvalues of A on its diagonal
ordered increasingly such that D11 = λ1(A). Also let

ā := QTa.(2.5)

The function ϕ and its derivatives are given by the following formulas:

ϕ(λ) =

n∑
i=1

ā2
i

(λi(A) − λ)2
,(2.6a)

ϕ′(λ) = 2

n∑
i=1

ā2
i

(λi(A) − λ)3
,(2.6b)

ϕ′′(λ) = 6

n∑
i=1

ā2
i

(λi(A) − λ)4
.(2.6c)

Suppose λ1(A) < λ2(A) and ā1 = 0. Note from (2.6c) that ϕ is a strictly convex
function over the interval (λ1(A), λ2(A)). Therefore the equation ϕ(λ) = 1 has at
most two roots in (λ1(A), λ2(A)), and the following theorem shows that in the case
where two roots exist, only the smallest root may be the Lagrange multiplier of a
local-nonglobal minimizer of problem (1.2).

Theorem 2.5.

1. If x∗ is a local-nonglobal minimizer of (1.2), then (2.1) holds with λ∗ ∈
(λ1(A), λ2(A)) and ϕ′(λ∗) ≤ 0.
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2. There exists at most one local-nonglobal minimizer of (1.2).
3. If ‖x∗‖ = 1, (2.1) holds for some λ∗ ∈ (λ1(A), λ2(A)) and ϕ′(λ∗) < 0, then

x∗ is a strict local-nonglobal minimizer of (1.2).

3. Characterizing and computing a local-nonglobal minimizer. The way
we wish to compute a local-nonglobal minimizer is largely inspired by two approaches
for computing a global minimizer. Therefore, we begin by partially describing these
two approaches in order to give some insight into the ideas we shall use in the two
upcoming algorithms for computing a local-nonglobal minimizer. On the basis of
Corollary 2.3 and Lemma 2.4, we assume for the rest of this paper that the following
assumptions hold.

Assumption 1. λ1(A) < λ2(A).
Assumption 2. ā1 = 0.
In a paper by Rendl and Wolkowicz [21], it is shown that a global minimizer x∗ of

problem (1.2) may be obtained if we solve the following linear semidefinite program:

max
t∈R,λ∈R

2λ− t,

D(t) − λ � 0,
(3.1)

where

D(t) :=

[
t −aT

−a A

]
.

The latter problem is equivalent to

max
t∈R

k(t) := 2λ1(D(t)) − t,(3.2)

where k is shown to be a concave function. In the case where Assumption 2 holds, it
is further shown that λ1(D(t)) has multiplicity one, and thus k is differentiable. Thus,
the optimal t∗ for problem (3.2) may be obtained by solving the equation k′(t) = 0,
which can be expended as (see, e.g., [12])

2ỹ0(t)
2 − 1 = 0,(3.3)

where ỹ0(t) is the first component of a unit eigenvector for the eigenvalue λ1(D(t)).
(From now on we shall omit the dependence of ỹ0 on t for conciseness since it is
clear from the context.) In other words, if ỹ is a unit eigenvector of λ1(D(t)), then
ỹ = (ỹ0, z̃)

T , where ỹ0 ∈ R and z̃ ∈ Rn.
Using the eigenvalue equation D(t)ỹ = λ1(D(t))ỹ, we have

tỹ0 − aT z̃ = λ1(D(t))ỹ0,(3.4a)

−ỹ0a + Az̃ = λ1(D(t))z̃.(3.4b)

From Assumption 2, for all t ∈ R, [21] shows that ỹ0 = 0. If we let x̃(t) = 1/ỹ0 z̃,
then, using (3.4b), the stationarity equation

(A− λ1(D(t))I)x̃(t) = a(3.5)

is satisfied. Rendl and Wolkowicz [21] show a global minimizer x∗ may be obtained
by setting x∗ = x̃(t∗). Note that since ‖z̃‖2 = 1 − ỹ2

0 , solving (3.3) or ‖x̃(t)‖2 = 1
is equivalent. The corresponding Lagrange multiplier for the global minimizer is
obtained from

λ∗ = λ1(D(t∗)).(3.6)
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As mentioned in section 2, the Lagrange multiplier λ∗ of a global minimizer
satisfies λ∗ ∈ (−∞, λ1(A)]. It is not surprising that this property is preserved through
(3.6). Indeed, since the matrix D(t) is of dimension n + 1 and is simply the matrix
A to which a new row and column has been added, the fact that the eigenvalues
of A interlace those of D(t) is known as Cauchy’s inequalities [4] or the interlacing
eigenvalues theorem for bordered matrices. It is formally stated in the next lemma,
and a proof may be found in [29].

Lemma 3.1. For t ∈ R,

λ1(D(t)) ≤ λ1(A) ≤ λ2(D(t)) ≤ λ2(A) ≤ · · · ≤ λn(D(t)) ≤ λn(A) ≤ λn+1(D(t)).

Let us summarize what we presented so far from the Rendl–Wolkowicz [21] paper:
In order to solve problem (3.2), the optimal t∗ is obtained by solving ‖x̃(t)‖2 = 1.
The corresponding global minimizer for problem (1.2) is then x∗ = x̃(t∗) and its
corresponding Lagrange multiplier, λ∗ = λ1(D(t∗)), is guaranteed by Lemma 3.1 to
satisfy λ∗ ≤ λ1(A).

Now the key observation to extend this procedure in order to compute a local-
nonglobal minimizer is that, according to Lemmas 2.2 and 3.1, the eigenvalue λ2(D(t))
lies precisely in the interval where the Lagrange multiplier for a local-nonglobal mini-
mizer may be found. The algorithm we present in section 3.3 is based on the following
idea. For t ∈ R, compute a unit eigenvector (which depends on t) y = (y0, z)

T for the
eigenvalue λ2(D(t)). Let x(t) = 1/y0 z (assuming y0 = 0) and notice that, analogously
to equation (3.5), x(t) satisfies the stationarity equation

(A− λ2(D(t))I)x(t) = a.(3.7)

Finally solve ‖x(t)‖2 = 1. Since this equation is equivalent to setting the first deriva-
tive of the function m(t) := 2λ2(D(t)) − t to zero, we shall also be interested in
this function. Since from the optimum of k(t) one may obtain a global minimizer of
problem (1.2), we shall see in section 3.3 there is a link between an optimum of the
function m(t) and a local-nonglobal minimizer of problem (1.2).

Let us now look at another approach for computing a global minimizer of problem
(1.2) which may be extended again to compute a local-nonglobal minimizer. We use
the feasibility constraint in (1.2) to obtain another equality-constrained trust-region
subproblem which has the same optimal solutions, but a strictly convex objective with
ellipsoidal level curves centered in the interior of the unit ball. Precisely, let

λ̄ := λ1(A) − ‖a‖,(3.8a)

B := A− λ̄I.(3.8b)

Note from (2.4) that B = QT (D− λ̄I)Q. Now observe from Assumptions 1 and 2 and
definition (2.5) that

B � 0,(3.9a)

‖B−1a‖2 =

n∑
j=1

(āj)
2

(λi(A) − λ̄)2
<

1

(λ1(A) − λ̄)2

n∑
j=1

(āj)
2 =

1

‖a‖2
‖a‖2 = 1.(3.9b)

For x feasible for (1.2), xTAx − 2aTx = xTBx − 2aTx + λ̄, and, by completing the
square, xTAx − 2aTx = (x − B−1a)TB(x − B−1a) + λ̄ − aTB−1a. Therefore, (1.2)
and the following problem share the same optimal solutions:

r2
G := min r2(x) := (x−B−1a)TB(x−B−1a)

s.t. ‖x‖ = 1.
(3.10)
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Fig. 3.1. This figure shows the local minimizers of problem (3.10). The global minimizer
x∗
G intersects the unit sphere and ErG , the largest volume ellipsoid Er contained in the unit ball.

The local-nonglobal minimizer x∗
L intersects the unit sphere and the ellipsoid ErL which is locally

contained in the unit ball at x∗
L.

The level curves r2(x) = r2, for r a fixed nonnegative constant, are the boundaries of
the ellipsoids Er, where

Er := {x = rB−1/2u + B−1a | ‖u‖ ≤ 1}.(3.11)

The volume of each of these ellipsoids, where the unit is taken to be the volume of the
unit ball in Rn, is the determinant of rB−1/2 (see, e.g., [2]) and their center, B−1a,
is by (3.9b) in the interior of the unit ball. Therefore, problem (3.10) is equivalent
to finding the largest volume ellipsoid, say ErG , among the ellipsoids Er contained
in the unit ball. Equivalence is in the sense that ErG intersects the unit sphere at a
global minimizer x∗

G for (1.2). Similarly, a local-nonglobal minimizer x∗
L of problem

(1.2) should be within the intersection of an ellipsoid ErL and the unit sphere for
some rL > rG. This ellipsoid is not contained in the unit ball, but points which
are elements of ErL and close enough to x∗

L are contained in the unit ball. This is
illustrated in Figure 3.1.

The constraint imposed on Er to be contained in the unit ball may be modeled
by a semidefinite constraint as indicated by the following lemma [2, 3].

Lemma 3.2. An ellipsoid

E = E(Z, z) := {x = Zu + z | ‖u‖ ≤ 1}, Z ∈ Mn,m,

is contained in the ellipsoid

W = W (Y, y) := {x | (x− y)TY Y T (x− y) ≤ 1}, Y ∈ Mn,n, det(Y ) = 0,

if and only if there exists γ such that

⎛
⎜⎝

I Y (z − y) Y Z

(z − y)TY T 1 − γ 0

ZTY T 0 γI

⎞
⎟⎠ � 0.(3.12)
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Applying Lemma 3.2 with Z = rB−1/2, z = B−1a, Y = I, and y = 0, and
multiplying the matrix in (3.12) from the right and the left by a well-chosen block
diagonal matrix yields the linear semidefinite program

rG = max
r,γ

r

s.t.

⎛
⎜⎝

I B−1a rI

aTB−1 1 − γ 0

rI 0 γB

⎞
⎟⎠ � 0,

(3.13)

whose optimal value is rG. Notice that this semidefinite program is different from the
usual semidefinite relaxation associated with problem (1.2). Furthermore, as in [21],
the semidefinite program (3.13) may be solved implicitly by maximizing a function of
one variable. To show this, we will need the following lemma on the Schur complement
which is a consequence of Sylvester’s law of inertia (see, e.g., [2]).

Lemma 3.3. Let

M =

(
N CT

C D

)

be a symmetric matrix with k×k block N and g×g block D. Assume that N is positive
definite. Then M � 0 (� 0) if and only if the matrix D−CN−1CT � 0 (� 0).

By feasibility of (3.13), the top left square matrix of size n+1 is positive semidef-
inite, and applying Lemma 3.3 with N = I gives γ ≤ 1 − ‖B−1a‖2 < 1 (note that
the leftmost inequality follows from Assumption 2). Furthermore, γ ≥ 0 must hold
for the constraint of problem (3.13) to be satisfied. Note that the constraint yields
that if γ = 0, then r = 0. Hence we may only consider γ > 0 in problem (3.13),
since we know from the fact that the ellipsoids (3.11) are centered in the interior of
the unit ball that rG > 0. Lemma 3.3 may again be used to gain further information
by applying it to the full constraint matrix in (3.13), with this time N equal to the
bottom right matrix of size n + 1. This gives

I − r2

γ
B−1 − 1

1 − γ
B−1aaTB−1 � 0.(3.14)

Multiplying the left-hand side of (3.14) from the left and the right by (γB)1/2 yields
r ≤

√
γλ1(B(γ)), where

B(γ) := B − 1

1 − γ
B−1/2aaTB−1/2.(3.15)

Hence, for a fixed 0 < γ < 1, the largest possible r for which the matrix in (3.13)
stays positive semidefinite is r =

√
γλ1(B(γ)). Thus to solve (3.13), one needs to find

γ∗, which solves

r2
G = max f(γ) = γλ1(B(γ))

s.t. 0 < γ < 1.
(3.16)

Note so far that this second approach is in structure similar to the approach
of Rendl and Wolkowicz: from a linear semidefinite program, we have obtained an
equivalent maximization problem of one variable. There are more links between the
two approaches, one of them being that the eigenvalues of B(γ) interlace those of B.
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This result is a corollary of Cauchy’s inequality, Lemma 3.1; a proof may be found in
[29].

Corollary 3.4. For γ = 1, the eigenvalues of B(γ) and B interlace.
1. For γ > 1,

λ1(B) ≤ λ1(B(γ)) ≤ λ2(B) ≤ λ2(B(γ)) ≤ · · · ≤ λn(B) ≤ λn(B(γ)).

2. For γ < 1,

λ1(B(γ)) ≤ λ1(B) ≤ λ2(B(γ)) ≤ λ2(B) ≤ · · · ≤ λn(B(γ)) ≤ λn(B).

Let

λ(γ) :=

{
λ2(B(γ)) for γ < 1,
λ1(B(γ)) for γ > 1.

Using definition (3.8b), we observe from Corollary 3.4 that λ(γ)+ λ̄ ∈ [λ1(A), λ2(A)].
Furthermore, if B1/2v is an eigenvector of the matrix B(γ) (note that v depends on γ,
but we write v instead of v(γ) for conciseness) and λ(γ) its corresponding eigenvalue,
then it is easy to see they satisfy the generalized eigenvalue equation(

B2 − 1

1 − γ
aaT

)
v = λ(γ)Bv.(3.17)

Let us assume for now that λ(γ) has multiplicity one and aT v = 0 (these assumptions
are justified in section 3.2). If we define

x(γ) :=
1 − γ

aT v
Bv

and use (3.8b) and (3.17), then x(γ) satisfies the stationarity equation

(A− (λ(γ) + λ̄)I)x(γ) = a.(3.18)

Notice in the previous equation that if we replace x(γ) by x(t) and λ(γ)+λ̄ by λ2(D(t))
(both quantities lie in the interval [λ1(A), λ2(A)] where the Lagrange multiplier of a
local-nonglobal minimizer lies), we obtain (3.7). Thus it is not without surprise that
the method we present in this case for computing a local-nonglobal minimizer relies
on solving the equation ‖x(γ)‖2 = 1. We shall also be interested in the function
g(γ) = γλ(γ) obtained by replacing λ1(B(γ)) by λ(γ) in f(γ). This is analogous to
the fact that one obtains m(t) by replacing λ1(D(t)) by λ2(D(t)) in k(t). As it is the
case for the function m(t), we will see there is a link between a local minimizer of the
function g(γ) and a local-nonglobal minimizer of problem (1.2).

Section 3 is divided into three smaller sections. The last two sections, section 3.2
and section 3.3, describe the two algorithms for computing a local-nonglobal minimizer
for which we have just given an insight on the functions to be considered. We begin,
however, in section 3.1 by presenting a geometric view of the limiting behavior of local
minimizers of (1.2) when Δ → ∞ and recovering a result proved in Mart́ınez [16].

3.1. Local optimum of TRS for infinitely large trust regions. Consider
problem (1.2) where Δ is now any positive number. We wish to investigate the limiting
behavior of local (global and nonglobal) minimizers of problem (1.2) as Δ → ∞.
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Obviously, x∗ is a local minimizer of problem (1.2) if and only if x∗/Δ is a local
minimizer of the following problem:

min
x

xT (Δ2A)x− 2(Δa)Tx

s.t. ‖x‖ = 1.
(3.19)

Thus, equivalently, we investigate the limiting behavior of local minimizers of problem
(3.19) as Δ → ∞.

In this new setting, define

λ̄Δ := Δ2λ1(A) − Δ‖a‖,(3.20a)

BΔ := Δ2A− λ̄ΔI.(3.20b)

Analogously to the inequalities (3.9), BΔ � 0 and ‖ΔB−1
Δ a‖ < 1 hold.

Recall from (2.4) that A = QDQT . Let Q = [q1, . . . , qn], where qi is the ith
column of Q. If we define x∗

G(Δ) and x∗
L(Δ) to be, respectively, the global and the

local-nonglobal minimizers of (3.19), then the following result has been shown.
Lemma 3.5 (Mart́ınez [16]). There exists Δ0 > 0 such that (3.19) admits a local-

nonglobal minimizer for all Δ > Δ0 and

x∗
G(∞) := lim

Δ→∞
x∗
G(Δ) =

ā1

|ā1|
q1,(3.21)

x∗
L(∞) := lim

Δ→∞
x∗
L(Δ) = − ā1

|ā1|
q1.(3.22)

Analogously to how we obtained problem (3.10) from problem (1.2), problem
(3.19) shares the same optimal solution as

min
x

r2
Δ(x) := (x− ΔB−1

Δ a)TBΔ(x− ΔB−1
Δ a)

s.t. ‖x‖ = 1.
(3.23)

We want to show from a geometric view of problem (3.23) how we recover the results
of Lemma 3.5.

Define for p > 0 the set

Ωp,Δ := {x : (x−B−1
Δ Δa)TBΔ(x−B−1

Δ Δa) ≤ p2λ1(BΔ)}.

This set is an ellipsoid centered in the interior of the unit ball and bounded by the
level curve r2

Δ = p2λ1(BΔ). The choice of the latter constant is made to simplify
the upcoming expressions. It follows that x∗ is a local minimizer of problem (3.19)
if and only if, for some p > 0, x∗ ∈ Ωp,Δ ∩ {x : ‖x‖ = 1} and, for some δ > 0,
Ωp,Δ ∩ {x : ‖x− x∗‖ ≤ δ, ‖x‖ > 1} = ∅. This means x∗ lies on the boundary of Ωp,Δ,
for some p > 0, which is locally contained in the unit ball and tangent to the unit
sphere at x∗.

We have BΔ = Q(Δ2D − λ̄ΔI)QT , so that BΔ = QΛQT , where

Λ :=

⎛
⎜⎜⎜⎝

Δ‖a‖ 0
Δ2(λ2(A) − λ1(A)) + Δ‖a‖

. . .

0 Δ2(λn(A) − λ1(A)) + Δ‖a‖

⎞
⎟⎟⎟⎠ .
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Note that λi(BΔ) = (Λ)ii for i = 1, . . . , n. Now we may write Ωp,Δ as

Ωp,Δ := {x : (QT (x−B−1
Δ Δa))TΛ(QT (x−B−1

Δ Δa)) ≤ p2λ1(BΔ)}.

Therefore

Ωp,Δ =

⎧⎨
⎩x = Qz + ΔB−1

Δ a :
z2
1

p2
+

z2
2(

p2λ1(BΔ)
λ2(BΔ)

) + · · · + z2
n(

p2λ1(BΔ)
λn(BΔ)

) ≤ 1

⎫⎬
⎭ .(3.24)

Now it follows from Assumption 1 that, for i = 2, . . . , n,

lim
Δ→∞

λ1(BΔ)

λi(BΔ)
= lim

Δ→∞

‖a‖
‖a‖ + Δ(λi(A) − λ1(A))

= 0

and that

lim
Δ→∞

ΔB−1
Δ a = lim

Δ→∞
Q(ΔΛ−1)ā,

= lim
Δ→∞

ā1

‖a‖q1 +
ā2

Δ(λ2(A) − λ1(A)) + ‖a‖q2 + · · ·

+
ān

Δ(λn(A) − λ1(A)) + ‖a‖qn,

=
ā1

‖a‖q1.(3.25)

Hence, as Δ becomes large, the length of the n− 1 smaller axis of the ellipsoid (3.24)
tends to zero, the length of the larger axis tends to 2p, and the center of the ellipsoid
tends to ā1

‖a‖q1. In other words, as Δ becomes large, the ellipsoid (3.24) converges to

the segment

Ωp,∞ :=

{
x = Qz +

ā1

‖a‖q1 : |z1| ≤ p ; zi = 0 for i = 2, . . . , n

}
,

which can be rewritten as

Ωp,∞ =

{
x =

(
z1 +

ā1

‖a‖

)
q1 : |z1| ≤ p

}
.(3.26)

Therefore, x∗
G(∞) and x∗

L(∞) are obtained from the intersection of the boundary of
the unit sphere with an end point of a segment of the form Ωp,∞. Hence we have to
look for values of p = |α| such that

|α + ā1/‖a‖| = 1.(3.27)

There are two values of α that satisfy (3.27):

α1 := 1 − ā1/‖a‖ and α2 := −1 − ā1/‖a‖.

Now let

m := min{|α1|, |α2|} = 1 − |ā1|/‖a‖.
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Fig. 3.2. Limiting behavior as Δ → ∞ of the ellipsoids to which the points x∗
G(Δ) (on the left)

and x∗
L(Δ) (on the right) belong.

Therefore x∗
G(∞) is the intersection of the limiting level set Ωm,∞ with the unit sphere.

It follows that

x∗
G(∞) =

{
q1 if ā1 ≥ 0,
−q1 if ā1 < 0.

Thus (3.21) holds. Similarly, (3.22) holds, since for

M := max{|α1|, |α2|} = 1 + |ā1|/‖a‖,

we have that x∗
L(∞) is the intersection of the end points of the limiting level set ΩM,∞

with the unit sphere.

For each value of Δ, there exists a value of p for which the global minimizer x∗
G(Δ)

lies in the intersection of the unit sphere and the ellipsoid Ωp,Δ. In Figure 3.2(left)
we illustrate, as Δ varies, this sequence of ellipsoids Ωp,Δ. One sees as Δ becomes
large that the ellipsoids converge to the segment Ωm,∞. Figure 3.2(right) illustrates
the same concept, but this time, for different values of Δ, we plot the ellipses Ωp,Δ

and their intersection with the unit sphere at the local-nonglobal minimizers x∗
L(Δ).

In this case, the ellipses converge to the segment ΩM,∞.

3.2. Computing a local-nonglobal minimizer: First method. We now
consider our first algorithm for computing a local-nonglobal minimizer of problem
(1.2). It is inspired by problem (3.16), where B(γ) is defined in (3.15) and λ̄ and
B are defined in (3.8). As mentioned at the beginning of section 3, to derive our
algorithm, we shall focus on the functions λ(γ) and ‖x(γ)‖2 − 1. Our first lemma
investigates the function λ(γ).
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Let

K := {k : λk(B) = λ2(B)},(3.28a)

J := {j : āj = 0},(3.28b)

d(λ) :=
∑
j∈J

ā2
j

λj(B)(λj(B) − λ)
.

Note that Assumptions 1 and 2 may be stated as 1 ∈ Kc ∩ J , where Kc is the
complement of the set K.

Lemma 3.6. Let

λ(γ) :=

⎧⎨
⎩

λ2(B(γ)) for γ < 1,

λ̂ for γ = 1,
λ1(B(γ)) for γ > 1,

where λ̂ = λ2(B) if K ∩ J = ∅ and d(λ2(B)) ≤ 0; otherwise, λ̂ is the unique value in

the interval (λ1(B), λ2(B)) to satisfy d(λ̂) = 0.
1. If K∩J = ∅, then λ(γ) is infinitely differentiable and satisfies d(λ(γ)) = 1−γ.

Moreover,

λ′(γ) =
−1

d′(λ(γ))
and λ′′(γ) =

−d′′(λ(γ))

[d′(λ(γ))]3
(3.29)

for all γ ∈ R.
2. If K ∩ J = ∅, then λ(γ) is continuous and infinitely differentiable for

γ ∈ R \ {1 − d(λ2(B))}.
(i) For γ > 1 − d(λ2(B)), λ(γ) satisfies d(λ(γ)) = 1 − γ and

λ′(γ) =
−1

d′(λ(γ))
and λ′′(γ) =

−d′′(λ(γ))

[d′(λ(γ))]3
.(3.30)

(ii) For γ < 1 − d(λ2(B)), λ(γ) = λ2(B), λ′(γ) = 0, and λ′′(γ) = 0.
(iii) For γ = 1−d(λ2(B)), λ(γ) = λ2(B) and satisfies d(λ(γ)) = 1−γ; the right-

and left-hand side derivatives are given, respectively, by

λ′(γ+) =
−1

d′(λ2(B))
, λ′′(γ+) =

−d′′(λ2(B))

[d′(λ2(B))]3
,(3.31a)

λ′(γ−) = 0, λ′′(γ−) = 0.(3.31b)

Proof. 1. For γ = 1, we have

det(B(γ) − λI) = det

(
(B − λI)

(
I − 1

1 − γ
(B − λI)−1B−1/2aaTB−1/2

))
,

= det(B − λI)

(
1 − 1

1 − γ
aTB−1/2(B − λI)−1B−1/2a

)
,

=
n∏

j=1

(λj(B) − λ)

⎛
⎝1 − 1

1 − γ

∑
j∈J

ā2
j

λj(B)(λj(B) − λ)

⎞
⎠ ,(3.32a)

=
n∏

j=1

(λj(B) − λ)

(
1 − 1

1 − γ
d(λ)

)
,(3.32b)
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where the second equality follows from Golub and Van Loan [8]. Since K∩J = ∅ and
ā1 = 0,

lim
λ↘λ1(B)

d(λ) = −∞ and lim
λ↗λ2(B)

d(λ) = ∞.

Furthermore,

d′(λ) =
∑
j∈J

ā2
j

λj(B)(λj(B) − λ)2
> 0.

Therefore, for all γ ∈ R, d−1(1−γ) is well defined, where d−1(1−γ) ∈ (λ1(B), λ2(B)).
Moreover, (3.32b) shows it is an eigenvalue of B(γ). From Corollary 3.4, this shows

d−1(1 − γ) =

{
λ2(B(γ)) for γ < 1,
λ1(B(γ)) for γ > 1.

Hence, λ(γ) = d−1(1−γ) and is infinitely differentiable. Equations (3.29) are obtained
by implicit differentiation.

2. Since K ∩ J = ∅, then d(λ2(B)) is well defined. Let γ = 1. By (3.32b),
λ2(B) is an eigenvalue of B(γ). Also, Assumptions 1 and 2 imply that λ1(B) is not
an eigenvalue of B(γ), since from (3.32a) we obtain

lim
λ→λ1(B)

det(B(γ) − λI) = −
n∏

j=2

(λj(B) − λ1(B))

(
ā2
1

(1 − γ)λ1(B)

)
= 0.

Note again that d(λ) is strictly increasing for λ ∈ (λ1(B), λ2(B)] and therefore

d(λ) < d(λ2(B)) for λ ∈ (λ1(B), λ2(B)).(3.33)

(i) If 1 − γ < d(λ2(B)), then d−1(1 − γ) is well defined, where d−1(1 − γ) ∈
(λ1(B), λ2(B)). The rest of the proof is similar to the proof of item 1.

(ii) and (iii) If 1 − γ ≥ d(λ2(B)), then by (3.33), d(λ) < 1 − γ for λ ∈
(λ1(B), λ2(B)). Therefore, there are no eigenvalues of the matrix B(γ) in the in-
terval [λ1(B), λ2(B)) and, from Corollary 3.4,

λ2(B) =

⎧⎨
⎩

λ2(B(γ)) for γ < 1,

λ̂ for γ = 1,
λ1(B(γ)) for γ > 1.

Thus λ(γ) = λ2(B). In particular, the derivatives of λ(γ) for γ < 1−d(λ2(B)) are zero,
and equations (3.31b) hold. Note finally that 1 − γ = d(λ(γ)) for γ ≥ 1 − d(λ2(B)),
and thus (3.31a) holds.

Corollary 3.7. For γ ∈ R, λ(γ) > λ1(B) and limγ→∞ λ(γ) = λ1(B). More-
over,

1. if K ∩ J = ∅, then λ(γ) < λ2(B) and limγ→−∞ λ(γ) = λ2(B);
2. if K ∩ J = ∅, then

(i) λ(γ) = λ2(B) for γ ≤ 1 − d(λ2(B)),
(ii) λ(γ) < λ2(B) for γ > 1 − d(λ2(B)).

Let

Γ :=

{
R if K ∩ J = ∅,
(1 − d(λ2(B),∞) if K ∩ J = ∅.
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Note from Lemma 3.6 and Corollary 3.7 that

Γ = {γ : λ(γ) ∈ (λ1(B), λ2(B))},(3.34)

λ′(γ) < 0 for γ ∈ Γ.(3.35)

For γ ∈ Γ, define

x(γ) :=

{
1−γ
aT v

Bv if γ = 1,

(A− (λ(1) + λ̄)I)−1a if γ = 1,
(3.36)

where v is any vector that satisfies the generalized eigenvalue equation (3.17). Corol-
lary 3.4 and (3.34) imply, for γ = 1, that λ(γ) is an eigenvalue of B(γ) of multiplicity
one. Furthermore, aT v = 0; otherwise this would imply that λ(γ) is an eigenvalue of
B. Hence x(γ) is well defined and (3.18) holds. For γ ∈ Γ, it follows from (3.8b) and
(3.34) that λ(γ) + λ̄ ∈ (λ1(A), λ2(A)). Therefore A − (λ(γ) + λ̄)I is invertible, and
from (2.3), (3.8b), and (3.18) we may write ‖x(γ)‖2 as

‖x(γ)‖2 = ϕ(λ(γ) + λ̄).(3.37)

Hence

d‖x(γ)‖2

dγ
=

dϕ(λ(γ) + λ̄)

dλ
λ′(γ).(3.38)

The algorithm of Mart́ınez [16] which is used to compute a local-nonglobal minimizer
of problem (1.2) finds a root of the function ϕ(λ) − 1 in the interval (λ1(A), λ2(A)).
As we shall see in section 3.2.2, our algorithm finds a root of the function ‖x(γ)‖2 − 1
in the interval Γ. We may immediately derive the equivalent of Theorem 2.5.

Theorem 3.8.

1. If x∗ is a local-nonglobal minimizer of problem (1.2), then (2.1) holds with
λ∗ ∈ (λ1(A), λ2(A)). Let γ∗ be the unique solution to λ(γ) + λ̄ = λ∗; then x∗ = x(γ∗)

and d‖x(γ∗)‖2

dγ ≥ 0.

2. If, for γ∗ ∈ Γ, ‖x(γ∗)‖ = 1 and d‖x(γ∗)‖2

dγ > 0, then x(γ∗) is a strict local-

nonglobal minimizer of (1.2).

3. For γ ∈ Γ ∩ {γ : d‖x(γ)‖2

dγ > 0}, x(γ) is a strict local-nonglobal minimizer of

min
x

xTAx− 2aTx

s.t. ‖x‖ = ‖x(γ)‖
(3.39)

with Lagrange multiplier λ(γ) + λ̄.
Proof. Since γ∗ ∈ Γ, the proofs of items 1 and 2 follow from Theorem 2.5 and

(3.35), (3.37), and (3.38). To prove item 3, fix γ ∈ Γ and let δ := ‖x(γ)‖. Note that
x(γ) is a local-nonglobal minimizer of problem (3.39) if and only if x(γ; δ) := x(γ)/δ
is a local-nonglobal minimizer of

min
x

xT (δ2A)x− 2(δa)Tx

s.t. ‖x‖ = 1.
(3.40)

Now we may write ϕ(λ; δ) := ‖((δ2A) − λI)−1(δa)‖2 as
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ϕ(λ; δ) =

n∑
i=1

δ2ā2
i

(δ2λi(A) − λ)2
(3.41)

and its derivative as

ϕ′(λ; δ) = 2

n∑
i=1

δ2ā2
i

(δ2λi(A) − λ)3
.

For γ ∈ Γ ∩ {γ : d‖x(γ)‖2

dγ > 0}, it follows from (3.35) and (3.38) that

dϕ(λ(γ) + λ̄)

dλ
< 0.(3.42)

By item 3 of Theorem 2.5, x(γ; δ) is a local-nonglobal minimizer of problem (3.40),
since

((δ2A) − (δ2(λ(γ) + λ̄))I)x(γ; δ) = δa,

since λ1(δ
2A) < δ2(λ(γ) + λ̄) < λ2(δ

2A), and since, from (3.42),

ϕ′(δ2(λ(γ) + λ̄); δ) = ϕ′(λ(γ) + λ̄) < 0.

From (2.6c) we easily see that ϕ is a strictly convex function on the open interval
(λ1(A), λ2(A)). The algorithm of Mart́ınez [16] takes advantage of this property. The
following lemma shows that ‖x(γ)‖2 is also strictly convex over Γ. Convexity will play
a main role in the convergence analysis of our algorithm, since the secant method will
be used to find a root of the function ‖x(γ)‖2 − 1.

Lemma 3.9. Consider the function ‖x(γ)‖2 with domain Γ. Then it is an in-
finitely differentiable strictly convex function and limγ→∞ ‖x(γ)‖2 = ∞.

Proof. Since ϕ(λ) and λ(γ) are infinitely differentiable, respectively, on the in-
tervals (λ1(A), λ2(A)) and Γ, and λ(γ) + λ̄ ∈ (λ1(A), λ2(A)), then infinite differ-
entiability follows from (3.37). By Corollary 3.7, limγ→∞ λ(γ) + λ̄ = λ1(A) and
λ(γ) + λ̄ > λ1(A), and, by Assumption 2, limλ↘λ1(A) ϕ(λ) = ∞. Thus, using (3.37),
limγ→∞ ‖x(γ)‖2 = ∞.

All that is left to prove is strict convexity. For simplicity, let λi = λi(B) for
i = 1, . . . , n and let λγ = λ(γ). There are two cases to consider.

Case 1. ā1 = 0 and āj = 0 for j = 2, . . . , n. We have in this case

‖x(γ)‖2 =
ā2
1

(λ1 − λγ)2
,

d‖x(γ)‖2

dγ
=

2ā2
1

(λ1 − λγ)3
λ′(γ) = − 2λ1

λ1 − λγ
,

where we have used (3.29) and (3.30) to obtain the first derivative. Thus, using (3.35),

d2‖x(γ)‖2

dγ2
= − 2λ1

(λ1 − λγ)2
λ′(γ) > 0.
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Case 2. ∃j ≥ 2 such that ā1āj = 0. We have, using once again (3.29) and (3.30),

‖x(γ)‖2 =

n∑
i=1

ā2
i

(λi − λγ)2
,

d‖x(γ)‖2

dγ
= 2

n∑
i=1

ā2
i

(λi − λγ)3
λ′(γ) =

−2
n∑

i=1

ā2
i

(λi−λγ)3

n∑
i=1

ā2
i

λi(λi−λγ)2

,

d2‖x(γ)‖2

dγ2
=

(
−6

n∑
i=1

ā2
i

(λi−λγ)4

n∑
i=1

ā2
i

λi(λi−λγ)2 + 4
n∑

i=1

ā2
i

(λi−λγ)3

n∑
i=1

ā2
i

λi(λi−λγ)3

)
λ′(γ)(

n∑
i=1

ā2
i

λi(λi−λγ)2

)2 .

From (3.34) and (3.35), our result is proved if we can show for all λ ∈ (λ1, λ2) that

−3

n∑
i=1

ā2
i

(λi − λ)4

n∑
j=1

ā2
j

λj(λj − λ)2
+ 2

n∑
i=1

ā2
i

(λi − λ)3

n∑
j=1

ā2
j

λj(λj − λ)3

is strictly negative. In fact, we prove the stronger statement, for λ ∈ (λ1, λ2), that

−
n∑

i=1

ā2
i

(λi − λ)4

n∑
j=1

ā2
j

λj(λj − λ)2
+

n∑
i=1

ā2
i

(λi − λ)3

n∑
j=1

ā2
j

λj(λj − λ)3
(3.43)

is strictly negative. We may rewrite (3.43) as

n∑
i,j=1

ā2
i ā

2
j

λj(λi − λ)4(λj − λ)2

(
−1 +

λi − λ

λj − λ

)
=

n∑
i,j=1

ā2
i ā

2
j

λj(λi − λ)4(λj − λ)2

(
λi − λj

λj − λ

)

=

n∑
i,j=1,i �=j

ā2
i ā

2
j

λj(λi − λ)4(λj − λ)2

(
λi − λj

λj − λ

)
.

The previous sum may be rewritten as

n∑
j=2

{
ā2
1ā

2
j

λj(λ1 − λ)4(λj − λ)2

(
λ1 − λj

λj − λ

)
+

ā2
j ā

2
1

λ1(λj − λ)4(λ1 − λ)2

(
λj − λ1

λ1 − λ

)}

+
n∑

i=2

∑
j>i

{
ā2
i ā

2
j

λj(λi − λ)4(λj − λ)2

(
λi − λj

λj − λ

)
+

ā2
j ā

2
i

λi(λj − λ)4(λi − λ)2

(
λj − λi

λi − λ

)}
.

Recall, from Assumption 2, that λ1 < λ2. Thus, the first sum is strictly negative for
λ ∈ (λ1, λ2), where we use the fact that there exists j ≥ 2 such that ā1āj = 0 . We
next claim, for 2 ≤ i ≤ n and i < j ≤ n, that

ā2
i ā

2
j

λj(λi − λ)4(λj − λ)2

(
λi − λj

λj − λ

)
+

ā2
j ā

2
i

λi(λj − λ)4(λi − λ)2

(
λj − λi

λi − λ

)
(3.44)

is negative. Indeed, if āiāj = 0 or λi = λj , it is trivial. Otherwise, āiāj = 0 and
λi < λj and (3.44) is negative if and only if

−1

λj(λi − λ)4(λj − λ)3
+

1

λi(λj − λ)4(λi − λ)3
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is negative. Rewriting the last expression, we obtain

−λ(λj − λi)

λiλj(λi − λ)4(λj − λ)4
,

which is negative, since λ ≥ λ1 > 0 and λj > λi. Thus (3.43) is strictly negative and
‖x(γ)‖2 is a strictly convex function for γ ∈ Γ.

3.2.1. Bounds on λ∗ and γ∗. For this section, we assume a local-nonglobal
minimizer of problem (1.2) exists. Our algorithm is based on finding a root γ∗ to
‖x(γ)‖2 − 1, and we need initial bounds on γ∗. If K∩J = ∅, then Lemma 3.6 implies
1 − d(λ2(B)) < γ∗ < ∞. However, this lower bound is of no practical utility, since
we aim for an algorithm which exploits the sparsity of A, and computing d(λ2(B))
requires a full spectral decomposition of A. Otherwise, if K ∩ J = ∅, the lemma
does not gives us any supplementary information on bounds for γ∗; i.e., we only know
γ∗ ∈ R. Our next lemma shows that better bounds on γ∗ exist, and these will improve
the bounds on λ∗ in Lemma 2.2.

Lemma 3.10. Suppose x∗ is a local-nonglobal minimizer of problem (1.2) with a
corresponding Lagrange multiplier λ∗ that satisfies (2.1). Let γ∗ be the unique solution
to λ(γ) + λ̄ = λ∗. Then γ∗ ∈ [0, 2].

Proof. From Theorem 3.8, x(γ∗) is the local-nonglobal minimizer, and by feasi-
bility

‖x(γ∗)‖2 =

(
1 − γ∗

aT v

)2

vTB2v = 1.

Therefore, it follows from the Cauchy–Schwarz inequality and vTB2v ≥ λ1(B)2‖v‖2

that

(1 − γ∗)2 =
(aT v)2

vTB2v
≤

(
‖a‖

λ1(B)

)2

.

Taking square roots on both sides of the previous equation yields

γ∗ ∈
[
1 − ‖a‖

λ1(B)
, 1 +

‖a‖
λ1(B)

]
.

Finally, note from (3.8b) that λ1(B) = ‖a‖.
Corollary 3.11. Suppose x∗ is a local-nonglobal minimizer of problem (1.2);

then (2.1) holds with λ∗ ∈
[
λ̄ + λ(2), λ̄ + λ(0)

]
.

Proof. Recall, from Lemma 3.6, that λ(γ) is a decreasing function.
Note that Corollary 3.7 implies

λ̄ + λ (2) > λ̄ + λ1(B) = λ1(A).

Since the inequality holds strictly, it follows that λ̄+λ (2) is a better lower bound for
λ∗ than the lower bound of λ1(A) which is given in Lemma 2.2.

Similarly, unless K∩J = ∅ and 0 ≤ 1−d(λ2(B)), it also follows from Corollary 3.7
that λ̄+λ(0) < λ2(A). Thus unless this case occurs, λ̄+λ(0) is a better upper bound
for λ∗ than the upper bound of λ2(A) which is given in Lemma 2.2.

It is also possible to deduce bounds on λ∗ from the feasibility of x∗. From (2.3),
we have ‖x∗‖2 = ϕ(λ∗). It follows from (2.6a) that

ā2
i

(λi(A) − λ∗)2
≤ 1 for all i = 1, . . . , n.
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Hence, by taking square roots on both sides

λ1(A) + |ā1| ≤ λ∗ ≤ min{λi(A) − |āi| : i = 2, . . . , n}.

3.2.2. The algorithm. We are now ready to describe our first algorithm for
either computing a possible local-nonglobal minimizer of problem (1.2) or declaring
that such a candidate does not exist. From Theorem 3.8, in order to compute the
local-nonglobal minimizer we need to find the largest root γ∗ of ‖x(γ)‖2 − 1. Our
algorithm is mainly the secant method. It exploits the fact that ‖x(γ)‖2 is strictly
convex for γ ∈ Γ and that we have an upper bound on γ∗ when a local-nonglobal
minimizer exists. To simplify our analysis, let h(γ) := ‖x(γ)‖2 − 1.

Algorithm 3.1.

1. Initialization.

1.1. Let γL = 0, γU = 2, γ0 = 2.1, γ1 = γU , and k = 1.

1.2. If λ(γU ) = λ2(B) or if h(γ1)−h(γ0)
γ1−γ0

≤ 0, LNGM = 0, else LNGM = 1.

2. Iteration. While LNGM = 1 and ‖x(γk)‖ = 1, do

2.1. γk+1 = γk − h(γk)(γk−γk−1)
h(γk)−h(γk−1)

.

2.2. If λ(γk+1) = λ2(B), h(γk+1)−h(γk)
γk+1−γk

≤ 0, or γk+1 < γL, then LNGM = 0.

2.3. k = k + 1.
The convergence results for Algorithm 3.1, which we are about to present, are

based on the fact that we are using the secant method to find the root of a strictly
convex function. To facilitate our analysis, we define the following linear function of
γ, which depends on the parameters γk and γk−1:

s(γ; γk, γk−1) := h(γk) +
(h(γk) − h(γk−1))(γ − γk)

γk − γk−1
.

The following lemma is a well-known consequence of strict convexity for the function
h(γ).

Lemma 3.12. Let γk < γk−1. For γ ∈ R, the following inequalities and equality
hold:

1. h(γ) < s(γ; γk, γk−1) if γ ∈ (γk, γk−1).
2. h(γ) = s(γ; γk, γk−1) if γ ∈ {γk, γk−1}.
3. h(γ) > s(γ; γk, γk−1) if γ ∈ [γk, γk−1].

In Algorithm 3.1, the secant iteration is initiated in γ0 and γ1 and halted if,
for k ≥ 1, λ(γk) = λ2(B) or the slope of the secant line going through the points
(γk, h(γk)) and (γk−1, h(γk−1)) is not strictly positive. The next lemma shows, in the
case in which these situations do not occur, that the sequence {γk} produced by the
secant iteration is strictly decreasing and converges to a root of h if bounded below.
Such a bound could be γL.

Lemma 3.13. Let γ0 and γ1 be defined as in Algorithm 3.1, and assume
1. s(γk+1; γk, γk−1) = 0 for k ≥ 1;
2. γk ∈ Γ for k ≥ 0;

3. h(γk)−h(γk−1)
γk−γk−1

> 0 for k ≥ 1;

4. h(γ1) > 0.
Then {γk} is a strictly decreasing sequence. Furthermore, if {γk} is bounded below,
then the sequence converges to γ̄, which satisfies h(γ̄) = 0 and h′(γ̄) ≥ 0.

Proof. Since s(γ; γ1, γ0) is a function with positive slope by assumption, since γ2

is its root, and since h(γ1) > 0, then clearly γ2 < γ1. By item 3 of Lemma 3.12,
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h(γ2) > s(γ2; γ1, γ0) = 0. By induction we may similarly prove that {γk} is a strictly
decreasing sequence and h(γk) > 0 for k ≥ 0.

If {γk} is bounded below, then since it is a decreasing sequence it converges, say,
to γ̄. Now by the mean value theorem, for k ≥ 1,

h(γk) − h(γk−1)

γk − γk−1
= h′(ck) for ck ∈ [γk, γk−1].

By assumption h′(ck) > 0 for k ≥ 1, and since h is strictly convex, we deduce that
for k ≥ 1

h(γk) − h(γk−1)

γk − γk−1
< h′(c0).(3.45)

Convergence of {γk} implies

0 = lim
k→∞

|γk+1 − γk| = lim
k→∞

h(γk)
h(γk)−h(γk−1)

γk−γk−1

.

By (3.45) the denominator in the last limit is bounded away from infinity; hence the
numerator converges to zero, i.e., h(γ̄) = 0. Finally, since ck ∈ [γk, γk−1], then ck
converges to γ̄ and thus h′(γ̄) = limk→∞ h′(ck) ≥ 0.

For our convergence results, we need to make one further assumption concerning
problem (1.2).

Assumption 3. If problem (1.2) does not have a local-nonglobal minimizer, then
for ε > 0 small enough, the equality-constrained trust-region subproblem

min
x

xTAx− 2aTx

s.t. ‖x‖ = 1 + ε
(3.46)

does not have a local-nonglobal minimizer.
The scalar 1 on the right-hand side of the equality constraint of problem (3.46)

is due to the fact that we assume Δ = 1 in problem (1.2). Now consider for a
moment that Δ is allowed to vary in (1.2). Our assumption mainly says that for Δ
larger than but close enough to 1, there is no local-nonglobal minimizer. Note that if
Assumption 3 holds, then for Δ < 1 there is no local-nonglobal minimizer as well. This
is a consequence of Theorem 2.5 and of the strict convexity of the function ϕ defined
in (2.3). Furthermore, in view of Lemma 3.5, there exists Δ0 such that (1.2) admits
a local-nonglobal minimizer for all Δ > Δ0. Thus in case a local-nonglobal minimizer
does not exist for (1.2) the assumption is equivalent to the inequality 1 < Δ0.

Under the extra Assumption 3, the following theorem holds.
Theorem 3.14. The sequence {γk} produced by Algorithm 3.1 either converges

to γ∗ such that x(γ∗) is a local-nonglobal minimizer of problem (1.2) or there does
not exist a local-nonglobal minimizer of problem (1.2) and LNGM is set to 0.

Proof. First, consider the case where a local-nonglobal minimizer for problem
(1.2) exists. Let γ∗ be defined as in item 1 of Theorem 3.8. Then

h(γ∗) = 0 and h′(γ∗) ≥ 0.(3.47)

Recall that γ1 is an upper bound on γ∗. If γ1 = γ∗, then ‖x(γ1)‖ = 1. Hence,
Algorithm 3.1 terminates and there is nothing to prove.
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Assume γ1 > γ∗. Note, from Lemma 2.2, that λ∗ ∈ (λ1(A), λ2(A)) and, from
Theorem 3.8, that λ∗ = λ(γ∗) + λ̄. Hence λ(γ∗) ∈ (λ1(B), λ2(B)), i.e., γ∗ ∈ Γ.
Since λ(γ) is a decreasing function, λ(γ1) ≤ λ(γ∗) < λ2(B). From Corollary 3.7,
λ(γ1) > λ1(B). Hence, γ1 ∈ Γ. Since h is strictly convex, since γ1 > γ∗, and since
(3.47) holds, h(γ1) > 0 and h′(γ1) > 0.

Suppose for k ≥ 1 that γk > γ∗, γk ∈ Γ, h(γk) > 0, and h′(γk) > 0. Note that we
just proved that these conditions hold for k = 1. We wish to show the following:

1. h(γk)−h(γk−1)
γk−γk−1

> 0.

2. h(γk+1) > 0.
3. γk+1 > γ∗.
4. h′(γk+1) > 0.
5. γk+1 ∈ Γ.

Since

h(γk) − h(γk−1)

γk − γk−1
= h′(ck) for ck ∈ [γk, γk−1],

and h is strictly convex, then h′(ck) ≥ h′(γk) > 0, proving item 1. It follows that
s(γ; γk, γk−1) is strictly increasing. Since 0 = s(γk+1; γk, γk−1) and s(γk; γk, γk−1) =
h(γk) > 0, then γk+1 < γk. By Lemma 3.12, h(γk+1) > s(γk+1; γk, γk−1) = 0, and
this proves item 2. We have γ∗ < γk+1; otherwise γ∗ ∈ (γk+1, γk), and by Lemma 3.12

0 = s(γk+1; γk, γk−1) < s(γ∗; γk, γk−1) < h(γ∗).

This contradicts h(γ∗) = 0, proving item 3. Since h′(γ∗) ≥ 0, by strict convexity we
have h′(γk+1) > 0, proving item 4. Finally, from an argument similar to that above,
γk+1 ∈ Γ holds, proving item 5.

By induction it follows that for all k ≥ 1

1. h(γk)−h(γk−1)
γk−γk−1

> 0;

2. h(γk) > 0;
3. γk > γ∗;
4. h′(γk) > 0;
5. γk ∈ Γ.

It follows from Lemma 3.13 that {γk} converges, say, to γ̄, which satisfies h(γ̄) = 0
and h′(γ̄) ≥ 0. By strict convexity of h and since h(γ∗) = 0 and h′(γ∗) ≥ 0, then
γ̄ = γ∗.

Second, consider the case where a local-nonglobal minimizer of problem (1.2)
does not exist. Suppose there exists γ̂ ∈ Γ such that h(γ̂) < 0; then since h is strictly
convex and, by Lemma 3.9, since limγ→∞ h(γ) = ∞, there exists γ∗ > γ̂ such that
γ∗ ∈ Γ, h(γ∗) = 0, and h′(γ∗) > 0. Then by Theorem 3.8, there exists a local-
nonglobal minimizer of problem (1.2), yielding a contradiction. Thus, h(γ) ≥ 0 for
γ ∈ Γ. In fact, this inequality holds strictly. Otherwise, from the strict convexity of h,
for every ε > 0, the equation h(γ) = ε(ε+2) has a solution, say γ̂ ∈ Γ, with h′(γ̂) > 0.
From item 3 of Theorem 3.8, x(γ̂) is a local-nonglobal minimizer of problem (3.39)
with ‖x(γ̂)‖ = 1 + ε. This contradicts Assumption 3. Hence h(γ) > 0 for γ ∈ Γ. We
obtain in particular that h(γ1) > 0.

If a sequence {γk} obtained with Algorithm 3.1 would be bounded below and
satisfy, for all k ≥ 1, γk ∈ Γ and

h(γk) − h(γk−1)

γk − γk−1
> 0,
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then by Lemma 3.13, {γk} would converge, say to γ̄, which would satisfy h(γ̄) = 0 and
h′(γ̄) ≥ 0. This would imply that for every ε > 0, the equation h(γ) = ε(ε + 2) has a
solution, say γ̂ ∈ Γ, with h′(γ̂) > 0, contradicting (as explained above) Assumption 3.
Thus, there must exist some k̄ ≥ 1 such that one of the following cases is true:

1. γk̄ < γL.

2.
h(γk̄)−h(γk̄−1)

γk̄−γk̄−1
≤ 0.

3. γk̄ ∈ Γ (if and only if λ(γk̄) = λ2(B)).

In each case, LNGM is set to 0 and a local-nonglobal minimizer of problem (1.2)
does not exist.

Corollary 3.15. Suppose x∗ is a local-nonglobal minimizer of problem (1.2)
with a corresponding Lagrange multiplier λ∗ that satisfies (2.1). Let γ∗ be the unique
solution to λ(γ)+ λ̄ = λ∗. If h′(γ∗) > 0, the sequence {γk} produced by Algorithm 3.1
converges to γ∗ superlinearly and x(γ∗) is a strict local-nonglobal minimizer of problem
(1.2).

Proof. The proof holds from Theorems 3.8 and 3.14 and because the secant
method converges superlinearly when it converges to a simple root; see, e.g., Neumaier
[19, Corollary 5.4.2].

3.2.3. The relation between a local-nonglobal minimizer and g(γ). As
mentioned at the beginning of section 3, we expect the function g(γ) = γλ(γ) to be
intimately related to a local-nonglobal minimizer of problem (1.2). This will be made
clear in Theorems 3.18 and 3.19. We are for now concerned with the first derivative
of g.

Lemma 3.16. For γ ∈ Γ \ {1}, let the vector v ∈ Rn satisfy the generalized
eigenvalue equation (3.17). Then we may write the derivative of g as

g′(γ) = λ(γ) − γ

vTBv

(
aT v

1 − γ

)2

.(3.48)

Proof. Using Corollary 3.4 and (3.34), we obtain

λ1(B) < λ1(B(γ)) < λ2(B) ≤ λ2(B(γ)) if γ > 1,

λ1(B(γ)) ≤ λ1(B) < λ2(B(γ)) < λ2(B) ≤ λ3(B(γ)) if γ < 1.

Hence λ(γ) is an eigenvalue of B(γ) of multiplicity one and it is easy to see that
B1/2v

‖B1/2v‖ is a corresponding unit norm eigenvector. Therefore (see, e.g., [12]),

g′(γ) = λ(γ) − γ

(
B1/2v

‖B1/2v‖

)T (
1

(1 − γ)2
B−1/2aaTB−1/2

)(
B1/2v

‖B1/2v‖

)

= λ(γ) − γ

vTBv

(
aT v

1 − γ

)2

.

Our next lemma shows how ‖x(γ)‖ is related to the first derivative of g.

Lemma 3.17. Let γ ∈ Γ. Then

‖x(γ)‖ > (=, <) 1 ⇐⇒ g′(γ) > (=, <) 0.(3.49)



COMPUTING A LOCAL-NONGLOBAL MINIMIZER FOR THE TRS 285

Proof. For γ ∈ Γ \ {1}, we have

‖x(γ)‖2 =

(
1 − γ

aT v

)2

vTB2v,

= 1 − γ + λ(γ)

(
1 − γ

aT v

)2

vTBv(3.50a)

= 1 + g′(γ)

(
1 − γ

aT v

)2

vTBv(3.50b)

= 1 + g′(γ)‖x(γ)‖2 vTBv

vTB2v
,(3.50c)

where (3.50a) follows from (3.17), and (3.50b) follows from (3.48). The conclusion
follows by writing (3.50c) as

‖x(γ)‖2 =
1

1 − g′(γ) vTBv
vTB2v

(3.51)

and noting that in the case where γ = 1 ∈ Γ, the relation (3.49) holds as well by the
continuity of the functions g′ and ‖x(γ)‖2.

We are now ready to answer, with the next two theorems, how optimums of the
function g are related to local-nonglobal minimizers of problem (1.2). The first one
states that if a local-nonglobal minimizer of problem (1.2) exists, then there exists
γ∗ such that the first and second order optimality conditions for a local minimizer of
g are satisfied. The second one is almost its converse: if the first and second order
sufficient optimality conditions for a local minimizer of g are satisfied at some γ∗,
then x(γ∗) is the local-nonglobal minimizer of problem (1.2).

Theorem 3.18. Suppose x∗ is a local-nonglobal minimizer of problem (1.2) with
a corresponding Lagrange multiplier λ∗ that satisfies (2.1). Let γ∗ be the unique
solution to λ(γ) + λ̄ = λ∗. Then g′(γ∗) = 0 and g′′(γ∗) ≥ 0.

Proof. By Lemma 2.2, λ(γ∗) ∈ (λ1(B), λ2(B)) and thus γ∗ ∈ Γ. Theorem 3.8
gives x∗ = x(γ∗). The fact that g′(γ∗) = 0 follows from the feasibility of x∗ and from
Lemma 3.17.

By (3.35) and (3.38), and since, by Theorem 2.5, ϕ′(λ∗) ≤ 0, we obtain

d‖x(γ∗)‖2

dγ
=

dϕ(λ(γ∗) + λ̄)

dλ
λ′(γ∗) ≥ 0.(3.52)

If g′′(γ∗) < 0, then g′(γ∗ + h) < g′(γ∗) = 0 for h > 0 small enough, and, using
Lemma 3.17, we deduce ‖x(γ∗ + h)‖ < 1. Thus, since ‖x(γ∗)‖ = 1,

d‖x(γ∗)‖2

dγ
= lim

h→0

‖x(γ∗ + h)‖2 − ‖x(γ∗)‖2

h
≤ 0.(3.53)

Inequalities (3.52) and (3.53) give

d‖x(γ∗)‖2

dγ
= 0.

It follows then from (3.52) and λ′(γ∗) < 0 that ϕ′(λ(γ∗) + λ̄) = 0. From (2.6c),
ϕ is strictly convex over the interval (λ1(A), λ2(A)) and thus λ(γ∗) + λ̄ is its strict
minimizer. By (3.37), the following inequality thus holds:

‖x(γ)‖ ≥ ‖x(γ∗)‖ = 1 for γ ∈ Γ.
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This contradicts ‖x(γ∗ + h)‖ < 1 for h > 0 small enough. Thus g′′(γ∗) ≥ 0.

Theorem 3.19. Suppose γ∗ ∈ R satisfies g′(γ∗) = 0 and g′′(γ∗) > 0; then x(γ∗)
is a strict local-nonglobal minimizer of (1.2) with Lagrange multiplier λ∗ := λ(γ∗)+λ̄.

Proof. From Lemma 3.6, g′′(γ∗) = 0 implies λ(γ∗) ∈ (λ1(B), λ2(B)). Therefore
x(γ∗) is well defined, and if we let x∗ := x(γ∗) and λ∗ := λ(γ∗) + λ̄, then by (3.18),
the stationarity condition (2.1) is satisfied. Feasibility of x∗ follows from Lemma 3.17.
If we can further show that ϕ′(λ∗) < 0, then the result follows from item 3 of Theo-
rem 2.5.

Since g′′(γ∗) > 0, then g′(γ∗ − h) < g′(γ∗) = 0 for h > 0 small enough. By
Lemma 3.17, this implies ‖x(γ∗ − h)‖ < 1, and thus

d‖x(γ∗)‖2

dγ
= lim

h→0

‖x(γ∗)‖2 − ‖x(γ∗ − h)‖2

h
≥ 0.(3.54)

By an argument similar to that in the proof of Theorem 3.18, we conclude that the
inequality in (3.54) holds strictly. From (3.35) and (3.38), we deduce ϕ′(λ∗) < 0.

3.3. Computing a local-nonglobal minimizer: Second method. The ideas
involved in deriving our second method for computing a local-nonglobal minimizer
are similar to those of section 3.2. Our analysis relies on the functions λ2(D(t)),
‖x(t)‖2 − 1, and m(t). The results of this section closely follow those of section 3.2.
Hence we start by investigating the function λ2(D(t)).

We will make use in our analysis of the function

p(λ) := λ +
∑
j∈J

ā2
j

λj(A) − λ

and of the sets J and K defined in (3.28).

Lemma 3.20.

1. If K∩J = ∅, λ2(D(t)) is infinitely differentiable and satisfies p(λ2(D(t))) = t.
Moreover,

λ′
2(D(t)) =

1

p′(λ2(D(t)))
and λ′′

2(D(t)) =
−p′′(λ2(D(t)))

[p′(λ2(D(t)))]3
(3.55)

for all t ∈ R.
2. If K ∩ J = ∅, λ2(D(t)) is continuous and infinitely differentiable for t ∈

R \ {p(λ2(A))}.
(i) For t < p(λ2(A)), λ2(D(t)) satisfies p(λ2(D(t))) = t and

λ′
2(D(t)) =

1

p′(λ2(D(t)))
and λ′′

2(D(t)) =
−p′′(λ2(D(t)))

[p′(λ2(D(t)))]3
.(3.56)

(ii) For t > p(λ2(A)), λ2(D(t)) = λ2(A), λ′
2(D(t)) = 0, and λ′′

2(D(t)) = 0.
(iii) For t = p(λ2(A)), λ2(D(t)) = λ2(A) and satisfies p(λ2(D(t))) = t; the right-

and left-hand side derivatives are given, respectively, by

λ′
2(D(t+)) =

1

p′(λ2(A))
, λ′′

2(D(t+)) =
−d′′(λ2(A))

[d′(λ2(A))]3
,(3.57a)

λ′
2(D(t−)) = 0, λ′′

2(D(t−)) = 0.(3.57b)
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Proof. 1. Expanding the determinant of the matrix D(t)− λI with respect to its
first column gives

det(D(t) − λI) = (t− λ)

n∏
j=1

(λj(A) − λ) −
n∑

k=1

⎛
⎝ā2

k

n∏
j �=k

(λj(A) − λ)

⎞
⎠(3.58a)

= (t− p(λ))

n∏
j=1

(λj(A) − λ) for λ ∈ {λj(A)|j ∈ J}.(3.58b)

Since K ∩ J = ∅ and ā1 = 0,

lim
λ↘λ1(A)

p(λ) = −∞ and lim
λ↗λ2(A)

p(λ) = ∞.

Furthermore,

p′(λ) = 1 +
∑
j∈J

ā2
j

(λj(A) − λ)2
> 0.

Therefore, for all t ∈ R, p−1(t) is well defined, where p−1(t) ∈ (λ1(A), λ2(A)).
Moreover, (3.58b) shows it is an eigenvalue of D(t). From Lemma 3.1, this shows
p−1(t) = λ2(D(t)). Hence, λ2(D(t)) is infinitely differentiable and equations (3.55)
are obtained by implicit differentiation.

2. Let t ∈ R. Since K∩J = ∅, then p(λ2(A)) is well defined. By (3.58b), λ2(A)
is an eigenvalue of D(t). Assumptions 1 and 2 imply that λ1(A) is not an eigenvalue
of D(t), since from (3.58a) we obtain

det(D(t) − λ1(A)I) = −ā2
1

n∏
j=2

(λj(A) − λ1(A)) = 0.

Combining this last inequality with Lemma 3.1 gives

λ2(D(t)) ∈ (λ1(A), λ2(A)].(3.59)

Note again that p(λ) is strictly increasing for λ ∈ (λ1(A), λ2(A)] and therefore

p(λ) < p(λ2(A)) for λ ∈ (λ1(A), λ2(A)).(3.60)

(i) If t < p(λ2(A)), then p−1(t) is well defined, where p−1(t) ∈ (λ1(A), λ2(A)).
The rest of the proof is similar to the proof of item 1.

(ii) and (iii) If t ≥ p(λ2(A)), by (3.60), p(λ) < t for λ ∈ (λ1(A), λ2(A)). There-
fore, from (3.58b), there are no eigenvalues of D(t) in the interval [λ1(A), λ2(A)) and,
using the expression (3.59), we obtain λ2(A) = λ2(D(t)). In particular, the deriva-
tives of λ2(D(t)) for t > p(λ2(A)) are zero and equations (3.57b) hold. Note finally
that t = p(λ2(D(t))) for t ≤ p(λ2(A)) and thus (3.57a) holds.

Corollary 3.21. For t ∈ R, λ2(D(t)) > λ1(A) and limt→−∞ λ2(D(t)) = λ1(A).
Moreover,

1. if K ∩ J = ∅, then λ2(D(t)) < λ2(A) and limt→∞ λ2(D(t)) = λ2(A);
2. if K ∩ J = ∅, then

(i) λ2(D(t)) = λ2(A) for t ≥ p(λ2(A)),
(ii) λ2(D(t)) < λ2(A) for t < p(λ2(A)).
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Define

T :=

{
R if K ∩ J = ∅,
(−∞, p(λ2(A)) if K ∩ J = ∅.

Note, from Lemma 3.20 and Corollary 3.21, that

T = {t : λ2(D(t)) ∈ (λ1(A), λ2(A))},(3.61)

λ′
2(D(t)) > 0 for t ∈ T .(3.62)

For t ∈ T , let the vector y ∈ Rn (which depends on t) be a unit norm eigenvector
of D(t) for the eigenvalue λ2(D(t)). Let y := (y0, z)

T , where y0 ∈ R and z ∈ Rn.
Similarly to equations (3.4) we have

ty0 − aT z = λ2(D(t))y0,(3.63a)

−y0a + Az = λ2(D(t))z.(3.63b)

Note that y0 = 0 for t ∈ T ; otherwise, by (3.63b), this would imply that λ2(D(t)) is
an eigenvalue of A. Hence, for t ∈ T , we may define

x(t) := 1/y0 z.(3.64)

Recall that x(t) satisfies (3.7) and notice that (3.61) implies that A − λ2(D(t))I is
invertible. Thus using (2.3) we may write ‖x(t)‖2 as

‖x(t)‖2 = ϕ(λ2(D(t))).(3.65)

It follows that

d‖x(t)‖2

dt
=

dϕ(λ2(D(t)))

dλ
λ′

2(D(t)).(3.66)

Again, the algorithm of this section is based on finding a root of the function ‖x(t)‖2−1
in the interval T . A theorem similar to Theorem 2.5 holds.

Theorem 3.22.

1. If x∗ is a local-nonglobal minimizer of problem (1.2), then (2.1) holds with
λ∗ ∈ (λ1(A), λ2(A)). Let t∗ be the unique solution to λ2(D(t)) = λ∗; then x∗ = x(t∗)

and d‖x(t∗)‖2

dt ≤ 0.

2. If, for t∗ ∈ T , ‖x(t∗)‖ = 1 and d‖x(t∗)‖2

dt < 0, then x(t∗) is a strict local-
nonglobal minimizer of (1.2).

3. For t ∈ T ∩ {t : d‖x(t)‖2

dt < 0}, x(t) is a strict local-nonglobal minimizer of

min
x

xTAx− 2aTx

s.t. ‖x‖ = ‖x(t)‖
(3.67)

with Lagrange multiplier λ2(D(t)).
Proof. Since t∗ ∈ T , the proofs of items 1 and 2 follow from Theorem 2.5 and

(3.62), (3.65), and (3.66). To prove item 3, fix t ∈ T and let δ := ‖x(t)‖. Note that
x(t) is a local-nonglobal minimizer of problem (3.67) if and only if problem (3.40) is
solved by x(t; δ) := x(t)/δ.
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For t ∈ T ∩ {t : d‖x(t)‖2

dt < 0}, it follows from (3.62) and (3.66) that

dϕ(λ2(D(t)))

dλ
< 0.(3.68)

By item 3 of Theorem 2.5, ‖x(t; δ)‖ solves problem (3.40) since

((δ2A) − (δ2λ2(D(t)))I)x(t; δ) = δa,

since λ1(δ
2A) < δ2λ2(D(t)) < λ2(δ

2A), and since, from (3.41) and (3.68),

ϕ′(δ2λ2(D(t)); δ) = ϕ′(λ2(D(t))) < 0.

As for Algorithm 3.1, a key property for the algorithm of this section is that ‖x(t)‖2

is a strictly convex function.
Lemma 3.23. Consider the function ‖x(t)‖2 with domain T . Then it is an

infinitely differentiable strictly convex function and limt→−∞ ‖x(t)‖2 = ∞.
Proof. Since ϕ(λ) and λ2(D(t)) are infinitely differentiable, respectively, on the

intervals (λ1(A), λ2(A)) and T , and λ2(D(t)) ∈ (λ1(A), λ2(A)), then infinite differ-
entiability follows from (3.65). By Corollary 3.21, limt→−∞ λ2(D(t)) = λ1(A) and
λ2(D(t)) > λ1(A), and, by Assumption 2, limλ↘λ1(A) ϕ(λ) = ∞. Thus, using (3.65),
limt→−∞ ‖x(t)‖2 = ∞.

All that is left to prove is strict convexity. For simplicity, let λi = λi(A) for
i = 1, . . . , n, let λt = λ2(D(t)), and let λ′

t = λ′
2(D(t)). There are two cases to

consider.
Case 1: ā1 = 0 and āj = 0 for j = 2, . . . , n. We have in this case

‖x(t)‖2 =
ā2
1

(λ1 − λt)2
,

d‖x(t)‖2

dt
=

2ā2
1

(λ1 − λt)3
λ′
t = − 2ā2

1

(λ1 − λt)3 + ā2
1(λ1 − λt)

,

where we have used (3.55) and (3.56) to obtain the first derivative. Thus, using (3.62),

d2‖x(t)‖2

dt2
=

2ā2
1(3(λ1 − λt)

2 + ā2
1)

((λ1 − λt)3 + ā2
1(λ1 − λt))2

λ′
t > 0.

Case 2: ∃j ≥ 2 such that ā1āj = 0. We have, using once again (3.55) and (3.56),

‖x(t)‖2 =

n∑
i=1

ā2
i

(λi − λt)2
,

d‖x(t)‖2

dt
= 2

n∑
i=1

ā2
i

(λi − λt)3
λ′
t =

2
n∑

i=1

ā2
i

(λi−λt)3

1 +
n∑

i=1

ā2
i

(λi−λt)2

,

d2‖x(t)‖2

dt2
=

(
6

n∑
i=1

ā2
i

(λi−λt)4

(
1 +

n∑
i=1

ā2
i

(λi−λt)2

)
− 4

n∑
i=1

ā2
i

(λi−λt)3

n∑
i=1

ā2
i

λi(λi−λt)3

)
λ′
t(

1 +
n∑

i=1

ā2
i

(λi−λt)2

)2 .
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From (3.61) and (3.62), our result is proved if we can show for all λ ∈ (λ1, λ2)
that

3

n∑
i=1

ā2
i

(λi − λ)4

⎛
⎝1 +

n∑
j=1

ā2
j

(λj − λ)2

⎞
⎠− 2

n∑
i=1

ā2
i

(λi − λ)3

n∑
j=1

ā2
j

(λj − λ)3

is strictly positive. In fact, we prove the stronger statement, for λ ∈ (λ1, λ2), that

n∑
i=1

ā2
i

(λi − λ)4

n∑
j=1

ā2
j

(λj − λ)2
−

n∑
i=1

ā2
i

(λi − λ)3

n∑
j=1

ā2
j

(λj − λ)3
(3.69)

is strictly positive. We may rewrite (3.69) as

n∑
i,j=1

ā2
i ā

2
j

(λi − λ)4(λj − λ)2

(
1 − λi − λ

λj − λ

)
=

n∑
i,j=1

ā2
i ā

2
j

(λi − λ)4(λj − λ)2

(
λj − λi

λj − λ

)

=

n∑
i,j=1,i �=j

ā2
i ā

2
j

(λi − λ)4(λj − λ)2

(
λj − λi

λj − λ

)
.

The previous sum may be rewritten as

n∑
j=2

{
ā2
1ā

2
j

(λ1 − λ)4(λj − λ)2

(
λj − λ1

λj − λ

)
+

ā2
j ā

2
1

(λj − λ)4(λ1 − λ)2

(
λ1 − λj

λ1 − λ

)}

+

n∑
i=2

∑
j>i

{
ā2
i ā

2
j

(λi − λ)4(λj − λ)2

(
λj − λi

λj − λ

)
+

ā2
j ā

2
i

(λj − λ)4(λi − λ)2

(
λi − λj

λi − λ

)}
.

Recall, from Assumption 2, that λ1 < λ2. Thus, the first sum is strictly positive for
λ ∈ (λ1, λ2), where we use the fact that there exists j ≥ 2 such that ā1āj = 0 . We
next claim, for 2 ≤ i ≤ n and i < j ≤ n, that

ā2
i ā

2
j

(λi − λ)4(λj − λ)2

(
λj − λi

λj − λ

)
+

ā2
j ā

2
i

(λj − λ)4(λi − λ)2

(
λi − λj

λi − λ

)
(3.70)

is positive. Indeed, if āiāj = 0 or λi = λj , it is trivial. Otherwise, āiāj = 0 and
λi < λj , and (3.70) is positive if and only if

1

(λi − λ)4(λj − λ)3
− 1

(λj − λ)4(λi − λ)3

is positive. Rewriting the last expression, we obtain

λj − λi

(λi − λ)4(λj − λ)4
,

which is positive. Thus (3.69) is strictly positive and ‖x(t)‖2 is a strictly convex
function for t ∈ T .
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3.3.1. Bounds on λ∗ and t∗. For this section, we assume a local-nonglobal
minimizer of problem (1.2) exists. Our algorithm is based on finding a root t∗ to
‖x(t)‖2 − 1 and we need initial bounds on t∗.

Lemma 3.24. Suppose x∗ is a local-nonglobal minimizer of problem (1.2) with a
corresponding Lagrange multiplier λ∗ that satisfies (2.1). Let t∗ be the unique solution
to λ2(D(t)) = λ∗. Then

t∗ ∈ (−‖a‖ + λ1(A), ‖a‖ + λ2(A)) .

Proof. By definition of t∗, λ2(D(t∗)) ∈ (λ1(A), λ2(A)) and thus t∗ ∈ T . Hence,
for t = t∗, dividing (3.63a) by y0 gives

t∗ = aTx∗ + λ2(D(t∗)) = aTx∗ + λ∗.

The conclusion follows from λ∗ ∈ (λ1(A), λ2(A)) and −‖a‖ ≤ aTx∗ ≤ ‖a‖.
Corollary 3.25. Suppose x∗ is a local-nonglobal minimizer of problem (1.2);

then (2.1) holds with λ∗ ∈ [λ2(D(−‖a‖ + λ1(A))), λ2(D(‖a‖ + λ2(A)))].

Proof. Recall, from Lemma 3.20, that λ2(D(t)) is an increasing function.

3.3.2. The algorithm. We now describe our second algorithm for either com-
puting a possible local-nonglobal minimizer of problem (1.2) or declaring that such a
candidate does not exist. From Theorem 3.22, in order to compute the local-nonglobal
minimizer we need to find the smallest root t∗ of ‖x(t)‖2−1. Since the latter function
is strictly convex for t ∈ T and since we have a lower bound on t∗, the algorithm we
propose is similar to Algorithm 3.1 and is essentially the secant method. To simplify
our analysis, let r(t) := ‖x(t)‖2 − 1.

Algorithm 3.2.

1. Initialization.

1.1. Let tL = −‖a‖ + λ1(A), tU = ‖a‖ + λ2(A), t0 = tL − 0.1, t1 = tL, k = 1.

1.2. If λ2(D(tL)) = λ2(A) or if r(t1)−r(t0)
t1−t0

≥ 0, LNGM = 0, else LNGM = 1.

2. Iteration. While LNGM = 1 and ‖x(tk)‖ = 1, do

2.1. tk+1 = tk − r(tk)(tk−tk−1)
r(tk)−r(tk−1)

.

2.2. If λ2(D(tk+1)) = λ2(A), r(tk+1)−r(tk)
tk+1−tk

≥ 0, or tk+1 > tU , then LNGM = 0.

2.3. k = k + 1.

The convergence results of Algorithm 3.2 and their proofs are identical to those
of Theorem 3.14 and Corollary 3.15. We again suppose Assumption 3 holds.

Theorem 3.26. The sequence {tk} produced by Algorithm 3.1 either converges
to t∗ such that x(t∗) is a local-nonglobal minimizer of problem (1.2) or there does not
exist a local-nonglobal minimizer of problem (1.2) and LNGM is set to 0.

Corollary 3.27. Suppose x∗ is a local-nonglobal minimizer of problem (1.2)
with a corresponding Lagrange multiplier λ∗ that satisfies (2.1). Let t∗ be the unique
solution to λ2(D(t)) = λ∗. Then if r′(t∗) > 0, the sequence {tk} produced by Algo-
rithm 3.2 converges to t∗ superlinearly and x(t∗) is a strict local-nonglobal minimizer
of problem (1.2).

3.3.3. The relation between a local-nonglobal minimizer and m(t). Re-
call that

m(t) := 2λ2(D(t)) − t.
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Let t ∈ T . From Lemma 3.1 and (3.61), λ2(D(t)) has multiplicity one. Hence m is
differentiable for t ∈ T . Therefore (see, e.g., [12])

m′(t) = 2y2
0 − 1.(3.71)

Just as in Lemma 3.17, our next lemma shows that ‖x(t)‖ is related to the first
derivative of m.

Lemma 3.28. Let t ∈ T . Then

‖x(t)‖ > (=, <) 1 ⇐⇒ m′(t) < (=, >) 0.(3.72)

Proof. For t ∈ T , we have

‖x(t)‖2 =
z2

y2
0

=
1 − y2

0

y2
0

=
1 − m′(t)+1

2
m′(t)+1

2

=
1 −m′(t)

1 + m′(t)
,(3.73)

where the second equality follows from y being the unit norm and where the third
equality follows from (3.71). This proves our result since, for t ∈ T , m′(t) ∈ (−1, 1]
and since the function w(x) := 1−x

1+x is strictly decreasing with w(0) = 1.
Following are two theorems, analogous to Theorems 3.18 and 3.19, which relate

a local-nonglobal minimizer to the function m. The first one states that if a local-
nonglobal minimizer of problem (1.2) exists, then there exists t∗ such that the first and
second order optimality conditions for a local minimizer of m are satisfied. The second
one is almost its converse: if the first and second order sufficient optimality conditions
for a local minimizer of m are satisfied at some t∗, then x(t∗) is the local-nonglobal
minimizer of problem (1.2).

Theorem 3.29. Suppose x∗ is a local-nonglobal minimizer of problem (1.2) with a
corresponding Lagrange multiplier λ∗ that satisfies (2.1). Let t∗ be the unique solution
to λ2(D(t)) = λ∗. Then m′(t∗) = 0 and m′′(t∗) ≥ 0.

Proof. By Lemma 2.2, λ2(D(t∗)) ∈ (λ1(A), λ2(A)) and thus t∗ ∈ T . Theorem 3.22
gives x∗ = x(t∗). The fact that m′(t∗) = 0 follows from the feasibility of x∗ and from
Lemma 3.28.

By (3.62) and (3.66), and since, by Theorem 2.5, ϕ′(λ∗) ≤ 0, we obtain

d‖x(t∗)‖2

dt
=

dϕ(λ2(D(t∗)))

dλ
λ′

2(D(t∗)) ≤ 0.(3.74)

If m′′(t∗) < 0, then m′(t∗ − h) > 0 for h > 0 small enough and, using Lemma 3.28,
we deduce ‖x(t∗ − h)‖ < 1. Thus, since ‖x(t∗)‖ = 1,

d‖x(t∗)‖2

dt
= lim

h→0

‖x(t∗)‖2 − ‖x(t∗ − h)‖2

h
≥ 0.(3.75)

Inequalities (3.74) and (3.75) give

d‖x(t∗)‖2

dt
= 0.

It follows then from (3.74) and λ′
2(D(t∗)) < 0 that ϕ′(λ2(D(t∗))) = 0. From (2.6c),

ϕ is strictly convex over the interval (λ1(A), λ2(A)) and thus λ2(D(t∗)) is its strict
minimizer. By (3.65), the following inequality thus holds:

‖x(t)‖ ≥ ‖x(t∗)‖ = 1 for t ∈ T .
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This contradicts ‖x(t∗ − h)‖ < 1 for h > 0 small enough. Thus m′′(t∗) ≥ 0.
Theorem 3.30. Suppose t∗ ∈ R satisfies m′(t∗) = 0 and m′′(t∗) > 0; then

x(t∗) is a strict local-nonglobal minimizer of (1.2) with Lagrange multiplier λ∗ :=
λ2(D(t∗)).

Proof. From Lemma 3.20, m′′(t∗) = 0 implies λ2(D(t∗)) ∈ (λ1(A), λ2(A)), i.e.,
t∗ ∈ T . Therefore x(t∗) is well defined, and if we let x∗ := x(t∗) and λ∗ := λ2(D(t∗)),
then by (3.18), the stationarity condition (2.1) is satisfied. Feasibility of x∗ follows
from Lemma 3.28. If we can further show that ϕ′(λ∗) < 0, then the result follows
from item 3 of Theorem 2.5.

Since m′′(t∗) > 0, then m′(t∗ + h) > m′(t∗) = 0 for h > 0 small enough. By
Lemma 3.28, this implies ‖x(t∗ + h)‖ < 1 and thus

d‖x(t∗)‖2

dt
= lim

h→0

‖x(t∗ + h)‖2 − ‖x(t∗)‖2

h
≤ 0.(3.76)

By an argument similar to one that appears in the proof of Theorem 3.29, we con-
clude that the inequality in (3.76) holds strictly. From (3.62) and (3.66), we deduce
ϕ′(λ∗) < 0.

4. Conclusion. We have considered two algorithms for computing the local-
nonglobal minimizer of problem (1.2). The first algorithm builds on an extremal
ellipsoid-based approach that recasts problem (1.2) as problem (3.16). This approach
has the particularity of bringing a geometric interpretation common to both types of
minimizers (local-nonglobal and global): each minimizer lies in the intersection of the
unit sphere with an ellipsoid locally contained in the unit ball at the minimizer. As
we have seen in section 3.1, this allows a geometric view between local-nonglobal and
global minimizers when the trust-region radius tends to infinity. The algorithm was
largely motivated by Corollary 3.4 on the interlacing of eigenvalues between a para-
metric matrix and the matrix B. Similarly, Cauchy’s inequalities, here Lemma 3.1,
motivated the second algorithm, which builds on the approach of Rendl and Wolkow-
icz [21] that recasts problem (1.2) as problem (3.2).

Both algorithms are based on applying the secant method, respectively, to the
strictly convex functions ‖x(γ)‖2 − 1 and ‖x(t)‖2 − 1. Although the author was not
able to prove it, it seems the functions ‖x(γ)‖ − 1 and ‖x(t)‖ − 1 are strictly convex
as well, and some preliminary results (which are not reported here) tend to show
convergence is enhanced when the secant method is used to find a root of the latter
functions. This is probably due to the fact that the functions are in some sense less
nonlinear. Obviously, this constitutes material for future research.

For each algorithm, the main computing effort at each step lies in approximating
the first two eigenvalues of a parametric matrix. We have coded Algorithms 3.1
and 3.2 using MATLAB 6.1 and used as a black box MATLAB’s implementation of
ARPACK [13, 14, 24], the function eigs, to compute the required eigenvalues and
corresponding eigenvectors. All that is required are matrix-vector multiplications,
and thus our algorithms are able to exploit the sparsity of the matrix A in large scale
problems.

We compared the computation times of each algorithms on randomly constructed
problems of the type (1.2) for which we made sure a local-nonglobal minimizer ex-
isted. The algorithms computed, respectively, a root of the functions ‖x(γ)‖2 − 1 and
‖x(t)‖2 −1. We stopped when the image of an iterate had an absolute value less than
1e-12. For example, Algorithm 3.1 stops when |‖x(γk)‖2 − 1| < 1e − 12. We tested
our algorithms on random problems of dimensions varying from n = 125 to n = 2000
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Table 4.1

Average number of iterations, computation times, and matrix-vector multiplications of Algo-
rithms 3.1 and 3.2 in function of the dimension n of the problem (1.2). The density of the matrix
A is log(n)/n, a function of its dimension.

Iterations Computation time Matrix-vector ×
Dimension Alg. 3.1 Alg. 3.2 Alg. 3.1 Alg. 3.2 Alg. 3.1 Alg. 3.2

125 17.4 16.4 2.25 1.84 1899.8 1569.0
250 15.8 15.0 3.23 2.92 2645.6 2356.6
500 17.2 16.2 5.19 3.72 3579.2 2488.0
1000 20.4 19.6 8.09 8.13 4082.6 3986.4
2000 20.4 19.4 17.38 15.39 5246.2 4446.0

using a Pentium 4 at 1.8GHz with 256MB of memory. For each given dimension we
computed the average number of iterations, matrix-vector multiplications, and com-
putation time (cpu in seconds), taken over five random problems, in order to compute
a local-nonglobal minimizer up to the accuracy above mentioned. The results are
illustrated in Table 4.1.

The results reveal that Algorithm 3.2 takes in average one less iteration to con-
verge and clearly needs fewer matrix-vector multiplications. This results in smaller
computation times for Algorithm 3.2. Thus the results tend to indicate we should
prefer the latter algorithm to Algorithm 3.1. Somehow this is not surprising since for
each iteration of Algorithm 3.1 a generalized eigenvalue problem needs to be solved,
whereas Algorithm 3.2 requires only the solution of a standard eigenvalue problem.

We conclude with two final remarks. First, the algorithms proposed in this paper
are a first step toward solving large problems of the type (1.3), in particular in the
case where the constraints are two Euclidean balls. However, the case where the two
constraints are binding at the optimum remains a challenge, even for small dimensions.
Second, we have seen that the theory behind both algorithms we presented is induced
by the theory behind algorithms for computing the global minimizer of trust-region
subproblems. It would be interesting to see if this could be done for other trust-region
subproblem algorithms as well.

Appendix. We briefly discuss how we can modify Algorithms 3.1 and 3.2 in
order to compute a local-nonglobal minimizer of problem (1.1).

It is easy to see that if x∗ is a local-nonglobal minimizer of problem (1.1), then
‖x∗‖ = 1 must hold. Hence x∗ is necessarily a local-nonglobal minimizer of problem
(1.2). From the standard necessary optimality conditions it has a negative Lagrange
multiplier λ∗ ≤ 0. Furthermore, it is shown in [15] that in fact strict inequality holds,
i.e., λ∗ < 0. Similarly to item 1 of Theorem 3.8 we have the following theorem.

Theorem A.1. If x∗ is a local-nonglobal minimizer of problems (1.1), then (2.1)
holds with λ∗ ∈ (λ1(A), λ2(A)). Let γ∗ be the unique solution to λ(γ) + λ̄ = λ∗; then

x∗ = x(γ∗), d‖x(γ∗)‖2

dγ ≥ 0, and λ(γ∗) + λ̄ < 0.

Recall that as long as LNGM = 1 the sequence {γk} generated by Algorithm 3.1
is decreasing and that the function λ(γ)+λ̄ is decreasing. Therefore, in Algorithm 3.1,
if at some iteration k,

λ(γk) + λ̄ ≥ 0,(A.1)

we may deduce from Theorem A.1 that problem (1.1) does not have a local-nonglobal
minimizer. Thus in order to modify Algorithm 3.1 for computing a local-nonglobal
minimizer of problem (1.1), we may set the boolean parameter LNGM to 0 whenever
(A.1) holds. A similar remark holds for Algorithm 3.2.
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Abstract. This paper considers the distribution of values Q(x), x ∈ {−1, 1}n, where Q is a
quadratic form in n variables with real coefficients. Error estimates are established for approximations
of the maximum and minimum values of Q on {−1, 1}n which can be obtained by semidefinite
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1. Introduction. Let Q be a polynomial in n variables with real coefficients,
and let S ⊆ Rn be a basic closed semialgebraic set. Lasserre’s algorithm [3] produces
an increasing sequence of lower bounds for Q on S computable via semidefinite pro-
gramming which, in case S is compact, converges to the exact minimum of Q on S. In
[4] a refinement of Lasserre’s algorithm is described which takes into account the fact
that S may have dimension less than n. This involves computation in the factor ring
R[x]/a using Gröbner basis techniques, where a is the ideal of polynomials vanishing
on S. Many times the sequence converges rapidly. Often the first or second term in
the sequence is already close to the exact minimum. Still, there is no general theory
in this regard.

In particular, one would like to be able to estimate the accuracy of the first term
in the sequence. In the present paper we consider this question in case Q is of degree
2 and S is the discrete hypercube {−1, 1}n. In this case encouraging results have been
obtained already by a number of people [5], [6], [8], [9], [10], [11], following up on the
ground-breaking work of Goemans and Williamson in [1].

When S is {−1, 1}n the ideal a is generated by x2
i −1, i = 1, . . . , n. The factor ring

R[x]/a is 0-dimensional with basis as a vector space over R consisting of all products∏
i∈I xi, where I is a subset of {1, . . . , n}. We consider the problem of minimizing

(or maximizing) a degree two polynomial Q ∈ R[x] on {−1, 1}n. More precisely, we
consider an approximation to this minimum (or maximum) which, in terms of the
algorithm described in [4], is just the first term in the sequence of approximations
converging to the exact value, and we examine the accuracy of this approximation.

Since minimizing (or maximizing) Q on {−1, 1}n is equivalent to minimizing
(or maximizing) the associated quadratic form x2

0Q(x1

x0
, . . . , xn

x0
) in n + 1 variables
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x0, . . . , xn on {−1, 1}n+1, we may as well assume from the start that Q is a quadratic
form. We identify Q with its associated symmetric matrix, so Q(x) = xtQx. We define

Q∗ = min{Q(x) | x ∈ {−1, 1}n},
Q∗ = max{Q(x) | x ∈ {−1, 1}n}.

One can associate to Q the graph with vertices V = {1, . . . , n} and edges E = {(i, j) :
i < j,Qij �= 0}. Computation of Q∗ (resp., Q∗) can be viewed as a “weighted” version
of the MAX-CUT problem considered in [1], where Qij is the “weight” attached to the
edge (i, j).

The approximations of Q∗ and Q∗ that we are dealing with are

Q+ := min{〈Q,X〉 | X is PSD, Xii = 1, i = 1, . . . , n},
Q+ := max{〈Q,X〉 | X is PSD, Xii = 1, i = 1, . . . , n}.

Here, 〈Q,X〉 :=
∑

i,j QijXij . It is clear that Q+ ≤ Q∗ (and, similarly, that Q∗ ≤ Q+):
If x ∈ {−1, 1}n, define X by Xij = xixj . Then X is positive semidefinite (PSD), Xii =
1 for i = 1, . . . , n, and 〈Q,X〉 =

∑
i,j Qijxixj = xtQx = Q(x). In summary we have

Q+ ≤ Q∗ ≤ Q∗ ≤ Q+.

We also have the following dual description of Q+ (and of Q+).

Theorem 1.1. Q+ = Q+ and Q+ = Q
+
, where

Q+ = max
{
λ | ∃y ∈ Rn, λ =

∑
yi, Q− Diag(y) is PSD

}
,

Q
+

= min
{
λ | ∃y ∈ Rn, λ =

∑
yi, Diag(y) −Q is PSD

}
.

Here, Diag(y) denotes the diagonal matrix with diagonal entries y1, . . . , yn. Com-
putation of Q+ (resp., Q+) is a semidefinite programming problem. Computation

of Q+ (resp., of Q
+
) is the dual semidefinite programming problem. The inequality

Q+ ≥ Q+ (resp., Q
+ ≥ Q+) is based on the fact that if A,B are PSD, then 〈A,B〉 ≥ 0:

Theorem 1.1 asserts that the duality gap Q+ − Q+ (resp., Q
+ − Q+) is zero. This

can be proved in various ways; e.g., see [4], [5], or [6] for more general results.
In [5], [6] Nesterov obtains bounds for Q∗ (resp., Q∗) in terms of Q+, Q+, and

tr(Q) :=
∑n

i=1 Qii. We recall these bounds in section 3; see Theorems 3.2 and 3.3. The
bound given by Theorem 3.3 is always better than the bound given by Theorem 3.2.
In section 4 we give bounds which involve

∑
i �=j |Qij |. The first (see Theorem 4.1) is

a simple generalization of the result in [1]. A particular case of this already appears
in [11]. The second (see Theorem 4.2) is new. The bound provided by Theorem 4.2
is better than the bound provided by Theorem 3.3 in cases where Q+ − tr(Q) (resp.,
tr(Q)−Q+) is “sufficiently close” to

∑
i �=j |Qij |. This occurs, for example, if Qij ≥ 0

(resp., Qij ≤ 0) for i �= j. We also compare Theorems 4.1 and 4.2 and explain how
Theorem 4.2 predicts better accuracy of the MAX-CUT algorithm in [1] when the
output is either more than ≈ 86.6% of the total number of edges or less than ≈ 67.0%
of the total number of edges.

For Q not diagonal, the ratio r = Q+−tr(Q)
Q+−Q+

lies somewhere in the closed interval

[ 1
n ,

n−1
n ]. This follows from Theorem 2.6. When r is not too large, the bound for Q∗

given by Theorem 3.3 is significantly better than the trivial bound Q∗ ≤ tr(Q). If
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Qij ≥ 0 for i �= j, one can improve on this using Theorem 4.2. At the other extreme,
when r is sufficiently close to n−1

n , other bounds come into play (see Corollary 5.5)
which are also significantly better than the trivial bound. In the intermediate case
nothing much seems to be known. It may be that no significant improvement on the
trivial bound is possible in this case; see Example 5.3. The best we are able to show

in general is that, for large n, tr(Q)−Q∗
tr(Q)−Q+

is bounded away from zero by a function of

the form C
3
√
n
, where C is a constant; see Theorem 5.6.

2. Elementary observations. In studying the distribution Q(x), x ∈ {−1, 1}n,
it is natural to consider the mean and standard deviations. Denote by tr(Q) the trace
of Q, i.e., tr(Q) = 〈Q, I〉 =

∑
i Qii.

Lemma 2.1. The mean value of Q on {−1, 1}n is equal to tr(Q).
Proof. The proof is trivial. In the sum∑

x∈{−1,1}n

Q(x) =
∑

x∈{−1,1}n

∑
i,j

Qijxixj

the terms with i �= j cancel.
It follows from Lemma 2.1 (also see [5, Cor. 2.4]) that Q∗ ≤ tr(Q) ≤ Q∗. We

refer to the bound Q∗ ≤ tr(Q) (resp., Q∗ ≥ tr(Q)) as the trivial bound for Q∗ (resp.,
Q∗).

Lemma 2.2. The standard deviation of Q on {−1, 1}n is

2

√∑
i<j

Q2
ij =

√
2
∑
i �=j

Q2
ij .

Proof. The proof is similar to the proof of Lemma 2.1 and is omitted.
We also have the following lower (resp., upper) bound for Q+ (resp., Q+).
Theorem 2.3.

Q+ ≥ tr(Q) −
∑
i �=j

|Qij |,

Q+ ≤ tr(Q) +
∑
i �=j

|Qij |.

Proof. Adding
|Qij |

2 (x2
i + x2

j ) to Qijxixj for j �= i yields the perfect square

|Qij |
2

(xi ± xj)
2.

Consequently the quadratic form Q(x)−
∑n

i=1(Qii −
∑

j �=i |Qij |)x2
i is PSD, so Q+ ≥

tr(Q) −
∑

i �=j |Qij |. The first assertion follows from this using Q+ ≥ Q+ (the easy
half of Theorem 1.1). The second assertion follows from the first by replacing Q by
−Q.

Corollary 2.4 (see [11, Thm. 2]). If Qij ≥ 0 (resp., Qij ≤ 0) for i �= j, then

Q∗ = Q+ = tr(Q) +
∑
i �=j

|Qij |,

(
resp., Q∗ = Q+ = tr(Q) −

∑
i �=j

|Qij |
)
.

In particular, if Q is diagonal, then Q+ = Q∗ = tr(Q) = Q∗ = Q+.
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Proof. Since Q(1, . . . , 1) =
∑

i,j Qij , this is immediate from Theorem 2.3.
Lemma 2.5.

Q∗ ≤ tr(Q) − 2 max{|Qij | | i �= j},
Q∗ ≥ tr(Q) + 2 max{|Qij | | i �= j}.

In particular, Q not diagonal ⇒ Q∗ < tr(Q) < Q∗.
Proof. We prove that if Q∗ ≥ tr(Q)−δ (resp., Q∗ ≤ tr(Q)+δ), then |Qij | ≤ δ

2 for
all i �= j. Replacing Q by Q′ = Q− Diag(Q11, . . . , Qnn), we can assume the diagonal
entries of Q are 0. We can assume n ≥ 2 and, after reindexing, that i = 1, j = 2.
If n = 2, then Q(x) = 2Q12x1x2 and the hypothesis Q∗ = −2|Q12| ≥ −δ implies
|Q12| ≤ δ

2 , as required. If n ≥ 3, use the identity

Q(x1, . . . , xn−1, 0) =
1

2
(Q(x1, . . . , xn−1, xn) + Q(x1, . . . , xn−1,−xn))

and proceed by induction on n.
The invariants Q+ and Q+ provide not only upper and lower bounds for the

distribution Q(x), x ∈ {−1, 1}n, but also, by comparing the relative magnitude of
Q+ − tr(Q) and tr(Q) − Q+, some rough measure of the skewness of the distribu-

tion. Lemma 2.5 implies that the ratio Q+−tr(Q)
tr(Q)−Q+

is well-defined and positive for Q

nondiagonal.
Theorem 2.6. For Q nondiagonal,

1

n− 1
≤ Q+ − tr(Q)∑

i �=j |Qij |
≤ Q+ − tr(Q)

tr(Q) −Q+
≤

∑
i �=j |Qij |

tr(Q) −Q+
≤ n− 1.

Proof. The middle inequalities are immediate from Theorem 2.3. The first in-
equality follows from the last, replacing Q by −Q, so we concentrate on the last
inequality. One reduces easily to the case where Q+ = 0 and Q is PSD. This is
just a matter of replacing Q by Q′ = Q − Diag(y), where y ∈ Rn is chosen so that∑

i yi = Q+ and Q′ is PSD. Scaling, we can assume tr(Q) = 1. We want to show∑
i �=j |Qij | ≤ n − 1. Since Q is PSD there exist vectors w1, . . . , wn in Rn such that

Qij = 〈wi, wj〉. (Use the spectral theorem to decompose Q as Q = DtD and take
w1, . . . , wn to be the columns of D.) Thus

∑
i ‖wi‖2 =

∑
i Qii = tr(Q) = 1. By the

Cauchy–Schwarz inequality, |〈wi, wj〉| ≤ ‖wi‖‖wj‖. Thus

∑
i �=j

|Qij | ≤
∑
i �=j

‖wi‖‖wj‖ =

(∑
i

‖wi‖
)2

−
∑
i

‖wi‖2 =

(∑
i

‖wi‖
)2

− 1.

We know from calculus that the maximum value of f(x) = (
∑

i xi)
2 on the sphere∑

i x
2
i = 1 is n. The maximum is achieved at x = ±( 1√

n
, . . . , 1√

n
). This proves∑

i �=j |Qij | ≤ n− 1 and completes the proof.

Later we establish similar bounds for the ratio Q∗−tr(Q)
tr(Q)−Q∗

; see section 5, Theo-

rem 5.4, for the precise statement. The following example shows that the bounds given
by Theorems 2.6 and 5.4 are best possible.

Example 2.7. Take

Q(x) = (x1 + · · · + xn)2.
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Then tr(Q) = n, Q+ = Q∗ = n2, and Q∗ is either 0 or 1 depending on whether
n is even or odd. We claim that Q+ = 0. Since Q is PSD we see that Q+ ≥ 0.
Choose vectors v1, . . . , vn ∈ Rn such that ‖vi‖ = 1 and v1 + · · · + vn = 0 (always
possible if n ≥ 2) and define X by Xij = 〈vi, vj〉. Then X is PSD, Xii = 1, and
〈Q,X〉 =

∑
i,j〈vi, vj〉 = ‖v1 + · · ·+ vn‖2 = 0. This proves the upper bounds given by

Theorems 2.6 and 5.4 are the best possible. Similarly, looking at

Q(x) = −(x1 + · · · + xn)2,

we see that the lower bounds are also the best possible.

It follows by continuity that each number t ∈ [ 1
n−1 , n − 1] is equal to Q+−tr(Q)

tr(Q)−Q+

for some nondiagonal symmetric n × n matrix Q. For example, if t ∈ [1, n − 1], we
can choose Q of the form Q(x) = a(x1 + · · · + xn)2 + (1 − a)(x1 + x2)

2 for suitable

a ∈ [0, 1]. An analogous result holds for the ratio Q∗−tr(Q)
tr(Q)−Q∗

.

3. Nesterov’s error bounds. The main technical tool used in establishing
bounds for Q∗ and Q∗ is an alternate description of Q∗ and Q∗ proved in [5], which,
in turn, is motivated by the probabilistic argument in [1].

Theorem 3.1 (see [5, Thm. 3.1]).

Q∗ = min

{
2

π
〈Q, arcsin[X]〉 | X is PSD, Xii = 1, i = 1, . . . , n

}
,

Q∗ = max

{
2

π
〈Q, arcsin[X]〉 | X is PSD, Xii = 1, i = 1, . . . , n

}
.

Here, arcsin[X] denotes the matrix with ij entry arcsin(Xij).
In [5] and [6] Nesterov uses Theorem 3.1 to obtain the following result as a special

case of a more general result.
Theorem 3.2 (see [5, Thm. 3.3]).

Q∗ ≤
(

1 − 2

π

)
Q+ +

2

π
Q+,

Q∗ ≥
(

1 − 2

π

)
Q+ +

2

π
Q+.

As explained in [5] and [6], it is possible to improve on Theorem 3.2 with a bound
that takes the trivial bound into account. In the case we are considering here, the
improvement reads as follows. For Q nondiagonal, define

r :=
Q+ − tr(Q)

Q+ −Q+
, r′ :=

tr(Q) −Q+

Q+ −Q+
.(3.1)

Note: r + r′ = 1 and r
r′ = Q+−tr(Q)

tr(Q)−Q+
. By Theorem 2.6, 1

n−1 ≤ r
r′ ≤ n − 1, so

r, r′ ∈ [ 1
n ,

n−1
n ].

Theorem 3.3 (see [5, Thm. 3.5]). For Q nondiagonal,

Q∗ ≤ (1 − ω(r))Q+ + ω(r)Q+,

Q∗ ≥ (1 − ω(r′))Q+ + ω(r′)Q+.

Here r, r′ are defined by (3.1), and ω(y) := 2
π (

√
1 − y2 + y arcsin(y)).

The function ω is increasing on [0, 1], ω(0) = 2
π , ω(1) = 1. In particular, the

bound given by Theorem 3.3 is always better than that given by Theorem 3.2. The
bound given by Theorem 3.3 also improves on the trivial bound. This follows from
the proof of Theorem 3.3 given in [5]. Also see section 5, Corollary 5.1(1).
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4. Error bounds involving
∑∑∑

i�=j|Qij|. Denote by μ the minimal value of the

function 2
π

x
1−cos x on the interval (0, π). μ ≈ 0.8786 is the well-known Goemans–

Williamson approximation ratio. The proof of the following bound copies the argu-
ment given in [1].

Theorem 4.1.

Q∗ ≤ (1 − μ)

(
tr(Q) +

∑
i �=j

|Qij |
)

+ μQ+,

Q∗ ≥ (1 − μ)

(
tr(Q) −

∑
i �=j

|Qij |
)

+ μQ+.

Proof. Replacing Q by Q′ = Q− Diag(Q11, . . . , Qnn) we are reduced to the case
where the diagonal entries of Q are zero. We apply Theorem 3.1. Fix X PSD with
Xii = 1, i = 1, . . . , n, such that 〈Q,X〉 = Q+. Choose εij ∈ {−1, 1} such that
Qij = εij |Qij |. Then

Q∗ ≤ 2

π
〈Q, arcsin[X]〉 =

2

π

∑
i �=j

Qij arcsin(Xij)

=
2

π

∑
i �=j

|Qij | arcsin(εijXij)

= − 2

π

∑
i �=j

|Qij |
(π

2
− arcsin(εijXij)

)
+
∑
i �=j

|Qij |

≤ −μ
∑
i �=j

|Qij |
(
1 − cos

(π
2
− arcsin(εijXij)

))
+
∑
i �=j

|Qij |

= −μ
∑
i �=j

|Qij |(1 − εijXij) +
∑
i �=j

|Qij |

= −μ
∑
i �=j

|Qij | + μ
∑
i �=j

QijXij +
∑
i �=j

|Qij |

= (1 − μ)

(∑
i �=j

|Qij |
)

+ μQ+.

This proves the first assertion. The second assertion follows from the first by replacing
Q by −Q.

See [11, Theorem 3] for a proof of Theorem 4.1 in the special case where Qij ≥ 0
(resp., Qij ≤ 0) for i �= j. In this case, tr(Q)+

∑
i �=j |Qij | (resp., tr(Q)−

∑
i �=j |Qij |) co-

incides with Q+ (resp., Q+); see Corollary 2.4. One obtains the Goemans–Williamson

result in [1] by applying Theorem 4.1 to the quadratic form Q(x) :=
∑

(i,j)∈E
(xi−xj)

2

4 ,

where E is some set of ordered pairs (i, j), i, j ∈ {1, . . . , n}, with i < j (the set of
edges of a graph with vertices 1, . . . , n). The examples considered by Karloff in [2]
show that the constant μ in Theorem 4.1 is the best possible.

We now give another bound involving
∑

i �=j |Qij |, in some sense complementary
to Theorem 4.1, which takes the trivial bound into account. For Q nondiagonal, define

s :=

∑
i �=j |Qij |

tr(Q) +
∑

i �=j |Qij | −Q+
, s′ :=

∑
i �=j |Qij |

Q+ − tr(Q) +
∑

i �=j |Qij |
.(4.1)
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Note: s
1−s =

∑
i�=j |Qij |

tr(Q)−Q+
. By Theorems 2.3 and 2.6, 1 ≤ s

1−s ≤ n−1, so s ∈ [ 12 ,
n−1
n ].

Also, s
1−s ≥ Q+−tr(Q)

tr(Q)−Q+
= r

r′ = r
1−r , so s ≥ r and s = r iff Q+ − tr(Q) =

∑
i �=j |Qij |.

A similar argument shows that s′ ∈ [ 12 ,
n−1
n ], s′ ≥ r′, and s′ = r′ iff tr(Q) − Q+ =∑

i �=j |Qij |.
Theorem 4.2. For Q nondiagonal,

Q∗ ≤ (1 − β(s)) tr(Q) + β(s)Q+,

Q∗ ≥ (1 − β(s′)) tr(Q) + β(s′)Q+.

Here s, s′ are defined by (4.1), and β(y) := 2
π maxt∈(0,1]{arcsin(t) − g(t) y

1−y}, where

g(t) :=
√

( arcsin(t)
t )2 − 1 − arctan(

√
( arcsin(t)

t )2 − 1).
Proof. Replacing Q by Q′ = Q− Diag(Q11, . . . , Qnn) we are reduced to the case

where the diagonal entries of Q are zero. Pick X PSD with Xii = 1, i = 1, . . . , n, and
〈Q,X〉 = Q+. Let Xt := tX+(1− t)I, t ∈ [0, 1]. Then arcsin[Xt] = (π2 −arcsin(t))I+
arcsin[tX] and, by Theorem 3.1,

Q∗ ≤ 2

π
〈Q, arcsin[Xt]〉

=

(
1 − 2

π
arcsin(t)

)
〈Q, I〉 +

2

π
〈Q, arcsin[tX]〉

=
2

π
〈Q, arcsin[tX]〉

=
2

π
〈Q, arcsin[tX] − arcsin(t)X〉 +

2

π
arcsin(t)〈Q,X〉

=
2

π

∑
i �=j

Qij(arcsin(tXij) − arcsin(t)Xij) +
2

π
arcsin(t)Q+.

Write Qij = εij |Qij |, εij ∈ {−1, 1}, and consider the individual terms

Qij(arcsin(tXij) − arcsin(t)Xij) = |Qij |(arcsin(tεijXij) − arcsin(t)εijXij)

in the sum. Since arcsin(t)x ≥ arcsin(tx) for x ∈ (0, 1], the terms with εijXij ≥ 0
contribute negatively. Terms with εijXij < 0 contribute at most g(t)|Qij |, where g(t)
denotes the maximum of the function

ht(x) = arcsin(t)x− arcsin(tx)

on the interval (0, 1]. One checks that the maximum is achieved at x=

√
( arcsin(t)

t )2−1

arcsin(t) , so

g(t) = arcsin(t)x− arcsin(tx)

=

√(
arcsin(t)

t

)2

− 1 − arcsin

⎛
⎝
√

( arcsin(t)
t )2 − 1

arcsin(t)
t

⎞
⎠

=

√(
arcsin(t)

t

)2

− 1 − arctan

⎛
⎝
√(

arcsin(t)

t

)2

− 1

⎞
⎠ .

This proves

Q∗ ≤ 2

π
g(t)

∑
i �=j

|Qij | +
2

π
arcsin(t)Q+.
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Table 1

y ω(y) δ(y)
0.50 0.718 0.895
0.55 0.736 0.884
0.60 0.755 0.875
0.65 0.777 0.871
0.70 0.800 0.873
0.75 0.826 0.879
0.80 0.854 0.891
0.85 0.885 0.908
0.90 0.919 0.931
0.95 0.957 0.961

Finally, using s
1−s =

∑
i�=j |Qij |

tr(Q)−Q+
=

∑
i�=j |Qij |
−Q+

, this yields

Q∗ ≤ 2

π
g(t)

∑
i �=j

|Qij | +
2

π
arcsin(t)Q+

= − 2

π
g(t)

s

1 − s
Q+ +

2

π
arcsin(t)Q+ =

2

π

(
arcsin(t) − g(t)

s

1 − s

)
Q+.

Since this holds for any t ∈ (0, 1], the first assertion is now clear. The second assertion
follows from the first.

Theorem 4.2 can also be formulated as follows.
Corollary 4.3. For Q nondiagonal,

Q∗ ≤ (1 − δ(s))

(
tr(Q) +

∑
i �=j

|Qij |
)

+ δ(s)Q+,

Q∗ ≥ (1 − δ(s′))

(
tr(Q) −

∑
i �=j

|Qij |
)

+ δ(s′)Q+,

where δ(y) := y + β(y)(1 − y) and β(y) is defined as in Theorem 4.2.
Proof. By Theorem 4.2,

tr(Q) +
∑

i �=j |Qij | −Q∗

tr(Q) +
∑

i �=j |Qij | −Q+
≥

tr(Q) +
∑

i �=j |Qij | − (1 − β(s)) tr(Q) − β(s)Q+

tr(Q) +
∑

i �=j |Qij | −Q+

=

∑
i �=j |Qij | + β(s)(tr(Q) −Q+)

tr(Q) +
∑

i �=j |Qij | −Q+
= s + β(s)(1 − s).

This proves the first assertion. The second assertion follows from the first.
Theorem 4.2 improves on Theorem 3.3 when Q+ (resp., Q+) is “sufficiently close”

to tr(Q) +
∑

i �=j |Qij | (resp., tr(Q)−
∑

i �=j |Qij |); see Corollary 4.3 and Table 1. This
occurs, for example, when Qij ≥ 0 (resp., Qij ≤ 0) for i �= j; see Corollary 2.4.

It is possible to show that δ(y) ≤ μ ⇔ y ∈ [a, b], where a ≈ 0.5777, b ≈ 0.7457,
so Theorem 4.2 improves on Theorem 4.1 when s ∈ [0.5, 0.5777) ∪ (0.7457, 1] (resp.,
when s′ ∈ [0.5, 0.5777) ∪ (0.7457, 1]). It is important to note that this does not
contradict the result in [2]. The examples in [2] showing that the Goemans–Williamson
approximation ratio is the best possible have s (resp., s′) close to 0.5920, i.e., well
within the interval [0.5777, 0.7457].
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Thus Theorem 4.2 allows one to predict better accuracy of the output of (the natu-
ral generalization of) the Goemans–Williamson MAX-CUT algorithm in certain cases,
depending on s. Specifically, in terms of the original Goemans–Williamson MAX-CUT

algorithm, since 1
(2)(0.5777) ≈ 0.8655 and 1

(2)(0.7467) ≈ 0.6705 one can predict better

accuracy when the output value is either ≥ 86.6% of the total number of edges or
≤ 67.0% of the total number of edges. By way of comparison, 1

(2)(0.5920) ≈ 0.8446, so

the Karloff examples have cut size ≈ 84.5% of the total number of edges.

5. Improvements on the trivial bound. To simplify the presentation, we
focus our attention now on Q∗. The reader will have no difficulty at this point in
formulating the corresponding results for Q∗.

If n is large and r (resp., s) is relatively close to n−1
n , then tr(Q)−Q+ is relatively

small compared to Q+ − tr(Q) (resp.,
∑

i �=j |Qij |). So, in this sense, the trivial bound
Q∗ ≤ tr(Q) for Q∗ is already a good bound. Whether it is the best possible is another
question. This latter question is the one we are concerned with in this section.

To allow comparison with the trivial bound, we note that Theorems 3.3 and 4.1
can also be formulated as follows.

Corollary 5.1. For Q nondiagonal,
(1) Q∗ ≤ (1 − α(r)) tr(Q) + α(r)Q+,
(2) Q∗ ≤ (1 − γ(s)) tr(Q) + γ(s)Q+,

where r is defined by (3.1), s is defined by (4.1), α(y) := 2
π

√
1−y2−y arccos(y)

1−y , and
γ(y) := μ−y

1−y .

Proof. (1) By Theorem 3.3,

tr(Q) −Q∗
tr(Q) −Q+

≥ tr(Q) − (1 − ω(r))Q+ − ω(r)Q+

tr(Q) −Q+

= ω(r)
Q+ −Q+

tr(Q) −Q+
− Q+ − tr(Q)

tr(Q) −Q+

= ω(r)
1

1 − r
− r

1 − r
=

ω(r) − r

1 − r

=
2
π (

√
1 − r2 + r arcsin(r)) − r

1 − r

=
2

π

√
1 − r2 − r(π2 − arcsin(r))

1 − r

=
2

π

√
1 − r2 − r arccos(r)

1 − r
.

(2) By Theorem 4.1,

tr(Q) −Q∗
tr(Q) −Q+

≥
tr(Q) − (1 − μ)(tr(Q) +

∑
i �=j |Qij |) − μQ+

tr(Q) −Q+

= μ
tr(Q) +

∑
i �=j |Qij | −Q+

tr(Q) −Q+
−

∑
i �=j |Qij |

tr(Q) −Q+

= μ
1

1 − s
− s

1 − s
=

μ− s

1 − s
.

Clearly Theorem 4.1 improves on the trivial bound iff s < μ. The function α is
positive and decreasing on [0, 1), α(0) = 2

π , limy→1− α(y) = 0. The function β defined
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Table 2

y α(y) β(y) γ(y)
0.50 0.436 0.789 0.757
0.55 0.412 0.743 0.730
0.60 0.388 0.688 0.696
0.65 0.361 0.632 0.653
0.70 0.334 0.576 0.595
0.75 0.304 0.517 0.514
0.80 0.271 0.456 0.393
0.85 0.234 0.389 0.190
0.90 0.191 0.314 −0.214
0.95 0.135 0.219 −1.429

in the statement of Theorem 4.2 is positive and decreasing on [12 , 1), β( 1
2 ) ≈ 0.7895,

limy→1− β(y) = 0. Thus Theorems 3.3 and 4.2 both improve on the trivial bound,
but for r (resp., s) close to n−1

n with n large, the improvement is only marginal. See
Table 2. The next result describes more exactly the behavior of α(y) and β(y) for y
close to 1.

Theorem 5.2.

(1) limy→1−
α(y)√
1−y

= ( 2
π )( 2

√
2

3 ) ≈ ( 2
π )(0.9428).

(2) limy→1−
β(y)√
1−y

= ( 2
π )( 2

31/4 ) ≈ ( 2
π )(1.5197).

Proof. The proof of (1) is straightforward, e.g., use l’Hôpital’s rule. For (2),
denote by t = ty the value of t that maximizes the function in the formula for β(y).
Clearly ty → 0 as y → 1−. Using power series approximations, one checks that, for y
close to 1, ty ≈ 33/4

√
1 − y. The rest of the computation is standard.

For fixed n, there exists a positive real number ε ≤ 1 (depending on n), such that
tr(Q)−Q∗
tr(Q)−Q+

≥ ε holds for all nondiagonal symmetric n × n matrices Q, i.e., such that

Q∗ ≤ (1 − ε) tr(Q) + εQ+ holds for all symmetric n × n matrices Q. For example,
we can take ε = α(n−1

n ) or β(n−1
n ). Alternatively, one can prove the result directly,

using Lemma 2.5 and a compactness argument.
Denote by ρn the largest ε ≤ 1 such that Q∗ ≤ (1 − ε) tr(Q) + εQ+ holds for all

symmetric n×n matrices Q. One checks easily that ρ1 = ρ2 = 1. Recent computations
by Pereira [7] show that ρ3 = ρ4 = ρ5 = ρ6 = 2

3 . Of course, ρn is a nonincreasing
function, so ρn ≤ 2

3 for n ≥ 7. Nothing else seems to be known about upper bounds for

ρn. The quadratic form Q(x) = (x1 +x2 +x3)
2 gives tr(Q)−Q∗

tr(Q)−Q+
= 2

3 ; see Example 2.7.

The author knows of no example worse than this.1 The following question appears to
be open.

Example 5.3. Question: Is it true that limn→∞ ρn = 0?
Our goal here is to find a better lower bound for ρn. According to Theorem 5.2

(2), for large n,

β

(
n− 1

n

)
≈ 2

π
1.5197

√
1 − n− 1

n
≈ 0.9675√

n
;

i.e., we have a lower bound for ρn which approaches zero like 1√
n
. We proceed to

improve on this, obtaining a lower bound for ρn which approaches zero like 1
3
√
n
. We

begin by proving the analogue of Theorem 2.6 referred to earlier.

1If Conjecture 2.12 at the end of Karloff’s paper [2] is true, then one can find examples with
tr(Q)−Q∗
tr(Q)−Q+

close to 2
π

(i.e., just slightly worse than 2
3
) for large n.
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Theorem 5.4. For Q nondiagonal,

(1) if n is even, then 1
n−1 ≤ Q∗−tr(Q)

tr(Q)−Q∗
≤ n− 1;

(2) if n is odd, then 1
n ≤ Q∗−tr(Q)

tr(Q)−Q∗
≤ n.

Proof. We can assume the diagonal entries of Q are 0. For any subset I of
{1, . . . , n}, denote by QI(x) the quadratic form obtained from Q(x) by replacing xi

by −xi for each i ∈ I. For each pair of indices i < j, if either both of i and j are
in I or both of i and j are not in I, then the coefficient of xixj in QI(x) is 2Qij . In
the remaining cases, i.e., where one of i, j is in I and the other is not, the coefficient
of xixj in QI(x) is −2Qij . For 1 ≤ k < n denote by Qk(x) the sum of the QI(x), I
running through all k-element subsets of {1, . . . , n}. For fixed i < j, xixj appears with

coefficient −2Qij in 2
( n − 2
k − 1

)
of the QI(x) and with coefficient 2Qij in the remainder

of the QI(x). It follows that

Qk(x) =

(
n
k

)
Q(x) − 4

(
n− 2
k − 1

)
Q(x) =

(n− 2k)2 − n

n(n− 1)

(
n
k

)
Q(x).

Let Q∗ = −δ. Then QI(x) ≥ −δ for each x ∈ {−1, 1}n, so Qk(x) ≥ −( n
k

)
δ,

i.e., −Qk(x) ≤ ( n
k

)
δ. If n > (n − 2k)2, this yields Q(x) ≤ n(n−1)

n−(n−2k)2 δ. For n odd,

say n = 2� − 1, apply this with k = � to obtain Q(x) ≤ nδ. Similarly, for n even,
say n = 2�, apply this with k = � to obtain Q(x) ≤ (n − 1)δ. A similar argument
shows that if Q∗ = δ, then for any x ∈ {−1, 1}n, Q(x) ≥ −nδ if n is odd and
Q(x) ≥ −(n− 1)δ if n is even.

Corollary 5.5.

(1) If Q is nondiagonal, then

Q∗ ≤
(

1 − rα(r′)

r′(2�− 1)

)
tr(Q) +

rα(r′)

r′(2�− 1)
Q+.

(2) If, in addition, Qij ≥ 0 for i �= j, then

Q∗ ≤
(

1 − r

r′(2�− 1)

)
tr(Q) +

r

r′(2�− 1)
Q+.

Here, r, r′ are defined by (3.1) and � is defined by n = 2� if n is even, n = 2�− 1 if n
is odd.

Proof. (1) After shifting and scaling, we can assume that tr(Q) = 0 and Q+ = −1,
so Q+ = r

r′ . Applying Corollary 5.1(1) to −Q yields Q∗ ≥ (1 − α(r′)) tr(Q) +

α(r′)Q+ = α(r′)Q+. By Theorem 5.4, 2�− 1 ≥ Q∗

−Q∗
. This implies Q∗ ≤ − Q∗

2�−1 ≤
−α(r′)Q+

2�−1 = − rα(r′)
r′(2�−1) . The proof of (2) is similar, except that now, by Corollary 2.4,

we have Q∗ = Q+.

Note: As y increases to n−1
n , yα(1−y)

(1−y)(2�−1) increases to α( 1
n ) if n is even and to

n−1
n α( 1

n ) if n is odd, and, similarly, y
(1−y)(2�−1) increases to 1 if n is even and to n−1

n

if n is odd. In particular, the bounds provided by Corollary 5.5 are appreciably better
than the trivial bound if r is sufficiently close to n−1

n .
Now consider

αn := min
y∈[ 1

n ,n−1
n ]

{
max

{
α(y),

yα(1 − y)

(1 − y)(2�− 1)

}}
,
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Table 3

n αn β(n−1
n

) γ(n−1
n

) βn

2 0.4360 0.7895 0.7572 0.7895
3 0.3526 0.6134 0.6358 0.6440
4 0.3497 0.5174 0.5144 0.6440
5 0.3093 0.4560 0.3930 0.5467
0 0.2653 0.3137 0.4524
15 0.2300 0.2539 0.3857
20 0.2148 0.2190 0.3579
25 0.1980 0.1954 0.3278
50 0.1615 0.1389 0.2639
100 0.1293 0.0975 0.2097
200 0.1035 0.0685 0.1667

where � is defined as in Corollary 5.5. This is a lower bound for ρn. See Table 3
for a comparison of the lower bounds αn, β(n−1

n ), and γ(n−1
n ). The bound given by

β(n−1
n ) is best for n in the range 2 ≤ n ≤ 23, n �= 3. For n = 3 the bound given by

γ(n−1
n ) is best. For n ≥ 24 the bound given by αn is best. It is pretty clear that these

lower bounds are nowhere near optimal.
The fifth column in Table 3 gives lower bounds for the function ρ′n := the maxi-

mum ε ≤ 1 such that Q∗ ≤ (1− ε) tr(Q)+ εQ+ holds for all symmetric n×n matrices
Q such that Qij ≥ 0 for i �= j. The function βn is defined by

βn := min
y∈[ 12 ,

n−1
n ]

{
max

{
β(y),

y

(1 − y)(2�− 1)
, γ(y)

}}
.

Again, it is pretty clear that this lower bound for ρ′n is nowhere near optimal.
Theorem 5.6. For large n,
(1) αn ≈ 0.6121

3
√
n

;

(2) βn ≈ 0.9782
3
√
n

.

Proof. (1) On the interval [ 1
n ,

n−1
n ], α(y) is decreasing and yα(1−y)

(1−y)(2�−1) is increas-

ing. Thus the minimum occurs when α(y) = yα(1−y)
(1−y)(2�−1) . It follows that y → 1 as

n → ∞ and

nα(y)3 = n
yα(1 − y)

(1 − y)(2�− 1)
α(y)2

=
n

2�− 1
yα(1 − y)

(
α(y)√
1 − y

)2

→ (1)(1)

(
2

π

)(
2

π

)2
(

2
√

2

3

)2

as n → ∞.

Here, we use Theorem 5.2(1). This implies limn→∞ 3
√
nαn = 2

π ( 2
√

2
3 )2/3 ≈ 0.6121.

(2) The proof is similar. For large n, the minimum on the interval [12 ,
n−1
n ] occurs

when β(y) = y
(1−y)(2�−1) and γ(y) is negative. Also y → 1 as n → ∞ and

nβ(y)3 = n
y

(1 − y)(2�− 1)
β(y)2

=
n

2�− 1
y

(
β(y)√
1 − y

)2

→ (1)(1)

(
4

31/4π

)2

as n → ∞.

Here, we use Theorem 5.2(2). This implies limn→∞ 3
√
nβn = ( 4

31/4π
)2/3 ≈ 0.9782.



ERROR ESTIMATES IN THE OPTIMIZATION OF POLYNOMIALS 309

6. Conclusion. This paper gives error estimates when Q∗ is approximated by
Q+. The bounds provided by Theorems 3.2 and 3.3 come from [5]. Theorem 4.1 is
a generalization of the result in [1]. A special case of Theorem 4.1 already appears
in [11]. The bound given in Theorem 4.2 is new, improves on Theorem 3.3 when s
is close to r, and provides improved estimates in the MAX-CUT algorithm in [1] for
s /∈ [0.5777, 0.7457]. The bounds given by Corollary 5.5 are also new, but are only
useful when r is sufficiently close to n−1

n . The situation regarding ρn is unsatisfactory.
One would like to know the limiting value of ρn as n → ∞. Is it zero, or is it positive?
The best we are able to show is that, for large n, ρn is bounded away from zero by a
function of the form C

3
√
n
, where C is a constant.

Acknowledgment. The author wishes to thank Markus Schweighofer for shar-
ing his expertise.
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STRONG CHIP FOR INFINITE SYSTEM OF CLOSED CONVEX
SETS IN NORMED LINEAR SPACES∗
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Abstract. For a general (possibly infinite) system of closed convex sets in a normed linear space
we provide several sufficient conditions for ensuring the strong conical hull intersection property. One
set of sufficient conditions is given in terms of the finite subsystems while the other sets are in terms
of the relaxed interior-point conditions together with appropriate continuity of the associated set-
valued function on the (topologized) index set I. In the special case when I is finite and X is finite
dimensional, one of these results reduces to a classical result of Rockafellar.

Key words. system of closed convex sets, interior-point condition, strong conical hull intersec-
tion property
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1. Introduction. The notion of the strong CHIP (conical hull intersection prop-
erty) was introduced by Deutsch, Li, and Ward in [12, 13] for a finite family of closed
convex sets in a Euclidean space (or a Hilbert space) and has been successfully ap-
plied in the reformulation of some best approximation problems. This notion closely
relates other fundamental concepts such as bounded linear regularity, G-property of
Jameson, error bounds in convex optimization [1, 3], and the BCQ (basic constraint
qualification) as well as the perturbations for finite convex systems of inequalities.
See [5, 6, 8, 12, 13, 14, 18, 19, 24, 25] and references therein, especially in [20], where
the strong CHIP was defined for an arbitrary family of closed convex sets in a Ba-
nach space and utilized in the study of general systems of infinite convex inequalities,
such as the system that naturally arises from the problem of best restricted range ap-
proximation in the space C(Q) of complex-valued continuous functions on a compact
metric space Q under quite general constraints. This problem was first presented and
formulated by Smirnov and Smirnov in [31, 32], where each Ωt was assumed to be a
disk in C. Later in [33, 34, 35] and also more recently in [17, 20], the constraint sets Ωt

have been relaxed but still remain to assume the strong interior-point condition (in
particular, int Ωt �= ∅ for each t ∈ Q). This unfortunately excludes the interesting case
when some Ωt is a line segment or a singleton in C. As demonstrated in an accompa-
nying paper [22], the results obtained in the present paper have enabled us to study
the restricted range approximation problem under much less restrictive assumptions
by allowing the case that int Ωt = ∅ for some t ∈ Q. The present paper is devoted to
providing sufficient conditions for a (finite or infinite) family {C,Ci : i ∈ I} of closed
convex sets in a Banach (or normed linear) space to have the strong CHIP.

In expanding and improving the known results on the sufficient conditions for the
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strong CHIP for {C,Ci : i ∈ I} from the case when the index set I is finite to the case
when I may be infinite, this paper presents two types of results. One type is on the
natural approach to answer the question of whether or not the following implication
is valid:

{C,Cj : j ∈ J} has the strong CHIP for each finite subset J of I

=⇒ {C,Ci : i ∈ I} has the strong CHIP.

While the answer to this question is negative in general (see [13, Example 1]), we
provide some reasonable conditions in section 5 to ensure the validity of the above
implication. Another type of sufficient conditions presented in this paper is given
more directly (in terms of the system itself rather than via its finite subsystems).
In this connection, the starting point of our study is the following theorem. “DLW”
refers to the authors Deutsch, Li, and Ward of [12, 13], where the assertions regarding
the sufficiency for (a) and for (b) were stated and proved in the Hilbert space setting,
but the arguments can be modified to suit the Banach space setting. For the sake
of completeness and also for more convenient applications, we will present a direct
proof for a slightly more general form in the next section (see also [26] for another
approach).

Theorem DLW. Let I be a finite index set and {C,Ci : i ∈ I} be a finite family
of nonempty closed convex sets in a Banach space X. Let x0 ∈ C ∩ (∩i∈I Ci). Then
the family {C,Ci : i ∈ I} has the strong CHIP at x0 provided that at least one of the
following conditions is satisfied:

(a) C
⋂

(int
⋂

i∈I Ci) �= ∅.
(b) riC

⋂
(
⋂

i∈I Ci) �= ∅ and each Ci is a polyhedron (where “ ri” means “relative
interior”).

(c) There exists a subset I0 of I such that Ci is a polyhedron for each i ∈ I \ I0
and

riC
⋂(

int
⋂
i∈I0

Ci

)⋂⎛
⎝ ⋂

i∈I\I0

Ci

⎞
⎠ �= ∅.(1.1)

The sufficiency of (c) follows directly from (a) and (b). The condition (a) is
sometimes referred to as the strong interior-point condition (or Slater condition; see,
e.g., [13]) which is equivalent (as I is finite) to the following interior-point condition:

(a′) C
⋂

(
⋂

i∈I intCi) �= ∅.
As shown in [20], when I is infinite, the above (a), (b), and (c) are no longer

sufficient for the strong CHIP. A natural condition that one would like to impose is
the continuity assumption for the set-valued mapping i �→ Ci; thus it is judicious for
us to assume henceforth that

the set I is a compact metric space.(1.2)

(When I is finite, it will be regarded as a compact metric space under the discrete
metric; needless to say, in this case the continuity assumption is automatically satis-
fied.)

Under an appropriate continuity assumption we show in Theorem 4.1 that (a)
implies the strong CHIP at x0 ∈ C ∩ (∩i∈I Ci) provided that C is finite dimensional
or the set Irb

C (x0) of “C-relative boundary indices” for x0 is finite. We remark that
even in the case when C is finite dimensional, our results are genuinely an extension



STRONG CHIP FOR INFINITE CLOSED CONVEX SET SYSTEMS 313

of Theorem DLW as some (or all) sets Ci can be infinite dimensional. In a similar
fashion other parts of Theorem DLW are extended in section 4. In fact, we use
the following condition, somewhat weaker than (c), to establish a sufficient condition
result in Theorem 4.3. The family {C,Ci : i ∈ I} is said to satisfy the weak-strong
interior-point condition with the pair (I1, I2) if there exist disjoint finite subsets I1, I2
of I satisfying the following two properties:

riC
⋂⎛

⎝int
⋂

i∈I\(I1∪I2)

Ci

⎞
⎠⋂(⋂

i∈I1

riCi

) ⋂
i∈I2

Ci �= ∅;(1.3)

Ci is a polyhedron for each i ∈ I2.(1.4)

This condition, in contrast to the interior-point condition, enables us to consider the
case when some Ci neither is a polyhedron nor has an interior point. Specializing to
the case when I = I1 ∪ I2 (thus int(∩i∈I\(I1∪I2) Ci), to be read as X by convention),
a corollary of Theorem 4.3 is the following infinite dimension extension of a result of
Rockafellar [27, Corollary 23.8.1, p. 223]:

Let I = J ∪K be finite such that Ck is a polyhedron for each k ∈ K and suppose
that

riC
⋂⎛

⎝⋂
j∈J

riCj

⎞
⎠⋂( ⋂

k∈K

Ck

)
�= ∅.(1.5)

Then the system {C,Ci : i ∈ I} has the strong CHIP if at least one of the following
conditions is satisfied.

(a) At least one of {C,Cj : j ∈ J} is finite dimensional.
(b) Cj is finite codimensional for each j ∈ J .

2. Notations and preliminary results. The notations used in the present
paper are standard (cf. [7, 16]). In particular, we assume that X is a normed linear
space throughout the whole paper, unless we explicitly state otherwise. We use B(x, ε)
to denote the closed ball with center x and radius ε. For a set Z in X (or in Rn),
the interior (resp., relative interior, closure, convex hull, convex cone hull, linear hull,
affine hull, boundary, relative boundary) of Z is denoted by intZ (resp., riZ, Z,
convZ, coneZ, spanZ, aff Z, bdZ, rbZ), and the negative polar cone Z� is the set
defined by

Z� = {x∗ ∈ X∗ : 〈x∗, z〉 ≤ 0 for all z ∈ Z}.

The normal cone of Z at z0 is denoted by NZ(z0) and defined by NZ(z0) = (Z−z0)
�.

For convenience of printing we sometimes use N(z0;Z) in place of NZ(z0). Let A be
a closed convex nonempty subset of X. The interior and boundary of Z relative to A
are denoted by rintA Z and bdA Z, respectively; they are defined to be, respectively,
the interior and boundary of the set aff A∩Z in the metric space aff A. Thus, a point
z ∈ rintA Z if and only if there exists ε > 0 such that

z ∈ (aff A) ∩ B(z, ε) ⊆ Z,(2.1)

while z ∈ bdA Z if and only if z ∈ aff A and, for any ε > 0, (aff A)∩B(z, ε) intersects
Z and its complement. Let R− denote the subset of R consisting of all nonpositive real
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numbers. For a proper extended real-valued convex function on X, the subdifferential
of f at x ∈ X is denoted by ∂f(x) and defined by

∂f(x) = {z∗ ∈ X∗ : f(x) + Re 〈z∗, y − x〉 ≤ f(y) for all y ∈ X},

where 〈z∗, x〉 denotes the value of a functional z∗ in X∗ at x ∈ X, i.e., 〈z∗, x〉 = z∗(x).
For simplicity of notations, we will usually assume (with the exception of Propo-

sition 2.1 and section 5) that the scalar field of X is R and that Re 〈x∗, x〉 is to be
replaced by 〈x∗, x〉.

Remark 2.1. (a) Let f be a continuous convex function on X and x ∈ X with
f(x) = 0. It is easy to see that cone(∂f(x)) ⊆ Nf−1(R−)(x), and that the equality
holds if f is an affine function or if x is not a minimizer of f ; see [7, Corollary 1,
p. 56].

(b) The directional derivative of the function f at x in the direction d is denoted
by f ′

+(x, d):

f ′
+(x, d) := lim

t→0+

f(x + td) − f(x)

t
.(2.2)

We recall [7, Proposition 2.2.7] that, if x is a continuity point of f ,

∂f(x) = {z∗ ∈ X∗ : 〈z∗, d〉 ≤ f ′
+(x, d) for all d ∈ X}(2.3)

and

f ′
+(x, d) = max{〈z∗, d〉 : z∗ ∈ ∂f(x)}.(2.4)

Let {Ai : i ∈ J} be a family of subsets of X. The set
∑

i∈J Ai is defined by

∑
i∈J

Ai =

{{∑
i∈J0

ai : ai ∈ Ai, J0 ⊆ J being finite
}

if J �= ∅,
{0} if J = ∅.

(2.5)

The following concept of the strong CHIP plays an important role in optimization
theory (see [1, 3, 8, 10, 11, 30]) and is due to [12, 13] in the case when I is finite and
to [20] in the case when I is infinite.

Definition 2.1. Let {Ci : i ∈ I} be a collection of convex subsets of X and
x ∈

⋂
i∈I Ci. The collection is said to have

(a) the strong CHIP at x if N⋂
i∈I Ci

(x) =
∑

i∈I NCi
(x), that is,

(⋂
i∈I

Ci − x

)�

=
∑
i∈I

(Ci − x)�;(2.6)

(b) the strong CHIP if it has the strong CHIP at each point of ∩i∈I Ci.
Consider a convex inequality system (CIS ) defined by

gi(x) ≤ 0, i ∈ I,(2.7)

where x ∈ X and each gi is a real continuous convex function on X. We always
assume that the solution set S of the system (CIS ) is nonempty, i.e.,

S := {x ∈ X : gi(x) ≤ 0 for all i ∈ I} �= ∅.(2.8)
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Let G(·) denote the sup-function [16] of {gi}:

G(x) := sup
i∈I

gi(x) for all x ∈ X.

Then S is also the solution set of the convex inequality

G(x) ≤ 0.(2.9)

In this paper we assume throughout that

G(x) < +∞ for all x ∈ X(2.10)

and that G is continuous on X. These blanket assumptions are automatically sat-
isfied if {gi : i ∈ I} is locally uniformly bounded. Moreover, the continuity of G
automatically follows from (2.10) if X is finite dimensional.

Let I(x) denote the set of all active indices i: I(x) = {i ∈ I : gi(x) = G(x)}.
Following [15, 23], we define

D′(x) := conv
⋃

i∈I(x)

∂gi(x), x ∈ X.(2.11)

Note that, by (2.5), D′(x) = {0} if I(x) = ∅.
The following theorem will play a key role in section 4. It is a known result; see,

for example, [16, 23] for the special case when X is finite dimensional and [21] for the
general case (the proof presented in [21] is valid for normed linear spaces though the
result was stated in the Banach space setting).

Theorem 2.1. Suppose that I is a compact metric space and that the function
i �→ gi(x) is upper semicontinuous for each x ∈ X. Let x0 ∈ C. Then I(x0) �= ∅ and
the following assertions hold.

(i) If spanC is finite dimensional, then

NC(x0) + ∂G(x0) = NC(x0) + D′(x0).(2.12)

(ii) ∂G(x0) = D′(x0) provided that I(x0) is finite.
Theorem 2.2 below is a slight extension (applicable to convex, but not necessarily

closed, sets in a normed space). To prepare for the proof we begin with a simple
lemma.

Lemma 2.1. Assume that C is a polyhedron in X defined by

C =
k⋂

i=1

{x ∈ X : 〈hi, x〉 ≤ di},(2.13)

where hi ∈ X∗ \ {0} and di is a real number for each i = 1, . . . , k. Let x0 ∈ bdC and
let I(x0) = {i ∈ {1, . . . , k} : 〈hi, x0〉 = di}. Then

NC(x0) = cone{hi : i ∈ I(x0)}.(2.14)

Consequently, {Ci : i = 1, 2, . . . , n} has the strong CHIP if each Ci is a polyhedron
of X.

Proof. We need only prove that the set on the left-hand side of (2.14) is con-
tained in that on the right-hand side. To do this, suppose on the contrary that
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y∗ ∈ NC(x0) \ cone{hi : i ∈ I(x0)}. Since cone{hi : i ∈ I(x0)} is closed as I is finite,
by the separation theorem, there exists an element x∗∗ ∈ X∗∗ such that

〈x∗∗, y∗〉 > 0 ≥ sup{〈x∗∗, h〉 : h ∈ cone{hi : i ∈ I(x0)}}.(2.15)

Moreover, as I(x0) is a finite set, there exists x ∈ X such that

〈y∗, x〉 = 〈x∗∗, y∗〉 and 〈hi, x〉 = 〈x∗∗, hi〉 for each i ∈ I(x0).(2.16)

Hence, by (2.15) and (2.16), we have that tx + x0 ∈ C for some t > 0 small enough.
But 〈y∗, (tx + x0) − x0〉 = t〈y∗, x〉 > 0, which contradicts that y∗ ∈ NC(x0), and the
lemma is proved.

Let Y be a subspace of X. We use NY to represent the normal cone operator
taken in Y ; namely, for any subset A of Y , NY

A (x) is the set

NY
A (x) = {y∗ ∈ Y ∗ : 〈y∗, z − x〉 ≤ 0 for all z ∈ A}.(2.17)

Corollary 2.1. Let Z ⊆ X be a closed subspace and C ⊆ X a polyhedron. Let
x0 ∈ C ∩ Z and let NZ

C∩Z(x0) denote the normal cone of C ∩ Z at x0 taken in Z.
Then, for each x∗

0 ∈ NZ
C∩Z(x0), there exists x∗ ∈ NC(x0) such that x∗ is an extension

of x∗
0 (an extension of x∗

0 obtained from Lemma 2.1 will be referred to as a natural
extension of x∗

0).
Theorem 2.2. Let I be a finite index set and {C,Ci : i ∈ I} be a finite family

of nonempty convex sets in a normed linear space X. Let x0 ∈ C ∩ (∩i∈I Ci). Then
the family {C,Ci : i ∈ I} has the strong CHIP at x0 provided that at least one of
conditions (a), (b), and (c) in Theorem DLW is satisfied.

Proof. In the case (a), if X is a Banach space and {C,Ci : i ∈ I} is a family of
nonempty closed convex sets, the proof is the same as that given in [13], except that
here we apply [2, Theorem 2.6, p. 189] instead of [2, Corollary 2.5, p. 113]. Note further
that the result is valid for any normed linear space X and any family {C,Ci : i ∈ I}
of nonempty convex sets. However, this observation does not constitute a genuine
extension. Indeed, let U denote the open unit ball of X. Let C and Ci, respectively,
denote the closures of C and Ci in X. By (a), there exist c ∈ C and ε > 0 such that

(c + εU) ∩X ⊆ Ci for each i ∈ I.(2.18)

We claim that

c + εU ⊆ Ci for each i ∈ I.(2.19)

Indeed, let u ∈ U . Then there exists a sequence {xn} ⊆ U ∩ X convergent to u.
Then by (2.18) {c + εxn} ⊆ Ci, which implies that c + εu ∈ Ci. Thus (2.19) is clear.
Let x0 ∈ C

⋂
(
⋂

i∈I Ci). Then one can apply the Banach space version of (a) in
Theorem 2.2 to conclude that

NC∩(∩i∈I Ci)
(x0) ⊆ NC(x0) +

∑
i∈I

NCi
(x0)

and hence

NC∩(∩i∈I Ci)(x0) = NC∩(∩i∈I Ci)
(x0) ⊆ NC(x0) +

∑
i∈I

NCi(x0)
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because C ∩ (∩i∈I Ci) = C ∩ (∩i∈I Ci) thanks to (2.19). This completes the proof
of (a).

Now let us verify the conclusion in the case (b). Let x0 ∈ C
⋂

(
⋂

i∈I Ci) and let Z
denote the subspace spanned by C − x0. Since riC

⋂
(
⋂

i∈I Ci) �= ∅, the intersection
of the interior of C − x0 in the subspace Z and the set

⋂
i∈I(Ci − x0) is nonempty.

By the case (a) and Lemma 2.1 (applied to Z in place of X), we obtain that

NZ
(C−x0)∩(∩i∈I(Ci−x0))

(0) = NZ
C−x0

(0) + NZ
Z∩(∩i∈I(Ci−x0))

(0)

= NZ
C−x0

(0) +
∑
i∈I

NZ
Z∩(Ci−x0)

(0).(2.20)

Let x∗ ∈ NC∩(∩Ci)(x0). Then x∗|Z ∈ NZ
(C−x0)∩(∩i∈I(Ci−x0))

(0); consequently, by

(2.20), there exist x̃∗
0 ∈ NZ

C−x0
(0) and x̃∗

i ∈ NZ
Z∩(Ci−x0)

(0) for each i ∈ I such that

x∗|Z = x̃∗
0 +

∑
i∈I

x̃∗
i on Z.(2.21)

Let x∗
0 ∈ X∗ be an extension of x̃∗

0. Then, as C − x0 ⊆ Z, x∗
0 ∈ NC−x0

(0) = NC(x0).
Also, for each i ∈ I, as Ci − x0 is a polyhedron in X, there exists a natural extension
x∗
i ∈ NCi−x0

(0) of x̃∗
i by Corollary 2.1, and hence x∗

i ∈ NCi
(x0) with x∗

i |Z = x̃∗
i for

each i ∈ I. Do this for each i ∈ I and let y∗ = x∗−x∗
0−

∑
i∈I x

∗
i . Then y∗ ∈ NC(x0) by

(2.21). Hence, x∗ = y∗ + x∗
0 +

∑
i∈I x

∗
i ∈ NC(x0) +

∑
i∈I NCi(x0) and the conclusion

in the case (b) is proved. Therefore the proof of Theorem 2.2 is complete, as (c)
follows from (a) and (b).

For a closed convex subset W of X, let PW denote the projection operator defined
by

PW (x) = {y ∈ W : ‖x− y‖ = dW (x)},

where dW (x) denotes the distance from x to W . Recall that the duality map J from
X to 2X

∗
is defined by

J(x) := {x∗ ∈ X∗ : 〈x∗, x〉 = ‖x‖2, ‖x∗‖ = ‖x‖}.(2.22)

In fact, J(x) = ∂φ(x), where φ(x) := 1
2‖x‖2. Thus a Banach space X is smooth if and

only if for each x ∈ X the duality map is single-valued. We also need the following
proposition, which was established independently by Deutsch [9] and Rubenstein [28]
(see also [4]).

Proposition 2.1. Let W be a convex set in X. Then for any x ∈ X, z0 ∈ PW (x)
if and only if z0 ∈ W and there exists x∗ ∈ J(x − z0) such that Re 〈x∗, z − z0〉 ≤ 0
for any z ∈ W , that is, J(x − z0) ∩ NW (z0) �= ∅. In particular, when X is smooth,
z0 ∈ PW (x) if and only if z0 ∈ W and J(x− z0) ∈ NW (z0).

3. Extended Minkowski functional, interior-point condition, and con-
tinuity condition. Recall that I denotes an index set which is assumed to be a
compact metric space. For convenience, a family {C,Ci : i ∈ I} is called a closed
convex set system with base-set C (CCS-system with base-set C) if C and Ci are
nonempty closed convex subsets of X for each i ∈ I.

Definition 3.1. A CCS-system {C,Ci : i ∈ I} with base-set C is said to satisfy
(i) the C-interior-point condition if

C
⋂(⋂

i∈I

rintC Ci

)
�= ∅;(3.1)
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(ii) the strong C-interior-point condition if

C
⋂(

rintC
⋂
i∈I

Ci

)
�= ∅;(3.2)

(iii) the weak-strong C-interior-point condition with the pair (I1, I2) if there exist
two disjoint finite subsets I1 and I2 of I such that each Ci (i ∈ I2) is a polyhedron
and

riC
⋂⎛

⎝rintC
⋂

i∈I\(I1∪I2)

Ci

⎞
⎠⋂(⋂

i∈I1

riCi

) ⋂
i∈I2

Ci �= ∅;(3.3)

(iv) the interior-point condition (resp., the strong interior-point condition, the
weak-strong interior-point condition with the pair (I1, I2)) if the operation “ rintC” in
(3.1) (resp., (3.2), (3.3)) is replaced with “ int”.

Any point x̄ belonging to the set on the left-hand side of (3.1) (resp., (3.2), (3.3))
is called a C-interior point (resp., a strong C-interior point, a weak-strong C-interior
point with the pair (I1, I2)) of the CCS-system {C,Ci : i ∈ I}. Similarly, the notion
of an interior point (resp., a strong interior point, a weak-strong interior point with
the pair (I1, I2)) of the CCS-system {C,Ci : i ∈ I} is defined.

It is trivial that (3.2) =⇒ (3.1). The converse also holds in some cases, one
of which will be described in terms of continuity of some set-valued functions. For
set-valued functions there are many different notions of continuity. In Definitions 3.2
and 3.3 below, we recall two frequently used ones. We assume that Q is a compact
metric space.

Definition 3.2. Let Y be a normed linear space. Then the set-valued function
F : Q → 2Y \ {∅} is said to be

(i) lower semicontinuous at t0 ∈ Q if, for any y0 ∈ F (t0) and any ε > 0, there ex-
ists an open neighborhood U(t0) of t0 such that for each t ∈ U(t0), B(y0, ε)∩F (t) �= ∅;

(ii) locally uniform lower semicontinuous at t0 ∈ Q if, for any y0 ∈ F (t0), there
exists an open neighborhood V (y0) of y0 such that for any ε > 0, there exists an open
neighborhood U(t0) of t0 such that B(y, ε) ∩ F (t) �= ∅ holds for each t ∈ U(t0) and
each y ∈ V (y0) ∩ F (t0);

(iii) upper semicontinuous at t0 ∈ Q if, for any open neighborhood V of F (t0),
there exists an open neighborhood U(t0) of t0 such that F (t) ⊆ V for each t ∈ U(t0);

(iv) lower semicontinuous (resp., locally uniform lower semicontinuous, upper
semicontinuous) on Q if it is lower semicontinuous (resp., locally uniform lower semi-
continuous, upper semicontinuous) at each t ∈ Q.

Definition 3.3 (cf. [29, p. 55]). Let F : Q → 2Y be a set-valued function defined
on Q and let t0 ∈ Q. Then F is said to be

(i) upper Kuratowski semicontinuous at t0 if, for any sequence {tk} ⊆ Q, the
relations limk→∞ tk = t0, limk→∞ xtk = xt0 , xtk ∈ F (tk), k = 1, 2, . . . , imply xt0 ∈
F (t0);

(ii) lower Kuratowski semicontinuous at t0 if, for any sequence {tk} ⊆ Q, the
relations limk→∞ tk = t0, y0 ∈ F (t0) imply limk→∞ dF (tk)(y0) = 0;

(iii) Kuratowski continuous at t0 if F is both upper Kuratowski semicontinuous
and lower Kuratowski semicontinuous at t0;

(iv) Kuratowski continuous on Q if it is Kuratowski continuous at each point
of Q.
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Remark 3.1. Clearly,
(i) F is upper semicontinuous =⇒ F is upper Kuratowski semicontinuous,
(ii) F is lower semicontinuous ⇐⇒ F is lower Kuratowski semicontinuous.

Moreover, the converse of (i) holds provided that the union set ∪t∈Q F (t) is compact.
The following two propositions provide some useful reformulations regarding var-

ious lower semicontinuities. Since the proofs are similar, we shall only prove the first
proposition.

Proposition 3.1. Let F : Q → 2Y \ {∅} be a set-valued function. Let t0 ∈ Q.
Then the following statements are equivalent.

(i) F is lower semicontinuous at t0.
(ii) For any y0 ∈ F (t0), there exists yt ∈ F (t) for each t ∈ Q such that

limt→t0 ‖yt − y0‖ = 0.
(iii) For any y0 ∈ F (t0), limt→t0 dF (t)(y0) = 0.
Proof. (i) =⇒ (ii). Let y0 ∈ F (t0). Then, by (i), for each positive k there exists

an open neighborhood Uk(t0) of t0 such that

B

(
y0,

1

k

)
∩ F (t) �= ∅ for each t ∈ Uk(t0).(3.4)

Without loss of generality, we may assume that Uk+1(t0) ⊆ Uk(t0) for each k and⋂
k≥1 Uk(t0) = {t0} because Q is a metric space. Now we construct yt ∈ F (t) for each

t ∈ Q as follows:

yt ∈ F (t) if t ∈ Q \ U1(t0),

yt ∈ B
(
y0,

1
k

)
∩ F (t) if t ∈ Uk(t0) \ Uk+1(t0), k = 1, 2, . . . ,

y0 if t = t0.

(3.5)

Then limt→t0 yt = y0.
(ii) =⇒ (iii). It is trivial.
(iii) =⇒ (i). Let y0 ∈ F (x0) and ε > 0. By (iii), there exists an open neighbor-

hood U(t0) of t0 such that for each t ∈ U(t0), one has that dF (t)(y0) < ε and thus
B(y0, ε) ∩ F (t) �= ∅. Therefore (i) holds. The proof is complete.

The following proposition can be proved similarly.
Proposition 3.2. Let F : Q → 2Y \ {∅} be a set-valued function. Let t0 ∈ Q.

Then the following statements are equivalent.
(i) F is locally uniform lower semicontinuous at t0.
(ii) For any y0 ∈ F (t0), there exists an open neighborhood V (y0) of y0 such

that for any y ∈ V (y0) ∩ F (t0), there exists zt(y) ∈ F (t) for each t ∈ Q such that
limt→t0 ‖zt(y) − y‖ = 0 holds uniformly on V (y0) ∩ F (t0).

(iii) For any y0 ∈ F (t0), there exists an open neighborhood V (y0) of y0 such that

lim
t→t0

sup
y∈V (y0)∩F (t0)

dF (t)(y) = 0.

(iv) For any y0 ∈ F (t0), there exists a neighborhood V (y0) of y0 such that for any
ε > 0, there exists a neighborhood U(t0) of t0 satisfying

V (y0) ∩ F (t0) ⊆
⋂

t∈U(t0)

F (t)ε,

where Aε is defined by

Aε = {y ∈ Y : dA(y) < ε}.
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Recalling our blanket assumption (1.2), and the definition of CCS-systems made
at the beginning of this section, we state our first main result of this section.

Theorem 3.1. Let {C,Ci : i ∈ I} be a CCS-system with base-set C, and let
x̄ ∈ C. Suppose that the set-valued function i �→ (aff C) ∩ Ci is locally uniform lower
semicontinuous on I. Then x̄ is a C-interior point of the system if and only if it is a
strong C-interior point of the system.

Proof. We need to prove only the necessity part. Assume without loss of generality
that

0 = x̄ ∈ C
⋂(⋂

i∈I

rintC Ci

)
.(3.6)

Then Z := aff C is a vector subspace of X. It suffices to show that

0 ∈ C
⋂(

rintC
⋂
i∈I

Ci

)
.(3.7)

Clearly, we need only to show that

inf
i∈I

dbdZ Ci(0) > 0.(3.8)

(Indeed, if dbdZ Ci
(0) > γ, then Z ∩ B(0, γ) ⊆ Ci.) Suppose on the contrary that

(3.8) does not hold. Then, by the compactness of I, there exist a convergent sequence
(in) ⊆ I (say with limit i0 ∈ I) and a sequence (yin) with yin ∈ bdZ Cin for each n
such that limn ‖yin‖ = 0. Write

Ĉi = Z ∩ Ci, i ∈ I.(3.9)

By assumptions, i �→ Ĉi is locally uniform lower semicontinuous at i0. By (iv) of
Proposition 3.2 (applied to 0, i0 in place of y0, t0), there exists a δ ∈ (0, 1) such that
for any ε > 0 there exists a neighborhood Uε(i0) of i0 such that

B(0, δ) ∩ Ĉi0 ⊆
⋂

i∈Uε(i0)

Ĉε
i .(3.10)

In view of (3.6), we may assume in addition that

B(0, δ) ∩ Z ⊆ Ĉi0(3.11)

(take a smaller δ > 0 if necessary). Combining the above two inclusions, we have

B(0, δ) ∩ Z ⊆
⋂

i∈Uε(i0)

Ĉε
i .(3.12)

Let us fix an ε ∈ (0, δ
3 ) and take α > 0 such that 3

2ε < α < δ
2 (hence α < 1

2 as
δ < 1). We fix a natural number n which is large enough so that

‖yin‖ <
δ

2
and in ∈ Uε(i0).(3.13)

For simplicity of notations, we henceforth write i for the in with the above n. Since yi
is a (relative) boundary point of Ci ∩Z = Ĉi in the vector subspace Z of X and since
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Ĉi has a nonempty relative interior (containing the origin) by (3.6), the separation
theorem implies that NĈi

(yi)|Z �= {0}. Hence, by the Hahn–Banach theorem, there
exists x∗

i ∈ NĈi
(yi) such that ‖x∗

i |Z‖ is of norm 1. Take xε
i ∈ Z such that ‖xε

i‖ = 1
and 〈x∗

i , x
ε
i 〉 ≥ 1 − ε

2 . Define zi := yi + αxε
i . Then zi ∈ Z,

‖(yi + xε
i ) − zi‖ = ‖(1 − α)xε

i‖ = 1 − α,

and it follows from the triangle inequality that, for any y ∈ Ĉi,

‖zi − y‖ ≥ ‖(yi + xε
i ) − y‖ − (1 − α)

≥ 〈x∗
i , yi − y〉 + 〈x∗

i , x
ε
i 〉 − (1 − α)

≥ 〈x∗
i , x

ε
i 〉 − (1 − α)

≥ (1 − ε
2 ) − (1 − α)

= α− ε
2 > ε.

Therefore zi /∈ Ĉε
i . This contradicts (3.12) and (3.13) because

‖zi‖ ≤ ‖zi − yi‖ + ‖yi‖ = ‖αxε
i‖ + ‖yi‖ < α +

δ

2
≤ δ.

Thus (3.8) must hold and the proof is complete.

Let A and Ĉ be two closed convex subsets of X with 0 ∈ rintĈ A. In the following

we will show that A admits a “Ĉ-extended Minkowski functional” pA in the sense
that pA is a continuous sublinear functional on X such that its restriction pA|aff Ĉ

equals the Minkowski functional of A∩ aff Ĉ in the vector subspace aff Ĉ of X. Note
that in this case one has, for each z ∈ aff Ĉ,

pA(z) ≤ 1 ⇐⇒ z ∈ A,(3.14)

pA(z) = 1 ⇐⇒ z ∈ bdĈ A.(3.15)

Lemma 3.1. Suppose that 0 ∈ rintĈ A; that is,

0 ∈ B(0, α) ∩ aff Ĉ ⊆ A(3.16)

for some α > 0, where A and Ĉ are closed convex subsets of X. Denote the closure
of aff Ĉ (= span Ĉ) by Z and let Ã denote the closed convex hull of the set (A∩Z)∪
(B(0, α)). Then

(i) Ã is a closed convex set in X with nonempty interior such that

Ã ∩ Z = A ∩ Z and 0 ∈ int Ã.(3.17)

(ii) The corresponding Minkowski functional qÃ (in the usual sense) on X has the
properties

qÃ(x) ≤ 1

α
‖x‖ for each x ∈ X(3.18)

and

qÃ(x) = inf{λ ≥ 0 : x ∈ λ(A ∩ Z)} for each x ∈ Z(3.19)

(that is, qÃ is a Ĉ-extended Minkowski functional of A).
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Proof. Let D denote the convex hull of the set (A ∩ Z) ∪ (B(0, α)). Then Ã = D
and B(0, α) ⊆ D. Hence, by elementary functional analysis, the Minkowski functional

of Ã coincides with that of D and (3.18) holds. Hence, to prove (3.19) it suffices to
show that

D ∩ Z = A ∩ Z.(3.20)

Let x = λ1a+ λ2b ∈ D ∩Z with a ∈ A ∩Z, b ∈ B(0, α), and λ1, λ2 ∈ (0, 1) such that
λ1 + λ2 = 1. Then b ∈ Z. We claim that b ∈ A. In fact, since b ∈ Z, there exists a
sequence {bk} ⊂ aff Ĉ such that bk → b. If b ∈ intB(0, α), then bk ∈ B(0, α) for all

k large enough. This implies that bk ∈ B(0, α) ∩ aff Ĉ for all such k. Therefore, by
(3.16), bk ∈ A and hence b ∈ A. Thus assume that b ∈ bdB(0, α). Define b̃k = αbk

‖bk‖
for each k. Then b̃k ∈ B(0, α) ∩ aff Ĉ and b̃k → b for each k. Hence b ∈ A by (3.16).
Therefore our claim stands and x ∈ A as A is convex. This shows that (3.20), and

hence (3.19), are true. To verify (3.17), let z ∈ Ã ∩ Z. Then qÃ(z) ≤ 1 and one can
apply (3.19) to conclude that z ∈ A because A is closed and z ∈ Z. Thus (3.17) is
seen to be true and the proof is complete.

Note. The set Ã will be referred to as a Ĉ-Minkowski extension of A (though it
also depends on α in (3.16)).

For the remainder of this paper, {C,Ci : i ∈ I} denotes a CCS-system with
base-set C as defined at the beginning of this section. Now we state the second main
result of this section.

Theorem 3.2. Let x̄ ∈ C ∩ (∩i∈I Ci) and let Ĉ := C − x̄, Ĉi := Ci − x̄ for each
i ∈ I. Then the following statements are equivalent.

(i) x̄ is a strong C-interior point of the CCS-system {C,Ci : i ∈ I}, namely,

x̄ ∈ C ∩ rintC (∩i∈I Ci) .(3.21)

(ii) For each i ∈ I, there exists a Ĉ-extended Minkowski functional pĈi
of the

set Ĉi such that the sup-function P (·) of {pĈi
(·)} defined by

P (x) := sup
i∈I

pĈi
(x), x ∈ X(3.22)

is continuous on X.
Moreover, if we add an additional assumption that the set-valued map i �→

(aff C) ∩ Ci is lower semicontinuous, then (ii) above can be replaced by a stronger
one, as follows:

(̃ii) (ii) holds and i �→ pĈi
(x) is upper semicontinuous for each x ∈ X.

Proof. (ii) =⇒ (i). Let Z := aff Ĉ = span Ĉ. By (3.14), Z ∩ Ĉi = {z ∈ Z :
pĈi

(z) ≤ 1} and hence

Z
⋂(⋂

i∈I

Ĉi

)
= {z ∈ Z : P (z) ≤ 1}.

By the continuity assumption on P , it follows that 0 ∈ rintZ(∩i∈I Ĉi) and hence
x̄ ∈ C ∩ rintC(∩i∈I Ci). Thus (3.21) is seen to hold.

(i) =⇒ (ii). By (3.21), there exists α > 0 such that

B(0, α) ∩ Z ⊆ Ĉi for each i ∈ I.(3.23)
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Then, by Lemma 3.1, there exists a Ĉ-extended Minkowski functional pĈi
of Ĉi such

that pĈi
is the Minkowski functional of the closed convex hull of (Ĉi ∩Z)∪ (B(0, α))

and, in particular,

pĈi
(x) ≤ 1

α
‖x‖ for each x ∈ X.(3.24)

Hence, by definition of P ,

P (x) ≤ 1

α
‖x‖ for each x ∈ X,(3.25)

and thus P is continuous by an elementary argument. This establishes the implication
(i) =⇒ (ii).

For the remainder of the proof we assume, in addition, that the set-valued map
i �→ (aff C) ∩ Ci is lower semicontinuous and hence the set-valued map i �→ Z ∩ Ĉi is

lower semicontinuous. Then, to prove (i) =⇒ (̃ii) it remains to show for any i0 ∈ I
and any x ∈ X that

lim sup
i→i0

pĈi
(x) ≤ pĈi0

(x).(3.26)

Suppose not. Then there exist i0 ∈ I and x ∈ X such that

lim sup
i→i0

pĈi
(x) > 1 > pĈi0

(x).(3.27)

Then x ∈ co((Ĉi0 ∩ Z) ∪ (B(0, α))) and so x = λ1b + λ2z for some b ∈ B(0, α),

z ∈ Ĉi0 ∩ Z, and some λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1. Since the set-valued function

i �→ Ĉi ∩ Z is lower semicontinuous at i0, there exists zi ∈ Ĉi ∩ Z for each i ∈ I
such that zi → z as i → i0. Define xi = λ1b + λ2zi for each i ∈ I. Then xi ∈
co((Ĉi ∩ Z) ∪ (B(0, α))) and thus pĈi

(xi) ≤ 1. Consequently, it follows from (3.25)
that

pĈi
(x) ≤ pĈi

(x− xi) + pĈi
(xi) ≤

1

α
‖x− xi‖ + 1

and hence that lim supi→i0 pĈi
(x) ≤ 1. This contradicts (3.27). Therefore (3.26) must

hold for each i0 ∈ I and x ∈ X.
The following proposition deals with a special case in Theorem 3.2 by deleting

the words “relative” and “Ĉ-extended,” respectively, from (i) and (ii). We will omit
the proof as it is similar to that of Theorem 3.2.

Theorem 3.3. Let x̄ ∈ C ∩ (∩i∈I Ci). Then the following statements are equiv-
alent:

(i) x̄ is a strong interior point of the CCS-system {C,Ci : i ∈ I}; namely,

x̄ ∈ C ∩ int (∩i∈I Ci) .

(ii) x̄ ∈ intCi for each i ∈ I and the sup-function P (·) of {pĈi
(·)} is continuous

on X, where pĈi
is the Minkowski functional of the set Ĉi := C − x̄.

Moreover, if we add an additional assumption that the set-valued map i �→ Ci is
lower semicontinuous, then the above (ii) can be replaced by a stronger one, as follows:

(̃ii) (ii) holds and i �→ pĈi
(x) is upper semicontinuous for each x ∈ X.
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4. Interior-point condition and the strong CHIP. For the remainder of
this paper, we assume that I is a compact metric space and that {C,Ci : i ∈ I} is a
CCS-system with base-set C as in the beginning of the preceding section. Our main
results are to provide sufficient conditions for ensuring the strong CHIP. For x0 ∈
C ∩ (∩i∈I Ci), let Irb

C (x0) = {i ∈ I : x0 ∈ bdC Ci}. Since bdC Ci = bdCi \ intC Ci,

Irb
C (x0) ⊆ {i ∈ I : x0 ∈ bdCi}.(4.1)

Theorem 4.1. Let x0 ∈ C ∩ (∩i∈I Ci). Then the CCS-system {C,Ci : i ∈ I}
has the strong CHIP at x0 if the following conditions are satisfied.

(a) The system {C,Ci : i ∈ I} satisfies the strong C-interior-point condition.

(b) The set-valued mapping i �→ (aff C) ∩ Ci is lower semicontinuous on I.

(c) The pair {aff C,Ci} has the strong CHIP at x0 for each i ∈ I.

(d) Either C is finite dimensional or Irb
C (x0) is a finite set.

Moreover, the same conclusion also holds if (a), (b), and (c) are replaced simultane-
ously by (a∗) and (b∗).

(a∗) The same as (a) but delete the word “relative.”

(b∗) The set-valued mapping i �→ Ci is lower semicontinuous on I.

Remark 4.1. In view of Theorem 2.2, (a∗) =⇒ (c) because (a∗) implies intCi ⊇
int(∩i∈I Ci) ∩ C �= ∅.

Proof of Theorem 4.1. By the assumptions (a) and (b), let x̄, Ĉ, Ĉi, pĈi
, and P

be as in parts (i), (̃ii) of Theorem 3.2. In particular, P is continuous, the function
i �→ pĈi

(x) is upper semicontinuous for each x ∈ X, and for each x ∈ aff C and i ∈ I
it holds that

pĈi
(x− x̄) ≤ 1 ⇐⇒ x ∈ Ci,(4.2)

pĈi
(x− x̄) = 1 ⇐⇒ x ∈ bdC Ci,(4.3)

where (4.3) holds by (3.15). [Note. The above considerations are valid by Lemma 3.1
if one assumes (a∗) + (b∗) instead of (a) + (b); in fact, in this case, (4.2) and (4.3)
hold for all x ∈ X (not only those x in aff C).]

Define, for each i ∈ I,

gi(x) = pĈi
(x− x̄) − 1 for each x ∈ X

and let G : X → R be defined by G(x) := supi∈I gi(x) for each x ∈ X. Then G is
continuous and the function i �→ gi(x) is upper semicontinuous for each x ∈ X. Thus,
one can apply Theorem 2.1 to conclude that

NC(x0) + ∂G(x0) = NC(x0) + cone
∑

i∈I(x0)

∂ gi(x0),(4.4)

provided that the following condition (d′) is satisfied:

(d′) C is finite dimensional or I(x0) is finite.

To prove the theorem, we need only to prove the inclusion

NC∩(∩i∈I Ci)(x0) ⊆ NC(x0) +
∑
i∈I

NCi
(x0),(4.5)
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as the reverse inclusion is evident. Note that, by (4.2),

NC
⋂
(
⋂

i∈I Ci)(x0) = NC
⋂
(
⋂

i∈I g−1
i (R−))(x0)

= NC
⋂

(G−1(R−))(x0)

= NC(x0) + NG−1(R−)(x0)

(4.6)

thanks to Theorem DLW because x̄ ∈ C ∩ intG−1(R−) as G(x̄) = −1. Thus (4.5)
is seen to hold if NG−1(R−)(x0) = 0. Therefore we may henceforth assume that
G(x0) = 0. Then, referring to the corresponding definition stated in (2.11), I(x0) =
{i ∈ I : gi(x0) = 0}. Since x0 ∈ C it follows from (4.3) that

I(x0) = Irb
C (x0).(4.7)

Thus, by assumption (d), the condition (d′) holds. Recall from [7, Corollary 1, p. 56]
that

Ng−1
i (R−)(x0) =

{
cone ∂gi(x0), i ∈ I(x0),

0, i /∈ I(x0)
(4.8)

and, similarly,

NG−1(R−)(x0) = cone ∂G(x0).(4.9)

Hence, by (4.6) and (4.4), we have

NC
⋂
(
⋂

i∈I Ci)(x0) = NC(x0) + cone ∂G(x0)

= NC(x0) + cone
∑

i∈I(x0)

∂ gi(x0)

= NC(x0) +
∑

i∈I(x0)

Ng−1
i (R−)(x0)

⊆ NC(x0) +
∑

i∈I(x0)

NCi∩aff C(x0)

(4.10)

because g−1
i (R−) ⊇ Ci ∩ aff C. This implies that (4.5) holds because for each i ∈

I(x0) = Irb
C (x0), one has from assumption (c) that

NCi∩aff C(x0) = NCi(x0) + Naff C(x0)

(note also that NC(x0) = NC(x0) + Naff C(x0) as C ⊆ aff C). Thus the first part of
the theorem is proved. The proof of the second part is almost the same because if
the assumptions (a) + (b) + (c) are replaced by (a∗) + (b∗), then (4.7) remains true
(noting that x̄ ∈ C ∩ intCi and x0 ∈ C ∩ Ci for each i ∈ I and that NCi∩aff C(x0) in
(4.10) is to be replaced by NCi(x0)).

Remark 4.2. As assumption (c) is used only at the end of the proof, (4.10) is
valid even if (c) is not assumed in Theorem 4.1.

Remark 4.3. The result in the first part of Theorem 4.1 is not true if the as-
sumptions are replaced by (a), (c), (d), and (b∗) (instead of (b)), as shown by the
following example.
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Example 4.1. Let X = R2 and let I = {0, 1, 1
2 , . . .}. For each i ∈ I, let Ci be the

closed convex subset of R2 that is bounded by four line segments l1, l2, l3, l4 and the
curve defined by

t2 = i(t1 + 1 + i)2 for all t1 ∈ [−2,−1 − i],

where l1, l2, l3, and l4 are defined as follows:

l1 : t1 = −2 for all t2 ∈ [i(1 − i)2, 1],

l2 : t1 = 1 for all t2 ∈ [0, 1],

l3 : t2 = 1 for all t1 ∈ [−2, 1],

l4 : t2 = 0 for all t1 ∈ [−1 − i, 1].

Let C = {(t1, 0) : t1 ∈ [−2, 1]}. Clearly, x̄ = (0, 0) is a strong C-interior point of the
system {C,Ci : i ∈ I}. Note that i0 = 0 is the only limit point of I and that C0 is the
rectangle [−2, 1]× [0, 1]. Hence it is easy to see that the set-valued function i �→ Ci is
lower semicontinuous on I. However, since (aff C)∩Ci is the segment [−1− i, 1]×{0}
for each i ∈ I\{0} and (aff C)∩C0 = [−2, 1]×{0}, the set-valued function i �→ (aff C)∩
Ci is not lower semicontinuous on I. Let x0 = (−1, 0). It is clear that {aff C,Ci} has
the strong CHIP at x0 for each i ∈ I. But the system {C,Ci : i ∈ I} does not have the
strong CHIP at x0 because C∩(∩i∈I Ci) = {(t1, 0) : t1 ∈ [−1, 1]}, NC∩(∩i∈I Ci)(x0) =
{(t1, t2) : t1 ≤ 0}, and NC(x0) +

∑
i∈I NCi

(x0) = {(t1, t2) : t1 = 0}.
Remark 4.4. In general, {aff C,C1} may not have the strong CHIP even if the

C-interior-point condition is satisfied by the system {C,C1}. For example, let I =
{1}, X = R2, and C be the line t2 = 0 while C1 is bounded by the lines t2 = 0,
t2 = 2, t1 = 1, and the half-circle t21 + (t2 − 1)2 = 1, t1 ∈ [−1, 0]. Clearly, {C,C1}
satisfies the C-interior-point condition but {aff C,C1} does not have the strong CHIP
at x0 = (0, 0). This example also shows that (c) cannot be dropped in the first part
of Theorem 4.1.

Our next two theorems address the case when some Ci might have an empty
interior. We will use the notion that a subset in X is finite codimensional.

Definition 4.1. Let A and B be two nonempty convex subsets of X. We say
that A is

(i) finite codimensional in B if the closed subspace spanB ∩ spanA is a finite
codimensional subspace of spanB;

(ii) finite codimensional if spanA is finite codimensional in X.
Obviously, if B is finite dimensional, any nonempty convex subset A of X is finite

codimensional in B.
Theorem 4.2. Let x0 ∈ C ∩ (∩i∈I Ci). The system {C,Ci : i ∈ I} has the

strong CHIP at x0 if the following conditions are satisfied.
(a) The system {C,Ci : i ∈ I} satisfies the weak-strong C-interior-point condition

with (I1, I2).
(b) The set-valued mapping i �→ (aff C) ∩ Ci is lower semicontinuous on I.
(c) The pair {aff C,Ci} has the strong CHIP at x0 for each i ∈ I \ (I1 ∪ I2).
(d) C is finite dimensional or Irb

C (x0) is finite.
(e) Ci is finite codimensional for each i ∈ I1.
Moreover, the same conclusion also holds if (a), (b), and (c) in the above as-

sumptions are replaced simultaneously by (a∗) and (b∗).
(a∗) The same as (a) but delete the word “relative.”
(b∗) The set-valued mapping i �→ Ci is lower semicontinuous on I.
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Proof. By (a), there exist x̄ ∈ X and two disjoint finite subsets I1, I2 of I such that
x̄ is a weak-strong C-interior point with (I1, I2) of the CCS-system {C,Ci : i ∈ I};
that is, Ci is a polyhedron for each i ∈ I2 and

x̄ ∈ riC
⋂(

rintC
⋂
i∈I0

Ci

)⋂(⋂
i∈I1

riCi

)⋂(⋂
i∈I2

Ci

)
,(4.11)

where I0 = I \ (I1 ∪ I2). Let J denote the closure of I0; namely, J equals the union
of I0 with I l, where the subset I l of I1 ∪ I2 is defined by

I l := {i ∈ I1 ∪ I2 : i is a limit point of I}.(4.12)

For each i ∈ I l, we define 
Ci by


Ci : = {x ∈ X : ∃xj ∈ (aff C) ∩ Cj for all j ∈ I \ {i} such that limj→i xj = x}
= {x ∈ X : ∃xj ∈ (aff C) ∩ Cj for all j ∈ I0 such that limj→i xj = x},

(4.13)

thanks to the fact that I1 ∪ I2 is a finite set. By assumption (b) and Proposition 3.1,
we have

(aff C) ∩ Ci ⊆ 
Ci for each i ∈ I l.(4.14)

Moreover,

x̄ ∈ riC
⋂(

rintC
⋂
i∈I0

Ci

)⋂⎛
⎝rintC

⋂
i∈Il


Ci

⎞
⎠.(4.15)

In fact, since x̄ ∈ rintC
⋂

i∈I0
Ci, there exists δ > 0 such that (aff C) ∩ B(x̄, δ) ⊆ Cj

for each j ∈ I0. From (4.13) it follows that (aff C) ∩ B(x̄, δ) ⊆ 
Ci for each i ∈ I l.

Therefore x̄ ∈ rintC(
⋂

i∈Il

Ci) and (4.15) holds. Note further that each 
Ci is convex

and closed. In fact, let i ∈ I l and let {xn} ⊆ 
Ci be such that xn → z. Then
limj→i dCj∩aff C(xn) = 0 for each n = 1, 2, . . . . Since

dCj∩aff C(z) ≤ ‖xn − z‖ + dCj∩aff C(xn),

we have that limj→i dCj∩aff C(z) = 0. This implies that z ∈ 
Ci and so 
Ci is closed.

The convexity of 
Ci follows from the convexity of the sets (aff C) ∩ Cj (j ∈ I) and

the definition of 
Ci. Recall that J = I0 ∪ I l and define 
Ci = Ci for each i ∈ I0. Then
J is compact and {C, 
Ci : i ∈ J} is a CCS-system with the following properties:

(i) {C, 
Ci : i ∈ J} satisfies the strong C-interior-point condition; in fact,

x̄ ∈ riC
⋂

rintC

⎛
⎝⋂

j∈J


Cj

⎞
⎠(4.16)

(see (4.15)).

(ii) The set-valued function j �→ (aff C) ∩ 
Cj is lower semicontinuous on J .
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(iii) Either C is finite dimensional or 
Irb
C (x0) is a finite set, where


Irb
C (x0) := {i ∈ J : x0 ∈ bdC


Ci}.(4.17)

In fact, (ii) follows from assumption (b) and the definition of 
Cj . Moreover, (iii) follows

from (d) and the fact that 
Irb
C (x0) ⊆ Irb

C (x0) (because of (4.14) and x0 ∈ (aff C)∩Ci).
Thus, by Remark 4.2, we have that

NC∩(∩j∈J
�Cj)

(x0) ⊆ NC(x0) +
∑
j∈J

N(aff C)∩�Cj
(x0).(4.18)

We will show that

N(aff C)∩�Cj
(x0) ⊆ NC(x0) + NCj (x0) for each j ∈ J.(4.19)

This inclusion is simply from assumption (c) if j ∈ I0. Next consider the case when
j ∈ J∩I2. In this case one has j ∈ I l∩I2 and it follows from (4.14) that (aff C)∩Cj ⊆

Cj . Consequently, one has

N(aff C)∩�Cj
(x0) ⊆ N(aff C)∩Cj

(x0) ⊆ NC∩Cj (x0) = NC(x0) + NCj (x0),

where the last equality holds by Theorem 2.2 (which is applicable here because Cj is
a polyhedron and x̄ ∈ riC ∩ Cj). It remains to consider the case when j ∈ I1 ∩ I l

for (4.19). To do this and for a later application, let us consider a general j ∈ I1 (for
the time being regardless of whether j ∈ I l or not). Then by (4.11) and definitions,
x̄ ∈ riCj = rintCj

Cj . Hence, by Lemma 3.1, Cj − x̄ admits a (Cj)-Minkowski

extension C̃j − x̄: C̃j is a closed convex set such that

x̄ ∈ int C̃j and aff Cj ∩ C̃j = aff Cj ∩ Cj = Cj = (aff Cj) ∩ C̃j for all j ∈ I1.(4.20)

Combining this with (4.14),

(aff C) ∩ aff Cj ∩ C̃j ⊆ (aff C) ∩ 
Cj for each j ∈ I1 ∩ I l.(4.21)

Thus if j ∈ I1 ∩ I l, then it follows from (4.21) and Theorem 2.2 that

N(aff C)∩�Cj
(x0) ⊆ Naff C∩aff Cj∩C̃j

(x0)

⊆ N(aff C)∩aff Cj
(x0) + NC̃j

(x0)

⊆ Naff C(x0) + Naff Cj
(x0) + NC̃j

(x0)

⊆ Naff C(x0) + Naff Cj∩C̃j
(x0)

⊆ NC(x0) + NCj (x0)

thanks to (4.20), and thus (4.19) is verified. Here we have used Theorem 2.2 (twice)

which is applicable as x̄ ∈ int C̃j ∩ aff Cj ∩ ri (aff C) and aff Cj is a polyhedron (be-
ing an affine subspace of finite codimension) by assumption (e). Therefore (4.19) is
established in all possible cases. Combining (4.19) and (4.18), we have

NC∩(∩j∈J
�Ci)

(x0) ⊆ NC(x0) +
∑
j∈J

NCj (x0).(4.22)
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Recalling 
Ci = Ci for each i ∈ I0, J = I0 ∪ I l and I = J ∪ I1 ∪ I2, it is a routine
matter to verify from (4.14) and (4.20) that

C
⋂(⋂

i∈I

Ci

)
=

{
C

⋂(⋂
i∈J


Ci

)⋂(⋂
i∈I1

aff Ci

)⋂(⋂
i∈I2

Ci

)}⋂(⋂
i∈I1

C̃i

)
.

(4.23)

(For example, if x is a member of the set on the right-hand side of (4.23) and if i ∈ I1,
then x ∈ Ci by (4.20) and so it is not difficult to verify that x belongs to the set on
the left-hand side of (4.23).) Moreover, by virtue of the general inclusion property,

riC
⋂

(rintC
⋂

i∈J

Ci) ⊆ ri(C

⋂
(
⋂

i∈J

Ci)) (which can be verified by definition). This

with (4.16) implies that x̄ ∈ ri(C
⋂

(
⋂

i∈J

Ci)) and hence it follows from (4.11) and

(4.20) that

x̄ ∈ ri

(
C

⋂(⋂
i∈J


Ci

))⋂(⋂
i∈I1

aff Ci

)⋂(⋂
i∈I2

Ci

)⋂(
int

⋂
i∈I1

C̃i

)
.(4.24)

Thus Theorem 2.2 is applicable to computing the normal cone of the set on the left-
hand side of (4.23) at x0 (noting that each Ci with i ∈ I2 is a polyhedron and that
each aff Ci with i ∈ I1 is also a polyhedron as noted before):

N(x0;C ∩ (∩i∈I Ci))

= N(x0; (C ∩ (∩i∈J

Ci)) ∩ (∩i∈I1 aff Ci) ∩ (∩i∈I2 Ci)) +

∑
i∈I1

N(x0; C̃i)

= N(x0;C ∩ (∩i∈J

Ci)) +

∑
i∈I1

N(x0; aff Ci) +
∑
i∈I2

N(x0;Ci) +
∑
i∈I1

N(x0; C̃i)

⊆ N(x0;C) +
∑
i∈J

N(x0;Ci) +
∑
i∈I1

N(x0; aff Ci ∩ C̃i) +
∑
i∈I2

N(x0;Ci),

thanks to (4.22). Since I = J ∪ I1 ∪ I2 and in view of (4.20), this implies that
{C,Ci : i ∈ I} has the strong CHIP at x0. This completes the proof for the first part
of Theorem 4.2.

For the proof of the second part, by (a∗) there exist x̄ ∈ X and two disjoint finite
subsets I1, I2 of I such that

x̄ ∈ riC
⋂(

int
⋂
i∈I0

Ci

)⋂(⋂
i∈I1

riCi

)⋂(⋂
i∈I2

Ci

)
.(4.25)

Now the proof is completed almost the same as for the first part, with the only
modifications as follows. We use (4.25) in place of (4.11). We use “int” to replace
“rintC” in (4.15); in (4.13) and (4.14) we use “Ci” to replace “(aff C) ∩ Ci.”

Below we provide a sufficient condition ensuring the strong CHIP for a CCS-
system with a closed subspace as a base-set.

Lemma 4.1. Let {Ci : i ∈ I} be a family of nonempty closed convex subsets of X,
Y ⊆ X be a vector subspace, and x0 ∈ Y

⋂
(
⋂

i∈I Ci). Then the system {Y,Ci : i ∈ I}
has the strong CHIP at x0 provided that

(a) for each i ∈ I, either Ci ⊆ Y or Ci is a polyhedron;
(b) {Y ∩ Ci : i ∈ I} has the strong CHIP at x0 in Y .
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Proof. By (b) and recalling the notation of NY given in (2.17), we have

NY
Y ∩(∩i∈I Ci)

(x0) =
∑
i∈I

NY
Y ∩Ci

(x0).

Now let x∗ ∈ NY ∩(∩i∈I Ci)(x0). Then x∗|Y ∈ NY
Y ∩(∩i∈I Ci)

(x0) and, hence, there exist

a finite subset I0 of I and x̃∗
i ∈ NY

Y ∩Ci
(x0), i ∈ I0, such that

x∗|Y =
∑
i∈I0

x̃∗
i on Y.(4.26)

For each i ∈ I0, let x∗
i ∈ X∗ be an extension of x̃∗

i . Then x∗
i ∈ NY ∩Ci

(x0). Note
that in the case when Ci ⊆ Y , NY ∩Ci

(x0) = NCi(x0), while in the case when Ci is
a polyhedron, NY ∩Ci(x0) = NY (x0) + NCi(x0) by Theorem 2.2. Thus (a) implies
that

∑
i∈I0

x∗
i ∈ NY (x0) +

∑
i∈I NCi(x0). Denote y∗ := x∗ −

∑
i∈I0

x∗
i . Then y∗ ∈

NY (x0) and so x∗ = y∗ +
∑

i∈I0
x∗
i ∈ NY (x0) +

∑
i∈I NCi

(x0). This shows that
NY ∩(∩i∈I Ci)(x0) ⊆ NY (x0) +

∑
i∈I NCi(x0) and the proof is complete.

The following consequence of Lemma 4.1 and Theorem 4.2 will be further extended
in Corollary 4.4.

Corollary 4.1. Let C,C1 be a pair of closed convex subsets of X such that
riC ∩ riC1 �= ∅. Suppose that (at least) one of the sets is finite dimensional or finite
codimensional. Then {C,C1} has the strong CHIP.

Proof. By symmetry, we need only to consider two cases: (i) C1 is finite codi-
mensional; (ii) C is finite dimensional. The case (i) is clear by Theorem 4.2 (with
I = I1 = {1} and I2 = ∅). For the case (ii), let x0 ∈ C ∩ C1. Let spanC + spanC1

be denoted by Y . Then C1 is finite codimensional in Y and hence, by what we just
proved, the system {C,C1} in Y has the strong CHIP in Y . Since C and C1 are
subsets of Y , it follows from Lemma 4.1 that the system {Y,C,C1} has the strong
CHIP. This implies that {C,C1} has the strong CHIP in X since NY (x0) ⊆ NC(x0)
for each x0 ∈ C ∩ C1.

If assumption (d) in Theorem 4.2 is replaced by the stronger assumption that C
is finite dimensional, then (e) can be dropped. This will be proved in Theorem 4.3
below. For preparing its proof and also for a later use, we first give a lemma.

Lemma 4.2. Let x0 ∈ C ∩ (∩i∈I Ci). The CCS-system {C,Ci : i ∈ I} has the
strong CHIP at x0 if it satisfies (a∗) and (b∗) of Theorem 4.2 as well as the following
conditions.

(c̄) {C,Ci : i ∈ I1 ∪ I2} has the strong CHIP at x0.
(d) The same as (d) in Theorem 4.2.
Proof. As in the beginning of the proof of Theorem 4.2, let I l be defined by

(4.12) and let 
Ci, for each i ∈ I l, be defined by (4.13) with X in place of C. Let

J := I0 ∪ I l. Define 
Ci = Ci for each i ∈ I0. Then J is compact and {C, 
Ci : i ∈ J}
is a CCS-system with the following properties:

(i) {C, 
Ci : i ∈ J} satisfies the strong interior-point condition; in fact,

x̄ ∈ riC
⋂⎛

⎝int
⋂
j∈J


Cj

⎞
⎠.(4.27)

(ii) The set-valued function j �→ 
Cj is lower semicontinuous on J .

(iii) Cj ⊆ 
Cj for each j ∈ J .
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(iv) C is finite dimensional or 
J(x0) is finite, where


J(x0) = {i ∈ J : x0 ∈ bd 
Ci}.

Thanks to (i), (ii), and (iv), it is easy to see that the system {C, 
Ci : i ∈ J} satisfies
the conditions (a∗), (b∗), and (d) of Theorem 4.1. Hence, by Theorems 2.2 and 4.1
and the above (iii), we obtain that

N(x0;C) + N(x0; (∩i∈J

Ci)) = N(x0;C ∩ (∩i∈J


Ci))

= N(x0;C) +
∑

i∈J N(x0; 
Ci)

⊆ N(x0;C) +
∑

i∈J N(x0;Ci).

(4.28)

Noting by (iii) that

C
⋂(⋂

i∈I

Ci

)
= C

⋂(⋂
i∈J


Ci

)⋂( ⋂
i∈I1∪I2

Ci

)
(4.29)

and that

x̄ ∈ riC
⋂⎛

⎝int
⋂
j∈J


Cj

⎞
⎠⋂( ⋂

i∈I1∪I2

Ci

)
,(4.30)

(a) of Theorem 2.2 can be applied to conclude that

N(x0;C ∩ (∩i∈I Ci)) = N(x0;∩i∈J

Ci) + N(x0;C ∩ (∩i∈I1∪I2 Ci))

= N(x0;C) + N(x0; (∩i∈J

Ci))

+
∑

i∈I1
N(x0;Ci) +

∑
i∈I2

N(x0;Ci),

(4.31)

thanks to assumption (c̄). Combining (4.28) and (4.31) gives the desired conclusion
and the proof is complete.

Theorem 4.3. Let x0 ∈ C ∩ (∩i∈I Ci). The system {C,Ci : i ∈ I} has the
strong CHIP at x0 if it satisfies (a), (b), and (c) of Theorem 4.2 and the following
condition.

(d̄) C is finite dimensional.
Moreover, the same conclusion also holds if (a) + (b) + (c) + (d̄) in the above

assumptions is replaced by (a∗) + (b∗) + (d̄), where (a∗) and (b∗) are as in Theo-
rem 4.2.

Proof. Denote

Ĉ = C − x0, Z := span Ĉ, Ĉi = Ci − x0 for each i ∈ I.(4.32)

Then, by assumptions, Z is finite dimensional and

ri Ĉ
⋂(

rintĈ

⋂
i∈I0

Ĉi

)⋂(⋂
i∈I1

ri Ĉi

)⋂(⋂
i∈I2

Ĉi

)
�= ∅.(4.33)

Letting C�
i denote the intersection Z ∩ Ĉi, it follows that

ri Ĉ
⋂(

rintĈ

⋂
i∈I0

C�
i

)⋂(⋂
i∈I1

riC�
i

)⋂(⋂
i∈I2

C�
i

)
�= ∅.(4.34)
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Noting aff Ĉ = Z, this implies that, as a system in the Banach space Z, {Ĉ, C�
i : i ∈ I}

satisfies the weak-strong interior-point condition. In fact, with respect to the relative
topology in Z, one has

rintZ Ĉ
⋂(

rintZ
⋂
i∈I0

C�
i

)⋂(⋂
i∈I1

riC�
i

)⋂(⋂
i∈I2

C�
i

)
�= ∅.(4.35)

By Theorem DLW (applied to the system {Ĉ,
⋂

i∈I C
�
i } in Z), we have

NZ
Ĉ∩(∩i∈I C�

i )
(0) = NZ

Ĉ
(0) + NZ

∩i∈I C�
i

(0);

namely, in the normed linear space X,

NĈ∩(∩i∈I Ĉi)
(0) = NĈ(0) + N∩i∈I C�

i
(0),(4.36)

because Ĉ ∩ (∩i∈I C
�
i ) = Ĉ ∩ (∩i∈I Ĉi), and Ĉ as well as C�

i are subsets of Z. We will
show that

N∩i∈I C�
i
(0) ⊆ NĈ(0) +

∑
i∈I

NĈi
(0).(4.37)

Granting this, (4.36) and an easy translation argument imply that

NC∩(∩i∈I Ci)(x0) ⊆ NC(x0) +
∑
i∈I

NCi(x0),

which shows that {C,Ci : i ∈ I} has the strong CHIP at x0. It remains to prove
(4.37). To do this, we shall apply Lemma 4.1 to Y := Z and the system {Di}, where

Di =

{
C�

i = Ĉi ∩ Z, i ∈ I \ I2,
Ĉi, i ∈ I2.

We suppose, without loss of generality, that I \ I2 �= ∅ (otherwise (4.37) holds by

Theorem 2.2). Then ∩i∈I C
�
i = ∩i∈I Di. Moreover, assumption (c) (for i ∈ I\(I1∪I2))

and Corollary 4.1 (for i ∈ I1) imply that for each i ∈ I \ I2, {Z, Ĉi} has the strong
CHIP at 0 and hence that

NDi
(0) = NZ∩Ĉi

(0) = NZ(0) + NĈi
(0) ⊆ NĈ(0) + NĈi

(0).(4.38)

We claim that {Di : i ∈ I} has the strong CHIP at 0. Granting this, it follows from
(4.38) that

N∩i∈I C�
i
(0) = N∩i∈I Di(0) =

∑
i∈I

NDi(0)

=
∑

i∈I\I2

NDi(0) +
∑
i∈I2

NĈi
(0) ⊆ NĈ +

∑
i∈I

NĈi
(0),

which shows (4.37). Thus it remains to prove the above claim. In view of Lemma 4.1,
it suffices to show that, as a system in the subspace Z, {Z∩Di : i ∈ I} has the strong

CHIP at 0 (note that for each i ∈ I2, Ĉi is a polyhedron because Ci is a polyhedron).
By (4.35), this system in Z satisfies the weak-strong interior-point condition on Z
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with (I1, I2). Assumption (b) tells us that i �→ Di ∩ Z is lower semicontinuous on I.
It is trivial that for each i ∈ I1, Di ∩ Z is finite codimensional in Z as Z is finite
dimensional. Hence it is easy to see that the second part of Theorem 4.2 is applicable
to the system {Z,Z ∩Di : i ∈ I} in place of {C,Ci : i ∈ I} if assumptions (a), (b),
(c), and (d̄) are assumed. Thus, this system (in Z) does have the strong CHIP at 0.
Our claim is therefore established and this completes the proof of the first part of the
theorem.

For the second part, suppose that the system {C,Ci : i ∈ I} satisfies (a∗) +
(b∗) + (d̄) (in place of (a) + (b) + (c) + (d̄)). Then, by (d̄) and by the result of the
first part (applied to the finite subsystem {C,Ci : i ∈ I1 ∪ I2}), one concludes that
{C,Ci : i ∈ I1∪I2} has the strong CHIP at x0. Hence, by Lemma 4.2, {C,Ci : i ∈ I}
also has the strong CHIP at x0.

Corollary 4.2. Let x0 ∈ C ∩ (∩i∈I Ci). The system {C,Ci : i ∈ I} has the
strong CHIP at x0 if it satisfies (a∗) and (b∗) of Theorem 4.2 as well as the following
condition.

(d∗) At least one of {C,Ci : i ∈ I1} is finite dimensional.
Proof. By assumption (a∗), take x̄ satisfying (4.25). By assumption (d∗) and in

view of the second part of Theorem 4.3, it suffices to consider the case when Ci0 is
finite dimensional for some i0 ∈ I1. Let

I ′1 = I1 ∪ {i∞},

where i∞ is a new index such that i∞ /∈ I. Let I0 = I \ (I1 ∪ I2) and define D :=
Ci0 ∩ (∩i∈I0 Ci). Then riCi0 ∩ int(∩i∈I0 Ci) ⊆ riD, and thus x̄ ∈ riD by (4.25). Thus

x̄ ∈ riD
⋂(⋂

i∈I1

riCi

)⋂
riC

⋂(⋂
i∈I2

Ci

)
.(4.39)

Letting J = I ′1∪I2, Di∞ = C, and Di = Ci for each i ∈ I1∪I2, (4.39) implies that the
new CCS-system {D,Dj : j ∈ J} satisfies the weak-strong interior-point condition
with (I ′1, I2), that is, the condition (a∗) of Theorem 4.3 stated for {C,Ci : i ∈ I}. It
also satisfies (b∗) of Theorem 4.3 as J is finite. Therefore by applying Theorem 4.3
to the new system we have that

ND∩(∩j∈J Di)(x0) = ND(x0) +
∑

j∈J NDj
(x0)

= NCi0∩(∩i∈I0
Ci)(x0) + NC(x0) +

∑
i∈I1∪I2

NCi
(x0)

⊆ NC(x0) + NCi0∩(∩i∈I Ci)(x0).

(4.40)

Applying Theorem 4.3 to the system {Ci0 , Ci : i ∈ I} and noting that D∩(∩j∈J Di) =
C ∩ (∩i∈I Ci), it follows from (4.40) that

NC∩(∩i∈I Ci)(x0) = ND∩(∩j∈J Di)(x0) = NC(x0) +
∑
i∈I

NCi
(x0).

The proof is complete.
Corollary 4.3. Let x0 ∈ C ∩ (∩i∈I Ci). The system {C,Ci : i ∈ I} has the

strong CHIP at x0 if it satisfies (a∗) and (b∗) of Theorem 4.2 as well as the following
conditions.

(c∗) For any i, j ∈ I1, Ci is finite codimensional in C as well as in Cj.

(d̃) I(x0) = {i ∈ I : x0 ∈ bdCi} is finite.
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Proof. By Lemma 4.2, it suffices to show that (c̄) of Lemma 4.2 holds; that is, the
system {C,Ci : i ∈ I1 ∪ I2} has the strong CHIP at x0. For this purpose, take a new
index 0 /∈ I and, for each i ∈ I1, let Y0 and Yi denote the closed subspaces spanned
by C and Ci, respectively, and let

Y = Y0 +
∑
i∈I1

Yi.(4.41)

We claim that each Ci for i ∈ I1 is finite codimensional in Y . To verify this claim, let
i ∈ I1 and set J = {0}∪ I1 \{i}. By assumption (c∗), Ci is finite codimensional in Yj ,
for each j ∈ J , and it follows from Definition 4.1 that there exists a finite dimensional
subspace Y ′

j of Yj such that Yj is the direct sum of Y ′
j and Yj ∩ Yi, that is,

Yj = Y ′
j + (Yj ∩ Yi) and Y ′

j ∩ (Yj ∩ Yi) = {0}.

Hence, for each j ∈ J ,

Yj + Yi = Y ′
j + Yi and Y ′

j ∩ Yi = {0}.(4.42)

Then, by (4.41) and (4.42),

Y =
∑
j∈J

(Yj + Yi) =
∑
j∈J

Y ′
j + Yi and

⎛
⎝∑

j∈J

Y ′
j

⎞
⎠ ∩ Yi = {0}.(4.43)

This implies that Yi is finite codimensional in Y since
∑

j∈J Y ′
j is finite dimensional.

The claim is proved. Noting that Ci ∩ Y = Ci for each i ∈ I1, this implies that, as a
CCS-system in Y , {C,Ci ∩ Y : i ∈ I1 ∪ I2} has property (e) of Theorem 4.2 stated

for {C,Ci : i ∈ I}. Moreover, it also satisfies (d) thanks to assumption (d̃) and (4.1).
Therefore one can apply the second part of Theorem 4.2 (with I0 = ∅) to conclude
that this finite system in the subspace Y has the strong CHIP at x0. Noting that
C,Ci ⊆ Y for each i ∈ I1 and Cj is a polyhedron for each j ∈ I2, it follows from
Lemma 4.1 that {Y,C,Ci : i ∈ I1 ∪ I2} has the strong CHIP at x0 in X. Therefore
{C,Ci : i ∈ I1 ∪ I2} has the strong CHIP at x0 (because C ⊆ Y ).

We obtain below an extension of Rockafellar’s result [27, Corollary 23.8.1, p. 223]
in the setting of general normed linear spaces.

Corollary 4.4. Let I = J ∪ K be finite with J,K disjoint such that Ck is a
polyhedron for each k ∈ K, and suppose that

riC
⋂⎛

⎝⋂
j∈J

riCj

⎞
⎠⋂( ⋂

k∈K

Ci

)
�= ∅.(4.44)

Then the system {C,Ci : i ∈ I} has the strong CHIP if at least one of the following
conditions is satisfied.

(a) At least one of {C,Cj : j ∈ J} is finite dimensional.
(b) For each j ∈ J , Cj is finite codimensional in C and Ci, respectively, for each

i ∈ J (e.g., Cj is finite codimensional for each j ∈ J).
Proof. Since I is finite and thanks to (4.44), the system {C,Ci : i ∈ I} satisfies

(a∗) and (b∗) of Theorem 4.2 (with (I1, I2) = (J,K)). Now apply Corollary 4.2 and
Corollary 4.3 to conclude the proof.
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5. Subsystems and the strong CHIP. Recall that I and {C,Ci : i ∈ I} are
as explained in the beginning of the preceding section. Our main result of this section
is the following.

Theorem 5.1. Suppose that the finite subsystem {C,Ci : i ∈ J} has the strong
CHIP for each finite subset J of I. Then the system {C,Ci : i ∈ I} has the strong
CHIP provided the following conditions are satisfied.

(a) C is finite dimensional (say, dimC := l < +∞).
(b) The set-valued function i �→ (aff C) ∩ Ci is Kuratowski continuous on I.
(c) For any finite subset J of I (with the number of elements |J | ≤ l if X is real

and |J | ≤ 2l if X is complex), the subsystem {C,Ci : i ∈ J} satisfies the following
C-interior-point condition:

C
⋂(⋂

i∈J

rintC Ci

)
�= ∅.(5.1)

Proof. Since I is compact and metrizable, there exists a sequence {Ik} of subsets
of I such that

(i) each Ik is finite;
(ii) Ik ⊆ Ik+1 for k = 1, 2, . . . ;
(iii) I equals the closure of

⋃∞
k=1 Ik.

Let S =
⋂

i∈I Ci, K = C ∩ S, and Sk =
⋂

i∈Ik
Ci for each k. Then

K = C
⋂(⋂

i∈I

Ci

)
⊆ C ∩ Sk.(5.2)

Let x0 ∈ C
⋂

(
⋂

i∈I Ci) and let x∗ ∈ NK(x0). We have to show that x∗ ∈ NC(x0) +∑
i∈I NCi(x0). We will first show that there exist {xk} ⊆ C with xk → x0 and

x∗
k ∈ NC∩Sk

(xk) such that {x∗
k} is bounded and

lim
k→∞

〈x∗
k, y〉 = 〈x∗, y〉 for each y ∈ span(C − x0).(5.3)

In fact, since Z := span(C−x0) is finite dimensional, we may assume, without loss of
generality, that the norm restricted to Z is both strictly convex and smooth. Clearly,
we may assume that x∗|Z �= 0. Take z0 ∈ Z such that 〈x∗, z0〉 = ‖x∗|Z‖·‖z0‖ = ‖z0‖2.
Write x := x0 + z0. Then, x∗|Z = J(x − x0)|Z . By the Hahn–Banach theorem, let
x̄∗ ∈ X∗ be a norm-preserving extension of x∗|Z . Then x̄∗ ∈ NK(x0) ∩ J(x − x0).
Hence by Proposition 2.1, x0 = PK(x). Let xk = PC∩Sk

(x). Then x−xk ∈ Z because
x0 − xk, x− x0 ∈ Z. Moreover,

‖xk‖ ≤ ‖xk − x‖ + ‖x‖ ≤ ‖x− x0‖ + ‖x‖;

hence {xk} ⊂ C is bounded. Without loss of generality, assume that xk → x̄ for some
x̄ ∈ C. Let i ∈ I. By (ii) and (iii), there exists {ik} ⊆ I with ik ∈ Ik for each k
such that ik → i. Noting that xk ∈ (aff C) ∩ Cik and that xk → x̄, we have that
x̄ ∈ (aff C)∩Ci by the upper Kuratowski semicontinuity assumed in (b). This shows
that x̄ ∈ K. Because

‖x− x̄‖ = lim
k→∞

‖x− xk‖ ≤ ‖x− y‖ for each y ∈ K,

x̄ = PK(x) = x0 and hence xk → x0. On the other hand, by Proposition 2.1,
there exists x∗

k ∈ NC∩Sk
(xk) ∩ J(x − xk). Consequently, {x∗

k} is bounded since



336 CHONG LI AND K. F. NG

‖x∗
k‖ = ‖x − xk‖. Moreover, by the smoothness of the norm in Z, the mapping

z �→ J(z)|Z is norm-weak∗ continuous. Hence x∗
k|Z → x∗|Z as x− xk → x− x0 in Z.

Thus (5.3) holds.

By assumption, the finite subsystem {C,Ci : i ∈ Ik} has the strong CHIP at xk,
and hence

x∗
k ∈ NC∩Sk

(xk) = NC(xk) +
∑
i∈Ik

NCi
(xk).(5.4)

If there exists a subsequence {kj} of {k} such that x∗
kj

∈ NC(xkj ) for each j, then

x∗ ∈ NC(x0) by (5.3) (and so x∗ ∈ NC(x0) +
∑

i∈I NCi(x0)). Therefore we may
assume that for each k, x∗

k /∈ NC(xk). Recalling that the dimension of Z is l, it
follows from (5.4) and [27, Corollary 17.1.2] that there exist z∗k ∈ NC(x0), i

k
j ∈ Ik,

and ŷ∗
ikj

∈ NC
ikj

(x0) such that

x∗
k = z∗k +

s∑
j=1

ŷ∗ikj
on Z for all k = 1, 2, . . . ,(5.5)

where s ≤ l if X is real and s ≤ 2l if X is complex. Without loss of generality, assume

that ŷ∗
ikj
|Z �= 0 for each j = 1, 2, . . . , s. Set λk

j = ‖ŷ∗
ikj
|Z‖, y∗ikj =

ŷ∗
ikj

λk
j

. Then λk
j > 0 for

j = 1, 2, . . . , s and

x∗
k = z∗k +

s∑
j=1

λk
j y

∗
ikj

on Z for all k = 1, 2, . . . .(5.6)

Let λk :=
∑s

j=1 λ
k
j . Then {λk} is bounded. Indeed, if not, by considering a sub-

sequence if necessary, we have that limk→∞ λk = +∞. Thus
x∗
k

λk → 0 as k → ∞.
Furthermore, without loss of generality, we may assume that as k → ∞,

ikj → ij and
λk
j

λk
→ μj , j = 1, 2, . . . , s.(5.7)

Then
∑s

j=1 μj = 1. Since {y∗
ikj
} is bounded, by (5.6), { z∗

k

λk |Z} is bounded too. Thus,

we may also assume that there exist z̃∗0 , ỹ
∗
ij
∈ Z∗ such that

z∗k
λk

→ z̃∗0 and y∗ikj
→ ỹ∗ij on Z(5.8)

as k → ∞. Then, since z∗k ∈ NC(xk), by (5.8) and the fact that xk → x0,

〈z̃∗0 , z − x0〉 ≤ 0 for each z ∈ C.(5.9)

Let z ∈ (Z + x0) ∩ Cij . Since ikj → ij and thanks to assumption (b), there exists
{zk} with each zk ∈ (aff C)∩Cikj

such that zk → z as k → ∞. Then 〈y∗
ikj
, zk−xk〉 ≤ 0.

Since xk → x0, it follows from (5.8) that for each j,

〈ỹ∗ij , z − x0〉 ≤ 0 for each z ∈ (Z + x0) ∩ Cij .(5.10)
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Consequently, by the Hahn–Banach theorem, z̃∗0 and ỹ∗ij can be extended to z∗0 ∈
NC(x0) and y∗ij ∈ NCij

∩(Z+x0)(x0). Clearly, by (5.6), (5.7), and (5.8),

0 = z∗0 +

s∑
j=1

μjy
∗
ij on Z.(5.11)

By assumption (c), there exists ȳ ∈ C ∩ rintC Cij for each j = 1, 2, . . . , s. Then,
by (5.10), 〈y∗ij , ȳ − x0〉 ≤ 0 for each j = 1, 2, . . . , s. We claim that each of the above

inequalities must be strict. Indeed, suppose otherwise that 〈y∗ij , ȳ−x0〉 = 0 for some j.

Let z ∈ Z and let zt := t(z + x0) + (1 − t)ȳ. Then for any t with |t| small enough,
zt ∈ (aff C) ∩ Cij and thus, by (5.10),

t〈y∗ij , z〉 = 〈y∗ij , zt − x0〉 − (1 − t)〈y∗ij , ȳ − x0〉 = 〈y∗ij , zt − x0〉 ≤ 0.

This implies that 〈y∗ij , z〉 = 0, that is, y∗ij |Z = 0, which contradicts that ‖y∗ij |Z‖ =

‖ỹ∗ij‖ = 1. Hence, 〈
z∗0 +

s∑
j=1

μjy
∗
ij , ȳ − x0

〉
< 0,

which contradicts (5.11). This shows that {λk} is bounded. Note that N(Z+x0)∩Cij
(x0)

⊆ NC(x0) +NCij
(x0). Thus, taking the limits on the two sides of (5.6) and using the

similar arguments as above (if necessary, using subsequences), we get that

x∗ = z∗0 +

s∑
j=1

λjy
∗
ij on Z(5.12)

for some λj ≥ 0, z∗0 ∈ NC(x0), and y∗ij ∈ NCij
(x0) (j = 1, 2, . . . , s). Let y∗ = x∗−z∗0−∑s

j=1 λjy
∗
ij

. Then y∗ ∈ NC(x0) by (5.12) and thus x∗ ∈ NC(x0)+
∑

i∈I NCi
(x0). The

proof is complete.
Corollary 5.1. Suppose that the CCS-system {C,Ci : i ∈ I} satisfies the

interior-point condition, dimC < +∞, and the set-valued function i �→ (aff C) ∩ Ci

is Kuratowski continuous. Then the system {C,Ci : i ∈ I} has the strong CHIP.
Proof. The assumed interior-point condition clearly implies (c) of Theorem 5.1;

it also implies that each of the finite subsystems of {C,Ci : i ∈ I} has the strong
CHIP by Theorem DLW. Hence the conclusion holds by Theorem 5.1.

Remark 5.1. Examples 5.1, 5.2, and 5.3 will show that none of the conditions
(a), (b), and (c) in Theorem 5.1 can be dropped. Each of these examples will be a
CCS-system without the strong CHIP, but each of the finite subsystems of each of
these CCS-systems does have the strong CHIP (each Ci being a polyhedron, and the
base-set being the whole space). In each of these examples, I is the compact subset
of R defined by I = {0, 1, 1

2 , . . . ,
1
i , . . .}.

Example 5.1. Let C = X = {x = (x1, x2, . . . , xk, . . .) : xk ∈ R, limk xk exists}
with the norm defined by

‖x‖ = sup
k

|xk|, x = (xk) ∈ X.

Define

Ci =

{
{x = (xk) ∈ X : limk xk ≤ 0}, i = 0,

{x = (xk) ∈ X : x 1
i
≤ 0}, i ∈ I \ {0}.
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Then the set-valued function i �→ Ci is Kuratowski continuous on I. In fact, let
{in} ⊆ I be a sequence satisfying in → 0. To show the Kuratowski continuity at 0,
let {xin} be a sequence satisfying xin ∈ Cin and xin → x0. Noting

x0
1
in

= x0
1
in

− xin
1
in

+ xin
1
in

≤ x0
1
in

− xin
1
in

≤ ‖x0 − xin‖ → 0,

one has that limk x
0
k ≤ 0 and thus x0 ∈ C0. This proves that the set-valued func-

tion i �→ Ci is upper Kuratowski continuous at 0. To show the lower Kuratowski
continuity at 0, let x0 ∈ C0. Then a = limk x

0
k ≤ 0. Define xin = (xin

k ) with

xin
k = x0

k if k �= 1
in

and xin
k = a if k = 1

in
. Then xin ∈ Cin and limn x

in = x0. This
shows that the set-valued function i �→ Ci is lower Kuratowski continuous at 0. Note
that x̄ ∈ int(

⋂
i∈I Ci) for x̄ = (−1,−1, . . .) ∈ X. Hence the conditions (b) and (c)

in Theorem 5.1 are satisfied. Let x0 = 0. Then x0 ∈
⋂

i∈I Ci. It is easy to see
that

∑
i∈I NCi(x0) is not closed; hence this system does not have the strong CHIP

at x0.

Example 5.2. Let C = X = R2. Define

Ci =

{
{x = (x1, x2) ∈ X : x1 + x2 ≤ 0}, i = 0,

{x = (x1, x2) ∈ X : x1 + ix2 ≤ 0}, i ∈ I \ {0}.

Then
⋂

i∈I Ci = {(x1, x2) : x1 ≤ 0, x1 + x2 ≤ 0}. Let x0 = 0. Then x0 ∈ bd
⋂

i∈I Ci.
Clearly, (a) in Theorem 5.1 is satisfied. Since x̄ = (−1, 1

2 ) ∈ int(
⋂

i∈I Ci), condition (c)
in Theorem 5.1 is satisfied too. However, N⋂

i∈I Ci
(x0) = {(t1, t2) : 0 ≤ t2 ≤ t1} and∑

i∈I NCi
(x0) = {(t1, t2) : 0 < t2 ≤ t1} ∪ {(0, 0)}. Therefore this system does not

have the strong CHIP at x0. Note that condition (b) is not satisfied.

Example 5.3. Let C = X = R2 and define

Ci =

{
{x = (x1, x2) : x2 ≤ 0}, i = 1,

{x = (x1, x2) : ix1 − x2 − i2 ≤ 0}, i ∈ I \ {1}.

Then
⋂

i∈I Ci = {(x1, 0) ∈ R2 : x1 ≤ 0}. Let x0 = 0. Hence

N⋂
i∈I Ci

(x0) = {(t1, t2) ∈ R2 : t1 ≥ 0}

and ∑
i∈I

NCi(x0) = cone{(0,−1), (0, 1)} = {(t1, t2) ∈ R2 : t1 = 0}.

Consequently, this system does not have the strong CHIP at x0. Note that conditions
(a) and (b) in Theorem 5.1 are satisfied but condition (c) is not.
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Abstract. A new filter-trust-region algorithm for solving unconstrained nonlinear optimization
problems is introduced. Based on the filter technique introduced by Fletcher and Leyffer, it ex-
tends an existing technique of Gould, Leyffer, and Toint [SIAM J. Optim., 15 (2004), pp. 17–38]
for nonlinear equations and nonlinear least-squares to the fully general unconstrained optimization
problem. The new algorithm is shown to be globally convergent to at least one second-order critical
point, and numerical experiments indicate that it is very competitive with more classical trust-region
algorithms.
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1. Introduction. Since filter methods were first introduced for constrained non-
linear optimization by Fletcher and Leyffer [5], they have enjoyed considerable interest
in their original domain of application [1, 4, 6, 7, 16, 17]. More recently, they have
been extended by Gould, Leyffer, and Toint [8] and Gould and Toint [12] to the non-
linear feasibility problem (including nonlinear equations and nonlinear least-squares),
which is to minimize the norm of the violations of a set of (possibly nonlinear and/or
nonconvex) constraints. It is the purpose of the present paper to consider the further
extension of the filter techniques to general unconstrained optimization problems.

The presentation is organized as follows. Section 2 introduces the problem and the
new algorithm, whose global convergence to points satisfying second-order optimality
conditions is shown in section 3.1. The results of numerical experience with the new
method are discussed in section 4, and some conclusions and perspectives are finally
presented in section 5.

2. The problem and the new algorithm. We consider the unconstrained
minimization problem

min
x∈Rn

f(x),(2.1)

where f is a twice continuously differentiable function of the variables x ∈ Rn. An
efficient technique for solving this problem is to use Newton’s method, which, from a
current iterate xk, computes a trial step sk by minimizing a model of the objective
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function consisting of the first three terms of its Taylor’s expansion around xk, yielding
a trial point

x+
k = xk + sk.

Unfortunately, it is well known that such an algorithm may not always be well defined
(when the Taylor’s model is nonconvex), or convergent from any initial point x0. These
difficulties can be circumvented by restricting the model minimization to a trust region
containing xk, in a manner that is now well established (see Conn, Gould, and Toint [2]
for an extensive description of trust-region methods and their properties). We propose
to further extend such methods by introducing a multidimensional filter technique,
whose aim is to encourage convergence to first-order critical points by driving every
component of the objective’s gradient

∇xf(x)
def
= g(x) = (g1(x), . . . , gn(x))

T

to zero.

2.1. Computing a trial point. Before indicating how to apply our filter tech-
nique, we start by describing how to compute the trial point x+

k = xk + sk from a
current iterate xk. At each iteration, we define the model of the objective function to
be

mk(xk + s) = f(xk) + gTk s +
1

2
sTHks,

where gk = ∇xf(xk) and Hk is a symmetric approximation to ∇xxf(xk), and consider
a trust region centered at xk:

Bk = {xk + s | ‖s‖ ≤ Δk},

where we believe this model to be adequate. (In this definition and below, ‖ · ‖ stands
for the Euclidean �2 norm). A trial step sk is then computed by minimizing the model
(possibly only approximately). At variance with classical trust-region methods, we
do not require here that

‖sk‖ ≤ Δk(2.2)

at every iteration of our algorithm. The convergence analysis that follows requires, as
is common in trust-region methods [2, Chapter 6], that this step provides, at iteration
k, a sufficient decrease on the model, which is to say that

mk(xk) −mk(xk + sk) ≥ κmdc max

[
‖gk‖min

[
‖gk‖
βk

,Δk

]
, |τk|min[τ2

k ,Δ
2
k]

]
,(2.3)

where κmdc is a constant in (0, 1), βk is a positive upper bound on the norm of the
Hessian of the model mk, i.e.,

βk
def
= 1 + ‖Hk‖,

and τk = min [0, λmin[Hk]]. Although this condition seems technical, there are efficient
numerical methods to compute sk that guarantee that it holds (see [9, 13], or, more
generally, [2, Chapter 7]). Typical trust-region algorithms then evaluate the objective
function at the trial point and accept x+

k as the new iterate if the reduction achieved
in the objective function is at least a fraction of that predicted by the model. The
trust-region radius Δk is also possibly enlarged if this is the case, or it is reduced if
the achieved reduction is too small.
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2.2. The multidimensional filter. We now consider using a filter mechanism
to potentially accept x+

k as the new iterate more often. The notion of filter is based
on that of dominance: for our problem, we say that a point x1 dominates a point x2

whenever

|gi(x1)| ≤ |gi(x2)| for all i = 1, . . . , n.

Thus, if iterate x1 dominates iterate x2 and if we focus our attention on convergence
to first-order critical points only, the latter is of no real interest to us since x1 is at
least as good as x2 for each of the components of the gradient. All we need to do
is remember iterates that are not dominated by other iterates by using a structure
called a filter. We define a multidimensional filter F as a list of n-tuples of the form

(gk,1, . . . , gk,n), where gk,i
def
= gi(xk), such that if gk and g� belong to F , then

|gk,j | < |g�,j | for at least one j ∈ {1, . . . , n}.(2.4)

Filter methods propose to accept a new trial iterate x+
k if it is not dominated by any

other iterate in the filter.
However, we do not wish to accept a new point x+

k if one of the components of
g(x+

k ) is arbitrarily close to being dominated by another point already in the filter.
In order to avoid this situation, we slightly strengthen our acceptability test and say
that a new trial point x+

k is acceptable for the filter F if and only if

for all g� ∈ F ∃ j ∈ {1, . . . , n} : |gj(x+
k )| ≤ |g�,j | − γg‖g�‖,(2.5)

where γg ∈ (0, 1/
√
n) is a small positive constant. If an iterate xk is acceptable in the

sense of (2.5), we may wish to add it to the filter and remove from it every g� ∈ F
such that |g�,j | > |gk,j | for all j ∈ {1, . . . , n}.

While the mechanism described so far is adequate for convex problems (where
a zero gradient is both necessary and sufficient for second-order criticality), it may
be unsuitable for nonconvex ones. Indeed it might prevent progress away from a
saddle point, in which case an increase in the gradient components is acceptable. We
therefore modify the filter mechanism to ensure that the filter is reset to the empty set
after each iteration, giving sufficient descent on the objective function at which the
model mk was detected to be nonconvex, and set an upper bound on the acceptable
objective function values to ensure that the obtained decrease is permanent.

We are now able to combine these ideas into an algorithm, whose main objective
is to let the filter play the major role in ensuring global convergence within “convex
basins,” falling back on the usual trust-region method only if things do not go well or
if negative curvature is encountered.

Algorithm 2.1. Filter-Trust-Region Algorithm.

Step 0 : Initialization.
An initial point x0 and an initial trust-region radius Δ0 > 0 are given. The
constants γg ∈ (0, 1/

√
n), η1, η2, γ1, γ2, and γ3 are also given and satisfy

0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 ≤ γ3.(2.6)

Compute f(x0) and g(x0), set k = 0. Initialize the filter F to the empty
set and choose fsup ≥ f(x0). Define two flags RESTRICT and NONCONVEX, the
former to be unset.
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Step 1: Determine a trial step.
Compute a finite step sk that “sufficiently reduces” the model mk, i.e., that
satisfies (2.3) and that also satisfies ‖sk‖ ≤ Δk if RESTRICT is set or if mk is
nonconvex. In the latter case, set NONCONVEX; otherwise unset it. Compute
the trial point x+

k = xk + sk.

Step 2: Compute f(x+
k ) and define the following ratio:

ρk =
f(xk) − f(x+

k )

mk(xk) −mk(x
+
k )

.

If f(x+
k ) > fsup, set xk+1 = xk, set RESTRICT and go to Step 4.

Step 3: Test to accept the trial step.
• Compute g+

k = g(x+
k ).

• If x+
k is acceptable for the filter F and NONCONVEX is unset:

Set xk+1 = x+
k , unset RESTRICT and add g+

k to the filter F if either
ρk < η1 or ‖sk‖ > Δk.

• If x+
k is not acceptable for the filter F or NONCONVEX is set:

If ρk ≥ η1 and ‖sk‖ ≤ Δk, then
set xk+1 = x+

k , unset RESTRICT and if NONCONVEX is set, set
fsup = f(xk+1) and reinitialize the filter F to the empty set;

else set xk+1 = xk and set RESTRICT.
Step 4: Update the trust-region radius.

If ‖sk‖ ≤ Δk, update the trust-region radius by choosing

Δk+1 ∈

⎧⎨
⎩

[γ1Δk, γ2Δk] if ρk < η1,
[γ2Δk,Δk] if ρk ∈ [η1, η2),
[Δk, γ3Δk] if ρk ≥ η2;

(2.7)

otherwise, set Δk+1 = Δk. Increment k by one and go to Step 1.

Note that, as stated, our algorithm lacks a formal stopping criterion. In practice, one
would obviously stop the calculation if ‖gk‖ falls below some user-defined tolerance
and NONCONVEX is unset, or if some fixed maximum number of iterations is exceeded.
Also note that our conditions on the step might require us to recompute sk within the
trust region if negative curvature were discovered for the model only after computing
a step beyond the trust-region boundary. Fortunately, this is typically a very cheap
calculation and can be achieved by backtracking [14] or by other suitable restriction
techniques [9].

3. Global convergence. Global convergence properties of Algorithm 2.1 will
be proved under the following assumptions.

A1 f is twice continuously differentiable on Rn.

A2 The iterates xk remain in a closed, bounded domain of Rn.

A3 For all k, the model mk is twice differentiable on Rn and has a uniformly
bounded Hessian.

Note that A1, A2, and A3 together imply that there exist constants κl, κu ≥ κl,
κufh ≥ 1, and κumh ≥ 1 such that

f(xk) ∈ [κl, κu], ‖∇xxf(xk)‖ ≤ κufh, and ‖Hk‖ ≤ κumh − 1(3.1)

for all k. Combining this with the definition of βk, we have that

βk ≤ κumh(3.2)
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for all k and all x in the convex hull of {xk}. For the purpose of our analysis, we shall
consider

S = {k | xk+1 = xk + sk},

the set of successful iterations;

A = {k | g+
k is added to the filter},

the set of filter iterations;

D = {k | ρk ≥ η1},

the set of sufficient descent iterations; and

N = {k | NONCONVEX is set},

the set of nonconvex iterations. Observe that A ⊆ S and

S ∩ N = D ∩N .(3.3)

We conclude this section by stating a crucial property of the algorithm.
Lemma 3.1. We have that, for all k ≥ 0,

f(x0) − f(xk+1) ≥
k∑

j=0

j∈S∩N

[f(xj) − f(xj+1)].(3.4)

Proof. Denoting S ∩ N = {ki}, we observe that the definition of fsup in the
algorithm ensures that

f(xki+1) ≤ f(x�) < f(xki)

for all i and all ki + 1 ≤ � ≤ ki+1. This directly implies the desired inequality.

3.1. Convergence to critical points. We first prove the convergence of our
algorithm to first-order critical points.

Our first step is to prove that, as long as a first-order critical point is not ap-
proached, we do not have infinitely many successful nonconvex iterations in the course
of the algorithm. We start by recalling two results from [2] in order to show that the
trust-region radius is bounded away from zero in this case.

Lemma 3.2. Suppose that A1–A3 hold and that ‖sk‖ ≤ Δk. Then we have that

|f(xk + sk) −mk(xk + sk)| ≤ κubhΔ
2
k,(3.5)

where xk + sk ∈ Bk and

κubh

def
= max[κufh, κumh].(3.6)

The proof is identical to that of Theorem 6.4.1 in [2], but we now need to make
the additional assumption that ‖sk‖ ≤ Δk explicit (instead of being implicit, in this
reference, in the definition of a trust-region step).

We now show that the trust-region radius must increase if the current iterate is
not first-order critical and the trust-region radius is small enough.
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Lemma 3.3. Suppose that A1–A3 hold and that ‖sk‖ ≤ Δk. Suppose furthermore
that gk �= 0 and that

Δk ≤ κmdc‖gk‖(1 − η2)

κubh

.(3.7)

Then iteration ρk ≥ η2 and

Δk+1 ≥ Δk.(3.8)

The proof is the same as Theorem 6.4.2 in [2] when ‖sk‖ ≤ Δk. As a consequence, we
obtain that the radius cannot become too small as long as a first-order critical point
is not approached.

Lemma 3.4. Suppose that A1–A3 hold and that there exists a constant κlbg > 0
such that ‖gk‖ ≥ κlbg for all k. Then there is a constant κlbd > 0 such that

Δk ≥ κlbd(3.9)

for all k.

Proof. Assume that iteration k is the first such that

Δk+1 ≤ γ1 min

[
Δ0,

κmdc κlbg(1 − η2)

κubh

]
def
= γ1δ0.(3.10)

This means that the trust-region radius has been decreased at iteration k, which in
turn implies, from the condition in Step 4 of the algorithm, that ‖sk‖ ≤ Δk. We also
have that γ1Δk ≤ Δk+1 and hence that

Δk ≤ δ0 ≤ κmdc κlbg(1 − η2)

κubh

.

Our assumption on the norm of the gradient then implies that (3.7) holds. This and
the fact that ‖sk‖ ≤ Δk thus give that (3.8) is satisfied. But this contradicts the
fact that iteration k is the first such that (3.10) holds, and our initial assumption is
therefore impossible. This yields the desired conclusion with κlbd = γ1δ0.

We now prove the crucial result that the number of successful nonconvex iterations
must be finite unless a first-order critical point is approached.

Theorem 3.5. Suppose that A1–A3 hold and that there exists a constant κlbg > 0
such that ‖gk‖ ≥ κlbg for all k. Then there can be only finitely many successful
nonconvex iterations in the course of the algorithm, i.e., |S ∩ N | < +∞.

Proof. Suppose, for the purpose of obtaining a contradiction, that there are
infinitely many successful nonconvex iterations, which we index by S ∩ N = {ki}. It
follows from (3.3) that the algorithm also guarantees that ρk ≥ η1 for all iterations
in S ∩ N , which in turn implies, with (2.3), that for k ∈ S ∩ N ,

f(xk) − f(xk+1) ≥ η1[mk(xk) −mk(xk + sk)]

≥ η1 κmdc‖gk‖min

[
‖gk‖
βk

,Δk

]

≥ η1 κmdc κlbg min

[
κlbg

κumh

, κlbd

]
,
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where we have used Lemma 3.4, (3.2), and our lower bound on the gradient norm to
obtain the last inequality. Combining now this bound with (3.4), we deduce that

f(x0) − f(xk+1) ≥
k∑

j=0

j∈S∩N

[f(xj) − f(xj+1)] ≥ ςk η1 κmdc κlbg min

[
κlbg

κumh

, κlbd

]
,

where ςk = |{1, . . . , k} ∩ S ∩ N|. As we have supposed that there are infinitely many
successful nonconvex iterations, we have that

lim
k→∞

ςk = +∞,

and [f(x0)− f(xk+1)] is unbounded above, which contradicts the fact that the objec-
tive function is bounded below, as stated in (3.1). Our initial assumption must then
be false, and the set S ∩ N of successful nonconvex iterations must be finite.

We now establish the criticality of the limit point of the sequence of iterates when
there are only finitely many successful iterations.

Theorem 3.6. Suppose that A1–A3 and (2.3) hold and that there are only finitely
many successful iterations, i.e., |S| < +∞. Then xk = x∗ for all sufficiently large k,
and x∗ is first-order critical.

Proof. Let k0 be the index of the last successful iterate. Then x∗ = xk0+1 = xk0+j

and

ρk0+j < η1 for all j > 1.(3.11)

Now observe that RESTRICT is set by the algorithm in the course of every unsuccessful
iteration. This flag must thus be set at the beginning of every iteration of index
k0 + j + 1 for j > 0. As a consequence, ‖sk0+j+2‖ ≤ Δk0+j+2 for all j > 0. This,
(3.11), and the mechanism of Step 4 of the algorithm then imply that

lim
k→∞

Δk = 0.(3.12)

Assume now, for the purpose of establishing a contradiction, that ‖gk0+1‖ ≥ ε for
some ε > 0. Then Lemma 3.4 implies that (3.12) is impossible and we deduce that

‖gk0+j‖ = 0

for all j > 0.
Having proved the desired convergence property for the case where S is finite, we

restrict our attention, for the rest of this section, to the case where there are infinitely
many successful iterations, i.e., |S| = +∞. We first investigate what happens if
infinitely many values are added to the filter in the course of the algorithm.

Theorem 3.7. Suppose that A1–A3 hold and that |A| = |S| = +∞. Then

lim inf
k→∞

‖gk‖ = 0.(3.13)

Proof. Assume, for the purpose of obtaining a contradiction, that for all k large
enough,

‖gk‖ ≥ κlbg(3.14)
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for some κlbg > 0 and define {ki} = A. The bound (3.14) and Theorem 3.5 then
imply that |S ∩N | is finite and therefore that the filter is no longer reset to the empty
set for k sufficiently large. Moreover, since our assumptions imply that {‖gki+1‖} is
bounded above and away from zero, there must exist a subsequence {k�} ⊆ {ki+1}
such that

lim
�→∞

gk�
= g∞ with ‖g∞‖ ≥ κlbg.(3.15)

By definition of {k�}, xk�
is acceptable for the filter in each iteration � − 1. This

implies, since the filter is not reset for � large enough, that, for each � sufficiently
large, there exists an index j� ∈ {1, . . . , n} such that

|gk�,j� | − |gk�−1,j� | < −γg‖gk�−1
‖.(3.16)

But (3.14) implies that ‖gk�−1
‖ ≥ κlbg for all � sufficiently large. Hence we deduce

from (3.16) that

|gk�,j� | − |gk�−1,j� | < −γgκlbg

for all � sufficiently large. But the left-hand side of this inequality tends to zero when
� tends to infinity because of (3.15), yielding the desired contradiction. Hence (3.13)
holds.

Consider now the case where the number of iterates added to the filter in the
course of the algorithm is finite.

Theorem 3.8. Suppose that A1–A3 hold and that |S| = +∞ but |A| < +∞.
Then (3.13) holds.

Proof. Assume, again for the purpose of obtaining a contradiction, that (3.14)
holds for all k large enough and for some κlbg > 0. The finiteness of |A| then implies
that ρk ≥ η1 and that ‖sk‖ ≤ Δk for all k ∈ S sufficiently large. If we define
ς̄p,k = |{p, . . . , k} ∩ S|, we then obtain that

f(xp) − f(xk+1) =

k∑
j=p

j∈S

[f(xj) − f(xj+1)] ≥ ς̄p,k η1 κmdc κlbg min

[
κlbg

κumh

, κlbd

]
,

for p and k sufficiently large, where, as above, we used (2.3), (3.2), (3.9), and (3.14)
to derive the inequality. But ς̄p,k tends to infinity with k for a fixed p sufficiently large
since |S| is infinite, and we again derive a contradiction from the fact that f(xk+1)
then becomes unbounded below. The limit (3.13) then follows.

By the two last theorems, we have that at least one of the limit points of the
sequence of iterates generated by the algorithm satisfies the first-order necessary con-
dition. As the following example shows, this cannot be improved without modifying
the algorithm.

Example 3.1. Consider the objective function

f(x) = x3(3x− 4),

which has a (degenerate1) first-order critical point at x = 0, which is not a minimizer,
and its global minimizer at x = 1. We will show that it is possible for Algorithm 2.1

1In other words, both its first and second derivatives vanish.
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to construct iterates for which x2k = −( 1
2 )

k and x2k+1 = 5
4 for k = 0, 1, 2, . . .; clearly

there are two limit points, xL
∗ = 0 and xR

∗ = 5
4 , but only the first is critical.

Let Δ0 > 2, and suppose that γg < 1
2 and that the trust-region updating scheme

(2.7) is specifically

Δk+1 =

⎧⎨
⎩

1
2Δk if ρk < η1,
Δk if η1 ≤ ρk < η2,

2Δk if η2 ≤ ρk.
(3.17)

Now suppose that

F = {f ′(x2k)} ≡ {−12(1 + ( 1
2 )

k)( 1
2 )

2k} and Δ2k > 2.(3.18)

We then show that the above iteration is possible for Algorithm 2.1 and that (3.18)
will persist.

Consider first x2k = −( 1
2 )

k and the convex model

m2k(x2k + s) = f(x2k) + sf ′(x2k) + 1
2s

2h2k, where h2k = − f ′(x2k)
5
4 − x2k

> 0.

Then the unconstrained global minimizer of m2k is s2k = 5
4 − x2k, and s2k will

sufficiently reduce the model within the trust region since Δ2k > 2 > 5
4 + ( 1

2 )
k.

Moreover,

m2k(x2k) −m2k(x2k + s2k) =
1

2

(f ′(x2k))
2

h2k
=

1

2

(
5

4
− x2k

)
f ′(x2k) → 0

while

f(x2k) − f(x2k + s2k) = f(x2k) − f

(
5

4

)
> f(0) − f

(
5

4

)
=

125

256
> 0,

and thus

ρ2k ≥ η2(3.19)

for large enough k. The trial point x2k + s2k is not acceptable for the filter since its
gradient is f ′( 5

4 ) = 75
16 � f ′(x2k), but it is an acceptable point because the trust-region

bound is inactive and because of (3.19). Thus x2k+1 = x2k + s2k = 5
4 , while (3.17)

and (3.19) ensure that Δ2k+1 = 2Δ2k.
Now consider x2k+1 = 5

4 and the convex model

m2k+1(x2k+1 + s) = f(x2k+1) + sf ′(x2k+1) + 1
2s

2h2k+1,

where

h2k+1 =
f ′(x2k+1)

x2k+1 + ( 1
2 )

k+1
> 0.

As before, the unconstrained global minimizer of m2k+1 is s2k+1 = −x2k+1 − ( 1
2 )

k+1,
and s2k+1 will sufficiently reduce the model within the trust region since Δ2k+1 >
4 > 5

4 + ( 1
2 )

k. Although f(x2k+1) − f(x2k+1 + s2k+1) < 0 and hence

ρ2k+1 < 0,(3.20)
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x2k+1 + s2k+1 = −( 1
2 )

k+1 is acceptable for the filter since it is easy to check that

|f ′(x2k+1 + s2k+1)| = |f ′(−( 1
2 )

k+1)| < 1
2 |f ′(x2k)|.

Hence x2k+2 = x2k+1 + s2k+1 = −( 1
2 )

k+1. Moreover, (3.17) and (3.20) imply that
f ′(x2k+2) replaces f ′(x2k) in the filter and that Δ2k+2 = 1

2Δ2k+1 = Δ2k, and thus
that (3.18) persists.

It is unclear how to enforce the property that all limit points are first-order critical
without adversely affecting the algorithm’s numerical behavior. We have considered
not allowing filter iterations when the ratio between the current gradient norm and
the smallest gradient norm found so far exceeds some prescribed (large) constant.
While such a modification does not appear to affect the results of our numerical
experiments, to date we have been unable to show that the modification yields the
desired conclusion. Since we believe that the likelihood of the algorithm converging
to more than a single limit point is very small (as with every trust-region method we
are aware of), the issue really is of mostly theoretical interest.

We thus pursue our analysis by examining convergence to second-order critical
points under the assumption that there is only one limit point. As in [2], we also
assume the following:

A4 The matrix Hk is arbitrarily close to ∇xxf(xk) whenever a first-order critical
point is approached; i.e.,

lim
k→∞

‖∇xxf(xk) −Hk‖ = 0 whenever lim
k→∞

‖gk‖ = 0.

(Notice that h2k → 0 and thus that A4 holds in the above example.)
We are then able to derive the following theorem.
Theorem 3.9. Suppose that A1–A4 hold and that the complete sequence of it-

erates {xk} converge to the unique limit point x∗. Then x∗ is a second-order critical
point.

Proof. Our proof is strongly inspired by Theorem 6.6.4 of [2]. Observe that our
previous results imply that

g(x∗) = 0.(3.21)

For the purpose of deriving a contradiction, assume now that

τ∗
def
= λmin[∇xxf(x∗)] < 0.(3.22)

Then, using A4 and (3.21), we deduce that there exists a k0 such that for k ≥ k0,

λmin[Hk] < 1
2τ∗ < 0

and, consequently, that k ∈ N and

‖sk‖ ≤ Δk(3.23)

for k ≥ k0. Our sufficient decrease condition (2.3) then ensures that for k ≥ k0,

mk(xk) −mk(xk + sk) ≥ 1
2κmdc|τ∗|min[ 1

4τ
2
∗ ,Δ

2
k].(3.24)

Consider now the ratio of achieved versus predicted reduction ρk in the case where
Δk ≤ 1

2 |τ∗|. Thus, (3.24) and (3.23) imply that

mk(xk) −mk(xk + sk) ≥ 1
2κmdc|τ∗|Δ2

k ≥ 1
2κmdc|τ∗|‖sk‖2(3.25)
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for k ≥ k0. Using the mean value theorem and the Cauchy–Schwarz inequality suc-
cessively, we obtain that for some ξk in the segment [xk, xk + sk],

|ρk − 1| =

∣∣∣∣f(xk + sk) −mk(xk + sk)

mk(xk) −mk(xk + sk)

∣∣∣∣
≤ |sTk∇xxf(ξk)sk − sTkHksk|

κmdc|τ∗|‖sk‖2(3.26)

≤ 1

κmdc|τ∗|
‖∇xxf(ξk) −Hk‖

for k ≥ k0 and Δk ≤ 1
2 |τ∗|. Since ‖ξk − xk‖ ≤ ‖sk‖ ≤ Δk for k ≥ k0, A1, (3.21),

and A4 imply that the rightmost term of (3.26) must be arbitrarily small for Δk

sufficiently small and k sufficiently large. Thus, there must exist a k1 ≥ k0 and a
δ1 ∈ (0, 1

2 |τ∗|] such that

ρk ≥ η2 for all k ≥ k1 such that Δk ≤ δ1.

As a consequence, each iteration where these two conditions hold must be very suc-
cessful and the algorithm then guarantees that Δk+1 ≥ Δk. This and the inequality
γ1δ1 < δ1 ≤ 1

2 |τ∗| in turn imply that

Δk ≥ min[γ1δ1,Δk0
]

def
= δ2(3.27)

for all k ≥ k1. For every successful iteration k ≥ k1, we then obtain from (3.24) that

f(xk) − f(xk+1) ≥ 1
2η1κmdc|τ∗|min[ 1

4τ
2
∗ , δ

2
2 ] > 0.

Remembering now that k ∈ N for k ≥ k1 (and thus that |N | = ∞), we obtain from
(3.4) that |S ∩N |, and hence |S|, must be finite, which in turn implies that the trust-
region radius tends to zero. But this contradicts (3.27). Hence our initial assumption
(3.22) must be false and the proof is complete.

We finally note that, at least in theory, nothing prevents the filter size from
growing, possibly to infinity. Practically, a very large number of points might therefore
be required, and this could, again in principle, be a serious drawback, especially for
large-scale instances where each filter point has itself a large number of components.
Fortunately, this problem can be fixed without sacrificing our convergence guarantee.
Should the problem arise in that, at some iteration, the total storage for filter points
reaches a user-defined upper limit, two different techniques can be used to continue
the calculation. The first is simply to revert to a pure trust-region scheme from
that iteration on. Admittedly, we would then lose some of the potential benefits of
using a filter technique, but convergence is not put at risk. The second strategy is
a progressive form of the first. As indicated in [8], the components of the gradient
can be grouped in progressively larger sets (the filter entries being then defined as the
Euclidean norm of the subvector of components belonging to the set). This results in
a progressive decrease of the amount of storage required to store the entire filter. In
the limit where a single component set is considered and assuming dominated filter
points are removed, the filter reduces to a single number (an upper bound on the
Euclidean norm of the gradient), thus eliminating all storage problems.
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4. Numerical experiments. We now report the results obtained by running
our algorithm on the set of 159 unconstrained2 problems from the CUTEr collection
[10]. The names of the problems with their dimensions3 are detailed in Table 4.1.

In each case, the starting point supplied with the problem was used. All tests were
performed in double precision on a Dell Latitude C840 portable computer (1.6 Mhz,
1 Gbyte of RAM) under Red Hat 9.0 Linux and the Lahey Fortran compiler (version
L6.10a) with default options. All attempts to solve the test problems were limited
to a maximum of 1000 iterations or 1 hour of CPU time. The values γ1 = 0.0625,
γ2 = 0.25, γ3 = 2, η1 = 0.01, η2 = 0.9, Δ0 = 1, and

γg = min

[
0.001,

1

2
√
n

]

were used.
Two particular variants were tested. The first (called default) is the algorithm

as described above, where exact first and second derivatives are used and where, at
each iteration, the trial point is computed by approximately minimizing mk(xk + s)
using the generalized Lanczos trust-region algorithm of [9] (without preconditioning)
as implemented in the GALAHAD library [11]. This procedure is terminated at the
first s for which

‖∇mk(xk + s)‖ ≤ min
[
0.1,

√
max(εM , ‖∇mk(xk)‖)

]
‖∇mk(xk)‖,(4.1)

where εM is the machine precision. In addition, we choose

fsup = min(106|f(x0)|, f(x0) + 1000)

at Step 0 of the algorithm. Based on practical experience [12], we also impose that
‖sk‖ ≤ 1000Δk at all iterations following the first one at which a restricted step was
taken. The algorithm stops if

‖∇f(xk)‖ ≤ 10−6
√
n.(4.2)

Finally, dominated filter points are always removed from the filter. The second algo-
rithmic variant is the pure trust-region version, which is the same algorithm with the
exception that no trial point is ever accepted for the filter and RESTRICT is always set.

On the 159 problems, both the default and the pure trust-region versions success-
fully solve 143. For the problems where both variants succeed, they report the same
final objective function value. Failure occurs because the maximal iteration count is
reached before convergence is declared, except for problems ARGLINB and ARGLINC

that are judged to be too ill-conditioned by the default version, and for problems
MEYER3, SCURLY20, and SCURLY30, where the pure trust-region variant stops for the
same reason. The filter variant is thus just as reliable4 as the trust-region version.

Figures 4.1, 4.2, and 4.3 give the performance profiles for the two variants for
iterations, CPU time, and the total number of conjugate-gradient iterations, respec-
tively. Performance profiles give, for every σ ≥ 1, the proportion p(σ) of test problems
on which each considered algorithmic variant has a performance within a factor σ of

2We excluded problem BROYDN7D because of its multiple local minima.
3The number of free variables.
4The two variants consistently fail on CHAINWOO, HYDC20LS, LMINSURF, LOGHAIRY, MEYER3, NLMSURF,

NONCVXU2, NONCVXUN, SBRYBND, SCOSINE, and SCURLY10.
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Table 4.1

The test problems and their dimensions.

Problem n Problem n Problem n
AIRCRFTB 5 DQRTIC 5000 OSBORNEA 5
ALLINITU 4 EDENSCH 10000 OSBORNEB 11
ARGLINA 200 EG2 1000 PALMER1C 8
ARGLINB 200 EIGENALS 2550 PALMER1D 7
ARGLINC 200 EIGENBLS 2550 PALMER2C 8
ARWHEAD 5000 EIGENCLS 2652 PALMER3C 8
BARD 3 ENGVAL1 10000 PALMER4C 8
BDQRTIC 5000 ENGVAL2 2 PALMER5C 6
BEALE 2 ERRINROS 50 PALMER6C 8
BIGGS3 3 EXPFIT 2 PALMER7C 8
BIGGS5 5 EXTROSNB 1000 PALMER8C 8
BIGGS6 6 FMINSRF2 5625 PARKCH 15
BOX2 2 FMINSURF 49 PENALTY1 1000
BOX3 3 FREUROTH 5000 PENALTY2 200
BRKMCC 2 GENROSE 500 PENALTY3 200
BROWNAL 200 GROWTHLS 3 POWELLSG 5000
BROWNBS 2 GULF 3 POWER 100
BROWNDEN 4 HAIRY 2 QUARTC 5000
BRYBND 5000 HATFLDD 3 RAYBENDL 2046
CHAINWOO 4000 HATFLDE 3 RAYBENDS 2046
CHNROSNB 50 HEART6LS 6 ROSENBR 2
CLIFF 2 HEART8LS 8 S308 2
CLPLATEA 10100 HELIX 3 SBRYBND 500
CLPLATEB 4970 HIELOW 3 SCHMVETT 5000
CLPLATEC 4970 HILBERTA 2 SCOSINE 5000
COSINE 10000 HILBERTB 10 SCURLY10 100
CRAGGLVY 5000 HIMMELBB 2 SCURLY20 100
CUBE 2 HIMMELBF 4 SCURLY30 100
CURLY10 10000 HIMMELBG 2 SENSORS 100
CURLY20 10000 HIMMELBH 2 SINEVAL 2
CURLY30 1000 HYDC20LS 99 SINQUAD 10000
DECONVU 61 JENSMP 2 SISSER 2
DENSCHNA 2 KOWOSB 4 SNAIL 2
DENSCHNB 2 LIARWHD 5000 SPARSINE 5000
DENSCHNC 2 LMINSURF 5329 SPARSQUR 10000
DENSCHND 3 LOGHAIRY 2 SPMSRTLS 4900
DENSCHNE 3 MANCINO 100 SROSENBR 5000
DENSCHNF 2 MARATOSB 2 SSC 4900
DIXMAANA 9000 MEXHAT 2 STRATEC 10
DIXMAANB 9000 MEYER3 3 TESTQUAD 5000
DIXMAANC 9000 MINSURF 36 TOINTGOR 50
DIXMAAND 9000 MOREBV 5000 TOINTGSS 5000
DIXMAANE 9000 MSQRTALS 1024 TOINTPSP 50
DIXMAANF 9000 MSQRTBLS 1024 TOINTQOR 50
DIXMAANG 9000 NCB20 5010 TQUARTIC 5000
DIXMAANH 9000 NCB20B 5000 TRIDIA 5000
DIXMAANI 9000 NLMSURF 5329 VARDIM 200
DIXMAANJ 9000 NONCVXU2 5000 VAREIGVL 50
DIXMAANK 9000 NONCVXUN 5000 VIBRBEAM 8
DIXMAANL 9000 NONDIA 5000 WATSON 12
DIXON3DQ 10000 NONDQUAR 5000 WOODS 10000
DJTL 2 NONMSQRT 100 YFITU 3
DQDRTIC 5000 ODC 4900 ZANGWIL2 2

the best (see [3] for a more complete discussion). When comparing CPU times, we
must take into account the variability of reported CPU times for identical runs on the
same machine. We have chosen to round all reported times to the nearest multiple
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Fig. 4.1. Iteration performance profiles for the two variants and LANCELOT B.

of 0.1 second. Problems for which all variants required zero seconds (after rounding)
are not included in the comparison since the ranking of algorithms with CPU times
less than clock accuracy is, in our opinion, of doubtful relevance, both because it
is very unreliable and also because its practical impact is negligible (all algorithms
are extremely quick in this case). We have also chosen to replace all remaining zero
times by the average of the class of times that are rounded to zero (assuming uniform
distribution), that is, in our case, by 0.025 (the middle of the interval [0, 0.05]).

It is not difficult to see in these figures that the filter variant is significantly more
efficient than the pure trust-region method in terms of the number of iterations (which
is identical to the number of function evaluations minus one). Its advantage is smaller
but significant in terms of CPU time and conjugate-gradient iterations. Interestingly,
the cost of managing the filter does not appear to dominate the calculation, despite
the potentially large number of entries. A closer look at the results shows that the
maximum number of filter entries does not exceed 5 for 119 problems, lies between
6 and 10 for 11 problems, lies between 11 and 50 for 11 problems, and exceeds 50
for 4 problems only: EIGENBLS (85 entries), RAYBENDS (340 entries), SCURLY20 (176
entries), and SCURLY30 (233 entries). None of the three last problems could be solved
by the pure trust-region method. Moreover, we did not observe any obvious correlation
between filter size and number of variables.

The profiles also include a comparison with LANCELOT-B, one of the GALAHAD
codes [11]. This is a nonmonotone trust-region algorithm (see [15] or [2, section 10.1]),
which we used unpreconditioned with Δ0 = 1 and with its other settings at their
default values. Again this method, which successfully solves 141 out of 159 problems,
appears to be consistently inferior to the new filter algorithm. It does not solve
RAYBENDS, SCURLY20, or SCURLY30 either. This comparison is interesting in that it
suggests not only that the improved performance of the new algorithm might be due
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Fig. 4.2. CPU performance profiles for the two variants and LANCELOT B.
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Fig. 4.3. CG iteration performance profiles for the two variants and LANCELOT B.
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Fig. 4.4. The objective function value as a function of the iteration progress on the EXTROSNB

problem for the two variants and LANCELOT B. The default variant oscillates the most and converges
first, followed by the moderately nonmonotone LANCELOT B, itself followed by the monotone pure
trust-region variant.

to the nonmonotone nature of the mechanism to accept new iterates, but also that the
capability to use steps that extend beyond the trust-region boundaries is also crucial.

We finally present in Figure 4.4 a plot of the evolution of the objective function
value for the default and trust-region variants, as well as for LANCELOT B. This plot
is typical of the cases where the new algorithm outperforms the others. For this algo-
rithm, we note the large oscillations in objective value prior to convergence. Looking
at this figure, it is remarkable that the algorithm is nevertheless provably convergent.

5. Conclusion. We have presented a filter algorithm for unconstrained opti-
mization and have shown, under standard assumptions, that it produces at least a
first-order critical point, irrespective of the chosen starting point. Under mild addi-
tional conditions, we also proved that convergence of the complete sequence of iterates
can occur only to a second-order critical point. Preliminary numerical experience on
the set of unconstrained test problems from the CUTEr collection indicates that sig-
nificant gains in CPU time and in the number of iterations and function/gradient
evaluations can be achieved.

Acknowledgment. The authors are indebted to two anonymous referees for
their constructive comments.
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Abstract. A new notion of “adjusted sublevel set” of a function is introduced and studied.
These sets lie between the sublevel and strict sublevel sets of the function. In contrast to the normal
operators to sublevel or strict sublevel sets that were studied in the literature so far, the normal
operator to the adjusted sublevel sets is both quasi-monotone and, in the case of quasi-convex
functions, cone upper-semicontinuous. This makes this new notion appropriate for all kinds of quasi-
convex functions and, in particular, for quasi-convex functions whose graph presents a “flat part.”
Application is given to quasi-convex optimization through the study of an associated variational
inequality problem.
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1. Introduction. Let X be a Banach space and f : X → R ∪ {+∞} be a
quasi-convex function. The aim of this paper is to propose and study a new con-
cept of sublevel set and its associated normal operator to sublevel sets of a quasi-
convex function, and then provide an application to quasi-convex optimization. The
idea of using normal cones to the sublevel sets Sf(x) = {y ∈ X : f(y) ≤ f(x)} or
strict sublevel sets S<

f(x) = {y ∈ X : f(y) < f(x)} is due to the fact that, in con-

trast to convexity that can be described through the convexity of the epigraph, quasi-
convexity is related to convexity of the sublevel sets. The idea was exploited by Borde
and Crouzeix [5], who mainly established continuity properties; by Aussel and Dani-
ilidis [3], who characterized some classes of quasi-convex functions; and by Eberhard
and Crouzeix [8], who studied the integration of these operators as a means to obtain
the quasi-convex function.

However, in those papers the most meaningful results were found in the case
where, roughly speaking, f admits no “flat parts.” If Sf(x)\S<

f(x) �= ∅ for some

x ∈ dom f (i.e., there exists a flat part), then none of the normal operators defined
in the literature is able to satisfy at the same time quasi-monotonicity and upper
semicontinuity in a sense appropriate for cone-valued operators, even if the consid-
ered function is lower semicontinuous and quasi-convex (see [5, Example 2.2] and
Example 2.1 below). This has induced the authors of previous studies on the subject
to restrict their attention to the class of quasi-convex functions such that each local
minimum is a global minimum (or, equivalently, S<

λ = Sλ for all λ > inf f).

In section 2 we propose a concept of “adjusted sublevel set” Sa(x) which allows us
to deal with all kinds of quasi-convex functions. Based on these adjusted sublevel sets
we then define the normal operator. In section 3 we study the properties of the normal
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operator and, in particular, some nonemptiness properties, quasi-monotonicity, and
continuity results.

Finally, using this normal operator and our recent study of quasi-monotone vari-
ational inequalities [4] we prove an existence result for the minimization of a quasi-
convex function over a convex set.

2. Definitions and basic properties. Let X be a real Banach space, X∗ its
topological dual, and 〈·, ·〉 the duality pairing. The topological closure of a set A will

be denoted by A for the norm topology and A
∗

for the w∗ topology, whereas x∗
i

w
∗

⇀ x∗

means that x∗
i → x∗ in the w∗ topology. As usual, coA will denote the convex hull

of A. We denote by B (x, ε) and B (x, ε) the open ball {y ∈ X : ‖y − x‖ < ε} and the
closed ball {y ∈ X : ‖y − x‖ ≤ ε}. Also, given any nonempty A ⊆ X we denote by
B (A, ε) and B (A, ε) the sets {x ∈ X : dist(x,A) < ε} and {x ∈ X : dist(x,A) ≤ ε},
respectively, where dist(x,A) = inf{‖x− y‖ : y ∈ A} is the distance of x from A.
Given x, y ∈ X, we set [x, y] = {tx + (1 − t)y : t ∈ [0, 1]}. The domain and the graph
of a multivalued operator T : X → 2X

∗
will be denoted, respectively, by dom (T ) and

grT . We will mainly deal with operators whose values are convex cones; in this case,
since the values are unbounded, we have to consider a modified definition of upper
semicontinuity. We first recall that a convex subset C of a convex cone L in X∗ is
called a base if 0 /∈ C

∗
and L =

⋃
t≥0 tC.

Definition 2.1. An operator T : X → 2X
∗

whose values are convex cones is
called norm-to-w∗ cone upper-semicontinuous at x ∈ dom (T ) if there exist a neigh-
borhood U of x and a base C (u) of T (u) for each u ∈ U , such that u → C (u) is
norm-to-w∗ upper semicontinuous at x.

It turns out that we may always suppose that, locally, the base C(u) is the
intersection of T (u) with a fixed hyperplane. To see this, we first define a conic w∗-
neighborhood of a cone L in X∗ to be a w∗-open cone M (i.e., a w∗-open set such
that tM ⊆ M for all t > 0) such that L ⊆ M ∪ {0}.

Proposition 2.2. Let T : X → 2X
∗

be a multivalued operator whose values are
convex cones different from {0}. Given x ∈ dom(T ), the following are equivalent:

(i) T is norm-to-w∗ cone upper-semicontinuous at x.
(ii) T (x) has a base, and for every conic w∗-neighborhood M of T (x) there exists

a neighborhood U of x such that T (u) ⊆ M ∪ {0} for all u ∈ U .
(iii) There exists a w∗-closed hyperplane A of X∗ and a neighborhood U of x such

that for all u ∈ U , D (u) = T (u)∩A is a base of T (u) and the operator D is
norm-to-w∗ upper semicontinuous at x.

Proof. If (i) holds and M is a conic w∗-neighborhood of T (x), then M is a w∗-
neighborhood of C(x). Hence there exists a neighborhood U of x such that C(u) ⊆ M
for every u ∈ U . Then obviously T (u) ⊆ M ∪ {0}.

Suppose that (ii) holds. Then T (x) has a base C(x). Since 0 /∈ C(x)
∗
, by

convex separation we deduce the existence of some x1 ∈ X such that 〈x∗, x1〉 > 0
for all x∗ ∈ C(x). The set B = {x∗ ∈ X∗ : 〈x∗, x1〉 > 0} is a conic neighborhood
of T (x); hence there exists a neighborhood U of x such that for every u ∈ U one
has T (u) ⊆ B ∪ {0}. Set A = {x∗ ∈ X∗ : 〈x∗, x1〉 = 1}. Since T (u) �= {0} it follows
that D(u) := T (u) ∩ A is a base of T (u). To show the semicontinuity of D let us
consider a w∗-open neighborhood V of D(x). Then V ∩ A is w∗-open in A. The
function f : B → A defined by f(x∗) = x∗

〈x∗,x1〉 is w∗-continuous; thus, the set⋃
t>0 t (V ∩A) = f−1 (V ∩A) is w∗-open. From D(x) ⊆ (V ∩ A) we deduce that⋃
t>0 t (V ∩A) is a conic w∗-neighborhood of T (x). Since (ii) holds, there exists a
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neighborhood U1 of x, U1 ⊆ U , such that T (u) ⊆
⋃

t>0 t (V ∩A) ∪ {0}. It follows
immediately that D(u) ⊆ V , i.e., (iii) holds.

Finally, (iii) obviously implies (i).
A definition of upper semicontinuity suitable for cone-valued operators, similar to

property (ii) in the proposition above, was given in [13] (where continuity was taken
with respect to the norm topology) and in [5] (where the definition was given in a
finite-dimensional setting), the main difference being that in these papers no reference
to bases was made.

Given a set A ⊆ X, the negative polar cone of A will be denoted by A−. Let
f : X → R ∪ {+∞} be a function. For any λ ∈ R, define Sλ = {y ∈ X : f(y) ≤ λ},
S<
λ = {y ∈ X : f(y) < λ}, S=

λ = {y ∈ X : f (y) = λ}, and, for any x ∈ dom f \
arg min f , ρx = dist(x, S<

f(x)).

Definition 2.3. Let f : X → R ∪ {+∞} be any function. To any element
x ∈ dom f we associate the adjusted sublevel set Sa

f (x) defined by

Sa
f (x) = Sf(x) ∩B

(
S<
f(x), ρx

)
if x /∈ arg min f , and Sa

f (x) = Sf(x) otherwise.
Clearly x is always an element of Sa

f (x). If x ∈ dom f \ arg min f is such that

ρx = 0, then Sa
f (x) = Sf(x) ∩S<

f(x); if, moreover, f is lower semicontinuous on dom f ,

then Sa
f (x) = S<

f(x).

The convexity of the sublevel sets (resp., strict sublevel sets) characterizes the
quasi-convexity of the function. This still holds true for the adjusted sublevel sets.

Proposition 2.4. Let f : X → R∪ {+∞} be any function, with domain dom f .
Then

f is quasi-convex ⇐⇒ Sa
f (x) is convex, ∀x ∈ dom f.

Proof. Let us suppose that Sa
f (u) is convex for every u ∈ dom f . We will show

that for any x ∈ dom f , Sf(x) is convex. If x ∈ arg min f , then Sf(x) = Sa
f (x) is

convex by assumption. Assume now that x /∈ arg min f and take y, z ∈ Sf(x).

If both y and z belong to B(S<
f(x), ρx), then y, z ∈ Sa

f (x); thus [y, z] ⊆ Sa
f (x) ⊆

Sf(x).

If both y and z do not belong to B(S<
f(x), ρx), then f(x) = f(y) = f(z), S<

f(z) =

S<
f(y) = S<

f(x), and ρy, ρz are positive. If, say, ρy ≥ ρz, then y, z ∈ B(S<
f(y), ρy); thus

y, z ∈ Sa
f (y) and [y, z] ⊆ Sa

f (y) ⊆ Sf(y) = Sf(x).

Finally, suppose that only one of y, z, say z, belongs to B(S<
f(x), ρx) while y /∈

B(S<
f(x), ρx). Then f(x) = f(y), S<

f(y) = S<
f(x), and ρy > ρx; thus we have z ∈

B(S<
f(x), ρx)⊆B(S<

f(y), ρy) and we deduce as before that [y, z]⊆Sa
f (y) ⊆Sf(y) =Sf(x).

The other implication is straightforward.
An operator T is called
quasi-monotone if for every (x, x∗), (y, y∗) ∈ grT the following implication holds:

〈x∗, y − x〉 > 0 ⇒ 〈y∗, y − x〉 ≥ 0;

cyclically quasi-monotone if for every (xi, x
∗
i ) ∈ grT , i = 1, 2, . . . , n, the following

implication holds:

〈x∗
i , xi+1 − xi〉 > 0 ∀i = 1, 2, . . . , n− 1 ⇒ 〈x∗

n, xn+1 − xn〉 ≤ 0,

where xn+1 = x1;
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cyclically monotone if for every (xi, x
∗
i ) ∈ grT , i = 1, 2, . . . , n,

n∑
i=1

〈x∗
i , xi+1 − xi〉 ≤ 0.

By analogy to convex functions, it is known that a lower semicontinuous function
is quasi-convex if and only if its Clarke–Rockafellar subdifferential is quasi-monotone
[2], [12], or cyclically quasi-monotone [6].

Let f : X → R ∪ {+∞} be a function. Set

N(x) =
{
x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 ∀y ∈ Sf(x)

}
,

N<(x) =
{
x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 ∀y ∈ S<

f(x)

}
for every x ∈ dom f , while we set N(x) = N< (x) = ∅ for x /∈ dom f . Equivalently,
x∗ ∈ N(x) if and only if the following implication holds:

〈x∗, y − x〉 > 0 ⇒ f (y) > f(x);

also, x∗ ∈ N<(x) if and only if

〈x∗, y − x〉 > 0 ⇒ f (y) ≥ f(x).

These “normal operators” were studied in [5] for functions defined on Rn. They have
interesting properties: N is always cyclically quasi-monotone. Also, it can be shown
that N< is cone upper-semicontinuous at every point x where f is lower semicontin-
uous, provided that there exists λ < f(x) such that intSλ �= ∅ (see Proposition 2.2
of [5] for an equivalent statement). However, these two operators are essentially
adapted to the class of quasi-convex functions such that any local minimum is a
global minimum (in particular, semistrictly quasi-convex functions). In this case,
for each x ∈ dom f \ arg min f , the sets Sf(x) and S<

f(x) have the same closure and

N(x) = N<(x). For quasi-convex functions outside of this class, in general N is
not cone upper-semicontinuous (see Example 2.2 in [5]) while N< is not, in general,
quasi-monotone.

Example 2.1. Define f : R2 → R by

f (a, b) =

{
|a| + |b| if |a| + |b| ≤ 1,

1 if |a| + |b| > 1.

Then f is quasi-convex. Consider x = (10, 0), x∗ = (1, 2), y = (0, 10), and y∗ =
(2, 1). We see that x∗ ∈ N<(x) and y∗ ∈ N< (y) (since |a| + |b| < 1 implies (1, 2) ·
(a− 10, b) ≤ 0 and (2, 1) · (a, b− 10) ≤ 0) while 〈x∗, y − x〉 > 0 and 〈y∗, y − x〉 < 0.
Hence N< is not quasi-monotone.

In what follows, we will define an operator that has both these properties (cone
upper-semicontinuous and quasi-monotonicity) and, consequently, is suitable for re-
lating the minimization of a quasi-convex, lower semicontinuous function f to the
variational inequality problem.

Definition 2.5. To any function f : X → R∪{+∞} we associate the set-valued
map Na : dom f → 2X

∗
defined for any x ∈ dom f as the normal cone to the adjusted

sublevel set Sa
f (x) at x; i.e.,

Na(x) =
{
x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ 0 ∀y ∈ Sa

f (x)
}
.

Note that S<
f(x) ⊆ Sa

f (x) ⊆ Sf(x) implies that N(x) ⊆ Na(x) ⊆ N<(x) for all

x ∈ dom f .
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3. Properties of the normal operator. In this section we investigate prop-
erties of the normal operator Na for quasi-convex functions: equivalent definition,
nonemptiness, quasi-monotonicity and cone upper-semicontinuity are considered.

We will give for quasi-convex functions an equivalent definition of Na which clearly
suggests that this operator corresponds to a refined version of the operator N . Let
us first define for any x ∈ dom f the extended normal cone of f at x as follows. For
every x ∈ dom f \ arg min f we set

EN(x) = {x∗ ∈ X∗ : 〈x∗, y〉 ≤ 〈x∗, z〉, ∀ y ∈ S<
f(x), ∀ z ∈ B(x, ρx)},

while for x ∈ arg min f we set EN(x) = {0}. Note that EN(x) is a closed convex cone.
In fact, for x ∈ dom f \ arg min f it is the normal cone at x to the set S<

f(x) +B(0, ρx)

or, equivalently, to its closure B(S<
f(x), ρx). In addition, x∗ is an element of EN(x)

if and only if for all y ∈ S<
f(x) and all v ∈ B(0, 1) one has 〈x∗, x − y〉 ≥ −ρx〈x∗, v〉.

Consequently, for any x ∈ dom f \ arg min f , EN(x) admits the following equivalent
definition:

x∗ ∈ EN(x) ⇐⇒ 〈x∗, x− y〉 ≥ ρx‖x∗‖, ∀ y ∈ S<
f(x).(3.1)

Proposition 3.1. Let f be quasi-convex. Then for each x ∈ dom f ,

Na(x) = N(x) + EN(x) = co (N(x) ∪ EN(x)) .(3.2)

Before proving Proposition 3.1, let us state the following well-known basic lemma.
Lemma 3.2. Let A,B be convex subsets of X. If A ∩ intB �= ∅, then A ∩B =

A ∩B.
Proof (of Proposition 3.1). If x ∈ arg min f , the equality is obvious. Assume

that x /∈ arg min f . We consider two cases. If ρx = 0, then Sa
f (x) = S<

f(x) ∩ Sf(x),

and thus S<
f(x) ⊆ Sa

f (x) ⊆ S<
f(x). It follows that Na(x) = N<(x) = EN(x). Since

N(x) ⊆ N<(x), we have N (x) + EN (x) = EN (x) = Na(x).
Now assume that ρx > 0. Obviously, Na(x) is the normal cone to the set

Sf(x) ∩B(S<
f(x), ρx) at x. However,

Sf(x) ∩ intB
(
S<
f(x), ρx

)
⊇ S<

f(x) �= ∅;(3.3)

hence by Lemma 3.2,

Sf(x) ∩B
(
S<
f(x), ρx

)
= Sf(x) ∩B

(
S<
f(x), ρx

)
.

Therefore, Na(x) is the normal cone to Sf(x) ∩ B(S<
f(x), ρx) at x. From (3.3) and

using [1, Thm. 4.1.16] we deduce that Na(x) = N(x) + EN (x). The second equality
is obvious.

Let us set S∗(0, 1) = {x∗ ∈ X∗ : ‖x∗‖ = 1}.
Proposition 3.3. Let f : X → R ∪ {+∞} be any function. Then
(i) EN ∩ S∗(0, 1) is cyclically monotone on any nonempty subset

S=
a = {x ∈ X : f(x) = a},

(ii) Na is cyclically quasi-monotone.
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Proof. (i) Let us consider x1, x2, . . . , xn ∈ S=
a . We assume that xi �∈ arg min f

since otherwise EN (xi) ∩ S∗(0, 1) is empty. Set xn+1 = x1 and take x∗
i ∈ EN(xi) ∩

S∗(0, 1), i = 1, 2, . . . , n. According to (3.1), for any y ∈ S<
f(xi)

, 〈x∗
i , xi − y〉 ≥ ρxi .

This yields

‖xi+1 − y‖ ≥ 〈x∗
i , xi+1 − xi〉 + 〈x∗

i , xi − y〉 ≥ ρxi + 〈x∗
i , xi+1 − xi〉,

from which, remembering that f (xi) = a, we get

∀i = 1, 2, . . . , n, ρxi+1
= d(xi+1, S

<
f(xi)

) ≥ ρxi + 〈x∗
i , xi+1 − xi〉.

Adding the inequalities for all i’s we obtain

n∑
i=1

〈x∗
i , xi+1 − xi〉 ≤ 0;

i.e., EN ∩ S∗(0, 1) is cyclically monotone on S=
a .

(ii) If Na is not cyclically quasi-monotone, then there exist xi ∈ dom (f), x∗
i ∈

Na(xi), i = 1, 2, . . . , n such that

〈x∗
i , xi+1 − xi〉 > 0, i = 1, 2, . . . , n,(3.4)

where xn+1 = x1.
Since Na(xi) ⊆ N< (xi), (3.4) implies that for all i = 1, 2, . . . , n, f (xi) ≤ f (xi+1).

Consequently, f (x1) = f (x2) = · · · = f (xn). This means that S<
f(xi)

is the same

for all i. We denote this set by A. From (3.4) and x∗
i ∈ Na(xi) it also follows

that xi+1 /∈ Sf(xi) ∩ B (A, ρxi
). Since f(xi+1) = f(xi), we have xi+1 ∈ Sf(xi).

Hence, xi+1 /∈ B (A, ρxi
) for all i = 1, 2, . . . , n. It follows that ρxi+1

> ρxi
for all

i = 1, 2, . . . , n. This easily leads to ρxn+1
> ρx1 , a contradiction.

According to the preceding proposition, the operator Na is always quasi-monotone.
Just as the so-called quasi-convex subdifferential [7], Na has the property to charac-
terize the quasi-convexity of the associated function not by its quasi-monotonicity,
but by its nonemptiness on a dense subset of dom (f).

Proposition 3.4. Let f : X → R ∪ {+∞} be a lower semicontinuous function.
Suppose that either f is radially continuous or dom (f) is convex and int(Sa) �= ∅ for
all a > infX f . Then

(i) If Na(x) \ {0} is nonempty on a dense subset of dom (f) \ arg min f , then f
is quasi-convex.

(ii) If f is quasi-convex, then Na(x) \ {0} �= ∅ for all x ∈ dom (f) \ arg min f .
(iii) f is quasi-convex if and only if dom (Na\{0}) is dense in dom (f)\arg min f .
Proof. (i) Looking closely into the proof of Proposition 11 of [7] one can observe

that it has been shown that, under the assumptions of the present proposition, the
function f is quasi-convex provided that the domain of N< \ {0} is dense in dom f \
arg min f . Since Na(x) \ {0} ⊆ N<(x) \ {0}, the assertion follows.

(ii) For every x ∈ dom (f) \ arg min f one has x �∈ S<
f(x). It is known that a

quasi-convex, lower semicontinuous, and radially continuous function is continuous
[7, Prop. 9]. Thus, our assumptions imply that int(S<

f(x)) �= ∅. Hence there exists

x∗ ∈ X∗ \ {0} such that

∀ y ∈ S<
f(x), ∀ z ∈ B(x, ρx), 〈x∗, y〉 ≤ 〈x∗, z〉.
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Therefore, x∗ ∈ EN(x) and from Proposition 3.1 it follows that Na(x) \ {0} �= ∅.
Finally, assertion (iii) resumes the previous ones.

Proposition 3.5. Let f be quasi-convex and such that intSa �= ∅ for all a > inff .
If f is lower semicontinuous at x ∈ dom (f) \ arg min f , then Na is norm-to-w∗ cone
upper-semicontinuous at x.

Before proving Proposition 3.5 we establish the following lemma. For any set
U ⊆ X, N< (U) denotes as usual the set ∪x∈UN

<(x).
Lemma 3.6. Let f be quasi-convex and such that intSa �= ∅ for all a > inf f .

If f is lower semicontinuous at x ∈ dom f \ arg min f , then there exists a neigh-
borhood U of x and an element z ∈ X\ {0} such that the set N< (U) ∩ A, with
A = {x∗ ∈ X∗ : 〈x∗, z〉 = 1}, is a bounded base for the cone N< (U).

Proof. Choose y0 ∈ X and δ > 0 such that y0 ∈ intS<
f(x)−δ. There exists ε > 0

such that

∀z ∈ B (0, 1), f (y0 + εz) < f(x) − δ.

Since f is lower semicontinuous at x, we can choose ε1 > 0 such that for every
u ∈ x + ε1B (0, 1), f (u) > f (x) − δ. Thus

∀u ∈ x + ε1B (0, 1), y0 + εB (0, 1) ⊆ S<
f(u).(3.5)

Set ε2 = min{ε/2, ε1}, U = x + ε2B (0, 1). For every u ∈ U , from (3.5) we deduce
that f (y0 + εw) < f (u) for all w ∈ B (0, 1) and thus for every x∗ ∈ N< (u) we obtain
the following:

∀w ∈ B (0, 1), 〈x∗, y0 + εw − u〉 ≤ 0.

It follows that

ε ‖x∗‖ = sup
w∈B(0,1)

〈x∗, εw〉 ≤ 〈x∗, u− y0〉

= 〈x∗, x− y0〉 + 〈x∗, u− x〉 ≤ 〈x∗, x− y0〉 + ‖x∗‖ ε

2

Thus,

∀u ∈ U, ∀x∗ ∈ N< (u), 〈x∗, x− y0〉 ≥ (ε/2) ‖x∗‖.(3.6)

In particular, 〈x∗, x− y0〉 > 0 whenever x∗ ∈ N< (u) \ {0}. Now set A = {x∗ ∈
X∗ : 〈x∗, x− y0〉 = 1}. Obviously, for every u ∈ U and x∗ ∈ N< (u) ∩ A, one has
‖x∗‖ ≤ 2/ε; i.e., N< (U) ∩A is bounded.

Proof of Proposition 3.5. Let U and A be the neighborhood and hyperplane given
by Lemma 3.6. Define C (u) = Na (u) ∩ A, u ∈ U . Obviously, C (u) is a convex, w∗-
compact base of Na (u). We have to show that C is norm-to-w∗ upper semicontinuous
at x. Define D (u) = (N(u) ∪ EN(u)) ∩ A, u ∈ U . We first show that D is norm-
to-w∗ upper semicontinuous. According to [10, Prop. 1.2.23] it is sufficient to show

that if (xi, x
∗
i )i∈I is a net in grD such that xi → x in norm and x∗

i
w

∗
⇀ x∗, then

x∗ ∈ D (x). Since obviously x∗ ∈ A, we have to show that x∗ ∈ EN(x) ∪ N (x).
Since x∗

i ∈ EN (xi) ∪ N (xi) we may consider, without loss of generality, that either
x∗
i ∈ N (xi) for all i ∈ I or x∗

i ∈ EN (xi) for all i ∈ I.
Suppose first that x∗

i ∈ N (xi). For every y ∈ S<
f(x), there exists i0 such that

for all i > i0, f (y) < f (xi). Thus, 〈x∗
i , xi − y〉 ≥ 0. Taking into account that x∗

i

are bounded as they belong to N< (U) ∩ A, we obtain at the limit 〈x∗, x− y〉 ≥ 0.
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This means that x∗ ∈ N<(x). If x is not a local minimum, then ρx = 0; hence
N< (x) = EN (x) so that x∗ ∈ EN (x) ∪ N (x) and we are done. If x is a local
minimum, then for i sufficiently large f (xi) ≥ f (x). Hence, for every y ∈ Sf(x) we
have y ∈ Sf(xi). Consequently, 〈x∗

i , xi − y〉 ≥ 0 thus implying 〈x∗, x− y〉 ≥ 0 for all
y ∈ Sf(x). It follows that x∗ ∈ N (x) ⊆ EN(x) ∪N (x).

Now suppose that x∗
i ∈ EN (xi). Without loss of generality, we may assume that

for all i’s we have either f (xi) > f(x) or f (xi) ≤ f (x). If f (xi) > f(x) holds, then
Sf(x) ⊆ S<

f(xi)
. Thus,

∀y ∈ Sf(x), 〈x∗
i , xi − y〉 ≥ 0

and at the limit 〈x∗, x− y〉 ≥ 0 for all y ∈ Sf(x), which shows that x∗ ∈ N (x). If on
the contrary f (xi) ≤ f (x) holds, then S<

f(xi)
⊆ S<

f(x); thus

lim inf ρxi
= lim inf dist

(
xi, S

<
f(xi)

)
≥ lim dist

(
xi, S

<
f(x)

)
= ρx.(3.7)

Now for each y ∈ S<
f(x) there exists i0 ∈ I such that for all i > i0, f (xi) > f (y).

Thus, y ∈ S<
f(xi)

and

〈x∗
i , xi − y〉 ≥ ρxi ‖x∗

i ‖.

Using (3.7) and lower semicontinuity of ‖·‖ at x∗, we find

∀y ∈ S<
f(x), 〈x∗, x− y〉 ≥ ρx ‖x∗‖,

which means that x∗ ∈ EN(x). Thus, in all cases x∗ ∈ EN(x) ∪ N (x). This shows
that D is norm-to-w∗ upper semicontinuous at x, as desired.

To show that C is norm-to-w∗ upper semicontinuous at x, it is again sufficient to

show that if (xi, x
∗
i )i∈I is a net in grC such that xi → x in norm and x∗

i
w

∗
⇀ x∗, then

x∗ ∈ C (x). Note that in view of Proposition 3.1,

C (xi) = co ((N(xi) ∩A) ∪ (EN(xi) ∩A));

hence, each x∗
i can be written in the form x∗

i = λiy
∗
i + (1 − λi) z

∗
i , where y∗i ∈

N(xi) ∩ A, z∗i ∈ EN(xi) ∩ A, and λi ∈ [0, 1]. Since y∗i and z∗i are bounded (as
they belong to N< (U)∩A), by considering subnets if necessary we may assume that

y∗i
w

∗
⇀ y∗, z∗i

w
∗

⇀ z∗, and λi → λ. By the norm-to-w∗ upper semicontinuity of D, we
know that y∗, z∗ ∈ D (x); hence, x∗ ∈ C(x) and C is norm-to-w∗ upper semicontinuous
at x.

4. Quasi-convex programming. In [4] an existence result for quasi-monotone
variational inequality has been proved under weak assumptions, in particular without
compactness nor hypothesis on inner points. Taking advantage of the good properties
of the normal operator Na, our aim in this section is to obtain an existence result for
the minimization of a quasi-convex function over a convex set through the study of
an associated variational inequality.

Given K ⊆ X and an operator T : K → 2X
∗

we denote by Sstr(T,K) the set of
strong solutions of the Stampacchia variational inequality

x0 ∈ Sstr(T,K) ⇐⇒ x0 ∈ K and ∃x∗
0 ∈ T (x0) : ∀x ∈ K, 〈x∗

0, x− x0〉 ≥ 0.
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Given K ⊆ X we set K⊥ = {x∗ ∈ X∗ : ∀x, y ∈ K, 〈x∗, x〉 = 〈x∗, y〉}. If we define
affK as the affine hull of K, i.e.,

affK =

{
n∑

i=1

λixi :

n∑
i=1

λi = 1, xi ∈ K, i = 1, . . . , n

}

and affK the closure of affK, then it is easy to see that K⊥ = {0} if and only if
affK = X. In optimization problems one can often assume that K⊥ = {0} with no
loss of generality. It is enough to translate K so that 0 ∈ K and then restrict the
problem to the subspace X1 = affK; then condition K⊥ = {0} is fulfilled.

Proposition 4.1. Let f : X → R ∪ {+∞} be a quasi-convex function, radially
upper semicontinuous on dom (f), and K ⊆ dom (f) be a convex set such that K⊥ =
{0}. Assume that either

(i) x0 ∈ Sstr(N
< \ {0},K), or

(ii) x0 ∈ Sstr(N
a \ {0} ,K).

Then for all x ∈ K, f(x0) ≤ f(x).
Proof. (i) By assumption, there exists x∗

0 ∈ N<(x0) \ {0} such that for all x ∈ K,
〈x∗

0, x − x0〉 ≥ 0. Since x∗
0 �∈ K⊥, there exists y ∈ K such that 〈x∗

0, y − x0〉 �= 0;
thus 〈x∗

0, y − x0〉 > 0. Fix such a y and for any x ∈ K and any t ∈ ]0, 1[ define
xt = (1 − t)x + ty. Then

〈x∗
0, xt − x0〉 = (1 − t)〈x∗

0, x− x0〉 + t〈x∗
0, y − x0〉 > 0.

Since x∗
0 ∈ N<(x0), this gives f(xt) ≥ f(x0) and by radial upper semicontinuity

f(x) ≥ f(x0).
(ii) This is an immediate consequence of (i) since Na (x) ⊆ N< (x) for all x.
We will use a very weak kind of continuity for multivalued operators (cf. [9]):

Given a convex subset K ⊆ X and an operator T : K → 2X
∗ \ {∅}, T is called upper

sign-continuous on K if for any x, y ∈ K,

∀ t ∈ ]0, 1[ , inf
x∗
t∈T (xt)

〈x∗
t , y − x〉 ≥ 0 =⇒ sup

x∗∈T (x)

〈x∗, y − x〉 ≥ 0,

where xt = (1− t)x+ ty. If, for example, the restriction of T to every line segment of
K is upper semicontinuous with respect to the w∗-topology in X∗, then T is upper
sign-continuous.

Let us recall the following existence result for the Stampacchia variational in-
equality [4].

Proposition 4.2. Let K be a convex subset of X such that K∩B(0, n) is weakly
compact for every n ∈ N. Let further T : K → 2X

∗ \{∅} be a quasi-monotone operator
such that the following coercivity condition holds:

∃n ∈ N, ∀x ∈ K \B(0, n), ∃ y ∈ K with ‖y‖ < ‖x‖
such that ∀x∗ ∈ T (x), 〈x∗, x− y〉 ≥ 0.

(4.1)

Suppose moreover that for every x ∈ K there exist a neighborhood Vx of x and an
upper sign-continuous operator Sx : Vx ∩ K → 2X

∗ \ {∅} with convex, w∗-compact
values satisfying Sx(y) ⊆ T (y) for all y ∈ Vx ∩K. Then Sstr(T,K) �= ∅.

Note that condition (4.1), which has been previously used in Isac [11], is auto-
matically satisfied if K is bounded. We now apply the above results to optimization.

Theorem 4.3. Let f : X → R ∪ {+∞} be a lower semicontinuous quasi-
convex function, radially continuous on dom (f). Assume that for every λ > infX f ,
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int(Sλ) �= ∅. Let K ⊆ dom (f) be convex with K⊥ = {0} and such that K ∩B(0, n) is
weakly compact for every n ∈ N.

If condition (4.1) holds with T = Na, then there exists x0 ∈ K such that

∀x ∈ K, f(x) ≥ f(x0).

Proof. If arg min f ∩K �= ∅, we have nothing to prove. Suppose that arg min f ∩
K = ∅. According to Proposition 3.3, Na is quasi-monotone. Further, according to
Proposition 3.5, it is norm-to-w∗ cone upper-semicontinuous on K. Thus, all assump-
tions of Proposition 4.2 hold for the operator Na \{0}, and thus Sstr (Na \ {0} ,K) �=
∅. Finally, using Proposition 4.1 we infer that f has a global minimum on K.

Corollary 4.4. Make the assumptions on f and K as in Theorem 4.3. Assume
that there exists n ∈ N such that for all x ∈ K, ‖x‖ > n, there exists y ∈ K,
‖y‖ < ‖x‖, such that f (y) < f (x). Then there exists x0 ∈ K such that

∀x ∈ K, f(x) ≥ f(x0).

Proof. If f (y) < f(x), then for every x∗ ∈ Na(x) ⊆ N< (x), 〈x∗, y − x〉 ≤ 0.
Hence, coercivity condition (4.1) with T = Na holds. The corollary follows from
Theorem 4.3.
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MINIMIZING WITHIN CONVEX BODIES USING A CONVEX HULL
METHOD∗

THOMAS LACHAND-ROBERT† AND ÉDOUARD OUDET†

Abstract. We present numerical methods to solve optimization problems on the space of convex
functions or among convex bodies. Hence convexity is a constraint on the admissible objects, whereas
the functionals are not required to be convex. To deal with this, our method mixes geometrical and
numerical algorithms.

We give several applications arising from classical problems in geometry and analysis: Alexan-
drov’s problem of finding a convex body of prescribed surface function; Cheeger’s problem of a
subdomain minimizing the ratio surface area on volume; Newton’s problem of the body of minimal
resistance.

In particular for the latter application, the minimizers are still unknown, except in some particular
classes. We give approximate solutions better than the theoretical known ones, hence demonstrating
that the minimizers do not belong to these classes.

Key words. optimization, convex functions, numerical schemes, convex bodies, Newton’s prob-
lem of the body of minimal resistance, Alexandrov, Cheeger
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1. Introduction. In this paper, we present numerical methods to solve opti-
mization problems among convex bodies or convex functions. Several problems of
this kind appear in geometry, calculus, applied mathematics, etc. As applications, we
present some of them, together with our corresponding numerical results.

Dealing with convex bodies or convex functions is usually considered easier in
optimization theory. Unfortunately, this is not true when the optimization space itself
is (a subset of) the set of convex functions or bodies. As an example, consider the
following minimization problem, where M > 0 is a given parameter, Ω is a regular
bounded convex subset of Rn, and g is a continuous function on Ω × R × Rn:

inf
u∈CM

∫
Ω

g(x, u(x),∇u(x)) dx,(1)

where CM = {u : Ω → [−M, 0], u convex } .

Without the convexity constraint, this problem is usually handled in a numerical
way by considering g′2(x, u(x),∇u(x)) = div g′3(x, u(x),∇u(x)), the associated Euler
equation. Such an equation is discretized and solved on a mesh defined on Ω (or,
more precisely, a sequence of meshes, in order to achieve a given precision), using, for
instance, finite element methods.

1.1. Dealing with the convexity constraint. The classical numerical meth-
ods do not work at all with our problem:

∗Received by the editors May 12, 2004; accepted for publication (in revised form) September 7,
2004; published electronically October 7, 2005.

http://www.siam.org/journals/siopt/16-2/60803.html
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1. The convexity constraint prevents us from using an Euler equation. In fact,
just stating a correct Euler equation for this sort of problem is a difficult task
[12, 20, 8]. Discretizing the corresponding equation, then, is rather difficult.

2. The set CM of admissible functions, considered as a subset of a Sobolev space
such as H1

loc(Ω), is compact [5]. This makes it easy to prove the existence of a
solution of (1) without any other assumption on g. But this also implies that
CM is a very small subset of the function’s space, with an empty interior.
Therefore most numerical approximations of a candidate function u are not
convex. Evaluating the functional on those approximations is likely to yield
a value much smaller than the sought minimum.

3. The natural way to evade the previous difficulty is to use only convex ap-
proximations. For instance, on a triangular mesh of Ω, it is rather easy to
characterize those P1-functions (that is, continuous and affine by parts func-
tions) which are convex. Unfortunately, such an approximation introduces a
geometric bias from the mesh. The set of convex functions that are limits of
this sort of approximation is much smaller than CM [13].

4. Penalization processes are other ways to deal with this difficulty. But finding
a good penalization is not easy, and this usually yields very slow algorithms,
which in this particular case are not very convincing. This yields approxima-
tion difficulties similar to those given in 2 above.

A first solution for this kind of numerical problem was presented in [10], and an
improved version is given in [9]. However, the algorithms given in these references
are not very fast, since they deal with a large number of constraints, and do not
apply to those problems where local minimizers exist. The latter are common in the
applications since there is no need for the functional itself to be convex to prove the
existence of a solution of (1): the mere compacity of CM , together with the continuity
of the functional on an appropriate functions space, is sufficient.

1.2. A mixed-type algorithm. Our main idea to handle numerically (1) is to
mix geometrical and numerical algorithms. It is standard that any convex body (or,
equivalently, the graph of any convex function) can be described as an intersection
of half-spaces or as a convex hull of points. Our discretization consists of considering
only a finite number of half-spaces or a finite number of points. (This is not equiv-
alent, and choosing either mode is part of the method.) Reconstructing the convex
body is a standard algorithm, and computing the value of the functional, then, is
straightforward. Obviously, the convex hull algorithm used implies an additional cost
that cannot be neglected. On the other hand, this method makes it easy to deal with
additional constraints, such as the fact that functions get values in [0,M ]. We also
show that it is possible to compute the derivative of the functional. Hence we may
use gradient methods for minimization.

Note that since this always deals with convex bodies, we are guaranteed that
the evaluations of the functional are not smaller than the sought minimum, up to
numerical errors. Because the approximation process is valid for any convex body, we
can ensure that all minimizers can be approximated arbitrary closely.

The detailed presentation of the method requires us to explain how the half-spaces
or points are moved, whether or not their number is increased, and which information
on the specific problem is useful for this. We present quite different examples in
our applications, in order to pinpoint the corresponding difficulties. Whenever the
minimizer of the functional is not unique, gradient methods may get stuck in local
minima. We present a “genetic algorithm” to deal with these, too.
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In this paper, we concentrate on the three-dimensional settings. The two-
dimensional case is much easier, and convex sets in the plane can be parametrized
in a number of very simple ways. Even though our methods could be applied to
dimensions n ≥ 4, the convex hull computation may become too expensive.

1.3. Generalized problem. This algorithm’s design does not involve any mesh
or interpolation process. As an important consequence, we are not limited to convex
functions but may also consider convex bodies. This allows us to study problems such
as

inf
A∈A

F(A), where F(A) :=

∫
∂A

f(x, νA(x), ϕA(x)) dH2(x),(2)

and A is a subset of the class of closed convex bodies of R3. We make use of the
following notations:

• ∂A is the boundary of a convex body A;
• νA is the almost everywhere defined outer normal vector field on ∂A, with

values on the sphere S2;
• ϕA(x) is the signed distance from the supporting plane at x to the origin of

coordinates;
• f is a continuous function R3 × S2 × R → R.

Since ϕA(x) = x·νA(x), the expression of the functional F is somehow redundant.
But the particular case of functions f depending only on ν, ϕ is important both in
applications and in the algorithm used, as we shall see.

As reported in [7], the problem (1) can be reformulated in terms of (2) whenever
g depends only on its third variable. In this formulation A stands for the set of convex
subsets of QM := Ω × [0,M ] containing Q0 = Ω × {0}. Any convex body A ∈ A has
the form

A = {(x′, x3) ∈ Ω × R, 0 ≤ x3 ≤ −u(x′)}, with u ∈ CM .

Therefore any x ∈ ∂A \ Q0 has the form x = (x′,−u(x′)), with x′ ∈ Ω. Then

νA(x) = (∇u(x′), 1)/

√
1 + |∇u(x′)|2, and the function f is deduced from g by the

relation f(ν) = ν3g
(

1
ν3

ν′
)
, for every ν = (ν′, ν3) ∈ S2. Several other problems with a

geometrical background may also be formulated in a similar way.
Actually, the formulation (2) allows us to study any problem of the form (1).

It is enough to define f(x, ν, ϕ) = ν3g(x
′,−x3,

1
ν3

ν′), taking into account that x =
(x′,−u(x′)).

On the other hand, it is much more practical in the numerical implementation to
consider functions f depending only on ν, ϕ. This avoids numerical surface integration
altogether, as explained in section 2, hence reducing greatly the computation time.
With such a restriction, only some problems of the form (1) can be considered. Since

ϕA(x) =
1√

1 + |∇u(x′)|2
(x′ · ∇u(x′) + u(x′)),

we can handle functions g depending on ∇u(x′) and the aggregate x′ ·∇u(x′)+u(x′).

2. Half-spaces and discretization. For every ν ∈ S2 and every ϕ ≥ 0, let us
define the half-space of R3 using the following notation:

[[ν, ϕ]] :=
{
x ∈ R3, x · ν ≤ ϕ

}
.
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Lemma 1. Let A be a convex body of R3. Then, for all ε > 0, there exists a
convex polytope P ⊃ A such that

|F(P ) −F(A)| ≤ ε.

Proof. Let us define

∂∗A := {a ∈ ∂A; νA(a) exists}.
Let (Xj)j∈N be a dense sequence of points in ∂∗A, and consider the sequence of convex
polytopes (Pj)j∈N defined by

Pj :=

j⋃
k=1

[[νA(Xk), ϕA(Xk)]].

Clearly, Pj ⊃ A, and limj→∞ Pj = A for the Hausdorff distance. From a classical
theorem of Rockafellar [22], for any a ∈ ∂∗A, and any sequence (pj), converging to a,
with pj ∈ ∂∗Pj for all j, we have that νPj (pj) converges to νA(a). Since ∂A \ ∂∗A is
H2-negligible, we get F(Pj) → F(A).

As every convex polytope is the finite intersection of half-spaces, the natural
discretization of (2) is the following finite dimensional problem:

min
N,Φ

G(N,Φ),(3)

where N := (ν1, . . . , νk) ∈ (S2)k, Φ := (ϕ1, . . . , ϕk) ∈ Rk,

G(N,Φ) :=

∫
∂P

f(x, νP (x), ϕP (x)) dH2(x),

and P := P (N,Φ) :=
k⋂

i=1

[[νi, ϕi]].

Notice that whenever f does not depend explicitly on x, G(N,Φ) can be computed
as a finite sum, namely

G(N,Φ) =
k∑

i=1

f(νi, ϕi)H2(Fi), where Fi := [[νi, ϕi]] ∩ ∂P.

This is of primary importance in the numerical algorithms. More general functions
f require the computation of integrals such as

∫
Fi

f(x, νi, ϕi) dH2(x), which are com-
putationally expensive.

2.1. Computation of the derivatives. In this paragraph we compute the
derivatives of G, in order to use the results in a gradient-like method. We focus on
the case where f depends only on ν, ϕ, since this is the special case used in our actual
programs. Straightforward modifications can be done to handle the general case. It
suffices to change the term ∂f

∂ϕi
(νi, ϕi) H2(Fi) by the integral

∫
Fi

∂f
∂ϕi

(x, νi, ϕi) dH2(x),

and similarly with the H1 term.
Theorem 1. Let P := P (N,Φ) be a convex polytope, and let Fi = [[νi, ϕi]] ∩ ∂P .

Then for almost every value of ϕi we have

(4)
∂G

∂ϕi
(N,Φ) =

∂f

∂ϕi
(νi, ϕi) H2(Fi)

+
∑
j �=i

H1(Fi∩Fj)�=0

H1(Fi ∩ Fj)

(
f(νj , ϕj) − cos θijf(νi, ϕi)

sin θij

)
,
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Fig. 1. Variation of the surface area of Fj (pictured in the plane of Fj) for the variation
ϕi → ϕi + ε.

where θij ∈ [−π
2 ,

π
2 ] is defined by cos θij = |νi · νj | and sin θij(νi · νj) ≥ 0.

Proof. For any ε ∈ R consider the difference

G(. . . , ϕi + ε, . . . ) −G(. . . , ϕi, . . . ) = f(νi, ϕi + ε) H2(F ε
i ) − f(νi, ϕi) H2(F ε

i )

+
∑
j

f(νj , ϕj) (H2(F ε
j ) −H2(Fj)),

where

F ε
j = [[νj , ϕj ]] ∩ ∂P (. . . , ϕi + ε, . . . ).

The first difference f(νi, ϕi+ε) H2(F ε
i )−f(νi, ϕi) H2(F ε

i ) has the following form:
ε ∂f
∂ϕi

(νi, ϕi) H2(Fi) + o(ε).
To evaluate the remaining sum asymptotically we have to assume that the value

of ϕi is such that there is no topological change in the polytope whenever ϕi becomes
ϕi + ε. This is obviously true for all except a finite number of values of ϕi. We then
distinguish two cases:

• j 	= i: H2(F ε
j ) −H2(Fj) = ε

H1(Fi ∩ Fj)

sin θij
+ o(ε), since the trace of Fi in the

plane Fj is offset by ε/ sin θij ; see Figure 1.

• j = i: H2(F ε
i ) −H2(Fi) = −ε

∑
j �=i

H1(Fi∩Fj)�=0

H1(Fi ∩ Fj) cot θij + o(ε), since the trace

of Fj in the plane Fi is offset by ε cot θij ; see Figure 2.
This completes the proof of the theorem.

Remark 2.1. The polyhedral representation, as an intersection of half-planes,
yields a technical difficulty that should not be underestimated: some of the boundary
planes ∂[[νi, ϕi]] are “dormant,” meaning the polytope is actually included in the
interior of [[νi, ϕi]].

In such a situation, formula (4) effectively yields zero, since H2(Fi) = 0 = H1(Fi∩
Fj).

A similar computation can be achieved for derivatives of G with respect to νi,
with another algebraic formula as a result. However, numerical evidence proves that
using a “full” gradient method has little advantage.

It turns out that it is faster and accurate enough to use only the derivatives with
respect to ϕi (as detailed in the next section) and to increase if necessary the number
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Fig. 2. Variation of the surface area of Fi (pictured in the plane of Fi) for the variation
ϕi → ϕi + ε.

of planes by considering additional half-spaces. We can profit from the “dormant”
property by introducing these new half-spaces in a tangent dormant position, let-
ting the minimization method change their position after that. This can be done in
different ways, depending on the actual problem considered.

2.2. Summary of the algorithm. Thanks to Theorem 1, it is possible to apply
a classical gradient algorithm to the problem (3). Let us summarize the different steps:

0. Choose one admissible polytope P ([[ν1, ϕ
0
1]], . . . , [[νk, ϕ

0
k]]), set n = 0.

1. Compute the geometry (vertexes, faces, . . . ) of the polytope

P ([[ν1, ϕ
n
1 ]], . . . , [[νk, ϕ

n
k ]]).

2. Evaluate the gradient of G with respect to the ϕj using (4). If the Euclidean
norm of the gradient is small, then stop here.

3. Project the gradient into the set of admissible directions.
4. Set ρn = arg minρ>0 G(ν1, . . . , νk, ϕ

n
1 − ρ ∂G

∂ϕ1
, . . . , ϕn

k − ρ ∂G
∂ϕk

).

5. Define the new variables ϕn+1
1 = ϕn

1 − ρn
∂G
∂ϕ1

, . . . , ϕn+1
k = ϕn

k − ρn
∂G
∂ϕk

, n ←
n + 1 and go to step 1.

Step 3, in particular, depends on the set of admissible bodies. So additional details
are given in the examples hereafter. Note that it is possible in step 5 to change the
number of planes by adding or removing “dormant” ones. It is also possible to change
the value of νi whenever the ith plane is “dormant.”

2.3. Application to Alexandrov’s theorem. It is a classical result from
Minkowski [21] that given n different vectors ν1, . . . , νn on S2 such that the dimension
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of Span{ν1, . . . , νn} is equal to 3, and n positive real numbers a1, . . . , an such that∑n
i=1 aiνi = 0, then there exists a three-dimensional convex polytope having n faces

F1, . . . , Fn such that the outward normal vector to Fi equals νi and H2(Fi) = ai.
Moreover, this polytope is unique up to translations.

This result has been extended by Alexandrov [1] to arbitrary convex bodies as fol-
lows: given a positive measure μ on S2 satisfying

∫
S2 y dμ(y) = 0 and Span(suppμ) =

R3, then there exists a unique convex body A, up to translations, whose surface
function measure is equal to μ.

Carlier [6] proved recently that this body is the unique (up to translations) solu-
tion of the variational problem

sup
ϕ∈Σ

|Aϕ| ,(5)

with Σ :=

{
ϕ ∈ C0(S2,R+);

∫
S2

ϕdμ = 1

}
and Aϕ :=

⋂
ν∈S2

[[ν, ϕ(ν)]],

where |Aϕ| is the volume of Aϕ. Whenever Aϕ is optimal, its support function equals
ϕ on the support of μ [6].

Now we recall that the volume of a convex body can be expressed as a boundary
integral of its support function, that is,

|A| =
1

3

∫
∂A

ϕA(x) dH2(x).

Consequently, Alexandrov’s problem can be formulated in the form (2) with
f(x, ν, ϕ) = −ϕ and

A =

{
A ⊂ R3, A convex ;ϕA ≥ 0,

∫
S2

ϕA dμ = 1

}
.

(The sign condition on ϕA is only a normalization expressing the fact that 0 ∈ A.)
Whenever μ has a discrete support, namely μ =

∑
aiδνi

, then (5) solves Minkow-
ski’s problem for polytopes. In particular, the value of ϕ outside the support of μ
does not matter for the maximization, and hence only the numbers ϕi := ϕ(νi) have
to be considered.

Replacing an arbitrary measure μ on S2 by a sum of Dirac masses is also the more
natural discretization of this problem. For polytopes, the set of admissible bodies has
the form

A =
{
P = P (N,Φ);ϕi ≥ 0,

n∑
i=1

ϕiai = 1
}
.

(Again the conditions ϕi ≥ 0 are here only to limit translations ensuring that 0 ∈ A.
This is essential in the numerical method.) These are very simple constraints on the
admissible values, so step 3 in the algorithm is an elementary projection onto Rn

+ and
a hyperplane. Hence the given algorithm can be implemented in a straightforward
way.

We present an example result on Figure 3. Here we chose at random 999 vectors
νi on S2 and 999 numbers ai in [0, 1] uniformly; ν1000 and a1000 are determined such

that the existence condition
∑1000

i=1 aiνi = 0 is satisfied.



MINIMIZING WITHIN CONVEX BODIES 375

Fig. 3. A 1000-faces convex polyhedron of given face areas and normals reconstructed.

2.4. Application: Cheeger sets. Let us now present a more involved applica-
tion. In 1970, Cheeger [11] proposed to study the problem

inf
X⊂M

Hn−1(∂X)

Hn(X)
=: h(M),(6)

where M is an n-dimensional manifold with boundary. The resulting optimal value,
known as the Cheeger constant, can be used to give bounds for the first eigenvalue of
the Laplace–Beltrami operator on M , and even more general operators [14]. There is
a number of variations and applications of this problem; see, for example, [2, 16].

The theoretical results on the problem (6) are rather sparse. It is easy to show
that the infimum is usually not attained in this general formulation. On the other
hand, it can be proved that minimizers exist whenever M = Ω, where Ω ⊂ Rn is a
nonempty open set. Moreover, if Ω is convex and n = 2, there is a unique convex
optimum X which can be computed by algebraic algorithms [18]. On the other hand,
if n ≥ 3, it is not known whether the optimum set is unique or convex, even with
Ω convex. However, Ω convex implies that there exists at least one convex optimum
[17]. But this optimum is not known for any particular Ω except balls.

Our algorithm allows us to compute an approximation of a convex optimum when
Ω ⊂ R3 is convex. Indeed (6) can be reformulated as follows:

min
A∈A

3
∫
∂A

dH2(x)∫
∂A

ϕA(x) dH2(x)
, with A = {A ⊂ Ω, A convex and three-dimensional }.

So the numerator and denominator here have the form
∫
∂A

f(νA, ϕA), and our algo-
rithm can be applied with straightforward modifications.

A key difference with respect to our previous application is the management of
the constraint A ⊂ Ω. The set Ω itself is approximated by a polytope (whenever
necessary). The corresponding enclosing half-spaces are kept in the algorithm in
order to ensure that the approximating polytopes belong to A. For example, if Ω is a
unit cube, we fix ν1 = (1, 0, 0), . . . , ν6 = (0, 0,−1) and ϕ1 = · · · = ϕ6 = 1. Examples
are given in Figure 4.
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Fig. 4. Computed solutions for the Cheeger problem in the cube and the dodecahedron.

Table 1

Upper bounds of the ratio
h(M)H3(M)

H2(∂M)
for the five regular polyhedrons, as given by our numerical

method.

Regular polyhedron Ratio
tetrahedron 83%
cube 90%
octahedron 92%
dodecahedron 96%
icosahedron 97%

Computed values for all five regular polyhedron are given in Table 1. Since the
Cheeger constant depends on the size of the polyhedron, we give the adimensional
ratio h(M)H3(M)/H2(∂M) in the table. These are actually upper bounds since the
numerical methods give only an approximation of the optimal subset X.

This approach allows us to handle any problem with constraints of the form

Q0 ⊂ A ⊂ Q1,(7)

assuming that Q1 is convex. (For Q0 it is not a restriction to assume it is convex.)
Other examples of problems of this kind come from mathematical economy; see the
references in [9] and also in [4].

3. Newton’s problem of the body of minimal resistance. The problem of
the body of minimal resistance has been settled by Newton in his Principia: given a
body progressing at constant speed in a fluid, what shape should it be given in order
to minimize its resistance? Expressed in its more classical way, this can be formulated
as the following optimization problem:

min
u:Ω→[−M,0]

u convex

∫
Ω

dx

1 + |∇u|2
,(8)

where M > 0 is a given parameter and Ω is the unit disk of R2. There are a lot of
variants from this formulation and a huge amount of literature on this problem; see
[5, 19] and their references.

Newton considered only radial solutions of this problem, and his solution was
already considered surprising. But it has been proved in [3] that the solutions of
(8) are not radially symmetric. Unfortunately, it has been impossible until now to
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M = 3/2 M = 1

M = 7/10 M = 4/10

Fig. 5. Computed solutions of Newton’s problem of the body of minimal resistance.

describe more precisely the minimizers. Some theoretical results suggests that they
should be developable in a sense given in [19]: a developable body being the convex
hull of the unit circle in the plane x3 = 0 and a convex set in the plane x3 = −M .

So in this application, we are considering a problem of the form (1), with g(x, u, p)

= 1/(1 + |p|2). As explained in section 1.3, this can be reformulated as (2) with
f(x, ν, ϕ) = (ν3)

3
+, where t+ := max(t, 0) for any t ∈ R. The set A is the set of convex

bodies with a constraint of the kind (7), with Q0 := Ω × {0} and Q1 := Ω × [0,M ].
In the classical application, Ω is a disk. So we discretize these constraints by

replacing the disk by a regular polygon Ω�, with 	 sides. (In practice we used 	 = 300.)
In this particular problem, this yields an overestimated value of the functional. Indeed,
if A ⊂ Ω� × [0,M ] is convex, then Ã := A∩Q1 belongs to A, and F(Ã) ≤ F(A) since
f ≥ 0 and vanishes on ∂Ã\∂A, where the normal vectors belong to {e3}⊥. Obviously
for a minimization problem, this is not a predicament to overestimate the functional.

Using our gradient method on this problem yields different results, starting with
different initial shapes. This is likely the consequence of the existence of local minima.
(Note that no theoretical result is known on the number or on the kind of critical
points in this problem.) So our method needs to be preprocessed to start closer from
a global minimum.

We use a genetic algorithm for this task. It is inspired from the ideas developed
by Holland [15].
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Fig. 6. Profile of computed optimal shape (M = 3/2): the solution is not developable.

Table 2

Minimal values of the Newton’s resistance.

M Newton’s radial value Best developable values Numerical values
3/2 0.7526 0.7019 0.7012
1 1.1775 1.1561 1.1379

7/10 1.5685 1.5566 1.5457
4/10 2.1074 2.1034 2.1006

Our tests exhibit a behavior corresponding to the theoretical results given in [19].
Even for local minimizers, the image set of νA is sparse in S2. This suggests that
optimal sets could be described with a lot fewer parameters as convex hulls of points
instead of as an intersection of half-spaces. Therefore, we use the information given
in the stochastic step (from the genetic algorithm) in two ways: as an initial set for
the gradient method and as an initial guess of the appropriate set of normal vectors
to use. But the stochastic step itself represents the convex bodies as convex hull of
points in Ω� × [0,M ], together with the vertices Ω� × {0}. The genetic algorithm
optimizes the position of these points.

With these improvements, we get similar shapes for any run of the algorithm.
Some of them are pictured in Figure 5 for different values of the parameter M . These
solutions are not developable in the sense of [19]. This can be seen more precisely in
Figure 6, where only the profile of the body is pictured.

Note that the corresponding values obtained by our method are smaller than the
best developable values described in [19], even though they are slightly overestimated,
as explained before; see Table 2.

It is a common conjecture on this problem that the solution is smooth except
on the top and bottom parts, that is, on u(−1)(0,M). However, C2-regularity would
imply the developability property [19, Conjecture 2]. Our results demonstrate the
nonoptimality of the best previously known profiles, and consequently the nonregu-
larity of the minimizers.
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Abstract. We study the Lovász–Schrijver lift-and-project procedure N+ on the linear relaxation
of the Dantzig–Fulkerson–Johnson formulation of the traveling salesman problem (TSP). A long
standing conjecture states that the integrality gap of this relaxation is 4

3
in the case of metric costs.

In this paper, we show that the N+-rank of 2-matching inequalities relative to this relaxation can
be arbitrarily high and obtain as a corollary that even after applying N+ to the relaxation a fixed
number of times, the integrality gap of the resulting relaxation is at least 4

3
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1. Introduction. Given a convex set P ⊆ [0, 1]d, let PI denote the convex hull
of all the “0-1” points in P . Lovász and Schrijver [16] introduced lift-and-project
procedures N and N+ (to be defined in the next section) for obtaining tighter and
tighter convex relaxations of PI starting from P . They showed that at most d iterative
applications of N (or N+) to P results in PI . Cook and Dash [5] and Goemans and
Tunçel [10] independently gave examples that require exactly d iterations for both N
and N+.

Given a linear inequality aTx ≤ b valid for PI , the N+-rank of aTx ≤ b relative
to P is the smallest number of iterative applications of N+ to P that results in a
relaxation for which the inequality aTx ≤ b is valid. Lovász and Schrijver [16] showed
that the N+-rank relative to the fractional stable set polytope of many well-known
facet-inducing inequalities for the stable set polytope, including the odd-hole, odd-
antihole, odd-wheel, clique, and orthonormal-representation inequalities, is equal to
1. However, the N+-ranks of certain well-known classes of facet-inducing inequalities
in the context of other combinatorial problems are not bounded by a constant. For
instance, Stephen and Tunçel [20] showed that the N+-rank of the blossom inequalities
relative to the fractional matching polytope can be arbitrarily high.

In this paper, we study the N+ lift-and-project procedure in the context of the
traveling salesman problem (TSP). In particular, we look at the effects of N+ on the
subtour-elimination polytope, which is the feasible region of the linear programming
relaxation of the Dantzig–Fulkerson–Johnson [6] formulation of the symmetric TSP.
Previous work by Cook and Dash [5] shows that if N+ is combined with the Gomory–
Chvátal cutting-plane procedure, where n denotes the number of cities, at least �n/8�
iterations are required to obtain the convex hull of all the integral points.

We show that the N+-rank of 2-matching inequalities relative to the subtour-
elimination polytope can be arbitrarily high. As a corollary, we obtain that, for metric
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TSP, the integrality gap of the relaxation obtained from applying N+ iteratively to
the subtour-elimination polytope a fixed number of times is at least 4

3 , which is the
same as the best lower bound that is known for the integrality gap of the subtour-
elimination polytope. Our result is similar in flavor to a result of Arora, Bollobás,
and Lovász [1] on the vertex cover problem. They showed that the integrality gap is
2−o(1) for three families of linear relaxations, one of which is obtained from applying
N iteratively to a classical relaxation of the vertex cover problem a fixed number of
times.

The rest of the paper is organized as follows. In section 2, we set up some
notation and review the Lovász–Schrijver lift-and-project procedures N and N+. We
also describe the Dantzig–Fulkerson–Johnson relaxation of the TSP and 2-matching
inequalities. In section 3, we show that 2-matching inequalities with exactly three
teeth can have arbitrarily high N+-rank relative to the subtour-elimination polytope.
In section 4, we discuss the integrality gap of the relaxation obtained from applying
N+ iteratively to the subtour-elimination polytope a fixed number of times. Finally,
in section 5, we make some concluding remarks and point out some open questions.

2. Notation and basic properties. In this paper, vectors are written as
columns. Let S and T be finite sets. Let RS denote the |S|-dimensional Euclidean
space with entries indexed by the elements of S. Let RS×T denote the set of |S| × |T |
real matrices with rows indexed by the elements of S and columns indexed by the
elements of T . For a matrix Y ∈ RS×S , let diag(Y ) denote the vector z ∈ RS such
that zi = Yi,i for each i ∈ S. For any vector x ∈ RS and any A ⊆ S, we use the
abbreviation x(A) to mean

∑
e∈A xe.

The Lovász–Schrijver lift-and-project procedures N and N+ can be defined as
follows: Let S be a finite set not containing 0 as an element. Let K ⊆ R{0}∪S be a
convex cone such that K ∩ {x ∈ R{0}∪S : x0 = 1} ⊆ [0, 1]{0}∪S . For each j ∈ {0} ∪ S,
let ej ∈ R{0}∪S denote the incidence vector of {j}. Let e denote the vector of all 1’s.
Let Σ{0}∪S denote the set of symmetric matrices in R({0}∪S)×({0}∪S). Define

M(K) := {Y ∈ Σ{0}∪S : Y e0 = diag(Y ),

Y ei ∈ K ∀ i ∈ {0} ∪ S,

Y (e0 − ei) ∈ K ∀ i ∈ S}

and

N(K) := {Y e0 : Y ∈ M(K)}.

M(K) gives a lifting of the next relaxation of the cone of all the “0-1” vectors in K.
Note that N(K) is the projection of M(K) back onto the space of K. One can obtain

tighter relaxations by requiring the matrix Y to be positive semidefinite. Let Σ
{0}∪S
+

denote the set of matrices in Σ{0}∪S that are positive semidefinite. Define

M+(K) := {Y ∈ Σ
{0}∪S
+ : Y e0 = diag(Y ),

Y ei ∈ K ∀ i ∈ {0} ∪ S,

Y (e0 − ei) ∈ K ∀ i ∈ S}

and

N+(K) := {Y e0 : Y ∈ M+(K)}.
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For a convex set P ⊆ [0, 1]S , let P ∈ R{0}∪S denote the cone of {[ 1
x ] : x ∈ P}.

By applying the N operator to P , we mean applying the lift-and-project procedure
N to P and then projecting the intersection of the resulting cone with {y ∈ R{0}∪S :
y0 = 1} back onto the space of P . The resulting convex subset of [0, 1]S is denoted
by N(P ). Define N+(P ) similarly. Define iteratively (similarly for N+) N0(P ) := P
and N t(P ) := N(N t−1(P )) for t ≥ 1.

Lovász and Schrijver [16] showed the following.
Theorem 1. If P ⊂ [0, 1]d is a convex set, then

P ⊇ N(P ) ⊇ N2(P ) ⊇ · · · ⊇ Nd(P ) = PI

and

P ⊇ N+(P ) ⊇ N2
+(P ) ⊇ · · · ⊇ Nd

+(P ) = PI .

An important property of the N and N+ operators is that if one can optimize
over P in polynomial time, then one can optimize over Nr(P ) and Nr

+(P ) in poly-
nomial time for any fixed constant r. Consequently, for some NP-hard combinato-
rial optimization problems, one can use the N and N+ operators to obtain possibly
tighter polynomial-time solvable relaxations. For example, the procedures on the
stable set problem have been studied by Lovász and Schrijver [16] and recently in
more details by Lipták and Tunçel [15]. Laurent [13] studied the procedures for
MAX-CUT. Arora, Bollobás, and Lovász [1] considered the N operator on the vertex
cover problem.

Let aTx ≤ b be a valid inequality for PI . The smallest nonnegative integer r such
that aTx ≤ b is valid for Nr

+(P ) is called the N+-rank of aTx ≤ b relative to P . It
follows from Theorem 1 that the N+-rank of any valid inequality for PI is at most d.

We now cite some other properties of the N and N+ operators.
Lemma 2 (Cook and Dash [5], Goemans and Tunçel [10]). Let r > 0 be an

integer. Let F be any face of [0, 1]n and P ⊆ [0, 1]n be a convex set. Then

Nr
+(P ∩ F ) = Nr

+(P ) ∩ F,

similarly for N .
Let S = {s1, . . . , sn} and T = {t1, . . . , tn, tn+1, . . . , tn+k1 , tn+k1+1, . . . , tn+k},

where 0 ≤ k1 ≤ k. A function f : RS → RT is called an embedding operation if

y = f(x) implies that yti =

⎧⎨
⎩

xsi if 1 ≤ i ≤ n,
0 if n < i ≤ n + k1,
1 if n + k1 < i ≤ n + k.

The following is well known. (See Cook and Dash [5] for a discussion.)
Lemma 3. Let f : RS → RT be an embedding operation and P ∈ [0, 1]S be a

convex set. Then N+(f(P )) = f(N+(P )), similarly for N .
Iterating Lemma 3 presents the following corollary.
Corollary 4. Let r > 0 be an integer. Let f : RS → RT be an embedding

operation and P ∈ [0, 1]S be a convex set. Then Nr
+(f(P )) = f(Nr

+(P )), similarly
for N .
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We now turn our attention to TSP. Let G = (V,E) be a 2-connected simple graph.
For a subset S of V , let γ(S) denote the set of edges with both ends in S and let
δ(S) denote the set of edges with one end in S and one end not in S. We abbreviate
δ({v}) to δ(v), where v ∈ V . Define the subtour-elimination polytope of G, denoted
by SEP(G), to be the set

{x ∈ RE : x(δ(v)) = 2 ∀ v ∈ V,

x(δ(S)) ≥ 2 ∀ S ⊂ V, 3 ≤ |S| ≤ |V | − 3,

0 ≤ xe ≤ 1 ∀ e ∈ E}.

We abbreviate SEP(Kn) to SEP(n), where Kn denotes the complete graph on n
vertices.

Let TSP(G) denote the convex hull of incidence vectors of Hamiltonian circuits
of G. We abbreviate TSP(Kn) to TSP(n). It is easy to see that SEP(G)I = TSP(G).
If c ∈ RE , then the Dantzig–Fulkerson–Johnson [6] relaxation of the TSP on G with
respect to the cost vector c is

min{cTx : x ∈ SEP(G)}.

It is well known that one can optimize a linear function over SEP(G) in polynomial
time using the equivalence of separation and optimization (Grötschel, Lovász, and
Schrijver [11]). As SEP(G) ⊆ [0, 1]E , one can apply the N+ operator to SEP(G) to
obtain tighter and tighter relaxations of TSP(G) that are solvable in polynomial time.

We now make two technical observations that will be useful later.
Lemma 5. Let x̄ ∈ RE. Suppose uv /∈ E. Let G′ = G + uv. Define x′ ∈ RE(G′)

as follows: x′
e = x̄e if e ∈ E and x′

e = 0 if e = uv. If x̄ ∈ Nr
+(SEP(G)) for some

integer r > 0, then x′ ∈ Nr
+(SEP(G′)). We say x′ is obtained from x̄ by adding a

0-edge.
Proof. Let f : RE → RE(G′) be an embedding operation such that

y = f(x) implies that ye =

{
xe if e ∈ E,

0 if e = uv.

Clearly, x′ = f(x̄). By Corollary 4,

x′ ∈ f(Nr
+(SEP(G))) = Nr

+(f(SEP(G))).

Let F = {x ∈ RE(G′) : xuv = 0}. Observe that f(SEP(G)) = SEP(G′) ∩ F . Hence,
x′ ∈ Nr

+(SEP(G′) ∩ F ). It follows from Lemma 2 that x′ ∈ Nr
+(SEP(G′)).

Lemma 6. Let x̄ ∈ RE. Suppose x̄uv = 1 for some uv ∈ E. Let G′ denote the
graph (V ∪ {v′}, E\{uv} ∩ {uv′, vv′}), where v′ /∈ V . Define x′ ∈ RE(G′) as follows:
x′
e = x̄e if e ∈ E\{uv} and x′

e = 1 if e ∈ {uv′, vv′}. If x̄ ∈ Nr
+(SEP(G)) for some

integer r > 0, then x′ ∈ Nr
+(SEP(G′)). We say x′ is obtained from x̄ by subdividing

a 1-edge.
Proof. Let f : RE → RE(G′) be an embedding operation such that

y = f(x) implies that ye =

⎧⎪⎨
⎪⎩

xe if e ∈ E\{uv},
xuv if e = uv′

1 otherwise.
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Clearly, x′ = f(x̄). Let F = {x ∈ RE : xuv = 1}. Note that x̄ ∈ Nr
+(SEP(G)) ∩ F .

Hence, by Lemma 2, x̄ ∈ Nr
+(SEP(G) ∩ F ). It follows from Corollary 4 that

x′ ∈ f(Nr
+(SEP(G) ∩ F )) = Nr

+(f(SEP(G) ∩ F )).

Observe that f(SEP(G) ∩ F ) = SEP(G′) ∩ {x ∈ RE(G′) : xvv′ = 1} ∩ {x ∈ RE(G′) :
xuv′ = 1}. Thus, by Lemma 2, x′ ∈ Nr

+(SEP(G′)).
Many classes of valid inequalities for TSP(G) have been discovered over the years.

Among the earliest known is the class of 2-matching inequalities. Edmonds [7] in-
troduced 2-matching inequalities to obtain a complete linear description of the 2-
matching polytope and they are defined as follows: Let H,T1, . . . , Ts ⊂ V be such
that s ≥ 3 is odd, Ti∩Tj = ∅ for all distinct i, j ∈ {1, . . . , s}, and |H∩Ti| = |Ti\H| = 1
for i = 1, . . . , s. H is called the handle and each Ti is called a tooth. The 2-matching
inequality with respect to H,T1, . . . , Ts is

x(γ(H)) +

s∑
i=1

x(γ(Ti)) ≤ |H| + s− 1

2
.

Grötschel and Padberg [12] showed the following.
Theorem 7. 2-matching inequalities induce facets of TSP(n) for all n ≥ 6.

3. Main result. In this section, we show that 2-matching inequalities with ex-
actly three teeth can have arbitrarily high N+-rank relative to the subtour-elimination
polytope.

Let k be a positive integer. For each d ∈ {0, 1}, let Sk,d denote the set {6 +
d, 8 + d, 10 + d, . . . , 6k + 4 + d}. Let Hk denote the graph with vertex-set Vk =
{v0, v1, . . . , v6k+5} and edge-set Ek = A ∪ Bk,0 ∪ Bk,1 ∪ Ck,0 ∪ Ck,1, where A =
{v0v1, v2v3, v4v5} and, for each d ∈ {0, 1}, Bk,d = {vpvq : p ∈ {d, 2+d, 4+d}, q ∈ Sk,d},
and Ck,d = {vpvq : p �= q, p, q ∈ Sk,d}. The graphs H1 and H2 are illustrated in
Figure 1.
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Fig. 1. H1 and H2.

Define xk ∈ REk as follows:

xk
e =

⎧⎪⎨
⎪⎩

1 if e ∈ A,
1
3k if e ∈ Bk,0 ∪Bk,1,
2k−1

k(3k−1) if e ∈ Ck,0 ∪ Ck,1.

The point xk is illustrated in Figure 2. The next theorem is the main result of this
paper.

Theorem 8. xk ∈ Nk−1
+ (SEP(Hk)) for every k ≥ 1.
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Before we prove this theorem, observe that if G denotes the complete graph
with vertex-set Vk and x̄k ∈ RE(G) is such that x̄k

e = xk
e for all e ∈ Ek and x̄k

e =
0 for all e ∈ E(G)\Ek, then by Lemma 5 and Theorem 8, x̄k ∈ Nk−1

+ (SEP(G)).
Now, x̄k does not satisfy the 2-matching inequality with handle H = Sk,0 and teeth
Ti = {2i−2, 2i−1} for i = 1, . . . , 3. Hence, the 2-matching inequality has N+-rank at
least k relative to SEP(G). It is not difficult to extend this result and obtain that this
2-matching inequality has N+-rank at least k relative to SEP(G′) for every complete
graph G′ having G as an induced subgraph.

In light of the work of Stephen and Tunçel [20] on the blossom inequalities for the
matching polytope, Theorem 8 is perhaps not surprising. (In fact, our proof uses the
same approach as theirs but has more technical details to take care of.) However, in
the next section we shall use Theorem 8 to show a lower bound of 4

3 for the integrality
gap of a family of relaxations for metric TSP obtained from applying N+ iteratively
to the subtour-elimination polytope a fixed number of times. This result is similar in
flavor to the work of Arora, Bollobás, and Lovász [1] on proving integrality gaps of
families of linear relaxations for the vertex cover problem without knowing the linear
programs explicitly.

Proof of Theorem 8. The proof is by induction on k. The case when k = 1
is easy to check. Assume that xk ∈ Nk−1

+ (SEP(Hk)) for some k ≥ 1. We now prove
that xk+1 ∈ Nk

+(SEP(Hk+1)).
For every f = vivj ∈ Bk+1,d with i ∈ {d, 2 + d, 4 + d} and j ∈ Sk+1,d, where

d ∈ {0, 1}, define yf , ȳf ∈ REk+1 as follows:

yfe =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if e ∈ {f} ∪A,
1

3k+2 if e = vjvp for some p ∈ Sk+1,d\{j},
1

3k+2 if e = vpvq for some p ∈ {d, 2 + d, 4 + d}\{i}, q ∈ Sk+1,d\{j},
6k+1

(3k+1)(3k+2) if e = vpvq for some p, q ∈ Sk+1,d\{j}, p �= q,

1
3(k+1) if e ∈ Bk+1,1−d,

2k+1
(k+1)(3k+2) if e ∈ Ck+1,1−d,

0 otherwise.

ȳfe =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if e = f,

1 if e ∈ A,
2(3k+1)
(3k+2)2 if e = vjvp for some p ∈ Sk+1,d\{j},

1
3k+2 if e = vivp for some p ∈ Sk+1,d\{j},

1
3k+2 if e = vpvj for some p ∈ {d, 2 + d, 4 + d}\{i},
3k+1

(3k+2)2 if e = vpvq for some p ∈ {d, 2 + d, 4 + d}\{i}, q ∈ Sk+1,d\{j},
18k2+9k+2

(3k+1)(3k+2)2 if e = vpvq for some p, q ∈ Sk+1,d\{j}, p �= q,

1
3(k+1) if e ∈ Bk+1,1−d,

2k+1
(k+1)(3k+2) if e ∈ Ck+1,1−d.

The points yf and ȳf with f ∈ Bk+1,0 ∪ Bk+1,1 are illustrated in Figures 3 and 4,
respectively.

Claim 1. yf , ȳf ∈ Nk−1
+ (SEP(Hk+1)) for all f ∈ Bk+1,0 ∪Bk+1,1.

We postpone the proof of this claim to the end of this section.
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One can now check that for every f ∈ Bk+1,0 ∪Bk+1,1,

xk+1 = xk+1
f yf + (1 − xk+1

f )ȳf .(3.1)

Since xk+1 is a convex combination of yf and ȳf , it follows from Claim 1 that xk+1 ∈
Nk−1

+ (SEP(Hk+1)).

v j

v
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1

+1)3( k2
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+1)(3

k
+1)k k
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3( +1)k2 (3 k +1)

2

(2

+1)k(3+1)( k2

k +16

+ 1212 k

Fig. 5. Part of the point yf where f ∈ Ck+1,0 ∪ Ck+1,1.

Now, for every f = vivj ∈ Ck+1,d, where d ∈ {0, 1}, define yf , ȳf ∈ REk+1 as
follows:

yfe =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if e ∈ {f} ∪A,
1

3(2k+1) if e = vpvq for some p ∈ {d, 2 + d, 4 + d}, q ∈ {i, j},
6k+1

3(2k+1)(3k+1) if e = vpvq for some p ∈ {d, 2 + d, 4 + d}, q ∈ Sk+1,d\{i, j},
2k

(2k+1)(3k+1) if e = vpvq for some p ∈ {i, j}, q ∈ Sk+1,d\{i, j},
12k2+1

3k(2k+1)(3k+1) if e = vpvq for some p, q ∈ Sk+1,d\{i, j}, p �= q,

1
3(k+1) if e ∈ Bk+1,1−d,

2k+1
(k+1)(3k+2) if e ∈ Ck+1,1−d.

ȳfe =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if e = f,

1 if e ∈ A,
3k+1

3(3k2+3k+1) if e = vpvq for some p ∈ {d, 2 + d, 4 + d}, q ∈ {i, j},
9k2+3k+1

3(3k+1)(3k2+3k+1) if e = vpvq for some p ∈ {d, 2 + d, 4 + d}, q ∈ Sk+1,d\{i, j},
6k2+3k+1

(3k+1)(3k2+3k+1) if e = vpvq for some p ∈ {i, j}, q ∈ Sk+1,d\{i, j},
18k3+3k2+3k−1

3k(3k+1)(3k2+3k+1) if e = vpvq for some p, q ∈ Sk+1,d\{i, j}, p �= q,

1
3(k+1) if e ∈ Bk+1,1−d,

2k+1
(k+1)(3k+2) if e ∈ Ck+1,1−d.
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Fig. 6. Part of the point ȳf where f = vivj ∈ Ck+1,0 ∪ Ck+1,1.

The points yf and ȳf with f ∈ Ck+1,0 ∪ Ck+1,1 are illustrated in Figures 5 and
6, respectively.

Claim 2. yf , ȳf ∈ Nk−1
+ (SEP(Hk+1)) for all f ∈ Ck+1,0 ∪ Ck+1,1.

We postpone the proof of this claim to the end of this section.
One can now check that for every f ∈ Ck+1,0 ∪ Ck+1,1

xk+1 = xk+1
f yf + (1 − xk+1

f )ȳf .(3.2)

Define the matrix Y ∈ R({0}∪Ek+1)×({0}∪Ek+1) as follows:
For all f ∈ {0} ∪A, Y ef := [ 1

xk+1].

For all f ∈ Ek+1\A, Y ef := xk+1
f [ 1

yf ].

Let K denote the cone SEP(Hk+1). We now show that Y ∈ M+(Nk−1
+ (K)).

First note that diag(Y ) = Y e0 = Y T e0 as yff = 1 for all f ∈ Ek+1\A. In

addition, it follows from Claims 1 and 2 and (3.1) and (3.2) that Y ef ∈ Nk−1
+ (K) and

Y (e0 − ef ) ∈ Nk−1
+ (K) for all f ∈ Ek+1.

Next, we show that Y is symmetric. Clearly, if f ∈ A, then Yf ′,f = Yf,f ′ for all
f ′ ∈ Ek+1.

Let f = vivj ∈ Bk+1,d with i ∈ {d, 2+d, 4+d} and j ∈ Sk+1,d for some d ∈ {0, 1}.
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Let f ′ ∈ Ek+1\A. Then

Yf ′,f = xk+1
f yff ′ =

1

3(k + 1)
yff ′

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3(k+1)(3k+2) if f ′ = vjvp for some p ∈ Sk+1,d\{j},

1
3(k+1)(3k+2) if f ′ = vpvq for some p ∈ {d, 2 + d, 4 + d}\{i},

q ∈ Sk+1,d\{j},
6k+1

3(k+1)(3k+1)(3k+2) if f ′ = vpvq for some p, q ∈ Sk+1,d\{j}, p �= q,

1
9(k+1)2 if f ′ ∈ Bk+1,1−d,

2k+1
3(k+1)2(3k+2) if f ′ ∈ Ck+1,1−d,

0 otherwise,

and

Yf,f ′ = xk+1
f ′ yf

′

f

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2k+1
(k+1)(3k+2)

1
3(2k+1) if f ′ = vjvp for some p ∈ Sk+1,d\{j},

1
3(k+1)

1
3k+2 if f ′ = vpvq for some p ∈ {d, 2 + d, 4 + d}\{i},

q ∈ Sk+1,d\{j},
2k+1

(k+1)(3k+2)
6k+1

3(2k+1)(3k+1) if f ′ = vpvq for some p, q ∈ Sk+1,d\{j}, p �= q,

1
9(k+1)2 if f ′ ∈ Bk+1,1−d,

2k+1
(k+1)(3k+2)

1
3(k+1) if f ′ ∈ Ck+1,1−d,

0 otherwise.

Clearly, Yf ′,f = Yf,f ′ .
Next, let f = vivj ∈ Ck+1,d for some d ∈ {0, 1} and f ′ ∈ Ek+1\(A ∪ Bk+1,0 ∪

Bk+1,1). Then

Yf ′,f = xk+1
f yff ′ =

2k + 1

(k + 1)(3k + 2)
yff ′

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2k
(k+1)(3k+1)(3k+2) if f ′ = vpvq for some p ∈ {i, j}, q ∈ Sk+1,d\{i, j},

12k2+1
3k(k+1)(3k+1)(3k+2) if f ′ = vpvq for some p, q ∈ Sk+1,d\{i, j}, p �= q,

( (2k+1)
(k+1)(3k+2) )

2 if f ′ ∈ Ck+1,1−d,

and

Yf,f ′ = xk+1
f ′ yf

′

f =
2k + 1

(k + 1)(3k + 2)
yf

′

f

=

⎧⎪⎪⎨
⎪⎪⎩

2k+1
(k+1)(3k+2)

2k
(2k+1)(3k+1) if f ′ = vpvq for some p ∈ {i, j}, q ∈ Sk+1,d\{i, j},

2k+1
(k+1)(3k+2)

12k2+1
3k(2k+1)(3k+1) if f ′ = vpvq for some p, q ∈ Sk+1,d\{i, j}, p �= q,

( 2k+1
(k+1)(3k+2) )

2 if f ′ ∈ Ck+1,1−d.

Again, we have Yf,f ′ = Yf ′,f . Hence, Y is symmetric.
Finally, we show that Y is positive semidefinite by identifying its eigenvalues and

the corresponding eigenspaces.
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The eigenvalues of Y are 0, k(3k+4)
(k+1)(3k+1)(3k+2) ,

1
3k+2 , 18k3+15k2+3k+1

3k(k+1)(3k+1)(3k+2) , and
24k2+38k+15
(k+1)(3k+2) with the dimensions of the corresponding eigenspaces being 3(2k + 5),

2(3k + 2), 4(3k + 2), 9k(k + 1), and 1, respectively.
We first identify vectors in the nullspace of Y ; that is, the eigenspace corre-

sponding to the eigenvalue 0. For each e ∈ A, let ue ∈ R{0}∪Ek+1 be such that
ue

0 = 1, ue
e = −1, and 0 everywhere else. Clearly, Y ue = 0 for all e ∈ A. For

each v ∈ Vk+1\{v0}, define wv ∈ R{0}∪Ek+1 as follows: Set wv
e := 1 for every edge

e ∈ δ({v0, v}) that is incident to v0. Set wv
e := −1 for every edge e ∈ δ({v0, v}) that

is incident to v. Set the 0th entry and all the other entries to 0. One can check that
Y wv = 0 for every v ∈ Vk+1\{v0}. Finally,[

−6(k + 2)
e

]

is also a vector in the nullspace of Y . It is not difficult to see that the above 3+(6k+
11) + 1 = 6k + 15 vectors are linearly independent.

For every d ∈ {0, 1} and i ∈ {4, . . . , 3k+5}, define the vector ud,i ∈ R{0}∪Ek+1 as
follows:

ud,i
e =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if e = v6+dvq for some q ∈ {d, 2 + d, 4 + d},
− 3

3k+1 if e = v6+dvq for some q ∈ Sk+1,d\{6 + d, 2i + d},
−1 if e = v2i+dvq for some q ∈ {d, 2 + d, 4 + d},

3
3k+1 if e = v2i+dvq for some q ∈ Sk+1,d\{6 + d, 2i + d},
0 otherwise.

There are 2(3k + 2) such vectors and they are linearly independent. One can check

that they are eigenvectors with eigenvalue k(3k+4)
(k+1)(3k+1)(3k+2) .

For every d ∈ {0, 1}, a ∈ {2 + d, 4 + d}, and i ∈ {4, . . . , 3k + 5}, define the vector
wd,a,i ∈ R{0}∪Ek+1 as follows:

wd,a,i
e =

⎧⎨
⎩

1 if e ∈ {vdv6+d, vav2i+d},
−1 if e ∈ {vdv2i+d, vav6+d},
0 otherwise.

There are 4(3k + 2) such vectors and they are linearly independent. One can check
that they are eigenvectors with eigenvalue 1

3k+2 .
If |Ck+1,d| = 3(k+1) is odd, then let Cd = {v6+dv8+d, v8+dv10+d, . . . , v6k+10+dv6+d}.

If |Ck+1,d| is even, then let Cd = {v6k+8+dv6k+10+d} ∪ {v6+dv8+d, v8+dv10+d, . . . ,
v6k+8+dv6+d}. (See Figure 7.) Observe that in either case, for each e ∈ Ck+1,d\Cd,
there is one odd and one even circuit containing e in Cd∪{e}. Let Ce denote the even
circuit containing e.

Now, for all e ∈ Ck+1,0 ∪ Ck+1,1\(C0 ∪ C1), consider the signed incidence vectors
of the even circuits Ce, where the signing is performed so that consecutive edges have
opposite signs. (The 0th component is set to 0.) Since there are

(
3(k+1)

2

)
− 3(k + 1)

edges in Ck+1,d\Cd for each d ∈ {0, 1}, there are in total 9k(k+1) such signed incidence
vectors and they are linearly independent (since each e appears only in one circuit.)

One can check that they are eigenvectors with eigenvalue 18k3+15k2+3k+1
3k(k+1)(3k+1)(3k+2) . Finally,

[ 1

xk+1] is an eigenvector corresponding to the eigenvalue 24k2+38k+15
(k+1)(3k+2) .

Since the sum of the lower bounds for the dimensions of the eigenspaces obtained
above is equal to the order of the matrix Y , we have identified all the eigenvalues
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of Y . As all the eigenvalues are nonnegative, Y is positive semidefinite. Thus, Y ∈
M+(Nk−1

+ (K)). It follows that Y e0 ∈ Nk
+(K), implying that xk+1 ∈ Nk

+(SEP(Hk+1)).
This completes the induction.

Proof of Claim 1. Without loss of generality, we may assume that f = v0vj ,
where j ∈ Sk+1,0.

Observe that

ȳf =
∑

p∈Sk+1,0\{j}

1

3k + 2
yv0vp .

Thus, it suffices to show that yf ∈ Nk−1
+ (SEP(Hk+1)).

Given distinct a, b ∈ Sk+1,0\{j} and distinct r, s, t ∈ Sk+1,1, define w(a, b, r, s, t) ∈
REk+1 as follows:

w(a, b, r, s, t)e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if e ∈ {v0vj , v2va, v4vb, v1vr, v3vs, v5vt} ∪A,
1
3k if e = vpvq for some p ∈ {a, b, j}, q ∈ Sk+1,0\{a, b, j},
1
3k if e = vpvq for some p ∈ {r, s, t}, q ∈ Sk+1,1\{r, s, t},
2k−1

k(3k−1) if e = vpvq for some p, q ∈ Sk+1,0\{a, b, j}, p �= q,

2k−1
k(3k−1) if e = vpvq for some p, q ∈ Sk+1,1\{r, s, t}, p �= q,

0 otherwise.

The point w(a, b, r, s, t) is illustrated in Figure 8. Clearly, w(a, b, r, s, t) can be ob-
tained from xk by adding 0-edges and subdividing 1-edges. By Lemmas 5 and 6,
w(a, b, r, s, t) ∈ Nk−1

+ (SEP(Hk+1)).
It is not difficult to check that yf is the average of all the points w(a, b, r, s, t) as

a, b, r, s, t run over all possibilities. It follows that yf ∈ Nk−1
+ (SEP(Hk+1)).

Proof of Claim 2. Without loss of generality, we may assume that f = vivj ∈
Ck+1,0. Given l ∈ {i, j}, a ∈ {0, 2, 4}, b ∈ Sk+1,0\{i, j}, and distinct r, s, t ∈ Sk+1,1,

Fig. 7. C0.
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let l′ ∈ {i, j} be such that l′ �= l and define w(l, a, b, r, s, t) ∈ REk+1 as follows:

w(l, a, b, r, s, t)e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if e ∈ {vavl, vivj , vl′vb, v1vr, v3vs, v5vt} ∪A,
1
3k if e = vpvq for some p ∈ {b, 0, 2, 4}\{a},

q ∈ Sk+1,0\{b, i, j},
1
3k if e = vpvq for some p ∈ {r, s, t}, q ∈ Sk+1,1\{r, s, t},
2k−1

k(3k−1) if e = vpvq for some p, q ∈ Sk+1,0\{b, i, j}, p �= q,

2k−1
k(3k−1) if e = vpvq for some p, q ∈ Sk+1,1\{r, s, t}, p �= q,

0 otherwise.

The point w(i, 2, b, r, s, t) is illustrated in Figure 9.
Let w denote the average of all the points w(l, a, b, r, s, t) as l, a, b, r, s, t run over
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all possibilities. It is not difficult to check that

we =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if e ∈ {f} ∪A,
1
6 if e = vpvq for some p ∈ {0, 2, 4}, q ∈ {i, j},

2
3(3k+1) if e = vpvq for some p ∈ {0, 2, 4}, q ∈ Sk+1,0\{i, j},

1
2(3k+1) if e = vpvq for some p ∈ {i, j}, q ∈ Sk+1,0\{i, j},

6k−1
3k(3k+1) if e = vpvq for some p, q ∈ Sk+1,0\{i, j}, p �= q,

1
3(k+1) if e ∈ Bk+1,1,

2k+1
(k+1)(3k+1) if e ∈ Ck+1,1.

Clearly, w(l, a, b, r, s, t) can be obtained from xk by adding 0-edges and subdivid-
ing 1-edges. By Lemmas 5 and 6, w(l, a, b, r, s, t) ∈ Nk−1

+ (SEP(Hk+1)). It follows

that w ∈ Nk−1
+ (SEP(Hk+1)).

Next, given l ∈ {i, j}, a ∈ {0, 2, 4}, b ∈ Sk+1,0\{i, j}, and distinct r, s, t ∈ Sk+1,1,
let l′ ∈ {i, j} be such that l′ �= l and define u(l, a, b, r, s, t) ∈ REk+1 as follows:

u(l, a, b, r, s, t)e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if e ∈ {vavb, vivj , vbvl, v1vr, v3vs, v5vt} ∪A,
1
3k if e = vpvq for some p ∈ {l′, 0, 2, 4}\{a},

q ∈ Sk+1,0\{b, i, j},
1
3k if e = vpvq for some p ∈ {r, s, t}, q ∈ Sk+1,1\{r, s, t},
2k−1

k(3k−1) if e = vpvq for some p, q ∈ Sk+1,0\{b, i, j}, p �= q,

2k−1
k(3k−1) if e = vpvq for some p, q ∈ Sk+1,1\{r, s, t}, p �= q,

0 otherwise.

The point u(j, 2, b, r, s, t) is illustrated in Figure 10.
Let u denote the average of all the points u(l, a, b, r, s, t) as l, a, b, r, s, t run over

all possibilities. It is not difficult to check that

ue =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if e ∈ {f} ∪A,
1

(3k+1) if e = vpvq for some p ∈ {0, 2, 4}, q ∈ Sk+1,0\{i, j},
1

(3k+1) if e = vpvq for some p ∈ {i, j}, q ∈ Sk+1,0\{i, j},
2k−1

k(3k+1) if e = vpvq for some p, q ∈ Sk+1,0\{i, j}, p �= q,

1
3(k+1) if e ∈ Bk+1,1,

2k+1
(k+1)(3k+1) if e ∈ Ck+1,1,

0 otherwise.

Clearly, u(l, a, b, r, s, t) can be obtained from xk by adding 0-edges and subdividing
1-edges. By Lemmas 5 and 6, u(l, a, b, r, s, t) ∈ Nk−1

+ (SEP(Hk+1)). It follows that

u ∈ Nk−1
+ (SEP(Hk+1)).

One can now check that

yf =
2

2k + 1
w +

(
1 − 2

2k + 1

)
u.

Since w, u ∈ Nk−1
+ (SEP(Hk+1)) and yf is a convex combination of w and u, we have

yf ∈ Nk−1
+ (SEP(Hk+1)).
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Fig. 11. w̄(i, 2, b, c, r, s, t).

Given l ∈ {i, j}, a ∈ {0, 2, 4}, distinct b, c ∈ Sk+1,0\{i, j}, and distinct r, s, t ∈
Sk+1,1, define w̄(l, a, b, c, r, s, t) ∈ REk+1 as follows:

w̄(l, a, b, c, r, s, t)e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if e ∈ {vavb, vbvl, vlvc, v1vr, v3vs, v5vt} ∪A,
1
3k if e = vpvq for some p ∈ {c, 0, 2, 4}\{a},

q ∈ Sk+1,0\{b, c, l},
1
3k if e = vpvq for some p ∈ {r, s, t}, q ∈ Sk+1,1\{r, s, t},
2k−1

k(3k−1) if e = vpvq for some p, q ∈ Sk+1,0\{b, c, l}, p �= q,

2k−1
k(3k−1) if e = vpvq for some p, q ∈ Sk+1,1\{r, s, t}, p �= q,

0 otherwise.

The point w̄(i, 2, b, c, r, s, t) is illustrated in Figure 11.
Let w̄ denote the average of all the points w̄(l, a, b, c, r, s, t) as l, a, b, c, r, s, t run
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over all possibilities. It is not difficult to check that

w̄e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if e ∈ A,
1
9k if e = vpvq for some p ∈ {0, 2, 4}, q ∈ {i, j},

9k−2
9k(3k+1) if e = vpvq for some p ∈ {0, 2, 4}, q ∈ Sk+1,0\{i, j},

6k−1
3k(3k+1) if e = vpvq for some p ∈ {i, j}, q ∈ Sk+1,0\{i, j},
18k2−15k+4
9k2(3k+1) if e = vpvq for some p, q ∈ Sk+1,0\{i, j}, p �= q,

1
3(k+1) if e ∈ Bk+1,1,

2k+1
(k+1)(3k+1) if e ∈ Ck+1,1,

0 otherwise.

Clearly, w̄(l, a, b, c, r, s, t) can be obtained from xk by adding 0-edges and subdi-
viding 1-edges. By Lemmas 5 and 6, w̄(l, a, b, c, r, s, t) ∈ Nk−1

+ (SEP(Hk+1)). Hence,

w̄ ∈ Nk−1
+ (SEP(Hk+1)).

Next, given distinct a, b, c ∈ {0, 2, 4}, l ∈ Sk+1,0\{i, j}, and distinct r, s, t ∈
Sk+1,1, define ū(a, b, c, l, r, s, t) ∈ REk+1 as follows:

ū(a, b, c, l, r, s, t)e =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if e ∈ {vavi, vbvj , vcvl, v1vr, v3vs, v5vt} ∪A,
1
3k if e = vpvq for some p ∈ {i, j, l}, q ∈ Sk+1,0\{i, j, l},
1
3k if e = vpvq for some p ∈ {r, s, t}, q ∈ Sk+1,1\{r, s, t},
2k−1

k(3k−1) if e = vpvq for some p, q ∈ Sk+1,0\{i, j, l}, p �= q,

2k−1
k(3k−1) if e = vpvq for some p, q ∈ Sk+1,1\{r, s, t}, p �= q,

0 otherwise.

Let ū denote the average of all the points ū(a, b, c, l, r, s, t) as a, b, c, l, r, s, t run
over all possibilities. It is not difficult to check that

ūe =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if e ∈ A,
1
3 if e = vpvq for some p ∈ {0, 2, 4}, q ∈ {i, j},

1
3(3k+1) if e = vpvq for some p ∈ {0, 2, 4}, q ∈ Sk+1,0\{i, j},

1
3k+1 if e = vpvq for some p ∈ {i, j}, q ∈ Sk+1,0\{i, j},

6k−1
3k(3k+1) if e = vpvq for some p, q ∈ Sk+1,0\{i, j}, p �= q,

1
3(k+1) if e ∈ Bk+1,1,

2k+1
(k+1)(3k+1) if e ∈ Ck+1,1.

Clearly, ū(a, b, c, l, r, s, t) can be obtained from xk by adding 0-edges and subdividing
1-edges. By Lemmas 5 and 6, ū(a, b, c, l, r, s, t) ∈ Nk−1

+ (SEP(Hk+1)). Hence, ū ∈
Nk−1

+ (SEP(Hk+1)).
One can now check that

ȳf =
9k3

(3k − 1)(3k2 + 3k + 1)
w̄ +

(
1 − 9k3

(3k − 1)(3k2 + 3k + 1)

)
ū.

Since w̄, ū ∈ Nk−1
+ (SEP(Hk+1)) and ȳf is a convex combination of w̄ and ū, we have

ȳf ∈ Nk−1
+ (SEP(Hk+1)).
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4. Integrality gap of Nr
+(SEP(n)). Let c ∈ RE(Kn)

+ be a metric; that is,

cij + cjk ≥ cik for all distinct i, j, k ∈ V (Kn). Then the problem min{cTx : x ∈
TSP(n)} is a metric TSP instance. Papadimitriou and Vempala [18] showed that
1.01-approximation for metric TSP is NP-hard.

For each n ≥ 3, let Cn denote the set {c ∈ RE(Kn)
+ : c is a nonzero metric}. For

every integer r ≥ 0, define

ρr := sup
n≥3

αn,r,

where

αn,r := sup
c∈Cn

min{cTx : x ∈ TSP(n)}
min{cTx : x ∈ Nr

+(SEP(n))} .

The quantity ρ0 is often known as the integrality gap of the Dantzig–Fulkerson–
Johnson relaxation for metric TSP. The next result is well known.

Theorem 9 (Shmoys and Williamson [19], Wolsey [21]). ρ0 ≤ 3
2 .

It is not known if ρ0 is indeed equal to 3
2 . In fact, the problem of determining the

exact value of ρ0 has been open for more than a decade. It is known that ρ0 ≥ 4
3 and

the following has been conjectured.
Conjecture 10. ρ0 = 4

3 .
Partial results supporting the conjecture have been obtained by Boyd and Carr [2],

Boyd and Labonté [3], Carr and Vempala [4], and Goemans [9].
In this section, we show the following.
Theorem 11. ρr ≥ 4

3 for every r ≥ 0.
Proof. Let Gl be the graph obtained from Hr+1 by replacing each of v0v1, v2v3,

and v4v5 by a path of length l. Since xr+1 ∈ Nr
+(SEP(Hr+1)) (Theorem 8), by

Lemma 6, one can obtain a point x̃ ∈ Nr
+(SEP(Gl)) from xr+1 by subdividing 1-

edges.
Let G′

l be the complete graph with vertex-set V (Gl). Let x̄ ∈ RE(G′
l) be such

that x̄e = x̃e for all e ∈ E(Gl) and x̄e = 0 for all e /∈ E(Gl); by Lemma 5, x̄ ∈
Nr

+(SEP(G′
l)).

Let c̄ ∈ RE(G′
l) be such that for each e ∈ E(Gl), c̄e = 1, and for each e = uw /∈

E(Gl), c̄e is equal to the length of the shortest path between u and w in Gl. Clearly,
c̄ is metric. We now establish the following claim.

Claim 3. min{c̄Tx : x ∈ TSP(G′
l)} ≥ 4l.

Proof. Equivalently, we show that the number of edges in every Eulerian spanning
subgraph of Gl is at least 4l. (A spanning subgraph is Eulerian if it is connected and
the degree at each vertex is even. In this definition, we allow edges to be used more
than once.) We prove this by induction on l.

The case when l = 1 is obvious. Suppose l ≥ 2. Assume that the claim is true for
l− 1. Consider any three edges f1, f2, f3, one from each of the three length-l paths in
Gl. Since {f1, f2, f3} is a cut of Gl, any Eulerian spanning subgraph T of Gl must use
an even number of edges from {f1, f2, f3}, counting multiplicity. Since l ≥ 2, there
exist f1, f2, f3 such that T uses at least four edges from {f1, f2, f3}. Let H be the
graph obtained from Gl by contracting the edges f1, f2, f3. Let T ′ be the image of T
after contraction. Note that T ′ is a Eulerian spanning subgraph of H. However, H
is isomorphic to Gl−1. By induction, T ′ must have at least 4(l − 1) edges. Hence, T
must have at least 4l edges. The claim now follows.
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Since c̄T x̄ = 3l + 3(2r + 3), we have α|V (Gl)|,r ≥ 4l
3l+3(2r+3) . Hence,

ρr ≥ sup
l≥1

α|V (Gl)|,r ≥ sup
l≥1

4l

3l + 3(2r + 3)
=

4

3
.

Remark. It is not difficult to modify the above proof to show that, for sufficiently large
n, the integrality gap of Nm

+ (SEP(n)) is at least 4
3 − o(1) provided that m = o(n).

5. Concluding remarks. Theorem 8 shows that 2-matching inequalities do not
have bounded N+-rank. Nevertheless, an upper bound depending on the size of the
handle and the number of teeth can be given. Consider a graph G and a 2-matching
inequality I with handle H and teeth T1, . . . , Ts, where s ≥ 3 is odd. An upper bound
on the N+-rank of I is |H|+(s−1)/2. To show this, we use the following result from
Goemans and Tunçel (Theorem 3.6 in [10]).

Theorem 12. Let P ⊆ [0, 1]d, α ∈ R, and a ∈ Rd be such that a ≥ 0. Let
I+ = {i : ai > 0}. If aTx ≤ α is valid for P ∩ {x : xi = 1 for all i ∈ I} for all sets
I ⊆ I+ satisfying either of the following two conditions:

(1) |I| = r,
(2) |I| ≤ (r − 1) and

∑
i∈I ai > α,

then aTx ≤ α is valid for Nr
+(P ).

For the inequality I, we have I+ = γ(H) ∪ γ(T1) ∪ · · · ∪ γ(Ts). Let r = |H| +
(s− 1)/2. Observe that there is no I ⊆ I+ satisfying (2) in the theorem. Let I ⊆ I+
be such that |I| = r. Let x̄ ∈ SEP(G) ∩ {x : xi = 1 for all i ∈ I}. The graph
G′ = (H, I ∩ γ(H)) is a union of disjoint paths. (Some paths may have zero length.)
Let n0, n1, and n2 denote the number of these paths having 0, 1, or 2 end-vertices in
H ∩ (T1 ∪ · · · ∪ Ts), respectively. (Paths of length zero have only one end-vertex.) As
G′ is a forest, |I ∩ γ(H)| = |H| − n0 − n1 − n2. Clearly, |I\γ(H)| ≤ n1 + 2n2. Hence,
r = |I| ≤ |H| − n0 − n1 − n2 + n1 + 2n2 = |H| − n0 + n2 ≤ r. We must have equality
throughout, implying that n0 = 0, n2 = (s−1)/2, and |I\γ(H)| = n1+2n2. It follows
that n1 ∈ {0, 1} and |I\γ(H)| = n1 + s− 1. Note that x̄e = 0 for all e ∈ I+\I. (This
follows from x̄(δ(v)) = 2 for all v and the following: If n1 = 0, then |I ∩ δ(v)| = 2
for all v ∈ H; and if n1 = 1, then x̄e = 1 for all I\γ(H), implying that only one
vertex in H is not incident with two edges in I.) Hence, x̄(I+) = |I| = r, implying
that I is valid for SEP(G) ∩ {x : xi = 1 for all i ∈ I}. By Theorem 12, I is valid for
Nr

+(SEP(G)).
Padberg and Rao [17] gave a polynomial-time algorithm for separating 2-matching

inequalities. Recently, Fleischer, Letchford, and Lodi [8] gave a polynomial-time sep-
aration algorithm for a special class of comb inequalities that includes 2-matching
inequalities. If SC(n) denotes the set of points in SEP(n) satisfying all such comb
inequalities, is SC(n) ⊆ N+(SEP(n))? We show that the answer is “no.” Let
k ≥ 4 be an integer. The point x shown in Figure 12 is in SC(4k). (See [8, 14]
for details.)

By a result of Lovász and Schrijver [16], if x ∈ N+(SEP(4k)), then x is a convex
combination of some x̃, x̂ ∈ SEP(4k) with x̃{1,2} = 1 and x̂{1,2} = 0. Since x̃e = 1
whenever xe = 1 and x̃(δ(v)) = 2 for all v, we have x̃{2,6} = x̃{3,7} = 0, implying that
x̃{6,7} = x̃{7,11} = x̃{6,10} = x̃{10,11} = 1. But this contradicts that x̃ ∈ SEP(4k).

Now, it might be more desirable (at least theoretically) to consider using SC(n)
instead of SEP(n) to obtain lower bounds for metric TSP in polynomial time.
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Fig. 12. Fractional point in SEP(4k). Thick edges indicate xe = 1 and thin edges indicate
xe = 1/2.

However, using the point x above, Fleischer, Letchford, and Lodi [8] showed that

ρ := sup
n≥3

sup
c∈Cn

min{cTx : x ∈ TSP(n)}
min{cTx : x ∈ SC(n)} ≥ 4

3
.

If Conjecture 10 is true, then the integrality gap ρ is 4
3 as well. It might be interesting

to determine if

sup
n≥3

sup
c∈Cn

min{cTx : x ∈ TSP(n)}
min{cTx : x ∈ Nr

+(SC(n))} ≥ 4

3

for every integer r > 0.
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[20] T. Stephen and L. Tunçel, On a representation of the matching polytope via semidefinite
liftings, Math. Oper. Res., 24 (1999), pp. 1–7.

[21] L. A. Wolsey, Heuristic analysis, linear programming and branch and bound, Math. Program-
ming Stud., 13 (1980), pp. 121–134.



SIAM J. OPTIM. c© 2005 Society for Industrial and Applied Mathematics
Vol. 16, No. 2, pp. 400–417

AN O(
√

nL) ITERATION PRIMAL-DUAL PATH-FOLLOWING
METHOD, BASED ON WIDE NEIGHBORHOODS AND LARGE

UPDATES, FOR MONOTONE LCP∗

WENBAO AI† AND SHUZHONG ZHANG‡

Abstract. In this paper we propose a new class of primal-dual path-following interior point
algorithms for solving monotone linear complementarity problems. At each iteration, the method
would select a target on the central path with a large update from the current iterate, and then the
Newton method is used to get the search directions, followed by adaptively choosing the step sizes,
which are, e.g., the largest possible steps before leaving a neighborhood that is as wide as the N−

∞
neighborhood. The only deviation from the classical approach is that we treat the classical Newton
direction as the sum of two other directions, corresponding to, respectively, the negative part and
the positive part of the right-hand side. We show that if these two directions are equipped with
different and appropriate step sizes, then the method enjoys the low iteration bound of O(

√
n logL),

where n is the dimension of the problem and L =
(x0)T s0

ε
with ε the required precision and (x0, s0)

the initial interior solution. For a predictor-corrector variant of the method, we further prove that,
besides the predictor steps, each corrector step also reduces the duality gap by a rate of 1−1/O(

√
n).

Additionally, if the problem has a strict complementary solution, then the predictor steps converge
Q-quadratically.

Key words. monotone linear complementarity problem, primal-dual interior point method,
wide neighborhood

AMS subject classifications. 90C33, 90C51, 90C05

DOI. 10.1137/040604492

1. Introduction. In this paper we consider the following monotone linear com-
plementarity problem (LCP):

(LCP )

{
s = Mx + q,
x ≥ 0, s ≥ 0, xT s = 0,

where q ∈ �n and M ∈ �n×n is a monotone matrix, i.e., M +MT is positive semidef-
inite, or equivalently, xTMx ≥ 0 for any x ∈ �n.

A particular choice of M is a block skew symmetric matrix, M = [ 0
−AT

A
0 ]. In

that case, the corresponding monotone LCP problem is nothing but a linear program-
ming problem.

The primal-dual interior point method for linear programming was first intro-
duced by Kojima, Mizuno, and Yoshise [5] and Megiddo [7], which essentially aims
at solving the following parameterized problem by Newton’s method, for shrinking
values of the parameter μ > 0:

(LCP )μ

{
s = Mx + q,
xi > 0, si > 0, xisi = μ, i = 1, . . . , n.
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The exact solution of the above problem is known as the analytic central path, with the
varying path parameter μ > 0. At each iteration, the method would choose a target
on the central path and apply the Newton method to move closer to the target, while
confining the iterate to stay within a certain neighborhood of the analytic central path.
This method was found to be not only elegant in its simplicity and symmetricity, but
also extremely efficient in practical implementations. There has been, however, an
inconsistency between theory and practice: fast algorithms in practice may actually
render worse complexity bounds. In their first paper [5], Kojima, Mizuno, and Yoshise
proposed that the iterates reside in a wide neighborhood of the central path, known as
the N−

∞-neighborhood (details of the notion will be discussed later), and the targets
on the central path are shifted towards the origin by a large update (percentage
reduction) at each iteration. The worst case iteration bound was proved to be O(nL),
where n is the larger dimension of a standard linear programming problem, and L is its
input-length. Then, in a subsequent paper, [6], the same authors proposed a variant of
the method, where the iterates are restricted to a much smaller neighborhood, known
as the N2-neighborhood, and at each step the target is shifted with a small update.
The algorithm became too conservative to be efficient in practice. However, the worst
case iteration bound of the variant was improved to O(

√
nL). In fact, many early

primal-dual interior point methods either use a narrow neighborhood, or take small
step sizes; see, e.g., the primal-dual method by Monteiro and Adler [9, 10]. The first
practically efficient O(

√
nL) primal-dual interior point algorithm was the celebrated

predictor-corrector algorithm of Mizuno, Todd, and Ye [8]. In the predictor step of
the algorithm, an adaptive step size is taken, ensuring its practical efficiency. The
iteration bound is still retained to be O(

√
nL) since the N2 small neighborhoods are

used to control the centrality of the iterates. Gonzaga [2] proposed to compute and
combine the predictor and corrector steps based on the information of the same iterate,
thus reducing the effort required by the Cholesky factorization. Along a related but
different line, Ye et al. [18] proved that the predictor step in the predictor-corrector
scheme reduces the duality gap with a quadratic convergence rate. This result was
extended by Ye and Anstreicher in [17] to the monotone LCP problem, assuming
a strict complementary solution exists. We refer the reader to Wright [14] for an
excellent exposition on the primal-dual interior point method for linear programming
and LCP problems.

The issue of the neighborhood size in the method has generated some research
interests on its own. It is believed that in its original form, the primal-dual interior
point algorithm of Kojima, Mizuno, and Yoshise [5] may indeed not enjoy the low
iteration bound of O(

√
nL). However, it is possible to modify the algorithm to gain

both the theoretical and the practical advantages. A first such attempt was made by
Xu [15], who proposed an O(

√
nL) method, in which the small neighborhood was only

used as a safeguard, and the iterates are allowed to go far beyond. However, the new
neighborhood, though much larger than the small neighborhood, does not necessarily
contain the wide neighborhood: the neighborhood is still much narrower than the N−

∞
wide neighborhood. Hung and Ye [4] proposed to use higher-order corrections on the
Newton method, and showed that the iteration bound of their high order primal-dual

interior point method with the N−
∞ wide neighborhood can be reduced to O(n

n+1
2n L).

Sturm and Zhang [13] proposed to follow a central region, instead of the central path.
The central region is defined to be precisely an N−

∞ wide neighborhood of the central
path. Then, they introduced a (narrow) neighborhood of the central region (the whole
area is thus wider than the central region which is a wide neighborhood itself) in which
all the iterates reside. By choosing the direction towards a target in the central region
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properly, Sturm and Zhang [13] managed to show that their algorithm has an iteration
bound of O(

√
nL). Since the iterates are required to take adaptive (thus long) steps,

maximum possible within the wide neighborhood, the algorithm is highly efficient in
practice. Later, Sturm generalized the method to solve semidefinite programming
(SDP) problems, and the method has become one of the pillars for his famous SDP
solver SeDuMi [12]. Ai [1] proposed a new wide neighborhood interior point algorithm
with O(

√
nL) iteration bound. The current paper is inspired by [1], in the definition

of the new wide neighborhood; however, they differ greatly in both the scope and the
results to be achieved. Recently, Peng, Terlaky, and Zhao [11] introduced a variant
of the predictor-corrector approach, based on a self-regular function to define the
neighborhood, which is wide. They showed that their algorithm enjoys the iteration
bound of O(

√
n log nL) for linear programming problems.

As far as we know, in the context of the path-following approach, none had suc-
ceeded in retaining the O(

√
nL) complexity while allowing a large update (meaning a

reduction by a universal percentage, independent of the problem parameters) of the
target along the central path at all iterations, even if one is allowed to stay within nar-
row neighborhoods. Indeed, deriving a path-following interior point method with the
O(

√
nL) iteration bound while working with large updates and wide neighborhood at

each iteration is one of the objectives to be achieved in this paper. In other words, the
current paper aims at modifying the original primal-dual interior point method with
minimum changes, maintaining large updates and working with wide neighborhood
at all iterations, to gain the O(

√
nL) iteration bound and retain practical efficiency.

We organize the paper as follows. Our new methodology will be introduced in sec-
tion 2, where the main underlying ideas will be explained. In section 3, we present the
technical lemmas that will be important for the subsequent analysis, and in section 4
we discuss some easily implementable variants of the general method and show the
low computational complexity status. In a similar spirit, we discuss another variant
in section 5, based on the predictor-corrector methodology. Novel properties of the
algorithm will be discussed, including its progressive property even for the corrector
steps. The low complexity bound will be proven for this variant, and the superlinear
convergence property will be shown, provided that a strictly complementary solution
exists.

The notation used in this paper is fairly standard: the ith component of vector
x ∈ �n is denoted by xi; e is the all one vector with an appropriate dimension; if
d ∈ �n, then we denote D to be an n × n diagonal matrix with d as the diagonal
components; for x, y ∈ �n, xy is the component product in �n, and so is true for
other operations, e.g., 1/(xy) and (xy)−0.5; x ≥ (>) y means that the inequality holds
componentwise; for any a ∈ �, a+ denotes its nonnegative part, i.e., a+ := max{a, 0},
and a− denotes its nonpositive part, i.e., a− := min{a, 0}; the same notation is used
for vector x ∈ �n, namely x+ is the nonnegative part of x and x− is the nonpositive
part of x; the Lp-norm of x ∈ �n is denoted by ‖x‖p, and in particular we write ‖x‖
for ‖x‖2—the Euclidean norm.

2. Separating large and small components: A new paradigm. Let us
denote

F++ := {(x, s) | s = Mx + q, x > 0, s > 0},
which is assumed to be nonempty throughout this paper.

The central path for (LCP) is defined as

C := {(x, s) ∈ F++ | xs = μe}
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and its small neighborhood is defined as

N2(β) := {(x, s) ∈ F++ | ‖xs− μe‖ ≤ βμ} ,

where β ∈ (0, 1) is a given constant and μ := xT s/n. The so-called wide neighborhood
is defined as follows:

N−
∞(1 − τ2) := {(x, y, s) ∈ F++ | xs ≥ τ2μe} ,

where 0 < τ2 < 1.
Before proceeding, let us recall the classical primal-dual interior point method

with wide neighborhood and large update of the targets. Let 0 ≤ τ ≤ 1 and 0 < τ2 < 1
be two given parameters. Suppose that the current iterate is (x, s) ∈ N−

∞(1−τ2). The
search direction (Δx,Δs) is the solution of the following system of linear equations:{

Δs = MΔx,
sΔx + xΔs = τμe− xs,

(1)

where

μ = xT s/n.

Then the next iterate will be given by

(x + ᾱΔx, s + ᾱΔs),

where ᾱ is the solution of the subproblem

minimize (x + αΔx)T (s + αΔs)
subject to (x + αΔx, s + αΔs) ∈ N−

∞(1 − τ2)
α ∈ [0, 1].

Naturally, all the iterates are contained in the wide neighborhood N−
∞(1 − τ2).

An important ingredient of this paper is to introduce a new neighborhood for the
central path, defined as

N (τ1, τ2, η) := N−
∞(1 − τ2)

⋂{
(x, s) ∈ F++

∣∣ ∥∥(τ1μe− xs)+
∥∥ ≤ η(τ1 − τ2)μ

}
,(2)

where η ≥ 1 and τ1 satisfying 0 < τ2 < τ1 < 1 are two more parameters.
The above defined neighborhood is itself a wide neighborhood, since one can easily

verify that

N−
∞(1 − τ1) ⊆ N (τ1, τ2, η) ⊆ N−

∞(1 − τ2).

Moreover, if τ1 − η(τ1 − τ2)/
√
n− 1 > τ2, then

N−
∞

(
1 − τ1 + η(τ1 − τ2)/

√
n− 1

)
⊆ N (τ1, τ2, η),

and if τ1 − η(τ1 − τ2)/
√
n− 1 ≤ τ2, then

N (τ1, τ2, η) = N−
∞(1 − τ2).

Specially, if we choose η = 1, the neighborhood can be expressed more simply as
follows:

N (τ1, τ2, 1) = {(x, s) ∈ F++ |
∥∥(τ1μe− xs)+

∥∥ ≤ (τ1 − τ2)μ} ⊇ N−
∞(1 − τ1).(3)
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In this paper, the newly introduced neighborhood N (τ1, τ2, η) will play an im-
portant role. The reason for working with N (τ1, τ2, η) is that the measure for the
components in xs that are “dangerously” close to zero are captured by the quan-
tity ‖(τ1μe− xs)+‖, and we are less concerned about the “large” components of xs
present in (τ1μe− xs)−. In fact, we will see later that this separation is crucial. The
part (τ1μe− xs)+ is used to control the centrality, and the other part (τ1μe− xs)− is
important for the progress towards optimality.

Suppose that our current iterate is (x, s). Let 0 ≤ τ ≤ 1. Another key ingredient
of our method is to decompose the Newton step, from xs to the target on the central
path τμe (large update), into the following two equations:{

Δs− = MΔx−,
sΔx− + xΔs− = (τμe− xs)−

(4)

and {
Δs+ = MΔx+,
sΔx+ + xΔs+ = (τμe− xs)+.

(5)

Since τμe−xs = (τμe−xs)−+(τμe−xs)+, the usual Newton direction is simply
(Δx−, Δs−) + (Δx+, Δs+). In this paper, however, we propose to treat these two
directions separately. Essentially those are what we need to modify the original large
update and wide neighborhood path-following method. The payoff for the changes
will become clear later. At this stage, we only remark that the extra computational
effort is very marginal, compared to the computation of a single Newton direction.
For reference, we shall call (Δx−, Δs−) and (Δx+, Δs+) the Newton constituent di-
rections.

Let α := (α1, α2) ∈ �2
+ be the step sizes taken along (Δx−, Δs−) and (Δx+, Δs+),

respectively. The step is

(x(α), s(α)) := (x, s) + α1(Δx−, Δs−) + α2(Δx+, Δs+).

The best α can be obtained by solving the following two-dimensional optimization
problem:

minimize x(α)T s(α)
subject to (x(α), s(α)) ∈ N (τ1, τ2, η)

0 ≤ α1 ≤ 1, 0 ≤ α2 ≤ 1.
(6)

Remark that due to the monotonicity, the above objective function x(α)T s(α) is
convex in α.

Below we describe a generic framework for our wide-neighborhood and large-
update primal-dual path-following method.

Algorithm 2.1.

Input parameters: required precision ε > 0, neighborhood parameters ηk ≥ 1,
0 < τk2 < τk1 < 1, and target parameters 0 ≤ τk ≤ 1, k = 0, 1, . . . , and the initial
solution (x0, s0) ∈ N (τ0

1 , τ
0
2 , η

0).
Output: a sequence of iterates {(xk, sk) | k = 0, 1, 2, . . . }.

Step 0. Set k = 0.
Step 1. If (xk)T sk ≤ ε, then stop.
Step 2. Solve (Δxk

−, Δsk−) and (Δxk
+, Δsk+) based on (4) and (5).

Find step size vector αk ∈ �2
++, such that (x(αk), s(αk)) ∈ N (τk1 , τ

k
2 , η

k).



WIDE NEIGHBORHOOD AND LARGE UPDATE IPM FOR LCP 405

Step 3. Set (xk+1, sk+1) := (x(αk), s(αk)).
Let k := k + 1 and go to Step 1.

We remark here that the optimal step sizes according to (6) may be used in Step
2, and the parameters ηk, τk1 , τk2 , and τk may be set to constants. It is, however,
convenient to allow for the flexibilities at this stage.

The main result of this paper is to prove that the above generic method can be
specified into easy implementable variants with given parameters, in such a way that

the iteration bound will be O(
√
n log (x0)T s0

ε ). Moreover, the method can also be
implemented in the predictor-corrector style. In that case, in addition to the above
iteration bound one also obtains a quadratic convergence rate for the predictor steps,
provided that a strict complementary solution exists. These specific implementations
will be discussed in sections 4 and 5, respectively. To facilitate the analysis, we need
to study the properties of the two separated Newton constituent directions. This will
be the topic of the next section.

3. Technical lemmas. In this section we choose to set τ = τ1.
First, it is useful for our subsequent analysis to note the following triangle in-

equalities for the “minus” and “plus” operations on the vectors.
Proposition 3.1. For any u, v ∈ �n and p ≥ 1, we have

‖(u + v)+‖p ≤ ‖u+‖p + ‖v+‖p

and

‖(u + v)−‖p ≤ ‖u−‖p + ‖v−‖p.

Proof. As 0 ≤ (u + v)+ ≤ u+ + v+ we conclude that

‖(u + v)+‖p ≤ ‖u+ + v+‖p ≤ ‖u+‖p + ‖v+‖p.

Similarly, we have

‖(u + v)−‖p ≤ ‖u−‖p + ‖v−‖p.

The next proposition is concerned with the feasibility of the iterates along given
Newton directions. It would be undesirable if the iterates would leave the feasible
region and then return to it again.

Proposition 3.2. Suppose that (x, s) ∈ F++ and z + xs ≥ 0. Let (Δx,Δs) be
the solution of Δs = MΔx, sΔx + xΔs = z. If (x + t0Δx)(s + t0Δs) > 0 for some
0 < t0 ≤ 1, then x + tΔx > 0 and s + tΔs > 0 for all 0 ≤ t ≤ t0.

Proof. Let (x̄, s̄) := (x + t0Δx, s + t0Δs).
We have

(x + δt0Δx)(s + δt0Δs)

= xs + δt0(sΔx + xΔs) + δ2t20ΔxΔs

= xs + δt0z + δ2(x̄s̄− t0z − xs)

= (1 − δ)xs + δ(1 − δ)(t0z + xs) + δ2x̄s̄ > 0(7)

for all 0 ≤ δ ≤ 1.
If there are 0 < t1 ≤ t0 and 1 ≤ i ≤ n with either (x+t1Δx)i < 0 or (s+t1Δs)i <

0, then, since (x, s) > 0, by continuity there must exist 0 < t2 < t1 ≤ t0, such that
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(x+ t2Δx)i(s+ t2Δs)i = 0. Letting δ = t2/t0, we have (x+ δt0Δx)i(s+ δt0Δs)i = 0,
which would contradict (7). The proposition is thus proven.

The term z + xs is sometimes called the target to be tracked, and it is naturally
nonnegative for most interior point methods. In particular, in Algorithm 2.1, this
property boils down to verifying xs + α1(τ1μe− xs)− + α2(τ1μe− xs)+ ≥ 0.

Let us denote

h(α) := xs + α1(τ1μe− xs)− + α2(τ1μe− xs)+(8)

and

I+ := {i | τ1μ− xisi > 0}.(9)

Since (x, s) ∈ F++ we have

hi(α) =

{
xisi + α2(τ1μ− xisi) = (1 − α2)xisi + α2τ1μ > 0, i ∈ I+,
xisi + α1(τ1μ− xisi) ≥ xisi + τ1μ− xisi = τ1μ > 0, i 
∈ I+(10)

for all α ∈ [0, 1]2. Proposition 3.2 thus asserts that (x(α), s(α)) ∈ N (τ1, τ2, η) if and
only if x(α)s(α) ≥ τ2μ(α)e and ‖(τ1μ(α)e− x(α)s(α))+‖ ≤ η(τ1 − τ2)μ(α), where

μ(α) := x(α)T s(α)/n.(11)

Furthermore, we have

μ(α) := (x + Δx(α))T (s + Δs(α))/n

=
(
xT s + sTΔx(α) + xTΔs(α) + Δx(α)TΔs(α)

)
/n

= μ + α1e
T (τ1μe− xs)−/n + α2e

T (τ1μe− xs)+/n + Δx(α)TΔs(α)/n,(12)

where Δx(α) = α1Δx− + α2Δx+ and Δs(α) = α1Δs− + α2Δs+.
Lemma 3.3. It holds that

μ(α) ≥ (1 − α1)μ.

Proof. By the monotonicity we have Δx(α)TΔs(α) ≥ 0. Therefore, from (12) we
have

μ(α) ≥ μ + α1e
T (τ1μe− xs)−/n

≥ μ + α1e
T (−xs)/n

= (1 − α1)μ.

We note the following simple but useful relationships:⎧⎨
⎩

eT (τ1μe− xs)− = −(1 − τ1)x
T s− eT (τ1μe− xs)+,

‖(xs)−0.5(τ1μe− xs)−‖ = ‖(
√
xs− τ1μe/

√
xs)+‖ ≤ ‖

√
xs‖ = xT s,

eT (τ1μe− xs)+ ≤
√
n‖(τ1μe− xs)+‖.

(13)

For convenience we set

β :=
τ1 − τ2

τ1
.(14)
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Obviously we have β ∈ (0, 1), τ1 − τ2 = βτ1, and τ2 = (1 − β)τ1. Let

η̂ = max

{
‖(τ1μe− xs)+‖

βτ1μ
, 1

}
.(15)

It follows that η̂ ≤ η if (x, s) ∈ N (τ1, τ2, η).
Lemma 3.4. If μ(α) ≤ μ, then it holds that

‖(τ1μ(α)e− h(α))+‖ ≤ (1 − α2)η̂βτ1μ(α).

Proof. As μ(α) ≤ μ it follows from (10) that

τ1μ(α) − hi(α) ≤
{

τ1μ(α) − μ(α)
μ hi(α) = μ(α)

μ (1 − α2)(τ1μ− xisi) if i ∈ I+,

0 else,

which implies that

‖(τ1μ(α)e− h(α))+‖ ≤ μ(α)

μ
(1 − α2)‖(τ1μ− xs)+‖ ≤ (1 − α2)η̂βτ1μ(α).

Lemma 3.5. Let u, v ∈ �n be such that uT v ≥ 0, and let r = u + v. Then, we
have

‖(uv)−‖1 ≤ ‖(uv)+‖1 ≤ 1

4
‖r‖2.

Proof. Let the index set J be

J := {i | uivi > 0}.

As uT v ≥ 0, we have

‖(uv)−‖1 ≤ ‖(uv)+‖1 =
∑
i∈J

uivi ≤
1

4

∑
i∈J

(ui + vi)
2 =

1

4

∑
i∈J

(ri)
2 ≤ 1

4
‖r‖2.

Lemma 3.6. Suppose β ≤ 1
2 and α1 = tα2η̂

√
βτ1
n for some t ≥ 0. Then we have

‖(Δx(α)Δs(α))−‖1 ≤ ‖(Δx(α)Δs(α))+‖1 ≤ (t2 + 1)α2
2η̂

2βτ1μ/4.

Proof. We have

sΔx(α) + xΔs(α) = α1(τ1μe− xs)− + α2(τ1μe− xs)+.

Multiply both sides of the above equality by (xs)−0.5. Denote u := x−0.5s0.5Δx(α), v :=
x0.5s−0.5Δx(α) and r := (xs)−0.5(α1(τ1μe − xs)− + α2(τ1μe − xs)+). So we have
u + v = r. Notice that uT v = Δx(α)TΔs(α) ≥ 0. Therefore, by Lemma 3.5 we have

‖(Δx(α)Δs(α))−‖1

≤ ‖(Δx(α)Δs(α))+‖1

≤ 1

4
‖(xs)−0.5α1(τ1μe− xs)− + (xs)−0.5α2(τ1μe− xs)+‖2

=
1

4

(
α2

1‖(
√
xs− τ1μe/

√
xs)+‖2 + α2

2‖(xs)−0.5(τ1μe− xs)+‖2
)

≤ 1

4

(
α2

1‖
√
xs‖2 + α2

2‖(τ1μe− xs)+‖2/(τ2μ)
)

≤ 1

4

(
t2α2

2η̂
2βτ1μ + α2

2η̂
2βτ1μ

)
= (t2 + 1)α2

2η̂
2βτ1μ/4.(16)
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Lemma 3.7. Suppose that τ1 ≤ 1/4 and β ≤ 1/2. If α1 = α2η̂
√

βτ1
n and

α2 ≤ 1/η̂2, then we have

μ(α) ≤
(

1 − η̂
√
βτ1

10
√
n
α2

)
μ.

Proof. By (12), (13), and Lemma 3.6 we have

μ(α) ≤ μ + α1e
T (τ1μe− xs)−/n + α2e

T (τ1μe− xs)+/n + ‖(Δx(α)Δs(α))+‖1/n

≤ μ− α1(1 − τ1)μ + α2‖e‖‖(τ1μe− xs)+‖/n + ‖(Δx(α)Δs(α))+‖1/n

≤ μ− α1(1 − τ1)μ + α2η̂βτ1μ/
√
n + α2

2η̂
2βτ1μ/2n

≤ μ− 3α1μ/4 + 3α2η̂βτ1μ/2
√
n

= μ− α2
3η̂

√
βτ1(1 − 2

√
βτ1)μ

4
√
n

≤ μ− α2
3η̂

√
βτ1(1 − 1/

√
2)μ

4
√
n

≤
(

1 − α2
η̂
√
βτ1

10
√
n

)
μ.

Lemma 3.8. Suppose that (x, s) ∈ N (τ1, τ2, η), τ1 ≤ 1/4, and β ≤ 1/2. If

α1 = α2η̂
√

βτ1
n and α2 ≤ 1/η̂2, then (x(α), s(α)) ∈ N (τ1, τ2, η).

Proof. By Lemma 3.7 it follows that μ(α) ≤ μ. Further, it follows from (10) and
Lemma 3.6 that

x(α)s(α) = h(α) + Δx(α)Δs(α)

≥ (τ2μ + α2(τ1 − τ2)μ)e− ‖(Δx(α)Δs(α))−‖e
≥ (τ2μ + α2βτ1μ)e− (α2

2η̂
2βτ1μ/2)e

≥ (τ2μ + α2βτ1μ− α2βτ1μ/2)e

≥ τ2μe

≥ τ2μ(α)e,

which also implies (x(α), s(α)) > 0 according to Proposition 3.2. Therefore, (x(α), s(α)) ∈
N−

∞(1 − τ2).
At the same time, by Lemma 3.3 we have

μ(α) ≥ (1 − α1)μ ≥
(

1 − η̂
√
βτ1√
n

)
μ ≥ (1 −

√
βτ1)μ ≥ μ/2.

Using Lemmas 3.4 and 3.6 we obtain

‖ (τ1μ(α)e− x(α)s(α))
+ ‖

= ‖ (τ1μ(α)e− h(α) −Δx(α)Δs(α))
+ ‖

≤ ‖(τ1μ(α)e− h(α))+ + (−Δx(α)Δs(α))+‖
≤ ‖(τ1μ(α)e− h(α))+‖ + ‖(Δx(α)Δs(α))−‖
≤ (1 − α2)η̂βτ1μ(α) + α2

2η̂
2βτ1μ/2

≤ (1 − α2)η̂βτ1μ(α) + α2η̂βτ1μ(α)

= η̂βτ1μ(α)

≤ ηβτ1μ(α),
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proving that (x(α), s(α)) ∈ N (τ1, τ2, η).

4. The iteration bound and an implementation. Now we are in a position
to present our complexity results.

First, let us consider the generic Algorithm 2.1.

Theorem 4.1. Suppose that η ≥ 1, τ = τ1 ≤ 1/4, and β ≤ 1/2 are fixed for
all iterations. Furthermore, suppose that the plane-search procedure (6) is applied at

each iteration of Algorithm 2.1. Then, Algorithm 2.1 terminates in O(
√
n log (x0)T s0

ε )
iterations.

Proof. By Lemma 3.8, at each iteration, if we let α̂ = (
√
βτ1/n/η̂, 1/η̂

2), then we
have

(x(α̂), s(α̂)) ∈ N (τ1, τ2, η).

Furthermore, according to Lemma 3.7 we also have

μ(α̂) ≤
(

1 −
√
βτ1

10η̂
√
n

)
μ ≤

(
1 −

√
βτ1

10η
√
n

)
μ.

Therefore, the exact plane search would lead to at least the same amount of reduction
in μ(α), and hence the theorem is proven.

The plane-search subproblem being an optimization problem with a convex objec-
tive and only two variables can be solved relatively easily. However, it is also possible
to reduce the number of search variables in the subproblem to only one without sac-
rificing the practical efficiency too much.

The main observation here is that under some mild conditions, the objective
function in the subproblem (6) is monotone with respect to α1 for any fixed α2 ∈ [0, 1].

More precisely, we have the following result.

Theorem 4.2. Suppose (x, s) ∈ N−
∞(1 − τ2), τ = τ1 ≤ 1/4, and τ1 ≤ 2τ2 (i.e.,

β ≤ 1/2). For any fixed α2 ∈ [0, 1], x(α)T s(α) is a monotonically decreasing function
in α1 for α1 ∈ [0, 1].

Proof. We have

x(α)T s(α) = (x + α1Δx− + α2Δx+)T (s + α1Δs− + α2Δs+)

= xT s + α1(x
TΔs− + sTΔx−) + α2(x

TΔs+ + sTΔx+)

+α2
1ΔxT

−Δs− + α1α2

(
ΔxT

−Δs+ + ΔxT
+Δs−

)
+ α2

2ΔxT
+Δs+.

Therefore, since 0 ≤ α1 ≤ 1 and 0 ≤ α2 ≤ 1,

∂(x(α)T s(α))

∂α1
= eT (τ1μe− xs)− + 2α1ΔxT

−Δs− + α2(ΔxT
−Δs+ + ΔxT

+Δs−)

≤ eT (τ1μe− xs)− + 2ΔxT
−Δs− +

∣∣(D−1Δx−)T (DΔs+) + (DΔs−)T (D−1Δx+)
∣∣

≤ eT (τ1μe− xs)− + 2ΔxT
−Δs− + ‖(D−1Δx−, DΔs−)‖‖(D−1Δx+, DΔs+)‖,

(17)

where D = X1/2S−1/2, and we also used the monotonicity of M (thus ΔxT
−Δs− ≥ 0)

in the second step.
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By Lemmas 3.5 and 3.6, we have

ΔxT
−Δs− ≤ ‖(Δx−Δs−)+‖1

= ‖
(
(D−1Δx−)(DΔs−)

)+ ‖1

≤ ‖(D−1Δx−)(DΔs−)‖1

≤ 1

4

(
‖D−1Δx−‖2 + ‖DΔs−‖2

)
≤ 1

4
‖D−1Δx− + DΔs−‖2

=
1

4
‖(τ1μe− xs)−/

√
xs‖2

=
1

4
‖
√

(xs− τ1μe)+
√

(xs− τ1μe)+/xs‖2

≤ 1

4
‖
√

(xs− τ1μe)+‖2

= eT (xs− τ1μe)
+/4,(18)

where we used the monotonicity (D−1Δx−)TDΔs− = ΔxT
−Δs− ≥ 0 in the fifth step,

and the fact that 0 ≤ (xs− τ1μe)
+/xs ≤ e in the eighth step. In fact, one concludes

from the chain of inequalities in (18) that

‖(D−1Δx−, DΔs−)‖2 ≤ eT (xs− τ1μe)
+.(19)

Similarly,

‖(D−1Δx+, DΔs+)‖2 ≤ ‖D−1Δx+ + DΔs+‖2

= ‖(τ1μe− xs)+/
√
xs‖2

≤ ‖
√

(τ1μe− xs)+‖2 = eT (τ1μe− xs)+,

where the third step is due to the fact that since τ1 ≤ 2τ2 and (x, s) ∈ N−
∞(1 − τ2),

and so

(τ1μe− xs)+ ≤ (2τ2μe− xs)+ = (2(τ2μe− xs) + xs)
+ ≤ xs.

Furthermore,

eT (τ1μe− xs)+ ≤ n(τ1 − τ2)μ

≤ nμ/8

≤ (1 − τ1)nμ/6

= eT (xs− τ1μe)/6

≤ eT (xs− τ1μe)
+/6.

Therefore we have

‖(D−1Δx+, DΔs+)‖2 ≤ eT (xs− τ1μe)
+/6.(20)

Substituting (18), (19), and (20) into (17) finally yields that

∂(x(α)T s(α))

∂α1
≤ −

(
1

2
− 1√

6

)
eT (xs− τ1μe)

+ < 0.
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In view of Theorems 4.1 and 4.2, we may solve subproblem (6) approximately in
the following way. First, set α2 = 1/η̂2. Second, find the greatest ᾱ1 in [0, 1] such
that (x(ᾱ1, 1/η̂

2), s(ᾱ1, 1/η̂
2)) ∈ N (τ1, τ2, η). One may, for instance, use bisection on

α1 for this purpose. Then, set α1 = ᾱ1. Theorem 4.2 and Lemma 3.8 guarantee that
ᾱ1 ≥ η̂−1

√
βτ1/n. It is clear that if the plane search procedure as described in Theo-

rem 4.1 is replaced by this line search procedure, then the O(
√
n log (x0)T s0

ε ) iteration
bound still holds. Particularly, if we let ηk ≡ 1, then η̂ ≡ 1 and so we can always
choose α2 ≡ 1. Another benefit of ηk ≡ 1 is that the corresponding neighborhoods
N (τ0

1 , τ
0
2 , 1) are simply expressed by (21) and (3). A concrete practical implemen-

tation is recommended as follows. Its numerical performance will be discussed in
section 6.

Algorithm 4.3.

Input parameters: required precision ε > 0, target parameter and neighborhood
parameters 0 < τ = τ1 < 1 and τ2 = 0.5τ1 (i.e., β = 0.5), and the initial solution
(x0, s0) ∈ N (τ0

1 , τ
0
2 , 1).

Step 0. Set k = 0.
Step 1. If (xk)T sk ≤ ε, then stop.
Step 2. Solve (Δxk

−, Δsk−) and (Δxk
+, Δsk+) based on (4) and (5).

Set αk
2 = 1 and find the largest αk

1 on the closed interval [
√
βτ1/n , 1], such

that (x(αk), s(αk)) ∈ N (τ1, τ2, 1).
Step 3. Set (xk+1, sk+1) := (x(αk), s(αk)).

Let k := k + 1 and go to Step 1.

5. A predictor-corrector scheme. In this section, we shall slightly change
the notation. For simplicity, we shall always choose η = 1, i.e., we consider the
neighborhood N (τ1, τ2, 1). We introduce a new notation N (τ1;β) to indicate the set
N (τ1, τ2, 1) (see (3)), i.e.,

N (τ1;β) =
{
(x, s) ∈ F++

∣∣ ‖(τ1μe− xs)+‖ ≤ βτ1μ
}
,(21)

where β = (τ1 − τ2)/τ1, as given in (14).
Below we describe another variant of Algorithm 2.1, which is essentially a predictor-

corrector type algorithm.
Algorithm 5.1.

Input parameters: required precision ε > 0, neighborhood parameters 0 < τ1 ≤
1/4, 0 < β ≤ 1/2, and the initial solution (x0, s0) ∈ N (τ1;β/2).

Output: a sequence of iterates {(xk, sk) | k = 0, 1, 2, . . . }.
Step 0. Set k = 0.
Step 1. If (xk)T sk ≤ ε, then stop. Otherwise, if k is even (including 0), go to Step

2; if k is odd, go to Step 3.
Step 2. (predictor step). Set τk = 0. Solve (Δxk

−, Δsk−) based on (4).
Find largest step size 0 < αk

1 ≤ 1, such that (x(αk
1), s(αk

1)) ∈ N (τ1;β). Go to
Step 4.

Step 3. (corrector step). Set τk = τ1. Solve (Δxk
−, Δsk−) and (Δxk

+, Δsk+) based on
(4) and (5).
Find step size vector αk = (αk

1 , 1) ∈ [0, 1]2, such that (x(αk), s(αk)) ∈
N (τ1;β/2) and αk

1 is maximum. Go to Step 4.
Step 4. Set (xk+1, sk+1) := (x(αk), s(αk)).

Let k := k + 1 and go to Step 1.
Remark that in the predictor step, since τk is set to be 0, we have (τkμke −

xksk)+ = 0, and so the Newton constituent direction with respect to the positive
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part is simply zero. In both the corrector and the predictor steps, we only need to
search for a single step size. An important feature of the above algorithm is that in
the corrector step we also aim at a large update of the target. In other words, the
gap function is expected to be reduced for the corrector steps as well.

We shall now prove that Algorithm 5.1 indeed works correctly.

Let us denote

λ := ‖(τ1μe− xs)+‖1/‖(τ1μe− xs)−‖1,(22)

which means

λeT (τ1μe− xs)− + eT (τ1μe− xs)+ = 0.

So when we choose α1 ≥ λ we have

μ(α1, 1) ≤ μ + Δx(α1, 1)TΔs(α1, 1)/n.(23)

If (x, s) ∈ N (τ1;β), τ1 ≤ 1/4, and β ≤ 1/2, then we derive from (13) that

λ ≤
√
n‖(τ1μe− xs)+‖/

(
(1 − τ1)x

T s
)

≤
√
βτ1

1 − τ1

√
βτ1
n

≤
√

2

3

√
βτ1
n

.(24)

If (x, s) ∈ N (τ1;β), then computing η̂ from (15) would yield

η̂ = 1,(25)

and so by (10) we obtain immediately that

h(α1, 1) ≥ τ1μe(26)

for all α1 ∈ [0, 1] and for all (x, s) ∈ F++.

Lemma 5.2. Suppose (x, s) ∈ N (τ1;β), τ = τ1 ≤ 1/4 and β ≤ 1/2. Then, for

any α1 ∈ [λ,
√

βτ1
2n ] we have (x(α1, 1), s(α1, 1)) ∈ N (τ1;β/2).

Proof. First of all, observe that (24) guarantees that the interval [λ,
√

βτ1
2n ] is not
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empty. Due to (23), (26), (25), and Lemma 3.6, we have∥∥∥(τ1μ(α1, 1)e− x(α1, 1)s(α1, 1))
+
∥∥∥

=
∥∥∥(τ1μ(α1, 1)e− h(α1, 1) −Δx(α1, 1)Δs(α1, 1))

+
∥∥∥

≤
∥∥∥∥∥
(
τ1μe− h(α1, 1) +

τ1Δx(α1, 1)TΔs(α1, 1)

n
e−Δx(α1, 1)Δs(α1, 1)

)+
∥∥∥∥∥

≤
∥∥∥∥∥
(
τ1Δx(α1, 1)TΔs(α1, 1)

n
e−Δx(α1, 1)Δs(α1, 1)

)+
∥∥∥∥∥

≤
∥∥∥∥τ1Δx(α1, 1)TΔs(α1, 1)

n
e + (−Δx(α1, 1)Δs(α1, 1))

+

∥∥∥∥
≤

∥∥∥∥τ1Δx(α1, 1)TΔs(α1, 1)

n
e

∥∥∥∥ +
∥∥∥(−Δx(α1, 1)Δs(α1, 1))

+
∥∥∥

≤ Δx(α1, 1)TΔs(α1, 1) +
∥∥∥(Δx(α1, 1)Δs(α1, 1))

−
∥∥∥

=
∥∥∥(Δx(α1, 1)Δs(α1, 1))

+
∥∥∥

1
−
∥∥∥(Δx(α1, 1)Δs(α1, 1))

−
∥∥∥

1
+
∥∥∥(Δx(α1, 1)Δs(α1, 1))

−
∥∥∥

≤
∥∥∥(Δx(α1, 1)Δs(α1, 1))

+
∥∥∥

1

≤ (β/2)τ1(3μ/4).

Applying Lemma 3.3 yields

μ(α1, 1) ≥ (1 −
√
βτ1/2n)μ ≥ (1 − 1/4)μ = 3μ/4.

Therefore, (x(α1, 1), s(α1, 1)) ∈ N (τ1;β/2).
Lemma 5.3. Suppose that (x, s) ∈ N (τ1;β), τ = τ1 ≤ 1/4, and β ≤ 1/2. Then

we have

μ

(√
βτ1
2n

, 1

)
≤

(
1 −

√
2βτ1

32
√
n

)
μ.

Proof. Let us denote α0 := (
√

βτ1
2n , 1). Notice that η̂ = 1. Due to (13) and Lemma

3.6 we obtain

μ

(√
βτ1
2n

, 1

)
= μ +

√
βτ1
2n

eT (τ1μe− xs)−

n
+

eT (τ1μe− xs)+

n
+

Δx(α0)TΔs(α0)

n

≤ μ−
√

βτ1
2n

(1 − τ1)μ + ‖(τ1μe− xs)+‖/
√
n + ‖(Δx(α0)Δs(α0))+‖1/n

≤ μ− 3
√

2

8

√
βτ1
n

μ +
βτ1μ√

n
+

3βτ1μ

8n

≤ μ− 3
√

2

8

√
βτ1
n

μ +

√
βτ1
8n

μ +
3

8
√

8

√
βτ1
n

μ

= μ−
√

2

32

√
βτ1
n

μ.

The lemma is proven.
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A remarkable feature of Algorithm 5.1, as revealed by Lemma 5.3, is that the gap
measurement μ is reduced by a rate of 1 − 1/O(

√
n) even at the corrector steps.

Lemma 5.4. Let (Δxa, Δsa) be the search direction of a predictor step in Algo-
rithm 5.1, and ᾱ be the actual step size taken in that predictor step. Then,

ᾱ ≥ 2

1 +
√

1 + 4δ/βτ1
,

where δ = ‖ΔxaΔsa‖ /μ.
Proof. We have

μ(α) = x(α)T s(α)/n = (1 − α)μ + α2(Δxa)TΔsa/n.

Note that (x, s) ∈ N−
2 (τ1, β) and

∥∥∥(τ1((Δxa)TΔsa/n)e−ΔxaΔsa
)+∥∥∥2

≤
∥∥τ1((Δxa)TΔsa/n)e−ΔxaΔsa

∥∥2

= ‖ΔxaΔsa‖2 − τ1(2 − τ1)((Δxa)TΔsa)2/n

≤ ‖ΔxaΔsa‖2
.

Therefore, ∥∥∥(τ1μ(α)e− x(α)s(α))
+
∥∥∥

=
∥∥∥((1 − α)(τ1μe− xs) + α2τ1((Δxa)TΔsa/n)e− α2ΔxaΔsa

)+∥∥∥
≤ (1 − α)

∥∥(τ1μe− xs)+
∥∥ + α2

∥∥∥(τ1((Δxa)TΔsa/n)e−ΔxaΔsa
)+∥∥∥

≤ (1 − α)βτ1μ + α2 ‖ΔxaΔsa‖ .

Applying similar reasoning as in Lemma 4.17 of [16], we see that for each α with

0 ≤ α ≤ 2

1 +
√

1 + 4δ/βτ1

we will have ∥∥∥(τ1μ(α)e− x(α)s(α))
+
∥∥∥ ≤ (1 − α)βτ1μ + α2 ‖ΔxaΔsa‖

≤ 2βτ1(1 − α)μ

≤ 2βτ1μ(α),

and therefore, (x(α), s(α)) ∈ N (τ1; 2β). Differently put, we have ᾱ ≥ 2

1+
√

1+4δ/βτ1
as

the lemma claims.
Since δ ≤ n/2, together with Lemma 5.3, the next theorem follows immediately

(see also the proof of Theorem 4.18 in [16]).

Theorem 5.5. Let β = 1/4. Then Algorithm 5.1 will terminate in O(
√
n log (x0)T s0

ε )
iterations.

Assume additionally that the LCP problem has a strictly complementary solution;
that is, there is a partition B and N , and solution (x∗, s∗), such that B ∪ N =
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{1, 2, . . . , n}, B ∩ N = ∅, x∗
B > 0, x∗

N = 0, and s∗B = 0, s∗N > 0. Since the sequence
generated by Algorithm 5.1 is contained in a wide neighborhood, it satisfies

(1 − β)τ1μk ≤ xksk ≤ nμk.(27)

Using Lemma 2 of [3], we know that there exists some constant 0 < ξ < 1 such that

ξ ≤ xk
j ≤ 1/ξ for j ∈ B, and ξ ≤ skj ≤ 1/ξ for j ∈ N.(28)

For simplicity, we drop the index k. We apply the same proof as for Theorem 3.6
in [17], and so relations (27) and (28) give rise to

‖Δxa‖ = O(μ) and ‖Δxa‖ = O(μ).

Then due to Lemma 5.4, we have the following result.
Theorem 5.6. Let {(xk, sk) | k = 0, 1, 2, . . . } be the sequence generated by

Algorithm 5.1. Suppose that (LCP ) has a strictly complementarity solution. Then,
(xk)T sk → 0 Q-quadratically for the predictor steps.

6. Preliminary numerical tests. We shall test our algorithms on some ran-
domly generated instances, in order to get a feel of how the method might perform
in practice.

To achieve this, we wrote simple MATLAB codes for four algorithms: (1)
the Mizuno–Todd–Ye type predictor-corrector algorithm [8]; (2) the classical wide-
neighborhood path-following algorithm of Kojima–Mizuno–Yoshise [5]; (3) Algorithm
4.3; and (4) Algorithm 5.1. These four algorithms will be denoted, respectively, by (1)
Algorithm PC; (2) Algorithm WN; (3) Algorithm New-WN; and (4) Algorithm New-
PC. All algorithms do not use Mehrotra’s higher order correction technique. The
neighborhoods are taken to be N2(1/2) in predictor step and N2(1/4) in corrector
step for Algorithm PC, and N−

∞(1 − τ/2) for Algorithm WN, and β = 1/2 for Algo-
rithm New-WN and Algorithm New-PC. To test the role of the parameter τ , we tried
three different values of τ : τ = τ1 = 0.005, τ = τ2 = 0.001, and τ = τ3 = 0.0005,
respectively. All algorithms terminate after the relative duality gap satisfies

xT s

(x0)T s0 + 1
≤ 10−8.

For each dimension n, the entry in the column “iter” is the average number
of iterations of 10 randomly generated monotone LCPs with the same n, and the
number in the bracket is the standard deviation of these 10 runs. In case a MATLAB
numerical warning occurred in the procedure, then we mark a superscript ∗ next to
that corresponding entry.

The first set of testing monotone LCP problems are generated as follows. After
one inputs any positive integer n, MATLAB generates an n× n matrix A = rand(n)
randomly. Then we take M = ATA and b = e−Me to obtain a monotone LCP and
its initial feasible solution (e, e). The numerical results of this set of problems are
shown in Table 1.

To test the influence from the skewness of matrix M , in the next set of test
problems we let M = ATA + m(B − BT ), where B = rand(n) and m = 1. The
numerical results are shown in Table 2. It turns out that the number of iterations
actually decreases on average as compared with the case when M is purely positive
semidefinite. In our experiences, we found that the numbers of iterations for all
algorithms tested always decrease if m increases.
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Based on the numerical results we have generated so far, Algorithm New-WN
is the fastest, and Algorithm New-WN and Algorithm New-PC are faster than Al-
gorithm WN, while Algorithm PC appears to be the slowest. Moreover, Algorithm
WN, Algorithm New-WN, and Algorithm New-PC had always run smoothly, but
Algorithm PC got 3 warnings due to badly scaled matrices. Certainly, our implemen-
tations are very coarse. For instance, we did not fine tune the parameters, nor did
we use any higher order corrections. In the future, we plan to study the performance
of the method for practical problems with more refined linear algebras and careful
implementations.

REFERENCES

[1] W. Ai, Neighborhood-following algorithms for linear programming, Sci. China Ser. A, 47 (2004),
pp. 812–820.

[2] C. C. Gonzaga, The largest step path following algorithm for monotone linear complementarity
problems, Math. Programming, 76 (1997), pp. 309–332.
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VALIDATED LINEAR RELAXATIONS AND PREPROCESSING:
SOME EXPERIMENTS∗

R. BAKER KEARFOTT† AND SIRIPORN HONGTHONG†

Abstract. Based on work originating in the early 1970s, a number of recent global optimization
algorithms have relied on replacing an original nonconvex nonlinear program by convex or linear
relaxations. Such linear relaxations can be generated automatically through an automatic differ-
entiation process. This process decomposes the objective and constraints (if any) into convex and
nonconvex unary and binary operations. The convex operations can be approximated arbitrarily well
by appending additional constraints, while the domain must somehow be subdivided (in an overall
branch-and-bound process or in some other local process) to handle nonconvex constraints. In gen-
eral, a problem can be hard if even a single nonconvex term appears. However, certain nonconvex
terms lead to easier-to-solve problems than others. Recently, Neumaier, Lebbah, Michel, ourselves,
and others have paved the way to utilizing such techniques in a validated context.

In this paper, we present a symbolic preprocessing step that provides a measure of the intrinsic
difficulty of a problem. Based on this step, one of two methods can be chosen to relax nonconvex
terms. This preprocessing step is similar to a method previously proposed by Epperly and Pis-
tikopoulos [J. Global Optim., 11 (1997), pp. 287–311] for determining subspaces in which to branch,
but we present it from a different point of view that is amenable to simplification of the problem
presented to the linear programming solver, and within a validated context. Besides an illustrative
example, we have implemented general relaxations in a validated context, as well as the preprocessing
technique, and we present experiments on a standard test set. Finally, we present conclusions.

Key words. nonconvex optimization, global optimization, computational complexity, automatic
differentiation, GlobSol, symbolic computation, linear relaxation

AMS subject classifications. 90C30, 65K05, 90C26, 68Q25
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1. Introduction.

1.1. The general global optimization problem. Our general global opti-
mization problem can be stated as

minimize ϕ(x)
subject to ci(x) = 0, i = 1, . . . ,m1,

gi(x) ≤ 0, i = 1, . . . ,m2,
where ϕ : x → R and ci, gi : x → R, and where x ⊂ Rn is
the hyperrectangle (box) defined by

xi ≤ xi ≤ xi, 1 ≤ i ≤ n,
where the xi and xi are constant bounds.

(1.1)

We will call this problem a general nonlinear programming problem, abbreviated
“general NLP” or “NLP.”

1.2. Deterministic branch-and-bound methods. In deterministic branch-
and-bound methods for finding global minima, an initial region x(0) is adaptively
subdivided into subregions x of the form in (1.1), while an upper bound ϕ to the
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global optimum of ϕ is maintained (say, by evaluating ϕ at a succession of feasible
points). A lower bound ϕ(x) on the optimum of ϕ over the subregion x is then
computed. If ϕ(x) > ϕ, then x is rejected; otherwise, other techniques are used to
reduce, eliminate, or subdivide x. The original explanation for this technique appears
in [4, 22], while a relatively early didactic explanation appears in [19]. For more
recent explanations in which convex underestimators are employed, see, for example,
[5], [23]. For explanations focusing on validation but restricted to traditional interval
arithmetic-based techniques, see [8] or [10, Chapter 5].

The effectiveness of the above technique depends on the quality of the upper
bound ϕ and the lower bound ϕ(x). The upper bound ϕ may be obtained by various
techniques, such as by locating a feasible point (or local optimum) x̌, then evaluating
ϕ at x̌. A naive way of obtaining ϕ(x) is to simply evaluate ϕ with interval arithmetic
over x, and use the lower bound of the value ϕ(x). However, ϕ(x) so obtained takes
no account of the constraints, and (since the feasible portion of x, although possibly
nonempty, may be much smaller than x itself) the lower bound ϕ(x) may not be
sharp enough to be of use. More effective techniques appear to be those that solve
coupled systems that take account of both objective and constraints. Convex and
linear underestimators are used in a common variant of such techniques.

1.3. Convex underestimators and overestimators. Convex underestima-
tors and overestimators are a primary tool to replace problem (1.1) by a simpler
problem, the global optimum of which is less than or equal to the global optimum of
(1.1). For example, if ϕ is replaced by a quadratic or piecewise linear function ϕ(�)

such that ϕ(�)(x) ≤ ϕ(x) for x ∈ x, then the resulting problem has global optimum
that underestimates the global optimum of (1.1). Similarly, if m1 = 0 (i.e., if there are
no equality constraints) and, in addition to replacing ϕ by ϕ(q), each gi is replaced by

a linear function g
(�)
i such that g

(�)
i (x) ≤ gi(x) for x ∈ x, then the resulting quadratic

or linear program, termed a relaxation of (1.1), has optimum that is less than or
equal to the optimum of (1.1). (If there are equality constraints, then each equality
constraint can be replaced, at least in principle, by two linear inequality constraints.)

1.3.1. An arithmetic on underestimators and overestimators. Constraints
or objective functions that represent simple binary operations (addition, subtraction,
multiplication, and division) or unary operations (standard functions such as y = ex

or y = xn) can be bounded below or above on a particular interval by linear relations.
For instance, if g

1
is a linear underestimator for g1 and g

2
is a linear underestimator

for g2, then a linear underestimator for g1 + g2 is g
1

+ g
2
. Thus, addition of two

linear underestimators can be defined simply by addition of the corresponding linear
coefficients. Similarly, if g

1
is a linear underestimator for g1 and −g

2
is a linear un-

derestimator for −g2, then g
1

+ −g
2

is a linear underestimator for g1 − g2. Linear
underestimators for multiplication are somewhat more involved but can similarly be
obtained operationally. For convex functions such as eg, for g ∈ [a, b], a linear under-
estimator is the tangent line at any point c ∈ [a, b], while for concave functions g, the
best possible linear underestimator is the secant line connecting (a, g(a)) (b, g(b)). If
[a, b] is too wide to get sharp underestimators and overestimators, then [a, b] may be
subdivided, and linear underestimators can be supplied for each subinterval.

In actually generating a linear program whose solution underestimates the so-
lution of (1.1), we replace an expression g by a new intermediate variable v for the
underestimator wherever the expression g occurs; we then append the constraint v ≥ g
for the linear underestimator to the set of constraints. In case multiple linear con-
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Original NLP

Equivalent expanded NLP

Equivalent relaxed expanded NLP

Linear relaxation

equivalent

equivalent

just a relaxation we subdivide to make
accurate

Fig. 1.1. Our four stages in analyzing a linear relaxation of an NLP.

straints are used for more accuracy, we introduce multiple variables vi and wi and
corresponding multiple constraints.

An arithmetic can be used to automatically compute underestimators given by
expressions or computer programs. The original idea for such an arithmetic predates
the groundbreaking work of McCormick [15], [16]. Such an arithmetic may employ
operator overloading or similar technology, such as explained, say, in [20], [10, section
1.4], or in the proceedings [1], [2], or [7]. A framework for such automatic computation
is given in [23, section 4.1]. In such an arithmetic, given underestimators for expres-
sions g1 and g2, formulas are implemented for computing underestimators of g1 + g2,
g1 ∗ g2, and g1/g2, as well as for computing underestimators of powers, exponentials,
logarithms, and other such functions encountered in practice.

Many of the ideas for such an arithmetic appear in the work of McCormick [15],
[16], and [17]. Significant portions of the books [5] and [23] are devoted to techniques
for deriving underestimators and overestimators as we have just described, and for
implementing automatic computation of these. For example, [23, Chapter 3] contains
techniques for computing underestimators of sums of products, and [23, Chapter 4]
summarizes rules for automatic computation of underestimators, based on convex
envelopes and linear underestimations. The techniques in [23] are embodied in the
highly successful software package BARON.

Lastly, Gatzke, Tolsma, and Barton [6] have implemented automated generation
of both linear underestimating techniques as in [23] and convex underestimating tech-
niques as in [5] in their DAEPACK system.

1.4. Our view of the process. In this work, to aid our analysis of the difficulty
of particular problems, we view the process slightly differently. In particular, we first
generate a list of operations (known as a code list or tape among experts in automatic
differentiation), and we assign an equality constraint to each operation, leading to an
equivalent expanded NLP. We may then analyze each such equality constraint in the
equivalent expanded NLP to determine if we may replace the equality constraint by
a “≤” constraint or a “≥” constraint, to obtain an equivalent relaxed expanded NLP.

In a third step, we replace the nonlinear operations in the constraints in the
equivalent relaxed expanded NLP by linear underestimators or linear overestimators.
For nonlinear operations and equality constraints, both underestimators and overes-
timators are required, while only underestimators are required for “≤” constraints,
and only overestimators are required for “≥” constraints. We call the resulting linear
program a linear underestimating relaxation. This four stage scheme is diagrammed
in Figure 1.1.
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For underestimators of convex operations or overestimators of concave operations,
additional constraints can be appended in the linear underestimating relaxation to
sharpen the approximation. However, in overestimations of convex operations or
underestimations of concave operations, the linear underestimating relaxation cannot
be made to more sharply underestimate the original problem by appending additional
linear constraints; in these cases, in general, the domain must be subdivided, and
a linear underestimating relaxation must be solved over each subproblem. In our
procedure, we will explicitly identify those operations requiring solution of linear
underestimating relaxations over subregions to obtain increased accuracy. We will
also identify which (and how many) variables to subdivide to achieve the increased
accuracy. The number of such variables gives the dimension of the subspace in which
tessellation must occur, and thus gives a measure of how much effort needs to be
expended to accurately approximate a solution.

Epperly and Pistikopoulos [3] proposed a method for subspace analysis that gives
subspaces similar to ours; they also illustrated its effectiveness on various problems.
However, their view of the process is different from the above, and they did not
implement the process in a validated context.

1.5. Organization of this work. In section 2, we give a simple example that
is used throughout the rest of the paper to illustrate the concepts. In section 3, we
define and illustrate our concept of expanded NLP and equivalent relaxed expanded
NLP, and we give a theorem that shows how we may replace equality constraints by
inequality constraints in the expanded NLP to obtain an equivalent relaxed expanded
NLP. In section 4 we give details on refining convex and concave constraints, while in
section 5, we describe our algorithm structure for an automatic analysis. The results
of an automatic analysis appears in section 6. We give conclusions and a brief outline
of ongoing work in section 8.

2. An illustrative example. Example 1. Minimize

ϕ(x) = (x1 + x2 − 1)
2 −

(
x2

1 + x2
2 − 1

)2
for x1 ∈ [−1, 1] and x2 ∈ [−1, 1].

Table 2.1

A code list, interval enclosures, and expanded NLP for Example 1.

� Operation Enclosures Constraints Convexity
1 v3 ← x1 + x2 [−2, 2] x1 + x2 − v3 = 0 linear
2 v4 ← v3 − 1 [−3, 1] v3 − 1 − v4 = 0 linear

3 v5 ← v2
4 [0, 9] v2

4 − v5 ≤ 0 convex

4 v6 ← x2
1 [0, 1] v2

1 − v6 = 0 both

5 v7 ← x2
2 [0, 1] v2

2 − v7 = 0 both
6 v8 ← v6 + v7 [0, 2] v6 + v7 − v8 = 0 linear
7 v9 ← v8 − 1 [−1, 1] v8 − 1 − v9 = 0 linear

8 v10 ← −v2
9 [−1, 0] −v2

9 − v10 ≤ 0 nonconvex
9 v11 ← v5 + v10 [−1, 9] v5 + v10 − v11 ≤ 0 linear

Example 1, a small unconstrained problem except for bound constraints, is easily
solved by GlobSol [11], a traditional interval branch-and-bound method. However,
it is nonconvex, and can be used to illustrate underlying concepts in this work. To
generate a linear relaxation of this problem, we first assign intermediate variables
to intermediate operations, thus generating a code list. (This can be done within a
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compiler or by operator overloading.) Such a code list is seen in the second column
of Table 2.1.

The third column of Table 2.1 contains enclosures for the corresponding inter-
mediate variables, based on x1 ∈ [−1, 1] and x2 ∈ [−1, 1]. (Here, we obtained these
enclosures with traditional interval evaluations of the corresponding operations.) For
example, the enclosure [−1, 9] in the last row represents bounds on the objective for
x1 ∈ [−1, 1] and x2 ∈ [−1, 1].

We explain the fourth and fifth columns of Table 2.1 below.

3. The expanded NLP and the equivalent relaxed expanded NLP. If we
replace each operation in the code list by an equality constraint, we obtain an equiv-
alent NLP, in the sense that the optimum and optimizing values of the independent
variables for the resulting NLP are the same as the optimum and optimizing values
of the original NLP.

Definition 3.1. Given the original NLP (1.1), the expanded NLP is that NLP
obtained by replacing the objective and constraints by corresponding intermediate vari-
ables for the individual operations and assigning equality constraints to the interme-
diate variables.

In Example 1, an expanded NLP can be defined from the operations in Table 2.1,
to obtain

minimize v11

subject to v1 + v2 − v3 = 0,
v3 − 1 − v4 = 0
v2
4 − v5 = 0
v2
1 − v6 = 0
v2
2 − v7 = 0
v6 + v7 − v8 = 0
v8 − 1 − v9 = 0
−v2

9 − v10 = 0
v5 + v10 − v11 = 0
v1 ∈ [−1, 1], v2 ∈ [−1, 1].

(3.1)

As an intermediate step in producing a linear relaxation of the original NLP,
we replace as many of the equality constraints as possible in the expanded NLP by
inequality constraints subject to the resulting problem being equivalent to the original
one. We do this according to the following definition and theorem.

Definition 3.2. Suppose we have an expanded NLP as in Definition 3.1, and
we replace as many of the equality constraints as possible in the expanded NLP by
inequality constraints, according to the following rules.

1. Unless the objective consists of an independent variable only, the top-level
operation ϕ = vk = f(vq, vr) or ϕ = f(vq) (corresponding to the bottom of
the code list and evaluation of the objective) may be replaced by an inequality
constraint of the form f ≤ vk. (In Table 2.1, ϕ corresponds to v11, and
f(vq, vr) = v5 + v10.)

2. In constrained problems, operations corresponding to ci(x) = 0 or gi(x) ≤ 0
are placed unaltered into the constraint set. For example, if gi were defined
by intermediate variable vk in the code list, then the constraint vk ≤ 0 would
be placed into the set of constraints.

3. (Recursive conditions) If a binary operation vi = fi(v�, vm) or a unary op-
eration vi = f(v�) computes a value vi that enters only as an argument to
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operations vj = fj(vi, ·) or vj = fj(vi), such that for every j, fj is monotonic
in vi, then
(a) if, for those j for which fj is monotonically increasing with respect to vi,

operation fj corresponds to an inequality constraint of the form fj ≤ vj,
and, for those j for which fj is monotonically decreasing with respect
to vi, operation fj corresponds to an inequality constraint of the form
fj ≥ vj, then vi may correspond to an inequality constraint of the form
fi ≤ vi;

(b) if, for those j, for which fj is monotonically increasing with respect to vi,
operation fj corresponds to an inequality constraint of the form fj ≥ vj,
and, for those j for which fj is monotonically decreasing with respect
to vi, operation fj corresponds to an inequality constraint of the form
fj ≤ vj, then vi may correspond to an inequality constraint of the form
fi ≥ vi.

4. All other operations correspond to equality constraints.

Then the resulting NLP is called an equivalent relaxed expanded NLP for the original
NLP (1.1).

The fourth column of Table 2.1 shows the constraints corresponding to the equiv-
alent relaxed expanded NLP corresponding to the code list in the second column of
Table 2.1.

Theorem 3.3. The equivalent relaxed expanded NLP of Definition 3.2 is equiv-
alent to the expanded NLP of Definition 3.1 in the sense that

1. the optimum of the equivalent relaxed expanded NLP is the same as the opti-
mum of the expanded NLP;

2. the set of optimizing points of the equivalent relaxed expanded NLP contains
the set of optimizing points of the expanded NLP;

3. under a “strict monotonicity” condition described in the proof of this theorem,
the sets of optimizing points of the equivalent relaxed expanded NLP and of
the expanded NLP are the same.

Thus, since the expanded NLP is equivalent to the original NLP, the equivalent relaxed
expanded NLP is equivalent to the original NLP in the same sense.

Before we prove Theorem 3.3, we use Example 1 to illustrate the process defined in
Definition 3.2. Although a computer can easily label each operation as corresponding
to equality or inequality by a backwards traversal of the code list, we illustrate the
process with a computational graph. The computational graph corresponding to the
code list in Table 2.1 appears in Figure 3.1. To label each node in the graph, we
traverse the graph from the bottom up. The bottom node is labelled as “≤.” We then
check the nodes immediately above nodes already checked to see if they satisfy the
recursive condition 3 of Definition 3.2. Any node that fails to satisfy the recursive
condition is labelled an equality constraint, and all nodes above that node in the
computational graph are labelled equality constraints. Figure 3.1 illustrates the result
of this process.

We have actually implemented this automatic labeling process in a Fortran 95
module, and have used it in the experiments below. The Fortran 95 module is available
from the authors upon request.

Using Definition 3.2 (and comparing with Figure 3.1 and to the fourth column of
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Fig. 3.1. The computational graph corresponding to the code list in Table 2.1.

Table 2.1), the equivalent relaxed expanded NLP for Example 1 is

minimize v11

subject to v1 + v2 − v3 = 0,
v3 − 1 − v4 = 0
v2
4 − v5 ≤ 0
v2
1 − v6 = 0
v2
2 − v7 = 0
v6 + v7 − v8 = 0
v8 − 1 − v9 = 0
−v2

9 − v10 ≤ 0
v5 + v10 − v11 ≤ 0
v1 ∈ [−1, 1], v2 ∈ [−1, 1].

(3.2)

Similarly, the proof of Theorem 3.3 proceeds by induction on the nodes of the
computational graph, starting at the bottom.

Proof of Theorem 3.3. Assume first that the only change made to the expanded
NLP is replacement of the equality constraint vfinal = f by an inequality constraint
f ≤ vfinal according to rule 1, and suppose that the resulting NLP is not equivalent
to the original expanded NLP. Then, since the resulting NLP is a relaxation of the
original NLP, the resulting NLP must have an optimizer that is not in the feasible set
of the original NLP. However, the only way this can be is if the inequality constraint
f ≤ vfinal is strict. However, we may then reduce vfinal and remain in the feasible set,
contradicting the assumption that vfinal represented an optimum.

Now suppose that we start with a problem P that is equivalent to the expanded
NLP from application of some of the rules in Definition 3.2, and suppose we obtain a
new problem Pnew from P by applying rule 3(a) to P, that is, by replacing fi = vi
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by fi ≤ vi. Then, arguing as above, any optimizer of Pnew that is not an optimizer
of P would need to correspond to the strict inequality fi < vi. But then, we could
decrease vi until vi = fi, and each constraint in which vi occurred would remain
feasible. Thus, the optimum of Pnew would have to correspond to the optimum of
P, and the optimizing points of P are optimizing points of Pnew.

For the stronger assertion about the optimizing sets, suppose that each fj related
to any fi that occurs in rule 3(a) or rule 3(b) either strictly increasing or strictly
decreasing, and that each intermediate computation is part of either the objective
or a constraint. (By this last condition, we mean that there are no “dead ends” in
the computation, i.e., there are no bottom nodes in the computational graph that
correspond neither to an objective nor a constraint.) Then, by decreasing vi, each fj
either decreases or increases, and we can decrease or increase the corresponding vj ’s
without affecting the feasibility of the problem. We can, in turn, decrease or increase
variables depending on those vj ’s that we have so adjusted, until we adjust a variable
vk upon which no other variables depend. Due to the “no dead ends” assumption,
this variable vk represents, without loss of generality, either the objective value ϕ or a
constraint value or g. (It cannot represent an equality constraint c = 0, since then the
constraint we have relaxed could not have been replaced by an inequality in the first
place.) If this variable vk represents the objective: vk ≤ ϕ, then ϕ can be decreased;
this would, however, contradict the assumption that we started with an optimizer of
Pnew. On the other hand, if vk represented a constraint g ≤ 0, then our adjustments
will have decreased g, which means the adjusted point is further inside the interior of
the feasible region of g; in turn, this means that the point must have been feasible for
P, contradicting our assumption.

A similar argument holds if we start with a problem P that is equivalent to
the expanded NLP from application of some of the rules in Definition 3.2, and we
obtain a new problem Pnew from P by applying rule 3(b) to P. This proves the
theorem.

NLPs whose code list generates many equality constraints corresponding to non-
linear operations are more difficult to solve, in a sense to be made explicit below. This
is because, to relax a nonlinear equality constraint, we obtain both a convex opera-
tion and a concave (nonconvex) operation, and a more expensive kind of branching
appears necessary for nonconvex operations.

The actual solution to the original NLP of Example 1 (as bounded by GlobSol) is
x1, x2 ∈ [0.269593, 0.269595], ϕ(x) ∈ [−0.51805866866,−0.51805866865]. When the
approximate solver IPOPT [24] is given the equivalent relaxed expanded NLP (3.2),
IPOPT happens to return values within these bounds.

4. Relaxations. We may replace each convex and nonconvex constraint in an
expanded NLP by a linear relaxation. In validated computations, we also generally
replace each linear equality constraint by a pair of linear inequality constraints that
tightly contain the linear constraint but take account of roundoff error in computing
the coefficients. In both validated and nonvalidated computations, we replace each
nonlinear equality constraint by a pair of inequality constraints; in this case, if the
original nonlinear equality constraint was convex, we obtain both a convex and a
concave constraint.

Table 4.1 illustrates a possible set of relaxations for the expanded NLP of Ta-
ble 2.1.

In the fourth column of Table 4.1, the underestimates for the convex terms v2
4 ,

x2
1, and x2

2 correspond to the tangent lines to the operations at the midpoint of the
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Table 4.1

A linear relaxation corresponding to the expanded NLP in Table 1.

� Operation Enclosures Under/over estimators Convexity
1 v3 ← x1 + x2 [−2, 2] x1 + x2 − v3 = 0 linear
2 v4 ← v3 − 1 [−3, 1] v3 − 1 − v4 = 0 linear

3 v5 ← v2
4 [0, 9] (4.5)2 + 9(v4 − 4.5) − v5 ≤ 0 convex

4 v6 ← x2
1 [0, 1] (0.5)2 + 1(v1 − 0.5) − v6 ≤ 0 convex

v1 − v6 ≥ 0 nonconvex

5 v7 ← x2
2 [0, 1] (0.5)2 + 1(v2 − 0.5) − v7 ≤ 0 convex

v2 − v7 ≥ 0 nonconvex
6 v8 ← v6 + v7 [0, 2] v6 + v7 − v8 = 0 linear
7 v9 ← v8 − 1 [−1, 1] v8 − 1 − v9 = 0 linear

8 v10 ← −v2
9 [−1, 0] −1 − v10 ≤ 0 nonconvex

9 v11 ← v5 + v10 [−1, 9] v5 + v10 − v11 ≤ 0 linear

enclosure interval; for example, the expression (4.5)2 + 9(v4 − 4.5) in the third row
corresponds to the tangent line to v2

4 at v4 = 4.5. The nonconvex operations (−v2
9 ,

−v2
1 , and −v2

2) are underestimated by the secant line connecting the endpoints of the
graph. If the expanded NLP is replaced by “minimize v11 subject to x1 ∈ [−1, 1],
x2 ∈ [−1, 1], and subject to each of the constraints in column 4,” then the solution
to the resulting linear program, which we call an expanded LP, underestimates the
solution to the original NLP. When we gave IPOPT the expanded LP corresponding
to Table 4.1, IPOPT obtained (x1, x2) ≈ (0.3894, 0.3894), ϕ = −1, an underestimator
that is no better than the traditional interval evaluation of the objective over the box.

4.1. Refining convex constraints. As explained in [23, section 4.2] and else-
where, the nonlinear convex operations can be approximated more closely in the linear
relaxation by appending more constraints corresponding to additional tangent lines.
For example, in the nonlinear convex operation v5 ← v2

4 in Example 1, in addition to
the constraint v5 ≥ (4.5)2+9(v4−4.5) (corresponding to the tangent line at v4 = 4.5),
we may add the constraint v5 ≥ (2.25)2 +4.5(v4−2.25) (corresponding to the tangent
line at v4 = 2.25) and the constraint v5 ≥ (6.75)2 + 13.5(v4 − 6.75) (corresponding to
the tangent line at v4 = 6.755), and any other similar tangent line. By spacing the
tangent lines sufficiently close together, the corresponding convex constraint can be
approximated arbitrary closely.

If there were no nonconvex operations in the code list, then all convex opera-
tions could be approximated arbitrarily closely by spacing tangent lines sufficiently
close together. This process involves subdivision in a single variable for each convex
nonlinear constraint, so the number of constraints in a linear programming relaxation
whose solution approximated the solution to the original nonlinear program to a given
accuracy would seem to be, essentially, linear in the number of operations in the code
list.

Note that, with this univariate approximation technique, it is not necessary to
branch on the variables corresponding to convex functions. That is, by using a number
of linear outer approximations for each convex variable, accuracy is achieved without
branching on those variables.

4.2. Refining nonconvex constraints. However, the relaxations for noncon-
vex operations cannot be refined by appending additional constraints in the same way.
Two possibilities come to mind:
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• We may subdivide the original variables x1 and x2 to reduce the width of
the enclosure for the domain of the operation corresponding to the noncon-
vex constraint, and thus reduce the slack in the linear underestimator for the
nonconvex constraint. For example, if we bisected both x1 and x2, for Exam-
ple 1, we would obtain four subdomains. We would obtain underestimates for
the solution of the original problem over the subdomains as underestimates
to the corresponding linear relaxations; an underestimate for the original
problem over the original domain would consist of the minimum of the four
underestimates over the subdomains.

• Alternately, we may subdivide the domain of the operation corresponding
to the nonconvex constraint directly into two or more subintervals (or sub-
boxes in the case of multiplication), and form relaxations corresponding to
each of these subintervals or subboxes. For example, we could subdivide v9

in Table 4.1 into [−1, 0] and [0, 1]. We then underestimate −v2
9 over each

separate subinterval by its secant line. If we use this secant line, along with
the original bounds x1 ∈ [−1, 1], x2 ∈ [−1, 1], we obtain a relaxation of the
problem we would get by restricting x1 and x2 to those values leading to
a range of v9 in the selected subinterval (such as one of [−1, 0] or [0, 1]).
Thus, the minimum of the solutions to the relaxations so obtained will be an
underestimate to the solution of the original nonlinear programming problem.

For example, consider, for the purpose of examining a single nonconvex operation, us-
ing the exact constraints in the expanded NLP of Table 2.1 except for that correspond-
ing to operation 8, which we maintain as −1−v10 ≤ 0 as in Table 4.1. IPOPT gives an
approximate solution (x1, x2) ≈ (0.5, 0.5), ϕ ≈ −1 to this problem. We now subdivide
v9 into v9 ∈ [−1, 0] and v9 ∈ [0, 1]. The relaxation of v10 ≥ −v2

9 over [−1, 0] corre-
sponding to the secant line through the endpoints is v10 ≥ v9. Replacing v10 ≥ −1
(valid over [−1, 1]) by this and using a corresponding bound constraint on v9, but
otherwise keeping the same convex program, IPOPT gives an approximate solution
(x1, x2) ≈ (0.3333, 0.3333), ϕ ≈ −0.6667. Now replacing v10 ≥ −v2

9 over [0, 1] by the
relaxation corresponding to the secant line through the endpoints, namely v10 ≥ −v9,
and using a corresponding bound constraint on v9, IPOPT gives (x1, x2) ≈ (1, 0.6823),
ϕ ≈ 9 × 10−5. Thus, an underestimate for the solution to the original NLP, based
on these linear relaxations, is approximately min

{
−0.6667, 9 × 10−5

}
= −0.6667, a

tighter estimate than that obtained by solving only a single problem, but obtained
by subdividing in one variable only. A similar phenomenon would be seen if, instead
of using exact inequalities for the convex operations, we used a sufficient number of
linear underestimators.

5. Our preprocessing algorithms. If there are only one or two nonconvex op-
erations in the code list, but these nonconvex operations depend on many, if not all,
of the dependent variables, then it is probably advantageous to use the second sub-
division process (subdividing directly on the intermediate variables entering the non-
convex constraints). However, if there are many nonconvex constraints, all depending
on the same small number of independent variables, then it is probably advantageous
to do a traditional branch-and-bound within the subspace of independent variables
corresponding to the nonconvex constraints. The problem will be “hard” if there are
both a large number of nonconvex constraints and a large number of independent vari-
ables enter into these nonconvex constraints; otherwise, the problem is easily solvable
by either branching and bounding directly on the intermediate variables entering the
few convex constraints or by branching and bounding the few independent variables
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entering the nonconvex constraints.
With these considerations in mind, we have structured our preprocessing algo-

rithms in the following order:
1. We first create the code list.
2. Evaluate the code list with interval arithmetic to obtain bounds on the inter-

mediate variables1.
3. Using Theorem 3.3 and the bounds from Step 2, start at the bottom of

the computational graph to label each node in the computational graph as
corresponding to an inequality or an equality constraint.

4. Using the ranges from Step 2, the labellings from Step 3, and considerations
from section 4 (e.g., whether the function is convex or concave and whether an
overestimate, underestimate, or both is required), label each node as requiring
solution of problems on subdomains to obtain tighter approximations via
linear programs or as requiring only the appending of additional constraints
to a single problem over the original domain.

5. For those nodes in the computational graph requiring solution of problems
over subdomains, trace up the computational graph to identify upon which
independent variables the result depends.

Implementation of Steps 3 and 4 require a case-by-case consideration of the individual
operations (exponential, odd, even, or real powers, etc.).

6. An example experiment. We have programmed each of the steps in section
5 within the GlobSol module structure, testing our programs with Example 1 and
various other small problems with certain properties. For a reasonably simple but
realistic test problem, we have tried the following problem, originally from [25].

Example 2. Minimize

max
1≤i≤m

‖fi(x)‖ , where

fi(x) = x1e
x3ti + x2e

x4ti − 1

1 + ti
,

ti = −0.5 + (i− 1)/(m− 1), 1 ≤ i ≤ m.

We transformed this nonsmooth problem to a smooth problem with Lemaréchal’s
conditions [14] to obtain

minimize v

subject to fi(x) − v ≤ 0, 1 ≤ i ≤ m

−fi(x) − v ≤ 0, 1 ≤ i ≤ m.

To test the preprocessing, we took m = 21, xi ∈ [−5, 5] for 1 ≤ i ≤ 4, and v ∈
[−100, 100]. The resulting output had 221 blocks, each of the form
Row. no., OP, CONSTRAINT_TYPE, NEEDS_SUBPROBLEM

1 A_X EQUAL_V F

2 EXP EQUAL_V T

3 X_TIMES_Y EQUAL_V T

4 A_X EQUAL_V F

5 EXP EQUAL_V T

1Constraint propagation may be used at this point.
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6 X_TIMES_Y EQUAL_V T

7 X_PLUS_Y EQUAL_V F

8 X_PLUS_B EQUAL_V F

9 X_MINUS_Y LESS_OR_EQ_V F

10 MINUS_X LESS_OR_EQ_V F

11 X_MINUS_Y LESS_OR_EQ_V F

Row. no., corresponding independent variables:

2 3

3 1 3

5 4

6 2 4

In rows 2 and 5 (and corresponding rows in the remaining 20 blocks), the dependence
was only on variables 3 and 4. In rows 3 and 6 (and corresponding rows in the remain-
ing 20 blocks), the binary operation is a multiplication. However (cf., e.g., [5, p. 45
ff.]), a multiplication can be both underestimated and overestimated arbitrarily closely
by subdividing in only one of the two variables. Hence, this analysis reveals that we
only need subdivide in variables 3 and 4 to obtain linear programs that approximate
the original NLP arbitrarily closely. This can be interpreted to mean that, with a
branch-and-bound algorithm based on linear underestimators and overestimators, the
problem is inherently two-dimensional rather than four-dimensional.

In this case, the alternative would be to subdivide each of the intermediate vari-
ables corresponding to code list rows 2, 3, 5, 6, etc. Since this would result in subdi-
vision in an 84-dimensional space, this alternative is clearly not appropriate for this
problem.

6.1. Results within our branch-and-bound algorithm. We implemented
subdivision in the subspace, as we describe in section 7 below, within the search
process that uses validated linear relaxations as we describe in [12].

7. Some systematic comparisons. In [9], we detail some of the techniques
we have used to provide machine-representable relaxations that are mathematically
rigorous, while in [12] we describe our implementation of linear relaxations within
GlobSol, and we give experimental results comparing use of linear relaxations within
GlobSol to GlobSol without linear relaxations. However, in the experiments in [12], we
worked in the full space and not in the subspace. In this section, we compare algorithm
performance using branching only in the subspace to algorithm performance of the
algorithm when we subdivide only along coordinate direction in the subspace.

We implemented the subspace analysis within GlobSol’s overall search algorithm.
In particular, we provided an option within GlobSol to apply the subspace analy-
sis to each box processed in the branch-and-bound algorithm, and only coordinates
corresponding to the identified subspaces were selected for further bisection2.

We used essentially the same test set as in [12], namely, the “tiny” problems from
Library 1 in the Neumaier test set [18]. The results appear in Table 7.1. We carried
out the experiments in Table 7.1 on a dual 2.8 GHz processor3 AMD Opteron machine
running Linux (SuSe distribution 9.1), with 4 gigabytes of memory. We compiled the

2There is an advantage to doing the preprocessing to each box, since the labels on the com-
putational graph depend on the ranges of the intermediate variables, and graphs may be more
advantageously labelled over subdomains.

3The actual computations were not done in parallel, but the system load was such that, at all
times, the GlobSol program had total resources of at least one processor.



430 R. BAKER KEARFOTT AND SIRIPORN HONGTHONG

Table 7.1

Results with and without subspace analysis.

Problem n / nr m1 m2 Success? # boxes (f/r) CPU sec.(f/r) Ratio n − nr

dispatch 4 / 3 1 1 Y / Y 13 / 13 0.5 / 0.49 1.0 1
ex14 1 1 3 / 2 0 4 N / Y 100000 / 1791 3569 / 102.4 0.0 1
ex14 1 2 6 / 3 1 8 N / N 43202 / 35488 3600 / 3600 1.0 3
ex14 1 3 3 / 2 0 4 Y / Y 568 / 564 3.87 / 3.9 1.0 1
ex14 1 5 6 / 4 4 2 Y / Y 101 / 100 2.99 / 2.86 1.0 2
ex14 1 9 2 / 1 0 2 Y / Y 57 / 102 0.49 / 0.81 1.7 1
ex14 2 1 5 / 4 1 6 N / N 33864 / 32949 3600 / 3600 1.0 1
ex14 2 2 4 / 3 1 4 Y / Y 1667 / 2220 106.7 / 116.6 1.1 1
ex14 2 3 6 / 5 1 8 N / N 18265 / 24816 3601 / 3601 1.0 1
ex14 2 5 4 / 3 1 4 Y / Y 1846 / 1890 97.96 / 100.1 1.0 1
ex2 1 1 5 / 5 0 1 Y / Y 234 / 234 0.96 / 0.96 1.0 0
ex2 1 2 6 / 5 0 2 Y / Y 173 / 173 0.56 / 0.56 1.0 1
ex2 1 4 6 / 1 0 4 Y / Y 222 / 222 2.18 / 2.21 1.0 5
ex3 1 1 8 / 5 0 6 N / N 61525 / 60871 3603 / 3603 1.0 3
ex3 1 2 5 / 4 0 6 Y / Y 78 / 78 0.45 / 0.43 1.0 1
ex3 1 3 6 / 6 0 6 Y / Y 253 / 253 0.5 / 0.5 1.0 0
ex4 1 2 1 / 1 0 0 Y / Y 6 / 6 0.28 / 0.27 1.0 0
ex4 1 4 1 / 1 0 0 Y / Y 7 / 7 0.01 / 0.01 1.0 0
ex4 1 5 2 / 1 0 0 Y / Y 39 / 39 0.09 / 0.09 1.0 1
ex4 1 6 1 / 1 0 0 Y / Y 5 / 5 0.01 / 0.01 1.0 0
ex4 1 7 1 / 1 0 0 Y / Y 4 / 4 0 / 0 0
ex4 1 8 2 / 1 1 0 Y / Y 5 / 5 0.01 / 0.01 1.0 1
ex4 1 9 2 / 1 0 2 Y / Y 38 / 38 0.13 / 0.13 1.0 1
ex5 4 2 8 / 5 0 6 Y / Y 550 / 511 23.16 / 19.32 0.8 3
ex6 1 1 8 / 8 6 0 N / N 19741 / 19170 3601 / 3601 1.0 0
ex6 1 2 4 / 4 3 0 Y / Y 122 / 122 2.65 / 2.66 1.0 0
ex6 1 4 6 / 3 4 0 Y / Y 623 / 600 37.82 / 38.39 1.0 3
ex7 2 1 7 / 7 0 14 N / N 7301 / 7267 3601 / 3601 1.0 0
ex7 2 2 6 / 2 4 1 Y / Y 101 / 101 4.47 / 4.68 1.0 4
ex7 2 5 5 / 5 0 6 Y / Y 153 / 153 3.1 / 3.23 1.0 0
ex7 2 6 3 / 3 0 1 Y / Y 36 / 36 0.13 / 0.14 1.1 0
ex7 3 3 5 / 1 2 6 N / Y 81771 / 55 3600 / 1.65 0.0 4
ex8 1 3 2 / 2 0 0 N / N 100000 / 100000 2414 / 2662 1.1 0
ex8 1 4 2 / 1 0 0 Y / Y 28 / 28 0.08 / 0.09 1.1 1
ex8 1 5 2 / 2 0 0 Y / Y 131 / 131 0.81 / 0.82 1.0 0
ex8 1 6 2 / 2 0 0 Y / Y 36 / 36 0.34 / 0.35 1.0 0
ex8 1 7 5 / 3 1 4 N / N 100000 / 100000 3169 / 3488 1.1 2
ex8 1 8 6 / 2 4 1 Y / Y 101 / 101 4.55 / 4.52 1.0 4
ex9 2 4 8 / 4 7 0 N / N 100000 / 100000 3237 / 3284 1.0 4
ex9 2 5 8 / 5 7 0 N / N 44233 / 43768 3606 / 3606 1.0 3
ex9 2 8 3 / 0 2 0 Y / Y 8 / 8 0 / 0 3

house 8 / 3 4 4 N / N 82533 / 31269 3602 / 3602 1.0 5
least 3 / 2 0 0 Y / Y 1440 / 1440 61.42 / 60.78 1.0 1

mhw4d 5 / 3 3 0 Y / Y 393 / 240 7.47 / 4.29 0.6 2
nemhaus 5 / 0 0 0 Y / Y 0 / 0 0 / 0 5

rbrock 2 / 1 0 0 Y / Y 4 / 4 0.01 / 0 0.0 1
sample 4 / 0 0 2 Y / Y 29 / 187 2.64 / 6.65 2.5 4

wall 6 / 0 6 0 Y / Y 117 / 117 2.51 / 2.54 1.0 6

experimental version of GlobSol with the NAG Fortran 95 compiler, release 5.0. The
first column of Table 7.1 gives the problem name4 from the Library 1 set in [18]. The
second column of Table 7.1 gives the dimension n followed by the dimension nr of
the last reduced space computed. (The reduced space dimension depends on the box
x and thus varies throughout the computation process.) Columns 3 and 4 give the
number of equality constraints and inequality constraints, respectively.

As in [12], we used adaptive approximation of convex functions, with a relative
tolerance εLP = 10−1.

We allowed GlobSol to consider no more than 100,000 subboxes, and we allowed

4These problems include problems of dimension 10 or less from the Library 1 set in [18], exclud-
ing those for which translation from AMPL format within the COCONUT [18] did not succeed in
producing Fortran input that could be compiled. These problems are to be fixed in a future version
of the COCONUT environment.



VALIDATED LINEAR RELAXATIONS AND PREPROCESSING 431

no more than 3,600 seconds of execution (CPU) time. Column 5, labelled “success?”
gives, first, whether or not the search process without the subspace analysis succeeded
within these bounds and, second, whether or not the search process with the sub-
space analysis succeeded within these allocated bounds. (“Y” signifies success, while
“N” signifies failure.) Subsequent columns, giving performance comparisons between
the search in the full space and the search in subspaces, are most meaningful when
both the full space algorithm and subspace algorithm succeeded: Column 6, labelled
“# boxes,” gives the total number of boxes processed for the full-space algorithm,
followed by the total number of boxes processed with the subspace algorithm; column
7, labelled “CPU sec.,” gives first the total processor time for the full-space algo-
rithm, then the total processor time for the subspace algorithm. The column labelled
“ratio” gives the ratio of processor times: {time for the subspace algorithm} / {time
for the full-space algorithm}. The last column, labelled n − nr, gives the difference
between the full-space dimension and the last computed subspace dimension (for easy
comparison with the performance ratio).

7.1. Conclusions. A perusal of Table 7.1 shows that, for most of the problems
in the test set, the subspace analysis has little effect on the practicality of the overall
algorithm. However, ex14 1 1 and ex7 3 3, in which the full-space algorithm fails
to complete but the subspace algorithm completes extremely efficiently, are notable
exceptions. Both of these problems are relatively simple, of a form similar to the
Lemaréchal formulation in section 6.

In addition to the extreme contrast between the search in the full space and search
in the subspace for ex14 1 1 and ex7 3 3, use of the subspace analysis resulted in
some improvement in ex5 4 2 and mhw4d, and the subspace analysis resulted in more
time spent in ex14 1 9 and sample. In “sample,” the reduced space had dimension
0, so no bisections were done: The additional boxes were an artifact of the box
complementation process.

During a review of our implementation, we have found very recently that the
subspace algorithm may be hampered by the way we are handling validation of the
variable bounds in the orthogonal complement of the space of variables being bisected,
and that considerably better performance of the subspace algorithm is possible. We
have ideas of how to improve our process, but this will take significant additional
development.

8. Summary and future work. In [9], we detail some of the techniques we have
used to provide machine-representable relaxations that are mathematically rigorous,
while in [12] we describe our implementation of linear relaxations within GlobSol,
and we give experimental results comparing use of linear relaxations within GlobSol
to GlobSol without linear relaxations. However, in the experiments in [12], we worked
in the full space, and not in the subspace.

Here, we have presented an analysis of nonlinear programming problems that
leads to a way of automatically determining a measure of difficulty for the problem.
This analysis leads to a method of determining a lower-dimensional subspace in which
to branch. This method appears to give similar subspaces to the method in [3], but we
have implemented the method from a different point of view. We have presented the
subspace analysis process on a particular problem we previously found to be difficult
within a validation context but without linear relaxations.

We also mention that the algorithm in Epperly and Pistikopoulos [3] solves the
problems presented in [3] more efficiently than our validated algorithm, but we suspect
that this is not due to the subspace selection method. Our current thinking is that
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we will see equivalent efficiency with better validated handling of the orthogonal
complement of the space of reduced variables, and we are currently developing this
idea. Evidence that an improved validated environment can be produced is in the
successful validated codes of Lebbah et al. [13].

We have used the subspace analysis technique in GlobSol’s validated branch-
and-bound algorithm, testing the technique on a published low-dimensional test set.
Those tests revealed that, for most problems, there was little difference, but a huge
advantage was revealed for two problems whose solution was impractical without the
subspace analysis method.

The tests, along with those in [12], reveal that GlobSol’s validated algorithm,
although more practical when validated linear relaxations are included, still does not
handle problems as quickly as the BARON package described in [23]. The subspace
analysis method described here, not implemented in BARON, does greatly help for
some problems, and additional tuning (i.e., the setting of heuristic parameters) may
further improve performance. However, these are not the entire answers to questions
concerning performance differences. Nonetheless, we are convinced that the perfor-
mance differences are not an inevitable consequence of insistence on validation, but
are a result of how techniques, which can be modified to be validated, are used and
combined in the overall algorithm, and how efficiently these techniques are imple-
mented.

For instance, which LP solver is used to solve the linear relaxations may have a
significant effect on the practicality of the overall branch-and-bound algorithm. Also,
the “probing” technique in BARON, first described in [21] and later in [23], may be
effective; we are presently developing a validated version of this technique.
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Abstract. We propose a simple and natural linear randomized algorithm for the approximate
1-median selection problem in metric spaces. The 1-median of a finite subset S of a metric space
is the element of S which minimizes the average distance from the remaining points in S. This
problem is extremely important in most applications using clustering of metric spaces, but also
in connection with several algorithms in bioinformatics. The only linear approximation algorithm
for the 1-median problem, which provably works in any metric space without going through any
Euclidean space, has been proposed by Indyk in [Proceedings of the 31st Annual ACM Symposium
on Theory of Computing, Atlanta, 1999, pp. 428–432]. However, Indyk’s algorithm, which is based
on sufficiently large sampling, turns out not to be a practical solution. The same holds true even for
its heuristic variants which use samplings of smaller size. The algorithm we propose has a simple
and efficient implementation, which performs better than Indyk’s algorithm in practice. On the
other hand, while the performance of Indyk’s algorithm is guaranteed by an approximation factor,
in the case of our algorithm we are only able to produce experimental evidence of its precision.
Extensive experimentation has been performed on both synthetic and real input datasets. Synthetic
datasets were generated with uniform and skewed distributions, using various metrics. Real datasets
have been extrapolated from real world official databases available on the web. Successful results of
the proposed algorithm are reported for several applications in bioinformatics and various classes of
approximate search queries.
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1. Introduction. Let (M,d) be a metric space with distance function d : M ×
M −→ R and let S be a finite subset of M . Given k ∈ N, the k-median problem for
S is the problem of finding k points c1, c2, . . . , ck in S which minimize the sum∑

s∈S

min
i=1,...,k

d(s, ci).

The k-median problem is NP-complete [20] and several approximation algorithms
have been developed for it [10, 18, 23, 24, 25, 21].

The 1-median problem, obtained for k = 1, is therefore the problem of selecting
an element c in S which minimizes the sum

w(c) =
∑
s∈S

d(s, c)

of the distances from c to the remaining points of the input set S.
In Euclidean spaces the search procedure is not restricted to elements of the input

set. In such spaces, the 1-median problem is easily seen to constitute an elementary
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subcase of the Fermat–Weber problem, which has been studied intensively and shown
to be unsolvable by algebraic constructions [3, 9]. An efficient numeric solution for the
Fermat–Weber problem, based on the gradient descent method, has been presented
in [29]. Other interesting numerical methods can be found in the literature [1, 26, 27,
30].

In general metric spaces there is an obvious quadratic solution of the exact 1-
median problem; however, when the input size is large, even a quadratic algorithm can
be prohibitive, and faster algorithms become necessary. A possibility would then be to
take advantage of the fact that in most applications it is enough to find approximate
solutions which are sufficiently close to the exact 1-median.

Recently, Indyk [21] has proposed a provably correct (1 + δ)-approximation al-
gorithm for the 1-median problem, having running-time O(n/δ5). The main part of
Indyk’s algorithm is a probabilistic comparator which, given any two points p and
q in the input set S, performs an approximate comparison of the summations w(p)
and w(q) in O(1/δ5)-time. Such a procedure, based on “sufficiently large” sampling
operations, returns with high probability depending on the approximation factor, the
point with the smallest summation. Then one can easily construct a binary tourna-
ment tree over S, in which each internal node recursively selects the child with the
smallest summation, using Indyk’s probabilistic comparator. It can be shown that
the final winner of the above tournament, which is the output of Indyk’s algorithm,
approximates the 1-median of S within a factor of (1 + δ).

However, due to the high cost of sampling operations inside the probabilistic
comparator, Indyk’s algorithm is not practical. In addition, it turns out that reducing
the required samples size causes a significant loss in precision (see section 6.8).

In this paper we propose a simple and natural algorithm which efficiently com-
putes an approximate solution of the 1-median problem in generic metric spaces.
Our algorithm turns out to be very precise for most of the synthetic and real world
problems investigated in this work, though its performance cannot be bound by any
approximation factor (cf. section 4.1 of [4]).

Our proposed algorithm is based on a randomly generated tournament which,
roughly speaking, is played as follows. For the sake of simplicity, let us assume that
the size of the input set is an exact power of a fixed integer t ≥ 3. At each round, the
winners of the previous round are randomly partitioned into subsets of size t. The
winners of the current round are then obtained by selecting the exact 1-median in
each of the partitioning subsets. Rounds are played until only one element, namely
the final winner, is left. The final winner is the output of our procedure.

Experimental results show that our algorithm is very effective. It is more effi-
cient and precise as compared to Indyk’s algorithm and the best elementary heuristic
variants of Indyk’s algorithm.

The paper is organized as follows. In section 2 we illustrate the main application
fields of the 1-median selection problem. Our approximate solution is then fully
described in section 3, its tuning is discussed in section 4, and its runtime complexity
is analyzed in section 5. In section 6 we analyze an extensive collection of experimental
results, to give an empirical evaluation of the precision and efficiency of our algorithm
and to compare it to Indyk’s algorithm and some of its variants. Finally, section 7
concludes the paper, pointing at some directions for future research.

2. Applications of the 1-median selection. The 1-median problem for
generic metric spaces is sometimes also referred to as the “center selection problem.”
Its main application fields, such as molecular biology [19], network management [2,
7, 15], and information retrieval [17], deal with both Euclidean and non-Euclidean
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metric spaces. Among its most relevant applications we cite the following:
- approximate queries with a given threshold on very large databases of objects

belonging to clustered metric spaces. In such a problem, one seeks clusters whose
representatives have distance from the query which is bounded by the threshold.
It turns out that if the 1-medians are selected as representatives of the clusters
and the clusters diameters are comparable with the threshold, then the average
error during the search is minimized with very high probability [13, 14];

- k-clustering of metric spaces, in which iterative computations of 1-medians are
required [16];

- multiple alignment, in which the goal is to find a common alignment of a set of
genetic sequences [19] (this is a basic problem in biological data engineering).
In the above first two application problems, which come from the database com-

munity, 1-median computations are generally performed via embeddings in suitable
Euclidean spaces. More specifically, the 1-median is approximated by the so-called
“clustroid,” which is the inverse image of the point closest to the center of gravity of
the input set image (via the embedding).1 However, if for some reason it is difficult
to produce an immersion of a given metric space into a suitable Euclidean space, then
an efficient algorithm for the direct computation of the 1-median in the given metric
space must be designed.

Algorithmic solutions of optimization and search problems on metric spaces
[18, 22] are very much affected by the high computational cost of distance calculations
among objects of the space. Our solution was properly developed to overcome this
difficulty. Its good behavior in practice has been successfully reported for several ap-
plications in bioinformatics [12] and various classes of approximate search queries [8].

3. The algorithm. In this section we present our randomized algorithm for
the approximate 1-median selection. It is based on a tournament played among the
elements of an input set S belonging to a given metric space (M,d). At each round,
the elements which passed the preceding turn are randomly partitioned into subsets,
say X1, . . . , Xk. Then, the exact 1-median xi of each subset Xi is computed, for
i = 1, . . . , k. The elements x1, . . . , xk win the round and go to the next one. The
tournament terminates when only a single element x, the final winner, remains. This
is chosen to approximate the exact 1-median in S.

One possible implementation of the above general method is to partition the
elements at each round in subsets of the same size t, with the possible exception of only
one subset, whose size lies between (t+1) and (2t− 1). Plainly, the requirement that
no round is played with less than t elements is useful to ensure statistical significance
to the tournament. In addition, we can assume that the iteration stops when the
number of elements falls below a given threshold , at which point the exact 1-median
of the residual elements is computed. This is summarized in Figure 1, where the local
optimization procedure WINNER (X) returns the exact 1-median in X.

It is easily seen that in the case of unidimensional Euclidean spaces, our proposed
algorithm is essentially the one presented in [4], for the approximate median compu-
tation of a finite ordered set. In particular, each random partitioning phase can be
simplified by introducing efficient pseudorandomization methods as in [4].

4. Tuning of the algorithm. In this section we discuss the two fundamental
parameters present in the algorithm reported in Figure 1, namely the splitting factor

1We recall that the center of gravity of a given subset X of an Euclidean space is the point which
minimizes the sum of squares of distances from any other point in the set X [17, 31].
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The approximate 1-median selection algorithm
WINNER (X)

Input: A set X of elements in a metric space (M,d).
Output: The exact 1-median element of X.

Begin
for each x ∈ X do

sx ←
∑

y∈X d(x, y);

Let c ∈ X be an element such that sc = minx∈X(sx);
return c;

End;

APPROX 1 MEDIAN (S)
Input: A set S of elements in a metric space (M,d).
Output: The approximate 1-median element of S.

Begin
while |S| > threshold do

W ← ∅;
while |S| ≥ 2t do

Choose randomly a subset T ⊆ S, with |T | = t;
S ← S \ T ;
W ← W ∪ {WINNER (T )};

end while;
S ← W ∪ {WINNER (S)};

end while;
return WINNER (S);

End.

Fig. 1. Pseudocode of the approximate 1-median selection algorithm.

t (also referred to as the tournament size) and the parameter threshold .

The splitting factor t is used to set the size of each subset X processed by calls to
procedure WINNER within the internal while-loop of procedure APPROX 1 MEDIAN.
It is clear that larger values of t correspond to more precise outputs, but higher
computational costs. In several cases, a satisfying output quality can be obtained
even with small values for t. In particular, when t is set to its minimum value, i.e.,
t = 3, the WINNER procedure can be implemented in an extremely efficient way, since
one needs to compute just 3 distances, and the local output can be determined with an
average of only 8

3 distance comparisons [4]. A good trade-off between output quality
and computational cost is obtained by choosing as value for t one unit more than the
dimension that characterizes the investigated metric space [11]. This suggestion lies
on intuitive grounds developed in the case of a Euclidean metric space Rm and it is
confirmed by the experiments reported in section 6.

The parameter threshold controls the termination of the tournament. Again,
larger values for threshold ensure more precise outputs, but at increasing computa-
tional cost. Observe that the value (t2 − 1) for threshold forces the property that
the last set of elements, where the final winner is selected, must contain at least t
elements, provided that |S| ≥ t. Notice also that in order to ensure a linear compu-
tational complexity of the algorithm, the threshold value needs to be O(

√
|S|) (see

section 5). Thus, a good choice is threshold = min{t2 − 1,
√

|S|}.
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5. Complexity analysis. The algorithm APPROX 1 MEDIAN given in Figure
1 is characterized by its simplicity and hence it is expected to be very efficient from
the computational point of view, at least in the case in which the parameters t and
threshold are small enough. In fact, as will be shown below, our algorithm has a
worst-case complexity of t

2n+ o(n) in the input size n, provided that the threshold is
o(
√
n).
Plainly, the complexity of the algorithm APPROX 1 MEDIAN is dominated by

the number of distances computed within calls to procedure WINNER. To estimate
such a number, let W (n, t, ϑ) denote the number of calls to procedure WINNER made
within the while-loops by APPROX 1 MEDIAN, with an input of size n and using the
parameters t ≥ 3 and threshold ϑ ≥ 1. Plainly, W (n, t, ϑ) ≤ W (n, t, 1), for any ϑ ≥ 1,
and thus it will suffice to find an upper bound for W (n, t, 1).

For notational convenience, let us put W1(n) = W (n, t, 1), where t has been fixed.
It can easily be seen that W1(n) satisfies the following recurrence relation:

W1(n) =

⎧⎨
⎩

0 if 0 ≤ n ≤ 1,
1 if 2 ≤ n < 2t,⌊
n
t

⌋
+ W1

(⌊
n
t

⌋)
if n ≥ 2t.

By induction on n, we show next that W1(n) ≤
⌈

n
t−1

⌉
. For n < 2t, our estimate

is trivially true. Thus, let n ≥ 2t. Then, by inductive hypothesis, we have

W1(n) =
⌊n
t

⌋
+ W1

(⌊n
t

⌋)

≤
⌊n
t

⌋
+

⌈ ⌊
n
t

⌋
t− 1

⌉

=

⌈⌊n
t

⌋
+

⌊
n
t

⌋
t− 1

⌉

=

⌈⌊
n
t

⌋
· t

t− 1

⌉
≤

⌈
n

t− 1

⌉
.

Hence W (n, t, ϑ) ≤
⌈

n
t−1

⌉
.

The number of distance computations made by a call WINNER(X) is equal to∑|X|
i=1(i−1) = |X|(|X|−1)

2 . At each round of the tournament, all the calls to procedure
WINNER have an argument of size t, with the possible exception of the last call,
which can have an argument of size between (t + 1) and (2t − 1). Since there are
�logt n� rounds, it follows that the total number of distances computed by a call
APPROX 1 MEDIAN(S), with |S| = n, constant tournament size t, and threshold ϑ,
is upper bounded by the expression

W (n, t, ϑ) · t(t− 1)

2
+ �logt n� ·

[
(2t− 1)(2t− 2)

2
− t(t− 1)

2

]
+

ϑ(ϑ− 1)

2

=
t

2
n + O(log n + ϑ2),(5.1)

since the last call to procedure WINNER made within the return instruction of
APPROX 1 MEDIAN has an argument of size at most ϑ. By taking ϑ = o(

√
n),

the above expression is easily seen to be t
2n + o(n).
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Summing up, we have the following theorem.
Theorem 5.1. Given an input set of size n ∈ N, a constant tournament size t ≥

3, and a threshold ϑ = o(
√
n), the algorithm APPROX 1 MEDIAN performs t

2n+ o(n)
distance computations.

6. Experimental results. In this section we evaluate the practical performance
of the algorithm APPROX 1 MEDIAN and compare it with Indyk’s algorithm, by pre-
senting and commenting various experimental results. Our algorithm is very precise
and efficient. It performs better than Indyk’s algorithm in terms of both running time
and output precision.

Our implementations have been done in standard C (GNU-gcc compiler v.2.96)
and all the experiments have been carried out on a PC Pentium III 1GHz with the
Linux operating system (Mandrake distribution v.8.1). The source code is available on
the web at the URL address: http://lipari.dmi.unict.it/∼ferro/source/1-median.tgz.

We tested several samples belonging to metric spaces of various dimensions with
different Euclidean and non-Euclidean metrics. All samples were generated using the
48-bit linear congruential pseudorandom number generator written by Birgmeier [5].
All synthetic datasets were generated with uniform or nonuniform (clustered) distri-
butions, using various metrics. We also tested our algorithm on datasets extrapolated
from real world databases.

In the following, we continue to use the notation introduced in the previous sec-
tions. Thus,

• S will be the input set, namely a finite subset of a metric space (M,d);
• w : S −→ R will be the weight function defined by

w(x) =
∑
s∈S

d(s, x),

for x ∈ S, which we intend to minimize;
• t and threshold will be the parameters used in APPROX 1 MEDIAN.

Moreover, unless otherwise specified, in each of the following test sessions, we will
assume that the parameter threshold has been set to min

{
t2 − 1, 


√
n�

}
, where n is

the size of the input set S.

6.1. Asymptotic behavior of the algorithm. Our first group of experiments
refers to 5, 000 independent executions of our algorithm on a fixed input set S of size
n = 10i, with 2 ≤ i ≤ 5. The input set has been taken as a uniformly distributed set
of random points in the unit square, i.e., [0, 1]2-space, with the Euclidean metric L2.

The relative frequencies histograms reported in Figure 2 show the empirical dis-
tribution of the algorithm outputs, obtained with a tournament size t = 3. In each
histogram, the abscissa contains an initial segment of S nondecreasingly sorted w.r.t.
the ordering induced by w(); therefore, the leftmost element represents the exact
1-median of S.

The histograms in Figure 2 give the output precision of our algorithm in terms of
the relative position w.r.t. the exact 1-median. Nevertheless, in many applications, it
is more convenient to define the output quality in terms of the weight function w(),
by introducing the following quantities relative to a generic input set S:

• mS = minx∈S w(x), the minimum weight in S, i.e., the weight of the exact
1-median;

• MS = maxx∈S w(x), the maximum weight in S;
• μS = E[w(x)] and σS = σ[w(x)] (with x ∈ S), i.e., the average and the

standard deviation of weights in S;



440 D. CANTONE, G. CINCOTTI, A. FERRO, AND A. PULVIRENTI

Asymptotic analysis of the output (1)

(a) n = 100 (b) n = 1, 000
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Fig. 2. Relative frequencies histograms of the outputs. The abscissae refer to the elements
in the input set with the smallest values for w(), nondecreasingly ordered. The ordinates show the
corresponding frequencies.

• wout = w(Output), the weight of the Output element returned by our algo-
rithm on input S.

In the log-scale diagram in Figure 3, we report such statistical values, relative to a
fixed random input set for each value of the size. Notice that two times the standard
deviation is shown as a vertical straight-line centered on the mean value.

Statistics reported in Figure 3 can be further summarized by introducing the
following value, relative to a single test on a random input set S:

• εout = wout −mS

MS −mS
· 100, the percentage error distance defined w.r.t. the largest

range of values w(x), with x ∈ S; the extreme values assumed by εout are
0% and 100%, when the minimum- and maximum-weight elements in S are
returned by the algorithm, respectively.

Figure 4(a) reports the average percentage error distance E[εout] and its standard
deviation σ[εout] relative to our first experiment on a fixed set S. Moreover, Figure
4(b) refers to a similar experiment, but executed with variable input sets, namely,
each time the algorithm is executed, a new input set S of size n = 10i is generated,
for 2 ≤ i ≤ 5.

It is to be noticed that, in both experiments, the percentage error can be approx-
imated by 24−log10 n; in particular, an error smaller than 1% is obtained whenever the
input size is large enough, for instance n ≥ 10, 000.

6.2. Threshold value analysis. We tested how the threshold value influences
the quality of the output. By suitably tuning the value of the threshold, the preci-
sion of the algorithm can sensibly be improved, without affecting the efficiency (see
section 4). Results refer to 5, 000 iterations with a fixed input set of n = 10i random
points, with 2 ≤ i ≤ 5, chosen in the [0, 1]2-space with metric L2, and where the tour-
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Asymptotic analysis of the output (2)
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Fig. 3. Diagram of the values mS , MS , μS , E(wout), relative to a fixed random set S for each
assigned value of the size.

Asymptotic analysis of the output (3)

(a) Fixed input set (b) Variable input sets
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Fig. 4. Average percentage error E[εout] and standard deviation σ[εout], w.r.t. the input size,
on (a) fixed input set and (b) variable input sets (each time the algorithm is executed, a new input
set S of size n = 10i is generated, for 2 ≤ i ≤ 5.)

nament size is t = 3. In Figure 5, we collected the average percentage error E[εout]
for the following threshold values: Thr = 8, 26, 


√
n�, 2·


√
n�.

As expected, larger threshold values provide smaller average percentage errors,
whenever the input size value is significant.

6.3. Distribution type analysis. We have analyzed some types of nonuniform
distributions for the input sets. More specifically, we have examined uniform and
skewed distributions of c clustered input sets containing n = 10i/c points each, with
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Threshold value analysis
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Fig. 5. Average percentage error E[εout], w.r.t. the input size, for different threshold values.

i = 3, 4, 5, and where c = 
log10 n�, 10, 

√
n�, 2 ·


√
n�. In the case of the uniform

clustered distribution, we have generated c random clusters in [0, 1]2, with uniform
distribution in each cluster. Concerning the skewed clustered distribution, we have
generated c random clusters with skewed distribution, i.e., clusters formed by very
close points with no symmetry.

In both cases, clusters have been characterized by a parameter ρ ∈ R, with
0 < ρ < 1

2 , that determines the wideness of clusters. Larger values of ρ correspond
to wider clusters with a high overlapping degree and, vice versa, smaller values of ρ
correspond to nonoverlapping dense clusters. Such clusters have been generated using
the same source code implemented for the experimental session reported in [6].

In our tests, the Euclidean metric L2 was adopted, with a tournament size t =
3. The average percentage errors E[εout] are shown in Figure 6 for both types of
distribution considered, with wideness factors ρ = 0.2 and ρ = 0.4.

Concerning the local inversions about skewed distribution in Figure 6(c), these
are minimal and are due to the fact that each component of a tuple is very close to
zero.

In general, for sufficiently large values of n, from the plots in Figure 6 it follows
that (1) small cluster sizes are more difficult to treat than large ones, and (2) skewed
distributions are more difficult than uniform ones.

6.4. Tournament size analysis. In the metric space [0, 1]2, the choice of de-
riving local winners from triplets has shown to be convenient, but other values of
the tournament size t could be used as well (see section 4). In general, computing
local winners for larger subsets produces higher precision results, at increasing cost,
as given by (5.1). In Figure 7, we report some results relative to experimental tests
which used triplets, quadruples, quintets, and sextets. The experiment settings were
similar to the ones reported in section 6.2, but with a fixed threshold value of 8.



EFFICIENT APPROXIMATE ALGORITHM FOR THE 1-MEDIAN 443

Distribution type analysis
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Fig. 6. Average percentage error E[εout] for different types of clustered distribution w.r.t. the
number of clusters.

6.5. Space dimensionality analysis. Experimental results reported in Figure
8 allow one to evaluate the performance of our algorithm in the case of a [0, 1]m metric
space equipped with the metric L2, for m = 5, 10, 20, 30. Experiments have been
performed with 5, 000 iterations over a fixed input set of n = 10i random uniformly
distributed points, with i = 3, 4, 5.
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Tournament size analysis
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Fig. 7. Average percentage error E[εout], w.r.t. the input size, for different tournament sizes.

The average percentage errors E[εout] collected in Figure 8(a) and (b) refer, re-
spectively, to tournament sizes of 3 and m + 1 (see section 4).

By examining plot 8(a), we can argue that, in general, the error of our algorithm
increases with the dimension of the metric space, when the tournament size is fixed.
On the other hand, the plot of 8(b) shows that a tournament size equal to m + 1
reduces the average percentage error E[εout] by a factor of 10 w.r.t. the value t = 3;
more specifically, an error smaller than 2% is obtained whenever the input size is
large enough. We observe that it is not particularly significant to compare data series
reported in the diagram of 8(b), as the tournament size is not constant for them.

6.6. Metric analysis. The following metrics in [0, 1]m, with m = 5, 10, 20, 30,
have been tested: the Manhattan distance L1, the Euclidean metric L2, the Euclidean
squared metric L2

2, the Chebyshev distance L∞, the Minkowski distance Lp, for p =
10. Experimental results refer to 5, 000 iterations over a fixed input set of n = 10i

random uniformly distributed points, with i = 3, 4, 5. Data series collected in Figure
9 refer to the different metrics used; the average percentage error E[εout] has been
obtained with a tournament size equal to m + 1.

From the diagrams of Figure 9(b) and (c), one can see that the Chebyshev metric
L∞ and the Minkowski distance Lp are asymptotically harder than the remaining
ones; moreover, excluding such two metrics, the percentage error is always less than
2%.

Concerning Figure 9(a), we can notice a different behavior with respect to (b)
and (c). This is due to the tournament size which in the examined cases is too big
relative to the size of the data set.

6.7. Real world datasets analysis. In this section we analyze the average
percentage error E[εout] of our algorithm on input datasets extrapolated from real
world databases.

Our first test has been run on input sets taken, with random sampling, from
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Space dimensionality analysis
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Fig. 8. Average percentage error E[εout], w.r.t. the input size, for different space dimensions
and tournament sizes.

the metric space of strings, equipped with the minimum edit distance metric. More
specifically, the experiments reported in Figure 10(a) refer to 5, 000 iterations over a
fixed input set of n = 10i, with i = 2, 3, 4, randomly chosen strings from the Linux
dictionary,2 using tournament sizes t = 3, 6, 9, 12.

Our second test has been based on a set of n = 10i randomly selected images
from the Corel images database, with i = 2, 3, 4.3. Each image has been characterized
by its colors histograms, represented in the Euclidean metric space R32. The plot
reported in Figure 10(b) refers to 5, 000 iterations with tournament sizes t = 3, 33.

Our third and final test has been based on a set of biosequences drawn from the
NCBI database.4. More precisely, we considered all the Alpha-Globins and the Beta-
Globins listed in the database, for a total amount of about 2, 500 biosequences, using
the classical pairwise alignment metric computed by the linear space algorithm of
Myers and Miller [28]. For this experiment, built with 5, 000 iterations, we considered

2The dictionary is contained in the text file /usr/share/dict/linux.words, under the Linux Man-
drake v.8.1.

3The Corel images database can be downloaded from the UCI Knowledge Discovery in Databases
Archive at http://kdd.ics.uci.edu/

4The NCBI database can be downloaded from the Nucleotide database at http://
www.ncbi.nlm.nih.gov/
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Metric analysis
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Fig. 9. Average percentage error E[εout] for different space dimensions and metrics.

sets of n = 500·i biosequences randomly selected from the database, with i = 1, 2, 3, 4.
Results reported in Figure 10(c) refer to a tournament size t = 3 and t = 5, which
showed to be a good trade-off in the case of biosequences.

6.8. Comparison with Indyk’s algorithm. In this section we report and com-
ment various results relative to experimental data related to the APPROX 1 MEDIAN
algorithm and Indyk’s algorithm [21]. Such experiments show that our algorithm
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Real world datasets analysis
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Fig. 10. Average percentage error E[εout] for (a) the strings metric space with the minimum
edit distance, (b) the images metric space with Euclidean distance, and (c) the biosequences metric
space with pairwise distance alignment.

outperforms Indyk’s one w.r.t. both the number of computed distances and output
precision. We recall that Indyk’s algorithm, briefly described in section 1, has a
O(n/δ5) running time and approximation factor (1 + δ).

In Figures 11 and 12 the pseudocode of the Indyk’s algorithm is sketched.

To obtain a coherent comparison, we considered input sizes n which are exact
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The Indyk algorithm
INDYK (S, δ)

Input: A set S of elements in a metric space (M,d).
Input: The maximum error allowed δ.
Output: The approximate 1-median element of S.

Begin
St ← S;
T ← ∅;
while |St| > 1 do

while |St| ≥ 2 do
Choose randomly p, q ∈ St;
St ← St \ {p, q};
T ← T ∪ {PROBABILISTIC WINNER (p, q, S, δ)};

end while;
St ← T ;

end while;
return (St);

End.

Fig. 11. Pseudocode of the Indyk algorithm. For the sake of simplicity the pseudocode given
refers to the case in which the size of the input set S is a power of 2.

PROBABILISTIC WINNER (p, q,X, δ)
Input: A set X of elements in a metric space (M,d).
Input: p, q extracted from X, δ.
Output: p or q.

Begin
Let R be a random sample of points in X whose size
is directly proportional to d(p, q) and inversely
proportional to δ4;
Let wR(x) =

∑
s∈R d(s, x);

Statistically estimate the number γ of points in X whose
distance from p is less than 4 × d(p, q)/δ + d(p, q);
if γ < δ/4, then

return one random element in {p, q};
else

return the element in {p, q} which minimizes wR;
End.

Fig. 12. Pseudocode of the probabilistic winner.

powers of 2, because of the binary tournament generated by Indyk’s algorithm. In
particular, we executed 1, 000 iterations with input sets of size n = 2i, for 10 ≤ i ≤ 14,
with the only exception of the biosequences session, in which we executed only 100
iterations with input sets of size n = 1, 024. In addition, Indyk’s approximation factor
δ was appropriately chosen among different values in order to optimize its performance
in terms of both precision and running time.

Tests were carried out with input sets of the following nature:
• uniformly distributed subsets of [0, 1]2, with the Euclidean metric and tour-

nament size t = 3;
• subsets of strings from the Linux dictionary with the minimum edit distance

and tournament size t = 9 (see section 6.7);
• subsets of biosequences from the NCBI database with the Myers and Miller
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Performances of the algorithm

Euclidean metric space

(a) Statistics (a′) Output precision

1000

10000

100000

1000000

 1024  2048  4096  8192  16384

 0
 25
 50
 75
 100

A
ve

ra
ge

 n
um

be
r 

of
 c

om
pu

te
d 

di
st

an
ce

s

Pe
rc

en
ta

ge
 o

f 
tr

ia
ls

 w
on

 b
y 

ou
r 

al
go

ri
th

m

 Indyk’s algorithm 

 Approx-1-Median 

 0

 1

 2

 3

 4

 5

 6

 1024  2048  4096  8192  16384

 E[ εout ] Indyk’s algorithm 

 E[ εout ] Approx-1-Median 

Strings metric space

(b) Statistics (b′) Output precision

10000

100000

1000000

 1024  2048  4096  8192  16384

 0

 25

 50

 75

 100

A
ve

ra
ge

 n
um

be
r 

of
 c

om
pu

te
d 

di
st

an
ce

s

Pe
rc

en
ta

ge
 o

f 
tr

ia
ls

 w
on

 b
y 

ou
r 

al
go

ri
th

m

 Indyk’s algorithm 

 Approx-1-Median 

 0

 1

 2

 3

 4

 5

 1024  2048  4096  8192  16384

 E[ εout ] Indyk’s algorithm 

 E[ εout ] Approx-1-Median 

Biosequences metric space

(c) Statistics (c′) Output precision

1000

10000

100000

Alpha-Globin Beta-Globin

 0

 25

 50

 75

 100

A
ve

ra
ge

 n
um

be
r 

of
 c

om
pu

te
d 

di
st

an
ce

s

Pe
rc

en
ta

ge
 o

f 
tr

ia
ls

 w
on

 b
y 

ou
r 

al
go

ri
th

m

 Indyk’s algorithm 

 Approx-1-Median 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Alpha-Globin Beta-Globin

 E[ εout ] Indyk’s algorithm 

 E[ εout ] Approx-1-Median 

Fig. 13. Comparison between Indyk’s algorithm and the APPROX 1 MEDIAN algorithm w.r.t.
the number of computed distances and output precision.

pairwise alignment metric [28] and tournament size t = 5 (see section 6.7).

The statistics in Figure 13(a), (b), and (c) report the results of comparing the two
above-mentioned algorithms in terms of number of distances computed (left-ordinate)
and percentage of tests won by the APPROX 1 MEDIAN algorithm w.r.t. precision
(right-ordinate). Finally, Figure 13(a′), (b′), and (c′) report the average percentage
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error E[εout] of the two algorithms.
The above experimental results show that our algorithm is more precise and has

a more stable behavior than Indyk’s algorithm, as can also be deduced from the
standard deviation σ[εout] reported as vertical bars (two times the value of σ[εout]) in
Figure 13(a′), (b′), and (c′). Results can be summarized by saying that, given a fixed
input set, our algorithm

A. computes about 1/10 of the distances computed by Indyk’s algorithm;
B. produces an output whose error is approximately one half of the output error

produced by Indyk’s algorithm.

6.9. Final remarks about experiments. Results collected here show that,
with high probability, our algorithm computes elements contained in a very small
neighborhood of the optimal solution, thus gaining strong support to its effectiveness.
Specifically, in the cases of the synthetic and real datasets investigated, the average
percentage error E[εout] was always less than 3%, for sufficiently large input sizes and
when the algorithm’s parameters were suitably tuned as suggested in section 4.

7. Conclusions. We proposed an approximate algorithm for the 1-median se-
lection problem in general metric spaces which does not use immersion in Euclidean
spaces. We also discussed experimental evidence of its efficiency and precision. In
particular, we have successfully compared it with a performance guaranteed algorithm
proposed in [21].

We believe that similar techniques can be applied to other optimization problems
on metric spaces. In particular, we are currently investigating various clustering
problems, the furthest pair problem, and some network management problems.
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ful suggestions and comments.
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Abstract. This paper addresses strong stability, in the sense of Kojima, of stationary solutions
of nonlinear positive semidefinite programs (NSDP). First, we give a characterization of stability
from the point of view of one-to-one maps under an LICQ condition generalized to these programs.
Second, under the same condition we construct a method for NSDP that is analogous to Kojima’s
method for classical nonlinear programs (NLP) treated in his famous paper. From this construction
we make clear the essential difference between NSDP and NLP, and we deduce an algebraic condition
equivalent to strong stability for those NSDP to which there does not exist this difference.
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1. Introduction. In this section, we introduce nonlinear positive semidefinite
programs that are nonlinear versions of linear positive semidefinite programs, and their
stationary solutions and the concept of strong stability. Linear positive semidefinite
programs (LSDP) are defined as∥∥∥∥∥∥

minimize C •X
subject to X ∈ S+(n),

Ai •X = bi (i = 1, . . . , �)

⎫⎬
⎭,

where S+(n) is the set of n × n real symmetric positive semidefinite matrices, and
C, Ai, (1 ≤ i ≤ �), are n × n real symmetric matrices and b = (b1, . . . , b�) is a
vector of �-dimensional Euclidean space R� and • denotes the trace form. LSDP has
been studied intensively this decade; for details, we recommend [10]. We refer to the
following programs as nonlinear positive semidefinite programs (NSDP):

Pro(f, h)

∥∥∥∥∥∥
minimize f(X)
subject to X ∈ S+(n),

hi(X) = 0 (i = 1, . . . , �)

⎫⎬
⎭,

where f, hi, (i = 1, . . . , �), are C2 functions on the space S(n) of n×n real symmetric
matrices, i.e., (f, h) ∈ F in usage of notations defined in the section 2. Then, X ∈
S+(n)

⋂
N (h) is called a stationary solution of program Pro(f, h) if −DXf(X) ∈

RDXh(X)+σ(X) holds. Here, N (h) = {X ∈ S(n) : hi(X) = 0 (∀i)} and RDXh(X)
denotes the affine space spanned by {DXhi(X) : i = 1, . . . , �}, and σ(X) the normal
cone of S+(n) at X, i.e., σ(X) = {G ∈ S(n) : (Y −X) •G ≤ 0 (∀Y ∈ S+(n))}. The
stationary solution X is defined to be strongly stable if there exist δ > 0 and α > 0
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such that, for any (f, h) ∈ F satisfying ‖f − f ′‖ < α and ‖h − h′‖ < α, there exists
a unique stationary solution X(f ′, h′) ∈ {X ′ ∈ S+(n) : ‖X −X ′‖ ≤ δ} of Pro(f ′, h′)
and the correspondence (f ′, h′) �→ X(f ′, h′) is continuous at (f, h). We state the norm
used in this definition and the definition itself more precisely in section 2.

Similar programs are treated by Bonnans and Shapiro [1]. Given a Banach space
U and a map G : Rn × U → S+(p), they investigated sensitivity of parameterized
semidefinite programs (SDP) problems in the form∥∥∥∥ minimize f(x, u)

subject to (x, u) ∈ Rn × U : G(x, u) ∈ S+(p)

}
and gave a sufficient condition for directional Lipschitz stability. They also treated
more general programs and showed that strong stability is equivalent to the second
order growth condition when local minimum solutions are considered. However, no
criterion of strong stability has yet been found for these programs in general cases.

In [9], Kojima introduced, for the first time, the concept of strong stability
of stationary solution for nonlinear programs which have finite equality
constraints and finite inequality constraints of C2 class satisfying the so-called
Mangasarian–Fromovitz condition. We refer to programs of this type as NLP; Kojima
also gave an algebraic condition that is necessary and sufficient for the stability by
means of Jacobian and Hessian matrices. Since then, strong stability for programs of
this type has been intensively studied and it is known that various kinds of regularities
are equivalent to that stability (see [7], [8]). However, since it is not known that LSDP
and NSDP have finite inequality constraints of C2 class satisfying the Mangasarian–
Fromovitz condition, we cannot apply Kojima’s theory directly to LSDP and NSDP.
The purpose of this paper is to present a condition equivalent to strong stability from
the point of view of one-to-one maps under an LICQ condition generalized to NSDP,
and to make clear the essential difference between NSDP and NLP by construction
of an analogous method for NSDP to the method exploited by Kojima in his famous
paper [9]. For those NSDP to which there does not exist this difference, we can deduce
the similar result as in [9].

In section 2,
• we define stationary solutions and strong stability, and we prepare a series of

elementary results and facts.
In section 3,

• we characterize strong stability from the point of view of one-to-one maps
under an LICQ condition.

In section 4,
• we calculate the generalized Jacobians of ρ+(X) = X+ and ρ−(X) = X−,

where X+ = arg minimize ‖X−Y ‖ subject to Y ∈ S+(n) and X− = X−X+,
and

• we prove that all eigenvalues of the generalized Jacobian of ρ+ and ρ− lie
between 0 and 1 on the real line.

In section 5, under an LICQ condition,
• we prove that all eigenvalues of A are real for any A ∈ ∂(X,λ)ψ(X,λ; f, h),

where ψ is defined associated to program Pro(f, h) in section 2,
• we construct a method for NSDP analogous to Kojima’s method for NLP in

[9],
• we make clear the essential difference between NSDP and NLP, and
• we deduce an algebraic condition equivalent to stability for those NSDP to

which there does not exist the above difference.
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Before ending the introduction we refer the reader to the paper [16] of Pang, Sun,
and Sun. Using different methods they treat NSDP with no equality constraints and
characterize strong stability by B-subdifferential. Our manuscript of this paper was
finished before their paper has appeared.

2. Preliminaries. In this section, we define strong stability in the sense of Ko-
jima and we prepare a series of elementary results and facts. For their preparation,
we list the following notations used in this paper:

R : the field of all real numbers,

R� : the �-dimensional Euclidean space,

M(m,n) : the set of all m× n real matrices,

EndR(V ) : the set of all R linear maps from V to V for a linear space V ,

S(n) : the set of all n× n symmetric real matrices,

S+(n) : the set of all n× n positive semidefinite symmetric real matrices,

S++(n) : the set of all n× n positive definite symmetric real matrices,

S−(n) : the set of all n× n negative semidefinite symmetric real matrices,

Sr,s(n) : the set of all n× n symmetric real matrices with r positive

eigenvalues and s negative eigenvalues,

S∗(n) : the set of all n× n nonsingular symmetric real matrices,

D(n) : the set of all n× n diagonal real matrices,

Diag(γ1, . . . , γn) : an n× n diagonal matrix whose (i, i) component is γi(1≤ i≤n),

O(n) : the set of all n× n orthogonal real matrices,

Ir : the r × r identity matrix, i.e., the identity map on Rr,

IA : the identity map on A for any set A,

I : the identity matrix of an appropriate size,

Or : the r × r zero matrix,

O : the zero matrix of an appropriate size,

Eij : the elementary matrix whose (i, j) entry is 1 and other entries

are 0’s,

XT : the transposition of the matrix X,

A •B : the trace form of m× n matrices A = (aij) and B = (bij), i.e.,

A •B =

m∑
i=1

n∑
j=1

aijbij ,

t+ = max{t, 0} for a real number t,

t− = min{t, 0} for a real number t,

sgn t =

⎧⎨
⎩

1 (t > 0),
0 (t = 0),
−1 (t < 0),

A \B = {x ∈ A : x /∈ B},
int(A) : the interior of a subset A of a topological space X,

c�(A) : the closure of a subset A of a topological space X,
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convA : the convex hull of a subset A of a vector space V ,

ex(K) : the set of extremal points of a convex set K,

A + B = {a + b : a ∈ A, b ∈ B} for subsets A and B of a vector space V,

d(A,B) = inf{d(a, b) : (a, b) ∈ A×B} for subsets A,B ⊂ X, where X is

a metric space with its metric d : X ×X → R,

F = {(f, h) = (f, h1, . . . , h�) : f, h1, . . . , h� ∈ C2(S(n))},
where C2(S(n)) is the set of all functions on S(n) of C2 class,

N (h) = {X ∈ S(n) : h(X) = 0} for (f, h) ∈ F ,

F |A : the restriction of a map F to a subset A of its domain,

TXM : the tangent space of a C1-manifold M at X ∈ M.

Since program Pro(f, h) has a domain constraint, i.e., X ∈ S+(n), we need the
normal cone σ(X) of S+(n) at X ∈ S+(n).

Definition 2.1. Let X ∈ S+(n). The normal cone σ(X) of S+(n) at X is
defined by σ(X) = {G ∈ S(n) : (Y −X) •G ≤ 0 (∀Y ∈ S+(n))}; Rσ(X) denotes the
affine space spanned by σ(X).

For S ⊂ S(r) and T ⊂ S(n− r), we define a set S ×T =
{(

A O
O B

)
: A∈ S,B ∈ T

}
.

We abbreviate {Or} × T to Or × T . The next fact is readily proved.
Fact 2.2 (see [14]). Let X ∈ S+(n). Then (i), (ii), and (iii) hold.
(i) σ(X) = {G ∈ S−(n) : G •X = 0}.
(ii) σ(PXPT ) = Pσ(X)PT = {PGPT : G ∈ σ(X)} holds for any P ∈ O(n).
(iii) Let X ∈ Sr,0(n). Suppose X ∈ P (D(r) × On−r)P

T with P ∈ O(n). Then

σ(X) = P (Or × S−(n− r))PT .

Taking a local coordinate system shows that Sr,s(n) is a (r+s)(2n−r−s+1)
2 dimen-

sional analytic submanifold of S(n). Its tangent space TXSr,s(n) is explicitly stated as
in Fact 2.3. We denote by (TXSr,s(n))⊥ = {Z ∈ S(n) : Z • Y = 0 (∀Y ∈ TXSr,s(n))}
the orthogonal complementary space of TXSr,s(n) in S(n) with respect to the inner

product defined by the trace form. Since S(n) = R
n(n+1)

2 as affine spaces, in this
paper we consider that TXS(n) = S(n) for any X ∈ S(n). The following fact can be
proved directly.

Fact 2.3 (see [14]). Let X ∈ Sr,0(n) and suppose that X = P
(

Γ11 O
O O

)
P
T ,

where P ∈ O(n) and Γ11 ∈ Sr,0(r). Then the following (i) and (ii) hold.

(i) TXSr,0=
{
P
(

Ẏ 11 Ẏ
T
21

Ẏ 21 O

)
PT : Ẏ 11 ∈ S(r) and Ẏ 21 ∈ M(n− r, r)

}
.

(ii) Rσ(X) = (TXSr,0)
⊥ =

{
P
(

O O
O Ẏ 22

)
PT : Ẏ 22 ∈ S(n− r)

}
= P (Or×S(n−

r))PT .
The positive part Z+ and negative part Z− of a matrix Z are useful concepts in

what follows. In the next definition, ‖ · ‖ denotes a norm on S(n) by ‖X‖ =
√
X •X

for X ∈ S(n).
Definition 2.4.

(i) For Z ∈ S(n), it follows from Fact 4.1 in section 4 that there exists a unique
matrix Y ∈ S+(n) minimizing ‖Y −Z‖. We denote it by Z+. Similarly, there
exists a unique matrix Y ∈ S−(n) minimizing ‖Y − Z‖ and we denote it by
Z−. From their definition, Z+ and Z− are continuous with respect to Z. It
is well known (see [14]) that
(a) Z = Z+ + Z−,
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(b) Z+ • Z− = 0,
(c) (PZPT )+ = PZ+PT and (PZPT )− = PZ−PT hold for any P ∈ O(n).

We define ρ+, ρ− : S(n) → S(n) by ρ+(Z) = Z+ and ρ−(Z) = Z−.
(ii) Let H = {(X,G) ∈ S(n) × S(n) : X ∈ S+(n) and G ∈ σ(X)}, i.e., H is the

set of complementary matrices. We define η : H → S(n), ρ : S(n) → H by
η(X,G) = X +G and ρ(Z) = (ρ+(Z), ρ−(Z)) = (Z+, Z−). Notice that ρ and
η are homeomorphisms because of ρ = η−1.

Let M be a C1 manifold and N ⊂ M be a C1-submanifold of M and x̄ ∈ N and
U be a neighborhood of x̄ in M. Consider the coordinate system x of M around x̄
and the coordinate system y of N around x̄. Then, the natural immersion N ⊂ M is
represented by a unique C1-map x = ν(y). Let f : U → Rn be a C1 map. Then, we
use the notation Dyf(x̄), whose meaning we define to be Dyf(x̄) = Dxf(x̄)Dyν(x̄).
We identify functions on S(n) with those on M(n) satisfying f(X) = f(XT ), (∀X ∈
M(n)). In this situation, it is readily apparent that DXf(X) ∈ S(n).

The gradient matrix DXf(X) and the Hessian tensor D2
Xf(X) of f ∈ C2(S(n))

can be represented explicitly as{
DXf(X) =

∑n
i=1

∑n
j=1 Dxij

f(X)Eij ∈ S(n),

D2
Xf(X) =

∑n
p=1

∑n
q=1

∑n
i=1

∑n
j=1 Dxpq

Dxij
f(X)Epq ⊗ Eij ∈ S(n) × S(n),

where ⊗ denotes the Kronecker product (see [4]). In general, for subsystems X1 =
(xpq)(p,q)∈Λ1

and X2 = (xij)(i,j)∈Λ2
of X, we define

DX1DX2f(X) =
∑

(p,q)∈Λ1

∑
(i,j)∈Λ2

DxpqDxijf(X)Epq ⊗ Eij ∈ S(n) ⊗ S(n).

The norms ‖DXf(X)‖ and ‖D2
Xf(X)‖ are induced by the trace form, i.e.,⎧⎨

⎩
‖DXf(X)‖ =

√∑n
i=1

∑n
j=1 |Dxij

f(X)|2,

‖D2
Xf(X)‖ =

√∑n
p=1

∑n
q=1

∑n
i=1

∑n
j=1 |DxpqDxijf(X)|2

.

For B ⊂ S(n) we use the following norms:{
‖f‖B = sup{|f(X)|, ‖DXf(X)‖, ‖D2

Xf(X)‖ : X ∈ B} for f ∈ C2(S(n)),

‖(f, h)‖B = max{‖f‖B , ‖hi‖B : 1 ≤ i ≤ �} for (f, h) ∈ F

and denote by FB the space F with ‖ · ‖B-topology. In general, given a normed
vector space V with its norm ‖ · ‖, we define a closed ball and an open ball by
Bδ(x) = {y ∈ V : ‖y − x‖ ≤ δ} and int(Bδ(x)) = {y ∈ V : ‖y − x‖ < δ} for x ∈ V
and a positive real number δ > 0.

Definition 2.5. Let (f, h) ∈ F . RDXh(X) =
∑�

i=1 RDXhi(X) denotes the
affine space spanned by {DXhi(X) : i = 1, . . . , �}. Then X̄ ∈ S+(n) is called a
stationary solution of program Pro(f, h) if −DXf(X̄) ∈ RDXh(X̄)+σ(X̄) holds. Also,
(X̄, Ḡ, λ̄) ∈ H × R� is called a stationary point of program Pro(f, h) if DXf(X̄) +∑�

i=1 λ̄iDXhi(X̄) + Ḡ = O holds. Identifying H × F with S(n) × F by ρ × IF ,

(Z̄, λ̄) ∈ S(n) × R� is also called a stationary point of program Pro(f, h) if (ρ(Z̄), λ̄)

is a stationary point of program Pro(f, h), i.e., if both DXf(Z+)+
∑�

i=1 λiDXhi(Z
+)+

Z− = O and h(Z+) = 0 hold, where 0 denotes the zero vector of R�.
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The following are some notations for the remainder of this paper. For (f, h) ∈ F ,
we define L(X,λ; f, h) : S(n) × R� → R, ψ(·, ·; f, h) : S(n) × R� → S(n) × R�,
Ω ⊂ S(n) × R� ×F , Ξ ⊂ S(n) ×F , and χ : Ω → Ξ as follows:

L(X,λ; f, h) = f(X) +

�∑
i=1

λihi(X),

ψ(Z, λ; f, h) = (DXL(Z+, λ; f, h) + Z−, DλL(Z+, λ; f, h))

=

(
DXf(Z+) +

�∑
i=1

λiDXhi(Z
+) + Z−, h(Z+)

)
,

Ω = {(Z, λ, f, h)∈S(n)×R�×F : (Z, λ) is a stationary point of Pro(f, h)}
= {(Z, λ, f, h) ∈ S(n) × R� ×F : ψ(Z, λ, f, h) = (O,0)},

Ξ = {(X, f, h) ∈ S(n) ×F : X is a stationary solution of Pro(f, h)},
χ(Z, λ, f, h) = (Z+, f, h), i.e., χ : Ω → Ξ is a natural projection.

Definition 2.6 (see [7], [9]). Let X̄ ∈ S+(n) be a stationary solution of
Pro(f̄ , h̄). X̄ is said to be strongly stable if there exist neighborhoods U = Bδ(X̄) of X̄
in S(n) and V of (f̄ , h̄) in FU such that the natural projection pr : Ξ

⋂
(U × V ) → V

is bijective and pr−1 : V → Ξ
⋂

(U × V ) is continuous at (f̄ , h̄).

We refer to the following condition as LICQ condition 2.7 since, under this con-
dition, each stationary solution corresponds to a unique stationary point and this
condition takes a role in programs Pro(f, h) just as LICQ condition does in the set-
ting of [9].

Condition 2.7.

(i) DXhi(X) (1 ≤ i ≤ �) are linearly independent.
(ii) TXN (h)+TXSr,0(n) = TXS(n) for X ∈ Sr,0(n)

⋂
N (h).

Remark 2.8 (see [14]). Under LICQ condition 2.7, it is known that X̄ is strongly
stable if and only if there exist neighborhoods U = Bδ(X̄) of X̄ in S(n) and V of (f̄ , h̄)
in FU such that the natural projection pr : Ξ

⋂
(U×V ) → V is a homeomorphism. In

fact, this is true for a more general condition that is called the Mangasarian–Fromovitz
condition.

Definition 2.9. Under LICQ condition 2.7, it is readily inferred that χ :
Ω
⋂

((ρ+)−1(U) × R� × FU ) → Ξ
⋂

(U × FU ) is a homeomorphism for any subset
U ⊂ S(n). We refer to (Z, λ) as a strongly stable stationary point of Pro(f, h) if and
only if Z+ is a strongly stable stationary solution of Pro(f, h).

We assume LICQ condition 2.7 throughout the remainder of this paper.

3. Map theoretic characterization of strong stability. This section reports
investigation of strong stability for programs Pro(f, h). Under LICQ condition 2.7,
we will characterize it from the point of view of one-to-one maps. We prepare two
lemmas for the proof of Theorem 3.4. In this section we use the notation Vδ(f, h;U) =
{(f ′, h′) ∈ F : ‖(f ′, h′) − (f, h)‖U < δ} for δ > 0 and U ⊂ S(n) and (f, h) ∈ F .

Lemma 3.1. Suppose that LICQ condition 2.7 holds. Let X̄
+ ∈ S+(n) and U be

a compact neighborhood of X̄ in S(n) and (f̄ , h̄) ∈ F . Suppose (X̄, λ̄) ∈ S(n)×R� is
a unique stationary point of Pro(f̄ , h̄) on (ρ+)−1(U) × R�; then, (*) holds.

(*) For any ε > 0, there exists δ > 0 such that

d(ψ((ρ+)−1(U)×R�\Bε((X̄, λ̄)); f, h), (O,0)) > δ for any (f, h) ∈ Vδ(f̄ , h̄;U).
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Proof. Suppose that statement (*) does not hold, which implies that there exist
ε > 0 and a sequence (f (k), h(k)) ∈ F such that{

limk→∞(f (k), h(k)) = (f̄ , h̄) ∈ FU , and

limk→∞ d(ψ((ρ+)−1(U) × R� \Bε((X̄, λ̄)); f (k), h(k)), (O,0)) = 0.

Therefore, there exists a sequence (X(k), λ(k)) ∈ (ρ+)−1(U) × R� \ Bε((X̄, λ̄)), (k =
1, 2, . . .), such that

lim
k→∞

ψ(X(k), λ(k); f (k), h(k)) = (O,0).

We first consider the case that {(X(k), λ(k)) : k = 1, 2, . . .} is bounded. We may

assume that limk→∞(X(k), λ(k)) converges, so let limk→∞(X(k), λ(k)) = (A, λ). Then
we can readily show (A, λ) ∈ (ρ+)−1(U) × R� \ int(Bε((X̄, λ̄))) and ψ(A, λ; f̄ , h̄) =
(O,0), which implies that (A, λ) is a stationary point of Pro(f̄ , h̄) and ‖(A, λ) −
(X̄, λ̄)‖ ≥ ε. Since (X̄, λ̄) ∈ S(n) × R� is a unique stationary point of Pro(f̄ , h̄) on
(ρ+)−1(U) × R�, we can deduce that (A, λ) = (X̄, λ̄). This contradicts ‖(A, λ) −
(X̄, λ̄)‖ ≥ ε.

Next, we consider the remaining case that {(X(k), λ(k)) : k = 1, 2, . . .} is not
bounded. In this remaining case one can derive a contradiction to LICQ condition
2.7 without difficulties.

The following corollary follows directly from Definition 2.6 and Lemma 3.1.
Corollary 3.2. Let (X̄, λ̄) ∈ S(n) be a stationary point of Pro(f̄ , h̄). Under

LICQ condition 2.7, (i) and (ii) are equivalent.
(i) (X̄, λ̄) is strongly stable.

(ii) There exist neighborhoods U = Bδ(X̄
+
) of X̄

+
in S(n) and V of (f̄ , h̄) in

FU such that the natural projection π : Ω
⋂

((ρ+)−1(U) × R� × V ) → V is
bijective.

Proof. (i)⇒(ii): Since X̄
+

is strongly stable, it follows from Definition 2.6 that
there exist real numbers δ > 0 and α > 0 such that Pro(f, h) has a unique stationary

solution in U = Bδ(X̄
+
) for all (f, h) ∈ Vα(f̄ , h̄;U). With the notice in Definition 2.9

in mind, this implies statement (ii).
(ii)⇒(i): Since π : Ω

⋂
((ρ+)−1(U) × R� × V ) → V is bijective, we can repre-

sent π−1(f, h) as π−1(f, h) = (X(f, h), λ(f, h), f, h) for any (f, h) ∈ V . Apparently,
(X(f, h), λ(f, h)) is a unique stationary point of Pro(f, h) on (ρ+)−1(U) × R� for
(f, h) ∈ V . Therefore, from Lemma 3.1, for any ε with 0 < ε ≤ δ, there exists δε > 0
such that

d(ψ((ρ+)−1(U)×R� \Bε((X̄, λ̄)); f, h), (O,0)) > δε for any (f, h) ∈ Vδε(f̄ , h̄;U) ⊂ V,

which implies that (X(f, h), λ(f, h)) ∈ Bε((X̄, λ̄)) for any (f, h) ∈ Vδε . This directly
implies that (X̄, λ̄) is strongly stable.

In proofs of the following lemma and theorem, we use the Brouwer’s invariance
theorem of domain (see [5]) which is now a standard method in deduction of equivalent
conditions for strong stability as treated in, for example, [11], [8], and [17] since Kojima
[9] successfully used it for the first time.

Lemma 3.3. Suppose that LICQ condition 2.7 holds. Let (f̄ , h̄) ∈ F and (X̄, λ̄) ∈
S(n)×R� be a stationary point of Pro(f̄ , h̄). Let U be a neighborhood of X̄

+
in S(n)
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and W be a neighborhood of (X̄, λ̄) in (ρ+)−1(U) × R�. Suppose V = {(f, h) ∈ F :
ψ(·, ·; f, h) is one-to-one on W} is a neighborhood of (f̄ , h̄) in FU . Then, there exists
δ > 0 such that, for any (f, h) ∈ Vδ(f̄ , h̄;U), the following (i) and (ii) hold.

(i) Pro(f, h) has a unique stationary point (X(f, h), λ(f, h)) in W .
(ii) (X(f, h), λ(f, h)) ∈ Bδ((X̄, λ̄)) ⊂ W .

Proof. Since ψ(·, ·; f̄ , h̄) is one-to-one on W0 = int(W ), it follows from Brouwer’s
invariance theorem of domain that ψ(W0; f̄ , h̄) is an open set in S(n) × R� which is
homeomorphic to W0. Therefore, there exists δ0 > 0 such that K = Bδ0((X̄, λ̄)) ⊂
W0. It is clear that δ0 = d(ψ(Bd(K); f̄ , h̄), (O,0)) > 0. Define r(f, h) = d(ψ(K; f, h),
(O,0)) for (f, h) ∈ V . Since ψ(X,λ; f, h) is continuous with respect to (X,λ, f, h) ∈
(ρ+)−1(U)×R�×FU and K is compact, r(f, h) is continuous with respect to (f, h) ∈
Vδ0 = Vδ0(f0, h0;U) in FU .

In fact, this can be proved as follows. Since K is compact, there exists α(f, h) ∈ K
such that ‖ψ(α(f, h); f, h)‖ = r(f, h). It can readily be proved that there exists a
constant M > 0 such that ‖ψ(X,λ; f, h) − ψ(X,λ; f ′, h′)‖ ≤ M‖(f, h) − (f ′, h′)‖ for
any (X,λ) ∈ K and any (f, h) ∈ Vδ0 . Therefore, r(f ′, h′) ≤ r(f, h) + M‖(f, h) −
(f ′, h′)‖ for any (f, h), (f ′, h′) ∈ Vδ0 . Similarly, r(f, h) ≤ r(f ′, h′) + M‖(f, h) −
(f ′, h′)‖ holds and we have proved |r(f ′, h′) − r(f, h)| ≤ M‖(f, h) − (f ′, h′)‖ for any
(f, h), (f ′, h′) ∈ Vδ0 .

Define r0(f, h) = d(ψ(Bd(K); f, h), (O,0)) for (f, h) ∈ V . Similarly, r0(f, h) is
continuous with respect to (f, h) ∈ FU . r(f̄ , h̄) = 0 follows from ψ(X̄, λ̄; f̄ , h̄) = (O,0)
and r0(f̄ , h̄) = δ0 > 0. From the continuity of r(·, ·) and r0(·, ·), there exists δ > 0 sat-
isfying 0 < δ ≤ δ0 such that r(f, h) < r0(f, h) holds ∀(f, h) ∈ Vδ = Vδ(f̄ , h̄;U). There-
fore, α(f, h) ∈ int(K) ⊂ W0 and ψ(α(f, h); f, h) ∈ int(ψ(K; f, h)) =
ψ(int(K); f, h)) holds for any (f, g) ∈ Vδ. Since it follows from ψ(α(f, h); f, h) ∈
int(ψ(K; f, h)) that r(f, h) = 0, it is implied that ψ(α(f, h); f, h) = (O,0) for any
(f, h) ∈ Vδ. Therefore, α(f, h) is a unique stationary point of Pro(f, h) in K for any
(f, h) ∈ Vδ. Since ψ(·, ·; f, h) is one-to-one on W , α(f, h) is a unique stationary point
of Pro(f, h) in W for any (f, h) ∈ Vδ.

The next theorem gives an equivalent condition for strong stability.

Theorem 3.4. Suppose that LICQ condition 2.7 holds. Let (f̄ , h̄) ∈ F and
(X̄, λ̄) ∈ S(n)×R� be a stationary point of Pro(f̄ , h̄). Then (i) and (ii) are equivalent.

(i) (X̄, λ̄) is strongly stable.

(ii) There exist neighborhoods U = Bδ∗(X̄
+
) of X̄

+
in S(n) and W = Bδ((X̄, λ̄))

of (X̄, λ̄) with W ⊂ (ρ+)−1(U) × R� satisfying the following two conditions.

(a) X̄
+

is a unique stationary solution in U for Pro(f̄ , h̄).
(b) V = {(f, h) ∈ F : ψ(·, ·; f, h) is one-to-one on W} is a neighborhood of

(f̄ , h̄) in FU .

Proof. (i)⇒(ii): From Definition 2.9 of strong stability, there exist neighbor-

hoods U = Bδ∗(X̄
+
) of X̄

+
in S(n) and V0 of (f̄ , h̄) in FU satisfying the natural

projection π : Ω
⋂

((ρ+)−1(U) × R� × V0) → V0 is a homeomorphism. Therefore,
Pro(f, h) has a unique stationary point on (ρ+)−1(U) × R� for any (f, h) ∈ V0. It is
clear that there exist δ1 > 0 and a neighborhood V1 ⊂ V0 of (f̄ , h̄) in FU satisfying
(f̄(X+) − A • X+, h̄(X+) − μ) ∈ V0 for any (A,μ, f, h) ∈ Bδ1((O,0)) × V1. Hence,
ψ(·, ·; f(X+)−A •X+, h(X+)−μ) has a unique stationary point on (ρ+)−1(U)×R�

for any (A,μ, f, h) ∈ Bδ1((O,0)) × V1. Therefore, there exists a unique (X,λ) ∈
(ρ+)−1(U) × R� such that ψ(X,λ; f(X+) − A • X+, h(X+) − μ) = (O,0). This
implies that, for any (A,μ, f, h) ∈ Bδ1((O,0)) × V1, there exists a unique (X,λ) ∈
(ρ+)−1(U) × R� such that ψ(X,λ; f, h) = (A,μ). Since ψ(·, ·; f, h) is continuous and



460 TOSHIHIRO MATSUMOTO

bijective from D(f, h) = {(X,λ) ∈ (ρ+)−1(U) × R� : ψ(X,λ; f, h) ∈ int(Bδ1((O,0))}
to int(Bδ1((O,0))), D(f, h) is homeomorphic to int(Bδ1((O,0))) by Brouwer’s in-
variance theorem of domain. Therefore, K(f, h) = {(X,λ) ∈ (ρ+)−1(U) × R� :
ψ(X,λ; f, h) ∈ B 1

2 δ1
((O,0))} is compact and homeomorphic to B 1

2 δ1
((O,0)) and

Bd(K(f, h)) = {(X,λ) ∈ (ρ+)−1(U) × R� : ‖ψ(X,λ; f, h)‖ = 1
2δ1}. We will prove

that there exists a neighborhood W of (X̄, λ̄) in S(n)×R� such that W ⊂
⋂
{K(f, h) :

(f, h) ∈ V1} in what follows. In fact, suppose the contrary, i.e., there exists a se-

quence (X(k), λ(k), f (k), h(k)) satisfying limk→∞(X(k), λ(k), f (k), h(k)) = (X̄, λ̄, f̄ , h̄)

and ‖ψ(X(k), λ(k); f (k), h(k))‖ > 1
2δ1. Taking the limit limk→∞ ‖ψ(X(k), λ(k); f (k),

h(k))‖ > 1
2δ1, make ‖ψ(X̄, λ̄; f̄ , h̄)‖ ≥ 1

2δ1, which leads to a contradiction, since

limk→∞ ψ(X(k), λ(k); f (k), h(k)) = ψ(X̄, λ̄; f̄ , h̄).
(ii)⇒(i): Since V = {(f, h) ∈ F : ψ(·, ·; f, h) is one-to-one on W} is a neigh-

borhood of (f̄ , h̄) in FU , it follows from Lemma 3.3 that there exists δ1 > 0 such
that{

Pro(f, h) has a unique stationary point (X(f, h), λ(f, h)) in W = Bδ((X̄, λ̄))
for any (f, h) ∈ Vδ1(f̄ , h̄;U).

From Lemma 3.1, there exists δ2 > 0 such that{
d(ψ((ρ+)−1(U) × R� \Bδ((X̄, λ̄)); f, h), (O,0)) > δ2

for any (f, h) ∈ Vδ2(f̄ , h̄;U).

Therefore, Pro(f̄ , h̄) has no stationary point in (ρ+)−1(U) × R� \ Bδ((X̄, λ̄)) =
(ρ+)−1(U)×R�\W for any (f, h) ∈ Vδ2(f̄ , h̄;U). Let δ3 = min{δ1, δ2}. Then Pro(f̄ , h̄)
has a unique stationary point in (ρ+)−1(U) × R� for any (f, h) ∈ Vδ3(f̄ , h̄;U), which
implies that (X̄, λ̄) is strongly stable from Corollary 3.2.

Remark 3.5. Since all proofs in this paper to deduce Theorem 3.4 are applicable
to those programs satisfying that χ : Ω → Ξ is bijective, Theorem 3.4 holds for such
programs.

4. Generalized Jacobian ∂Xρ+(X̄) and ∂Xρ−(X̄) and their eigenvalues.
In this section we prove that all eigenvalues of C+ ∈ ∂Xρ

+(X̄) and C− ∈ ∂Xρ
−(X̄) lie

in the interval between 0 and 1 on the real line, and we deduce an inclusion stated in
Lemma 4.15. We need both these facts to construct an analogous method for NSDP
to that of Kojima’s for NLP. The next fact is well known (see [18]).

Fact 4.1. Define ‖x‖ =
√∑n

i=1 |xi|2 for x = (x1, . . . , xn) ∈ Rn. Let C be a
convex closed subset in Rn. In that case, (i) and (ii) hold.

(i) There exists a unique a ∈ C, which is denoted by a(x), satisfying ‖x − a‖ =
inf{‖x− a‖ : a ∈ C}.

(ii) ‖a(x) − a(y)‖ ≤ ‖x− y‖ holds for any x, y ∈ Rn.
Definition 4.2. Let V1 and V2 be normed vector spaces with their norms denoted

by ‖·‖ and U be an open subset of V1. Then, a mapping f : U → V2 is called Lipschitz
continuous with its modulus M if there exists a constant M such that ‖f(x)−f(y)‖ ≤
M‖x− y‖ for any x, y ∈ U .

Fact 4.1 shows that ρ(X) = (ρ+(X), ρ−(X)) is Lipschitz continuous. Before we
state the next definition, we remark that any Lipschitz continuous map is differentiable
almost everywhere in the sense of Lebesgue measure by Rademacher’s theorem (see
[3]).

Definition 4.3 (see [2], [6]). Let U be an open set of Rn and f be a Lipschitz
continuous map from U to Rm. Let S be any set of Lebesgue measure 0 in Rn and
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Ef be the set of all points x ∈ U for which the Jacobian Dxf exists. Then, for x̄ ∈ U ,
the generalized Jacobian ∂xf(x̄) of f at x̄ is defined by

∂xf(x̄) = conv
{

lim
k→∞

Dxf(xk) : xk ∈ Ef \ S, (k = 1, 2, . . .), such that lim
k→∞

xk = x̄
}
.

It is known that this definition of the generalized Jacobian is independent of choice of
S. In case m = n, f is called nonsingular at x̄ if rankA = n for any A ∈ ∂xf(x̄), and
f is called singular at x̄ if f is not nonsingular at x̄.

Definition 4.4. Let A be an n × n real matrix whose eigenvalues are all real.
We denote the number of positive (zero, negative) eigenvalues of A by posi(A) (resp.,
zero(A), nega(A)). We define Type(A) = (posi(A), zero(A), nega(A)).

The proof of the next lemma is elementary, so we omit it.
Lemma 4.5. Let U be an open set of Rn and f be a Lipschitz continuous map

from U to Rn and x̄ ∈ U . Then, the following (i) and (ii) are equivalent.
(i) f is nonsingular at x̄.
(ii) sgn detA is nonzero and constant for A ∈ ∂xf(x̄).

Moreover, in the case that all eigenvalues of A are real for all A ∈ ∂xf(x̄), the above
(i), (ii), and the following (iii) are equivalent.

(iii) Type(A) = (posi(A), zero(A), nega(A)) is constant and zero(A) = 0 for
A ∈ ∂xf(x̄).

Remark 4.6. It is clear that Sr,n−r(n) is an open subset of S(n) and S∗(n) =⋃n
r=0 Sr,n−r(n) is a disjoint union and ρ+(Sr,n−r(n)) = Sr,0(n). Since Sr,0(n) is an

analytic submanifold of S(n) and ρ+|Sr,n−r(n) : Sr,n−r(n) → Sr,0(n) is the orthog-
onal projection, ρ+ is analytic on Sr,n−r(n) and therefore ρ+ is analytic on S∗(n).
Similarly, ρ− is also analytic on S∗(n).

Definition 4.7. We define the following notations for Lemma 4.8:

J+(α, β) =

⎧⎨
⎩

1, (α = β > 0),
α+−β+

α−β , (α = β)

0, (α = β < 0),

and J−(α, β) =

⎧⎨
⎩

0, (α = β > 0),
α−−β−

α−β , (α = β),

1, (α = β < 0).

We have DXρ
+(X) of more explicit form in the next lemma. It shows that

DXρ
+(X) and DXρ

−(X) are nonnegative diagonal tensors at their differentiable
points.

Lemma 4.8. Let X ∈ S∗(n) and represent X = PΓPT , where P ∈ O(n) and
Γ = Diag(γ1, . . . , γn) ∈ D∗(n). Then

(1) DXρ
+(X) =

∑
k:γk>0 PEkkP

T ⊗ PEkkP
T

+
∑

1≤i<j≤n J
+(γi, γj)P

(
Eij + Eji√

2

)
PT ⊗ P

(
Eij + Eji√

2

)
PT .

(2) DXρ
−(X) =

∑
k:γk<0 PEkkP

T ⊗ PEkkP
T

+
∑

1≤i<j≤n J
−(γi, γj)P

(
Eij + Eji√

2

)
PT ⊗ P

(
Eij + Eji√

2

)
PT .

Moreover, DXρ
+(X) + DXρ

−(X) = IS(n) holds.

Proof. Before addressing the proof, we remark that EijEpq =
{
Eiq, (j = p),
O, (j 
= p). Let

X = PΓPT with P ∈ O(n) and Γ = Diag(γ1, . . . , γn) ∈ D(n). For T = (tij) =∑n
i=1

∑n
j=1 tijEij ∈ S(n), define
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⎧⎪⎨
⎪⎩

〈T 〉 =
∑

1≤i<j≤n tij(Eij − Eji),

[T ] =
∑n

k=1 tkkEkk,

Θ(T ) = Pe−〈T〉(Γ + [T ])e〈T〉PT .

By a simple calculation, we have⎧⎨
⎩

DtijΘ(O) = P (−(Eij − Eji)Γ + Γ(Eij − Eji))P
T

= (γi − γj)P (Eij + Eji)P
T , (1 ≤ i < j ≤ n),

Dtkk
Θ(O) = PEkkP

T , (k = 1, 2, . . . , n).

Therefore, since
{
Ekk,

Eij+Eji√
2

: 1 ≤ k ≤ n, 1 ≤ i < j ≤ n
}

is an orthonormal basis

of S(n), we have

DTΘ(O) =

n∑
k=1

PEkkP
T ⊗Ekk +

∑
1≤i<j≤n

(γi−γj)P

(
Eij + Eji√

2

)
PT ⊗

(
Eij + Eji√

2

)
.

This equation shows that DTΘ(O) is a diagonal tensor in S(n) ⊗ S(n); also, when
γi = γj , (∀i = ∀j), DTΘ(O) is nonsingular. In fact,

(DT (O))−1 =

n∑
k=1

Ekk ⊗ PEkkP
T +

∑
1≤i<j≤n

(γi − γj)
−1

×
(
Eij + Eji√

2

)
⊗ P

(
Eij + Eji√

2

)
PT .

Therefore, Θ : S(n) � T �→ Θ(T ) ∈ S(n) is a diffeomorphism from a neighborhood of
O to a neighborhood of X in the case γi = γj , (∀i = ∀j). Since 〈T 〉 is skew symmetric,
e〈T〉 is an orthogonal matrix. Define Θ+(T ) as the positive semidefinite part of Θ(T );
it is calculated explicitly as

Θ+(T ) = Θ(T )+ = (Pe−〈T〉(Γ + [T ])e〈T〉PT )+ = Pe−〈T〉(Γ + [T ])+e〈T〉PT .

When X is nonsingular, i.e., γk = 0, (∀k), it is readily shown that there exists a δ > 0
such that (Γ + [T ])+ =

∑
k:γk>0(γkk + tkk)Ekk for any T with ‖T‖ < δ. From this

equation, we can easily show that (Γ + [T ])+ is differentiable with respect to T at O
and that its derivative is

Dtkk
(Γ + [T ])+ =

{
Ekk, (γk > 0),
O, (γk < 0).

Therefore, when X is nonsingular, Θ+(T ) is differentiable with respect to T at O,
and

DTΘ+(0) =
∑

k:γk>0

PEkkP
T ⊗ Ekk +

∑
1≤i<j≤n

(γ+
i − γ+

j )

×P

(
Eij + Eji√

2

)
PT ⊗

(
Eij + Eji√

2

)
.

From these equations above, we can deduce that ρ+(X) is differentiable in the
case γi = γj , (∀i = ∀j) and that its derivative is calculated as
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DXρ
+(X) = DTΘ+(O)(DTΘ(O))−1

=
∑

k:γk>0

PEkkP
T ⊗ PEkkP

T

+
∑

1≤i<j≤n

γ+
i − γ+

j

γi − γj
P

(
Eij + Eji√

2

)
PT ⊗ P

(
Eij + Eji√

2

)
PT .

From Remark 4.6, we can directly deduce the equation for DXρ
+(X) in this lemma.

Similarly, we can deduce the equation for DXρ
−(X). The relation DXρ

+(X) +
DXρ

−(X) = IS(n) holds clearly since ρ+(X) + ρ−(X) = X.
Definition 4.9. Let X ∈ S(n). Then, we define G(X) = {P ∈ O(n) : X =

PXPT }.
We omit proof of the next lemma since it is rudimentary.

Lemma 4.10. Let α, β ∈ R. Define J(α, β) = {(limk→∞
α+

k
−β+

k

αk−βk
, limk→∞

α−
k
−β−

k

αk−βk
)

∈ R2 : αk, βk, (k = 1, 2, . . .) with αk = βk, (k = 1, 2, . . .) and limk→∞ αk = α, limk→∞

βk = β}. Then J(α, β) =
{

{(s, t) : s ≥ 0, t ≥ 0, s + t = 1}, (α = β = 0),

{(J+(α, β), J−(α, β))}, (otherwise).

Since the next lemma follows readily from Lemma 4.8 and Definition 4.3, we omit
its proof.

Lemma 4.11. X̄ = P̄Diag(γ̄1, . . . , γ̄n)P̄
T ∈ Sr,s(n) with P̄ ∈ O(n) and γ̄1 ≥

· · · ≥ γ̄n. Let X(k) = P (k)Γ(k)P (k)T ∈ Sd,n−d(n), (k = 1, 2, . . .), where P (k) ∈ O(n)

and Γ(k) = Diag(γ
(k)
1 , . . . , γ

(k)
n ) with γ

(k)
1 > · · · > γ

(k)
n , i.e., γ

(k)
1 > · · · > γ

(k)
d > 0 >

γ
(k)
d+1 > · · · > γ

(k)
n . Suppose that⎧⎪⎪⎨

⎪⎪⎩
limk→∞ X(k) = X̄,

limk→∞ P (k) = Q,

limk→∞ DXρ
+(X(k)) = C+,

limk→∞ DXρ
−(X(k)) = C−.

Then ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

QP̄
T ∈ G(X̄),

C+ =
∑n

k=1 skkQEkkQ
T ⊗QEkkQ

T

+
∑

1≤i<j≤n sijQ

(
Eij + Eji√

2

)
QT ⊗Q

(
Eij + Eji√

2

)
QT ,

C− =
∑n

k=1 tkkQEkkQ
T ⊗QEkkQ

T

+
∑

1≤i<j≤n tijQ

(
Eij + Eji√

2

)
QT ⊗Q

(
Eij + Eji√

2

)
QT ,

where ⎧⎨
⎩

(skk, tkk) = (1, 0), (1 ≤ ∀i ≤ d),
(skk, tkk) = (0, 1), (d + 1 ≤ ∀i ≤ n),
(sij , tij) ∈ J(γ̄i, γ̄j), (∀i,∀j : i = j).

Definition 4.12. Let A ∈ S(n). Then we denote by V (A;> 0) (resp., V (A;≥
0), V (A;< 0), V (A;≤ 0), V (A; = 0)) the space spanned by the eigenvectors of A
whose eigenvalues are positive (resp., nonnegative, negative, nonpositive, zero). By
inspection, Rn = V (A;> 0) ⊕ V (A; = 0) ⊕ V (A;< 0) holds. We also use these
conventions for symmetric real tensors, for example, C+ and C− of C ∈ ∂Xρ(X̄).
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The next proposition is proved directly, and immediately from it we can deduce
that all eigenvalues of C+ ∈ ∂Xρ

+(X̄) and C− ∈ ∂Xρ
−(X̄) lie in the interval between

0 and 1 on the real line.
Proposition 4.13. Let X̄ = P̄Diag(γ̄1, . . . , γ̄n)P̄

T
with P̄ ∈ O(n) and γ̄ =

(γ̄1, . . . , γ̄n). Then, the following statements hold.
(i) C+ and C− are positive semidefinite symmetric real tensors of EndR(S(n)) =

S(n) ⊗ S(n) for any C = (C+, C−) ∈ ∂Xρ(X̄).
(ii) S(n) = V (C+;> 0) ⊕ V (C+; = 0) holds for any C = (C+, C−) ∈ ∂Xρ(X̄).
(iii) C+ + C− = IS(n) holds for any C ∈ ∂Xρ(X̄).
(iv) C+ and C− are commutative, i.e., C+C− = C−C+ for any C = (C+, C−)∈

∂Xρ(X̄).
(v) C+ and C− are simultaneously diagonalized for any C = (C+, C−)∈ ∂Xρ(X̄).
Proof. Parts (i), (ii), and (iii) are inferred without difficulties. We will prove (iv)

first. Since C+ + C− = IS(n), C− is a polynomial of C+, which implies that C+

and C− commute to each other, i.e., that C+C− = C−C+ holds. In fact, C+C− =
C+(IS(n) − C+) = (IS(n) − C+)C+ = C−C+. Since C+ and C− are commutative,
(v) follows immediately.

Remark 4.14. Through the remainder of this paper, we often identify an element
of S(n)⊗S(n) with one of EndR(S(n)) by the canonical isomorphism from S(n)⊗S(n)
to EndR(S(n)), A ⊗ B �→ (X �→ A(B • X)). Hence, we often consider C+, C− ∈
EndR(S(n)). From this viewpoint, the commutativity of C+ and C− implies that any
eigenspace of C+ is an invariant space of both C+ and C−. For example, C+(V (C+;>
0)) = V (C+;> 0), C+(V (C+; 0)) = V (C+; = 0), C−(V (C+;> 0)) = V (C+;>
0), C−(V (C+; = 0)) = V (C+; = 0).

As stated in section 2, we consider T X̄S(n) = T X̄+S(n) = S(n) canonically in
the next lemma. The inclusion T X̄+Sr,0(n) ⊂ V (C+;> 0) of this lemma takes an
important role in deducing part (i) of Lemma 5.6.

Lemma 4.15. Let X̄ ∈ S(n) and X̄
+ ∈ Sr,0(n). Then, V (C+;> 0) ⊃ T X̄+Sr,0(n)

for any C = (C+, C−) ∈ ∂Xρ(X̄).

Proof. Suppose that X̄ = P̄ Diag(γ̄1, . . . , γ̄n)P̄
T

with γ̄1 = · · · = γ̄k1
> γ̄k1+1 =

· · · = γ̄k2 > γ̄k2+1 = · · · , etc., · · · = γkν−1 > γ̄kν−1+1(= 0) = · · · = γ̄kν > γ̄kν+1 =
· · · , etc., · · · = γ̄ks−1 > γ̄ks−1+1 = · · · = γ̄n. Then

G(X̄) = P̄ (O(k1) ×O(k2 − k1) × · · · ×O(ks−1 − ks−2) ×O(n− ks−1))P̄
T

⊂ P̄ (O(r) ×O(n− r))P̄
T
.

Since

TX̄+Sr,0(n) = P̄

{(
Ẏ 11 Ẏ

T

21

Ẏ 21 O

)
: Ẏ 11 ∈ S(r), Ẏ 21 ∈ M(n− r, r)

}
P̄

T

from Fact 2.3, we can infer

G(T X̄+Sr,0(n))GT = T X̄+Sr,0(n) for all G ∈ G(X̄) ⊂ P̄ (O(r) ×O(n− r))P̄
T
.

Suppose that limk→∞ Xk = X̄ and C+ = limk→∞ DXρ
+(Xk) ∈ ∂Xρ

+(X̄). Then
Lemma 4.11 shows that

C+ =

n∑
k=1

skkQEkkQ
T ⊗QEkkQ

T

+
∑

1≤i<j≤n

sijQ

(
Eij + Eji√

2

)
QT ⊗Q

(
Eij + Eji√

2

)
QT ,
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with

QPT ∈ G(X̄) and

{
skk > 0, (γ̄k > 0),
sij > 0, (i = j and (γ̄i > 0 or γ̄j > 0)).

Therefore,

V (C+;> 0) ⊃ Q

{(
Ẏ 11 Ẏ

T

21

Ẏ 21 O

)
: Ẏ 11 ∈ S(r), Ẏ 21 ∈ M(n− r, r)

}
QT

= P̄

{(
Ẏ 11 Ẏ

T

21

Ẏ 21 O

)
: Ẏ 11 ∈ S(r), Ẏ 21 ∈ M(n− r, r)

}
P̄

T

= TX̄+Sr,0(n).

Since ∂Xρ
+(X) is the convex hull of the set of such C+’s of above type, Lemma 4.15

follows.

5. Construction of an analogue of Kojima’s method and the essential
difference between NSDP and NLP. In this section we construct an analogue
for NSDP to Kojima’s method for NLP and we make clear the essential difference
between NSDP and NLP. For those NSDP that do not have this difference, we can
deduce an algebraic condition equivalent to strong stability for them under LICQ
condition 2.7 exactly similar to classical cases of [9].

Definition 5.1. Let C = (C+, C−) ∈ ∂ρ(X). Define C++ : V (C+;> 0) →
V (C+;> 0) to be the restriction C+ to V (C+;> 0). C+− : V (C+; = 0) → V (C+; = 0)
to be the restriction C+ to V (C+; = 0). Define C−+ : V (C+;> 0) → V (C+;> 0) to
be the restriction C− to V (C+;> 0). Define C−− : V (C+; = 0) → V (C+; = 0) to be
the restriction C− to V (C+; = 0).

Remark 5.2.

(i) It follows from C+− = O that C−− = IV (C+;>0). Then, from Remark 4.14,
we can write C+ and C− as

⎧⎪⎪⎨
⎪⎪⎩

C+ =

(
C++ O
O C+−

)
=

(
C++ O
O O

)
,

C− =

(
C−+ O
O C−−

)
=

(
C−+ O
O I

)

and we have⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

D2
XL(X+, λ; f, h) =

(
D2

X1
L(X+, λ; f, h) DX1DX2L(X+, λ; f, h)

DX2DX1L(X+, λ; f, h) D2
X2

L(X+, λ; f, h)

)
,

D2
XL(X+, λ; f, h)C+ + C− =

(
D2

X1
L(X+, λ; f, h)C++ + C−+ O (DX1h(X+))T

DX2
DX1

L(X+, λ; f, h)C++ I (DX2
h(X+))T

)
,

DXh(X+)C+ = (DX1h(X+)C++ O ) .

(ii) By chain rule of generalized Jacobian (see [8]), we have

∂(X,λ)ψ(X,λ; f, h) =

{(
D2

XL(X+, λ; f, h)C+ + C− (DXh(X+))T

DXh(X+)C+ O

)
: C ∈ ∂Xρ(X)

}
.

Lemma 5.3. The following (i), (ii), and (iii) hold.
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(i) Let A ∈ S(n) and A = (a1, a2, . . . , an) be the representation by column vectors
a1, a2, . . . , an of A. Let t1, . . . , tn ≥ 0 and t = (t1, t2, . . . , tn) and A(t) =
(t1a1, t2a2, . . . , tnan). Then all eigenvalues of A(t) are real. Moreover, if
t1, . . . , tn > 0, then Type(A(t)) = Type(A).

(ii) Let A ∈ S(n) and B ∈ S+(n). Then all eigenvalues of AB are real. Moreover,
if B ∈ S++(n), then Type(A) = Type(AB).

(iii) Let A,C ∈ S(n) and B ∈ S+(n) with B + C = I. Then all eigenvalues of
AB + C are real.

Proof. (i): Let T = Diag(t) = Diag(t1, . . . , tn). Then A(t) = AT holds. Let S =√
T = Diag(

√
t1,

√
t2, . . . ,

√
tn). Suppose that t1, . . . , tn > 0. Then S is nonsingular

and A(t) = S−1(SAST )S. Since SAST is a symmetric real matrix and since A(t) =
S−1(SAST )S and SAST are similar, their characteristic polynomials are consistent;
therefore, their eigenvalues are all real and Type(A(t)) = Type(SAST ) = Type(A).

In case t1, . . . , tn ≥ 0, let ε > 0 and tε = (t1 + ε, . . . , tn + ε) and T ε = Diag(tε) =
Diag(t1 + ε, . . . , tn + ε) and A(tε) = AT ε. It follows from the former result that
all eigenvalues of A(tε) are real. Therefore, all eigenvalues of A(t) are real since
A(t) = limε→+0 A(tε).

(ii): We represent B as b = PΓPT with P ∈ O(n) and Γ = Diag(γ1, . . . , γn) ∈
D(n). From B ∈ S+(n), it follows that γi ≥ 0, (∀i), holds. Since det(tI − (AB)) =
det(tI − (PTAP )Γ), part (ii) follows from part (i) of this lemma.

(iii): By part (ii), (A − I)B has real eigenvalues, and hence, so does B + C =
(A− I)B + I.

The next proposition indicates that ψ has an advantageous property that Kojima
function does not have.

Proposition 5.4. All eigenvalues of A are real for any A ∈ ∂(X,λ)ψ(X,λ; f, h).
Proof. We can represent A as

A =

(
D2

XL(X+, λ; f, h) (DXh(X+))T

DXh(X+) O

)(
C+ O
O I

)
+

(
C− O
O O

)
.

Therefore, this proposition follows from Proposition 4.13 and Lemma 5.3.
For the remainder of this paper we treat the case that C = (C+, C−) ∈ ∂ρ(X̄)

and (X̄, λ̄) ∈ S(n) × R� is a stationary point of Pro(f̄ , h̄).
Definition 5.5. Let W1(C+, h̄) = V (C+;> 0)

⋂
T X̄+N (h̄) and W2(C+, h̄) be

the vector subspace of V (C+;> 0) such that V (C+;> 0) = W1(C+, h̄) ⊕ W2(C+, h̄)
and W1(C+, h̄) ⊥ W2(C+, h̄), i.e., w1 •w2 = 0, (∀w1 ∈W1(C+, h̄),∀w2 ∈W2(C+, h̄)).
Then, S(n) = V (C+;> 0)⊕V (C+; = 0) = W1(C+, h̄)⊕W2(C+, h̄)⊕V (C+; = 0). Let
Y 11 and Y 12 be bases of W1(C+, h̄) and W2(C+, h̄), respectively. Let Y 1 = (Y 11, Y 12)
and let Y 2 be a basis of V (C+; = 0) as a vector subspace of S(n). Therefore, Y =
(Y 1, Y 2) = (Y 11, Y 12, Y 2) is a basis of S(n) as a vector space. With respect to the
basis Y 1 = (Y 11, Y 12) of V (C+;> 0) = W1(C+, h̄) ⊕W2(C+, h̄), we represent⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

C++ =

(
C++11 C++12

C++21 C++22

)
,

C−+ =

(
C−+11 C−+12

C−+21 C−+22

)
,

C−+C
−1
++ =

(
M11 M12

M21 M22

)
.

By identification of T X̄+S(n) = S(n), we assume that X = X̄
+

+ Y is a coordinate

system of S(n) around X̄
+
. In the remainder of this paper, we use the following
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notations of coordinate systems around X̄
+
:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
X11 = X̄

+
+ Y 11,

X12 = X̄
+

+ Y 12,

X1 = (X11, X12) = X̄
+

+ Y 1,

X2 = X̄
+

+ Y 2

and the notations of derivatives⎧⎪⎪⎨
⎪⎪⎩

T = T (C; X̄, λ̄, f̄ , h̄)

= D2
X1

L(X̄
+
, λ̄; f̄ , h̄) + C−+C

−1
++,

T ij = T ij(C; X̄, λ̄, f̄ , h̄)

= DX1iDX1jL(X̄
+
, λ̄; f̄ , h̄) + M ij , (∀i,∀j = 1, 2).

Lemma 5.6. Suppose that LICQ condition 2.7 holds. Let (X̄, λ̄, f̄ , h̄) ∈ S(n) ×
R� ×F . Let A ∈ ∂(X,λ)ψ(X̄, λ̄; f̄ , h̄) and represent A as

A =

(
D2

XL(X̄
+
, λ̄; f̄ , h̄)C+ + C− (DX h̄(X̄

+
))T

DX h̄(X̄
+
)C+ O

)

with C = (C+, C−) ∈ ∂Xρ(X̄).
Then, (i) and (ii) hold.

(i) rankDX1 h̄(X̄
+
) = �.

(ii) sgn detA = (−1)�sgn detT 11(C; X̄, λ̄, f̄ , h̄).

Proof. (i): Let X̄
+ ∈ Sr,0(n). Let Y 3 be a basis of T X̄+Sr,0(n) as a vector subspace

of S(n) and define X3 = X̄
+

+ Y 3. It is readily deduced that rankDX3 h̄(X̄
+
) = �

from (ii) of LICQ condition 2.7. Since V (C+;> 0) ⊃ T X̄+Sr,0(n) from Lemma 4.15,

it is directly proved that rankDX1 h̄(X̄
+
) = �.

(ii): Let W1(C+, h̄) and W2(C+, h̄) be the vector subspaces of S(n) defined in

Definition 5.5. From rankX1 h̄(X̄
+
) = �, it follows that dimW2(C+, h̄) = �. It is

also readily inferred that DX11 h̄(X̄
+
) = O and G = DX12 h̄(X̄

+
) is a nonsingular

matrix of degree �. With Remark 5.2 in mind, a simple calculation leads to detA =
(−1)�(detG)2det(C++)−1detT 11 and we have sgn detA = (−1)�sgn
detT 11.

Definition 5.7. Let U be an open subset of Rn and F : U → Rn be a continuous
map with x̄ ∈ U . Take δ > 0 such that Bδ(x̄) ⊂ U . It is well known from the homology
theory that there exists a canonical identification Hn(Bδ(x̄;Z), Bδ(x̄;Z)\{x̄};Z) = Z,
where Z denotes the ring of integers. The theory asserts that F induces the morphism
of homology groups: F∗ : Z = Hn(Bδ(x̄;Z)) → Hn(Bδ(F (x̄);Z)) = Z. It is well
known that this morphism F∗ is independent on the choice of δ > 0. Then, the
Brouwer’s degree deg(x̄;F ) of the map F around x̄ is defined as deg(x̄;F ) = F∗(1) ∈
Z.

Remark 5.8 ([15]). We use the following properties of deg(·; ·).
(1) When F is a local homeomorphism around x̄, deg(x̄, F ) = F∗(1) = ±1 since

F∗ : Z → Z is an isomorphism of the abelian group Z. For example, when F is
one-to-one around x̄, deg(x̄;F ) = ±1 holds since F is a local homeomorphism
around x̄ by the Brouwer’s invariance theorem of domain.

(2) Homotopy property: Let I = {t ∈ R : 0 ≤ t ≤ 1} and Ft : U × I →
Rn; (x, t) �→ Ft(x) be continuous. Then deg(x̄;F0) = deg(x̄;F1) holds.
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(3) It follows from (2) that deg(x;F ) is locally constant as the function of x.
(4) Suppose that F is differentiable around x̄. Then, deg(x̄;F ) = sgn detDxF (x̄)

holds.
We prove a necessary condition for strong stability in the following proposition,

where we denote deg(X,λ; f, h) = deg((X,λ);ψ(·, ·; f, h)).
Proposition 5.9. Suppose that LICQ condition 2.7 holds. Let (X̄, λ̄) be a

stationary point for Pro(f̄ , h̄) and that (X̄, λ̄) is a strongly stable stationary point for
Pro(f̄ , h̄). Then sgn det(A) = deg(X̄, λ̄; f̄ , h̄) for any A ∈ ex(∂(X,λ)ψ(X̄, λ̄; f̄ , h̄)).

Proof. Theorem 3.4 asserts that there exist neighborhoods U = Bδ∗(X̄
+
) of

X̄
+

in S(n) and W = Bδ((X̄, λ̄)) of (X̄, λ̄) with W ⊂ (ρ+)−1(U) × R� such that
V = {(f, h) ∈ F : ψ(·, ·; f, h) is one-to-one on W} is a neighborhood of (f̄ , h̄) in FU .
Therefore, from Remark 5.8, we may assume that

s = deg(X,λ; f, h) is nonzero and constant for (X,λ, f, h) ∈ W × V.(1)

We can deduce a contradiction against value s of degree through exactly the same

procedure used by Kojima in [9]. Let s = deg(X̄, λ̄; f̄ , h̄) and s̄ =
{

−1, (s = 1).
1, (s = −1).

Suppose that there exists an element A ∈ ex(∂(X,λ)ψ(X̄, λ̄; f̄ , h̄)) such that
sgn det(A) = t with t = s, i.e., t = 0 or t = s̄. Represent A as

A =
(

D2
XL(X̄+, λ̄; f̄ , h̄)C+ + C− (DX h̄(X̄+))T

DX h̄(X̄+)C+ O

)
for some C ∈ ∂(X,λ)ρ(X̄). Then C =

(C+, C−) ∈ ex(∂Xρ(X̄)) follows from A ∈ ex(∂(X,λ)ψ(X̄, λ̄; f̄ , h̄)). We use the same
symbols T 11, M11, W1 = W1(C+, h̄), and W2 = W2(C+, h̄) as in the proof of
Lemma 5.6, which implies that sgn detA = (−1)�sgn detT 11 holds. Therefore,
sgn detT 11 = (−1)�t. It is readily inferred from definitions of X11 and X12 that

DX11 h̄(X̄
+
) = O and that DX12 h̄(X̄

+
) is a nonsingular matrix of degree �. With-

out difficulties, it can be proved that there exist ε0 > 0 and B11 ∈ EndR(W1) =
W1 ⊗ W1 such that T 11(ε) = T 11 + εB11 satisfies that sgn detT 11(ε) = (−1)�s̄ for
any 0 < ∀ε < ε0. Let fε(X) = f̄(X) + εXT

11B11X11. Simple calculation shows that

A(ε) =
(

D2
XL(X̄+, λ̄; fε, h̄)C+ + C− (DX h̄(X̄+))T

DX h̄(X̄+)C+ O

)
∈ ∂(X,λ)ψ(X̄, λ̄; fε, h̄). It is readily

inferred that {
T 11 = D2

X11
L(X̄

+
, λ̄; f̄ , h̄) + M11,

T 11(ε) = D2
X11

L(X̄
+
, λ̄; fε, h̄) + M11.

Therefore, it follows from Lemma 5.6 that sgn detA(ε) = (−1)�sgn detT 11(ε) =
s̄ = 0. Since C = (C+, C−) is an extremal element of ∂Xρ(X̄), there exists a se-

quence X(k), (k = 1, 2, . . .), such that limk→∞ X(k) = X̄ and limk→∞ DXρ(X
(k)) =

C. Since limk→∞ DXψ(X(k), λ̄; fε, h̄) = A(ε) and sgn detA(ε) = s̄ = 0, we have

limk→∞ sgn detDXψ(X(k), λ̄; fε, h̄) = s̄. Especially for large k, we may assume that

sgn detDXψ(X(k), λ̄; fε, h̄) = s̄, which implies that deg(X(k), λ̄; fε, h̄) = s̄ by Remark
5.8. This result contradicts (1).

We prepare some notations for the implicit function theorem 5.11.
Definition 5.10 (see [6]). Let U be a bounded open subset of Rn. We denote

by Lip(U) the set of all Lipschitz continuous map from U to Rn. For F ∈ Lip(U),
we define {

Lip(F ) = inf{c : ‖F (x) − F (y)‖ ≤ c‖x− y‖ for all x, y ∈ U},
‖F‖Lip = supx∈U max{‖F (x)‖, Lip(F )},
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where ‖ · ‖ denotes the Euclidean norm on Rn. We consider Lip(U) to be a normed
vector space with its norm ‖ · ‖Lip. For example, int(Bμ(F )) = {G ∈ Lip(U) :
‖F −G‖Lip < μ}.

The next implicit function theorem proved by Jongen, Klatte, and Tammer is
important, which we need for the proof of implication (i) from (ii) in Theorem 5.14.

Theorem 5.11 (implicit function theorem, see [6]). Let U be a nonempty open
bounded subset of Rn, let F ∈ Lip(U), and let x̄ ∈ U be a point satisfying F (x̄) = 0.
Suppose that ∂xF (x̄) is nonsingular. Then there exist positive real numbers ν, μ and
γ such that the following holds:

(i) For each G ∈ int(Bμ(F )), B 1
2ν

(x̄) contains a solution x(G) of G(x) = 0 which

is unique in int(Bν(x̄)).
(ii) The map G �→ x(G) satisfies a Lipschitz condition on int(Bμ(F )) with its

modulus γ, i.e., if G1, G2 ∈ int(Bμ(F )), then ‖x(G1) − x(G2)‖ ≤ γ‖G1 −
G2‖Lip.

We introduce the following condition. This condition always holds for classical
programs NLP as showed in Theorem 3.1 of [6]. For NSDP, this condition seems not
to hold in general as inferred by Remark 5.13.

Condition 5.12. If sgn det A = s = 0 for any A ∈ ex(∂(X,λ)ψ(X̄, λ̄; f̄ , h̄)), then
sgn det A = s for any A ∈ ∂(X,λ)ψ(X̄, λ̄; f̄ , h̄).

Remark 5.13. We consider the example 2.2 of [11] with concrete vectors of
ai and bi. Let u(θ) = (cos θ, sin θ) ∈ R2 and a1 = u(0), a2 = u

(
π
4

)
, a3 =

u
(
π
2

)
, a4 = u

(
2
3π

)
, a5 = u

(
3
4π

)
, a6 = u

(
3
2π

)
, bi = ai for i = 1, 2 bi = −ai

for i = 4, 5, and b6 = u
(

11
6 π

)
. Let F : R2 → R2 be a homeomorphic piecewise

linear map that is defined by condition F (ai) = bi, (i = 1, 2, . . . , 6). Then, for the

zero o of R2, ex(∂xF (0)) =
{
G1 =

(
1 0
0 1

)
, G2 =

(
2 −1
1 0

)
, G3 =

(
−1 −

√
3 −1√

3 0

)
,

G4 =
(

−1 0
0 −1

)
, G5 =

(
−1 −

√
3

2 − 3
2

3
2

1
2

)
, G6 =

(
1 −

√
3

2

0 1
2

)}
. Simple calculation shows

that det (Gi) > 0, (i = 1, 2, . . . , 6) and det
(

2
5G4 + 3

5G6

)
= − 1

50 < 0.

For those NSDP to which Condition 5.12 holds, the following theorem proposes

an algebraic criterion for strong stability in terms of Jacobian DXh(X̄
+
) and Hessian

D2
XL(X̄

+
, λ̄; f̄ , h̄).

Theorem 5.14. Suppose that LICQ condition 2.7 holds. Let (X̄, λ̄) be a station-
ary point for Pro(f̄ , h̄). Suppose that Condition 5.12 holds for ψ at (X̄, λ̄). Then the
following (i)–(v) are equivalent.

(i) X̄
+

is a strongly stable stationary solution for Pro(f̄ , h̄).
(ii) ψ(X,λ; f̄ , h̄) is nonsingular at (X̄, λ̄).
(iii) sgn detA is nonzero and constant for any A ∈ ∂(X,λ)ψ(X̄, λ̄; f̄ , h̄).
(iv) Type(A) is constant and zero(A) = 0 for any A ∈ ∂(X,λ)ψ(X̄, λ̄; f̄ , h̄).
(v) sgn detT 11(C; X̄, λ̄, f̄ , h̄) is nonzero and constant for any C ∈ ∂Xρ(X̄).

Proof. Equivalence between (ii), (iii), and (iv) is readily deduced by Lemma 4.5;
equivalence between (iii) and (v) is directly deduced from Lemma 5.6. The implication
of (i) from (ii) is clear from the implicit function theorem 5.11. The implication of
(iii) from (i) is deduced from Proposition 5.9 and the assumption that Condition 5.12
holds at (X̄, λ̄).

Definition 5.15. Suppose that LICQ condition 2.7 holds. Let (X̄, λ̄) be a sta-
tionary point for Pro(f̄ , h̄). Suppose that Condition 5.12 holds at (X̄, λ̄). Then we can

define the stationary index s.index(X̄
+
; f̄ , h̄) after Kojima [9] by s.index(X̄

+
; f̄ , h̄)

= nega(T 11(C; X̄, λ̄, f̄ , h̄)). We remark that this definition is independent of choice of
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C ∈ ∂Xρ(X̄); therefore, it is also independent of A ∈ ∂(X,λ)ψ(X̄, λ̄; f̄ , h̄) from Lemma
4.5.

Remark 5.16. Theorem 5.14 for NSDP corresponds to Corollary 4.3 in [9] for NLP.
It shows that we have similar results as in [9] for those NSDP to which Condition 5.12
holds. Therefore, we could understand that the essential difference between NSDP
and NLP lies in Condition 5.12.

6. Conclusions. We investigated strong stability, in the sense of Kojima, of
stationary solutions of nonlinear positive semidefinite programs NSDP. In Theorem 3.4
we give a characterization of stability from the point of view of one-to-one maps under
LICQ condition 2.7. In sections 4 and 5 we construct a method for NSDP analogous
to Kojima’s method for classical nonlinear programs NLP, and from the construction
we make clear the essential difference between NSDP and NLP. In Theorem 5.14 we
also deduce an algebraic condition equivalent to strong stability for those NSDP to
which there does not exist the above difference.

Acknowledgment. The author is much obliged to the editor and the anonymous
referees for many reexaminations, and would like to thank them for all of their valuable
suggestions and remarks.
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Abstract. The global convergence properties of a class of penalty methods for nonlinear pro-
gramming are analyzed. These methods include successive linear programming approaches and,
more specifically, the successive linear-quadratic programming approach presented by Byrd et al.
[Math. Program., 100 (2004), pp. 27–48]. Every iteration requires the solution of two trust-region
subproblems involving piecewise linear and quadratic models, respectively. It is shown that, for a
fixed penalty parameter, the sequence of iterates approaches stationarity of the penalty function.
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1. Introduction. In this paper we study the global convergence properties of
successive linear-quadratic programming (SLQP) algorithms for nonlinear program-
ming. The problem under consideration is

minimize
x

f(x)(1.1a)

subject to h(x) = 0(1.1b)

g(x) ≥ 0,(1.1c)

where the objective function f : Rn → R, and the constraint functions h : Rn → Rmh ,
g : Rn → Rmg , are assumed to be continuously differentiable.

The class of algorithms studied in this paper solves (1.1) via the related problem

minimize
x

φσ(x),(1.2)

where

φσ(x) = f(x) + σ‖h(x)‖ + σ‖g−(x)‖(1.3)
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is an exact penalty function [5, 12] composed of the objective and constraint functions
from (1.1). Here ‖ · ‖ is a polyhedral norm, g−(x) is defined componentwise as

g−i (x) = min(gi(x), 0),

and σ > 0 is a parameter that is adaptively chosen so that critical points of (1.1) cor-
respond to those of (1.2). For fixed σ, each iteration of a typical algorithm comprises
two phases. In the first (linear) phase, a piecewise linear model of the penalty func-
tion φσ is minimized subject to a trust-region bound. The aim here is to compute a
step for which convergence can be guaranteed. The second (quadratic) phase adjusts
this step by reducing a quadratic model of the penalty function within a (second)
trust-region bound, with the aim of accelerating the convergence of the method. A
primary purpose of this article is to establish the global convergence of this class of
methods. Once this has been established, it remains to consider methods for adjust-
ing the penalty parameter so as to ensure convergence of the overall algorithm to
KKT points for (1.1) or, failing this, critical points of some measure of constraint
infeasibility.

This work is motivated by a recently proposed algorithm, described by the authors
in [1], and is related to the SLQP algorithm proposed by Fletcher and Sainz de la
Maza [8]. In [1] the �1-norm is used to define the penalty function (1.3). The linear
phase utilizes a piecewise linear model of (1.3) at the current iterate xk,

�(xk, d) = f(xk)+∇f(xk)
T d+σ‖h(xk)+∇h(xk)

T d‖+σ‖(g(xk)+∇g(xk)
T d)−‖.

(1.4)

Defining �k(d)
def
= �(xk, d) and imposing an �∞-norm trust region whose radius is given

by the scalar parameter ΔLP

k > 0, the linear phase consists of solving the (piecewise)
linear program (LP)

minimize
d

�k(d)

subject to ‖d‖∞ ≤ ΔLP

k ,

whose solution we denote by dLP

k . A working set Wk is subsequently defined as the
set of constraints that are active at the solution of this problem if these constraints
are linearly independent, or otherwise some linearly independent subset of these.

The quadratic phase of the algorithm described in [1] computes a step dk that
makes progress on a piecewise quadratic function

qk(d) = �k(d) + 1
2d

TBkd,(1.5)

subject to a trust-region constraint, where Bk approximates the Hessian of the La-
grangian of the nonlinear program (1.1). The step computation in the quadratic phase
is carried out by solving an equality-constrained quadratic programming problem of
the form

minimize
d

1
2d

TBkd + (∇φσ)Tk d(1.6a)

subject to hi(xk) + ∇hi(xk)
T d = 0, i ∈ E ∩Wk,(1.6b)

gi(xk) + ∇gi(xk)
T d = 0, i ∈ I ∩Wk,(1.6c)

‖d‖2 ≤ Δk,(1.6d)
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where (∇φσ)k is the gradient of the part of (1.3) corresponding to the objective
function and the violated constraints, and E and I denote the sets of equality and
inequality constraints, respectively. Notice that in this phase, an �2-norm trust region
is used, and the trust-region parameter Δk is distinct from the trust-region parameter
ΔLP

k used in the linear phase. The overall step taken by the algorithm is obtained by
minimizing qk along a path formed by dLP

k and dk, in a manner described in [1].

Our algorithm [1] is distinct from the one proposed by Fletcher and Sainz de la
Maza [8] in two important ways. First, the trial step generated by our algorithm is
formed from a convex combination of the linear phase step dLP

k and the quadratic
phase step dk, whereas either the step dk or the step dLP

k is taken in [8]. Second,
our algorithm imposes a trust-region restriction on the second subproblem, and thus
permits the use of second derivatives of the objective function and constraints in
the definition of B. The two trust-region radii operate quasi-independently, and
the update rules used in [1] will be shown in this paper to offer global convergence
guarantees.

The organization of the paper is as follows. In the remainder of this section we
discuss the application of SLQP methods to general composite nonsmooth problems
and briefly review existing SLQP methods. In section 2 we present an algorithm for
the minimization of the penalty function with fixed penalty parameter. We study
the global convergence properties of such an algorithm in section 3. Procedures for
updating the penalty parameter are studied in section 4. The paper concludes with
some final remarks and perspectives.

1.1. The general composite nonsmooth context. It is worth pointing out
that problem (1.2) is a nonsmooth problem that is a special case of the more general
class of composite nonsmooth optimization problems that can be represented as

minimize
x

ω(F (x))(1.7)

for some smooth function F (x) and convex ω. Problem (1.2) has this form if we let

F (x) = (f(x), g(x), h(x))(1.8)

and define

ω(F (x)) = f(x) + σ‖h(x)‖ + σ‖g−(x)‖.(1.9)

Many nondifferentiable approximation problems may also be put in this form.

In this context, the linearized model �(xk, d) in (1.4) corresponds to

ω
(
F (xk) + F ′(xk)d

)
.(1.10)

The strategy described above corresponds to minimizing (1.10) at the current iterate
xk, subject to ‖d‖∞ ≤ ΔLP

k , and using the result to help compute a step making
progress on the function

�k(d) + 1
2d

TBkd.(1.11)

The algorithm described in section 3 applies equivalently to problem (1.7), as does
the convergence analysis in section 4.
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1.2. Existing SLQP algorithms. To the best of our knowledge, the earliest
SLQP method was proposed by Fletcher and Sainz de la Maza [8], based on ideas in [6,
13]. The method is described in terms of general composite nonsmooth optimization
problems of the form (1.7). At the iterate xk, a linearized approximation of the form
(1.10) is minimized within a given trust region. A solution to this problem, dLP

k , is
then used to assess the suitability of a trial step dk, obtained without regard to the
trust region and by whatever means is appropriate. If a finite number of different
attempts to find a suitable dk have failed, the choice dk = dLP

k is tried, and if this too
fails, xk+1 is left at xk and the trust-region radius reduced. Fletcher and Sainz de
la Maza suggest using the subdifferential structure of ω predicted by �k(d

LP

k ) as one
means of finding dk. Specifically, the minimizer of the (locally) smooth part of the
quadratic model qk is minimized subject to the linearized (locally) nonsmooth part
being unchanged. This “equality-constrained” quadratic program (EQP) is invariably
a far simpler problem than trying to minimize qk. Importantly, Fletcher and Sainz
de la Maza show that, under reasonable nondegeneracy and second-order conditions,
the “active” subdifferential structure of �k(d

LP

k ) ultimately predicts that of ω(F ) at
limit points of {xk}, and thus that the EQP leads to fast asymptotic convergence.

A more recent SLQP method due to Chin [2] and Chin and Fletcher [3] is aimed
specifically at the nonlinear programming problem (1.1). Rather than using the non-
smooth penalty function (1.3) to force convergence, Chin and Fletcher use a nonlinear
programming “filter” [7] to do so. A succession of steps are allowed at each iteration, in
which unbounded quadratic programming steps of various forms are given precedence
over linear programming ones. Nevertheless, as with the methods in [1] and [8], the
linear programming subproblem

minimize
d

dT∇f(xk)

subject to h(xk) + ∇h(xk)
T d = 0,

g(xk) + ∇g(xk)
T d ≥ 0,

‖d‖∞ ≤ Δk

(1.12)

is central and drives the convergence of the method. In particular, if dLP

k is a solution1

of (1.12), and if more complicated steps are unacceptable for the filter, the method
reverts to a Cauchy step along dLP

k . The trust-region radius will only be reduced as a
last resort.

While this is undoubtedly an SLQP method, it is once again a trust region on
the linear programming component that is used to force convergence. There appears
to be no control of any quadratic programming component, and thus no precaution
to guard against large or unbounded QP steps.

Most recently, Waltz [14] and Gate [9] suggested the idea of using a second trust
region to control the EQP phase of SLQP methods. Waltz’s method forms the basis
of that described in [1] and analyzed here. Gate’s method is an extension of the
Chin–Fletcher filter approach, and although there is no formal analysis, this method
appears to perform well in his numerical tests.

It should be noted that the theory of nonsmooth optimization developed by Yuan
[15, 16] cannot be applied to the algorithm considered here and in [1, 14] because in
these algorithms the two trust regions influence each other, whereas Yuan assumes
that a single trust region is used. The analysis presented here is significantly different
from that in the literature due to the effects caused by the interactions between the

1If (1.12) has no solution, a “restoration” phase [3] is entered.
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two trust regions. In addition, we establish new results about update procedures for
the penalty parameter.

2. An SLQP algorithm. Our first goal is to propose and analyze an algorithm
for minimizing the penalty function φσ, given by (1.3), for a fixed value of σ. Notice
that this analysis presupposes that the penalty parameter σ has been fixed at a
sufficiently large value such that critical points of (1.1) correspond to those of (1.2),
but we will delay a discussions of suitable mechanisms to ensure that this is so until
section 4.

As noted earlier, the algorithm consists of two phases based, respectively, on
piecewise linear and piecewise quadratic models at the current estimate xk of the
minimizer. The first phase minimizes the piecewise linear model �k(d), given by (1.4).
The second phase is based on an appropriate piecewise quadratic model qk(d) of the
form (1.5) that includes a second-order term to account for curvature. For the linear
model, we will use a trust region of the form ‖ · ‖LP ≤ ΔLP for some (polyhedral)
norm ‖ · ‖LP , while for the quadratic model it will be ‖ · ‖ ≤ Δ. Since all norms are
equivalent in Rn, there is a constant γ ≥ 1 such that

‖d‖ ≤ γ‖d‖LP(2.1)

for all d ∈ Rn.

We now define our Algorithm 2.1 for minimizing the penalty function (1.3) for
a fixed value of σ. Throughout this section we omit the subscript and refer to our
penalty function simply as φ in the case where σ is fixed.

Step 1 of Algorithm 2.1 aims to find the largest reduction in the linearized model
within its trust region—we refer to this as the linearized problem—and attach the
suffix LP to quantities associated with it. The intentions here are twofold.

First, the aim is to identify constraints whose inclusion in the working set for
an EQP results in progress in the overall minimization. Ideally, near the solution
these will correspond to active constraints at the solution. This is not the issue under
consideration here, but it does have some ramifications on the design of our algorithm
since we hope that our algorithm class is broad enough to permit correct identification
of the active constraint set at the solution.

Second, the direction given by dLP

k is also used to define the Cauchy step dC

k ,
which, as in many trust-region methods, is used to guarantee convergence to a critical
point. This is because the value of the LP solution provides a measure of nearness to
optimality, and the Cauchy step is a step that provides corresponding improvement
on the quadratic model. Condition (2.5) ensures that dC

k is short enough that the
quadratic model value is related to the LP model. The descent properties of the
Cauchy step are what drive the bulk of our convergence theory; thus we ensure in
step 2b that the step actually taken, dk, shares these descent properties. Note that
the Cauchy step dC

k satisfies the conditions of step 2b, but the intention is to find a
better step by solving a problem of the form (1.6).

Steps 3 and 4 are standard trust-region acceptance rules [4]. The ratio ρk of the
actual to the predicted reduction of φ is used as a step acceptance criterion. If this
ratio is negative, or close to zero, the step is rejected and the overall trust-region
radius reduced. Otherwise the step will be accepted and, if ρk is close to one, the
radius may be enlarged. We say that iteration k is successful if ρk ≥ ρu. It is very
successful if ρk ≥ ρs.
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Algorithm 2.1: Minimization algorithm for φ(x)

Initial data: x0, Δ0 > 0, ΔLP
0 > 0, 0 < ρu ≤ ρs < 1, 0 < κl ≤ κu < 1, η > 0,

0 < τ < 1, and θ > 0.

For k = 0, 1, . . ., until a stopping test is satisfied, perform the following steps.
1. Compute a solution dLP

k to

minimize
‖d‖LP ≤ΔLP

k

�k(d).

2a. Cauchy step. Compute αk ≤ 1 as the first member of the sequence
{τ i min(1,Δk/‖dLP

k ‖)}i=0,1,... for which

φ(xk) − qk(αkd
LP

k ) ≥ η [φ(xk) − �k(αkd
LP

k )] .(2.2)

Set dC

k = αkd
LP

k .
2b. Compute dk so that ‖dk‖ ≤ Δk and

qk(dk) ≤ qk(d
C

k).

3. Compute

ρk =
φ(xk) − φ(xk + dk)

φ(xk) − qk(dk)
.

4a. If ρk ≥ ρs, choose

Δk+1 ≥ Δk.

Otherwise set

Δk+1 ∈ [κl‖dk‖, κuΔk] .(2.3)

4b. If ρk ≥ ρu, set

xk+1 = xk + dk.

Otherwise set

xk+1 = xk.

5. LP trust-region update.
If ρk ≥ ρu, pick ΔLP

k+1 so that the following two conditions hold:

(i) ΔLP

k+1 ≥ ‖dC

k‖LP ,(2.4)

(ii) ΔLP

k+1 ≤ ΔLP

k if αk < 1.(2.5)

Otherwise pick

ΔLP

k+1 ∈ [min(θ‖dk‖LP ,ΔLP

k ),ΔLP

k ].(2.6)
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Step 5 gives the conditions imposed on the radius for the linear model. In [1] a
specific strategy is described that tries to relate ΔLP to the expected step length so
as to promote selection of a good active set. However, in this algorithm framework
we only specify the characteristics such a strategy must have in order to guarantee
global convergence. In the case of a successful step, we impose a limit on how much
ΔLP may be reduced, and allow increase only if the full LP step was taken. If the
step dk was not successful we allow for the possibility of decreasing ΔLP, as Δk was
decreased in step 4a.2

3. Convergence results for a fixed penalty function. In this section, we
investigate the global convergence properties of Algorithm 2.1. In order to proceed,
we need to make the following assumptions on the problem and the algorithm:
P1. The functions f , g, and h in (1.1) are Lipschitz continuous and have Lipschitz

continuous derivatives over a bounded convex set whose interior contains the
closure of the iterates {xk} generated by Algorithm 2.1.

P2. The sequence of Hessian matrices {Bk} in (1.5) is bounded; thus there exists a
constant β > 0 such that |dTBkd| ≤ β‖d‖2 for all k and all d ∈ Rn.

Assumption P2 is made to simplify the analysis; see [15] for an analysis of a com-
posite nonsmooth optimization algorithm in which Bk is computed by quasi-Newton
updating. (As pointed out in section 1.1, both Algorithm 2.1 and the analysis in this
section apply also to the case where φ(x) = ω(F (x)), with �k and qk given by (1.10)
and (1.11). In this case assumption P1 requires Lipschitz continuity of F, F ′, and ω.)

Under assumption P1 it follows immediately that φ(x) and �k(d) are Lipschitz
continuous, and in particular that

|�k(d) − �k(0)| ≤ λ‖d‖LP(3.1)

for some Lipschitz constant λ > 0.
The goal of our analysis is to prove that Algorithm 2.1 will find a critical point

of φ. To do so, we follow Yuan [15] and define

Ψ(x,Δ) = �(x, 0) − min
‖d‖≤Δ

�(x, d),(3.2)

which is the optimal decrease in the “linear” model �(x, d) for a radius of size Δ. We
can characterize criticality of φ using Ψ.

Definition 3.1. x∗ ∈ Rn is a critical point (or stationary point) of φ if
Ψ(x∗, 1) = 0.

For future reference we note that, from assumption P2 and the subsequent con-
vexity of �(x, ·), we have in general

�(x, 0) − �(x, αd) ≥ α[�(x, 0) − �(x, d)],(3.3)

and more specifically

φ(xk) − �k(αd) ≥ α[φ(xk) − �k(d)](3.4)

for any α ∈ [0, 1].
We now establish a number of intermediate lemmas leading up to our main global

convergence result. Our first result provides bounds on the achievable reduction in

2The upper bound of one on αk in (2.5) is used for simplicity. However, this bound can be
generalized.
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the linearized model for a radius of size Δ relative to that achieved with a radius of
1. From now on we use the following notation.

Notation. The solution dLP of

min
‖d‖

LP
≤Δ

�(x, d)(3.5)

will also be denoted as dΔ to emphasize its dependence on Δ. In particular, d1 denotes
the solution of (3.5) when Δ = 1.

Lemma 3.1. Suppose that assumptions P1 and P2 hold. Then

max(Δ, 1)Ψ(xk, 1) ≥ Ψ(xk,Δ) ≥ min(Δ, 1)Ψ(xk, 1)(3.6)

for any scalar Δ > 0.
Proof. Since dΔ is a solution of (3.5),

Ψ(xk,Δ) = �(xk, 0) − �(xk, dΔ).

There are two cases to consider. First consider the case Δ ≤ 1. Since ‖dΔ‖LP ≤ 1,
the definition (3.2) implies that

Ψ(xk, 1) ≥ �(xk, 0) − �(xk, dΔ) = Ψ(xk,Δ),

which gives the left inequality of (3.6) in this case.
To get the right inequality, we need to show that Ψ(xk,Δ) ≥ ΔΨ(xk, 1). By

definition of dΔ we have that ‖Δd1‖LP ≤ Δ, and so by (3.2) and (3.3),

Ψ(xk,Δ) ≥ �(xk, 0) − �(xk,Δd1)

≥ Δ(�(xk, 0) − �(xk, d1))

= ΔΨ(xk, 1).

This gives us (3.6) when Δ ≤ 1. In the case Δ ≥ 1, we need to establish

ΔΨ(xk, 1) ≥ Ψ(xk,Δ) ≥ Ψ(xk, 1),

but these inequalities follow immediately by making the above two-case argument
with the values Δ and 1 interchanged.

Lemma 3.1 essentially states that Ψ(x, ·) is concave and monotonically increasing.
We shall also need the following result, which states that at a noncritical point of

φ, the trust-region bound for the linearized problem, ‖dΔ‖LP ≤ Δ, is active whenever

the radius Δ is small enough. For brevity, let Ψk(Δ)
def
= Ψ(xk,Δ).

Lemma 3.2. Suppose that assumptions P1 and P2 hold (and thus that there is
a Lipschitz constant λ for which (3.1) holds) and that Ψk(1) 	= 0. Then if dΔ is a
solution of (3.5) when x = xk,

‖dΔ‖LP ≥ min

(
Δ,

Ψk(1)

λ

)
.(3.7)

Proof. As before, let d1 denote a solution of (3.5) when x = xk and Δ = 1.
Suppose that ‖dΔ‖LP < Ψk(1)/λ. Then (3.1) gives that

�k(dΔ) ≥ �k(0) − λ‖dΔ‖LP > �k(0) − Ψk(1) = �k(d1).(3.8)
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If Δ ≥ 1, this contradicts our definition of dΔ as a solution of (3.5), so we must have
‖dΔ‖LP ≥ Ψk(1)/λ and thus (3.7) in this case. If Δ < 1, then (3.8) and the convexity
of �k imply that �k is strictly decreasing along a line from dΔ to d1 (at least initially).
Therefore, since dΔ minimizes �k, it cannot lie in the strict interior of the trust region
‖d‖LP ≤ Δ, and hence ‖dΔ‖LP = Δ.

The next result provides a lower bound on the achievable reduction in the piece-
wise quadratic model in terms of the stepsize, the trust-region radius for the linearized
problem, and our criticality measure. At this point, recall that we use dLP

k to refer to
the solution of the linear subproblem (3.5) solved in step 1 of Algorithm 2.1.

Lemma 3.3. Suppose that assumptions P1 and P2 hold. Then the model decrease
satisfies

φ(xk) − qk(dk) ≥ φ(xk) − qk(d
C

k) ≥ ηαkΨk(Δ
LP

k ) ≥ ηαk min(ΔLP

k , 1)Ψk(1).

Proof. The first inequality follows directly from the requirement in step 2b of
Algorithm 2.1. To prove the second, note that inequality (3.4) and the requirement
in step 2a give that

φ(xk) − qk(d
C

k) = φ(xk) − qk(αkd
LP

k ) ≥ η [φ(xk) − �k(αkd
LP

k )]
≥ ηαk [φ(xk) − �k(d

LP

k )] = ηαkΨk(Δ
LP

k ).

The third inequality follows immediately from Lemma 3.1.
Next, we establish an intuitive bound on the error introduced when using our

quadratic approximation to φ.
Lemma 3.4. Suppose that assumptions P1 and P2 hold. Then

|qk(dk) − φ(xk + dk)| ≤ M‖dk‖2

for some positive constant M .
Proof. As pointed out in section 1.1, the function φ can be expressed as φ(x) =

ω(F (x)), where F and ω are defined as in (1.8) and (1.9). It follows from assumption
P1 that F has a Lipschitz continuous derivative with constant λF, which implies that

‖F (xk + dk) − F (xk) − F ′(xk)dk‖ ≤ λF‖dk‖2.

Since the function ω is Lipschitz continuous with some constant λω, this inequality,
together with assumption P2, implies that

|qk(dk) − φ(xk + dk)| = |ω(F (xk) + F ′(xk)dk) + 1
2d

T
kBkdk − ω(F (xk + dk))|

≤ λω‖F (xk + dk) − F (xk) − F ′(xk)dk‖ + 1
2β‖dk‖2

≤ (λωλF + 1
2β)‖dk‖2

= M‖dk‖2,

where M = λωλF + 1
2β.

The following technical result essentially says that either the Cauchy step is on
the boundary of one of our trust regions or it has a lower bound proportional to the
optimality criterion.

Lemma 3.5. Suppose that assumptions P1 and P2 hold. Then at any iteration
of Algorithm 2.1

αkΔ
LP

k ≥ ‖dC

k‖LP ≥ min

(
Δk

γ
,ΔLP

k ,
Ψk(1)

λ
,min

(
1,

1

ΔLP

k

)
2(1 − η)τΨk(1)

βγ2

)
.(3.9)
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Proof. The first inequality in (3.9) follows immediately, since

‖dC

k‖LP = αk‖dLP

k ‖LP ≤ αkΔ
LP

k .

To establish the second inequality, suppose first that the decrease condition (2.2) in
step 2a of Algorithm 2.1 is immediately satisfied for αk = min(1,Δk/‖dLP

k ‖). Then,
using (2.1) and Lemma 3.2,

‖dC

k‖LP = ‖αkd
LP

k ‖LP = min

(
Δk

‖dLP

k ‖ , 1
)
‖dLP

k ‖LP

≥ min

(
Δk

γ
,ΔLP

k ,
Ψk(1)

λ

)
,(3.10)

which gives the first three terms in (3.9). On the other hand, if αk < min(1,Δk/‖dLP

k ‖),
then the decrease condition (2.2) must have been violated for αk/τ , and so

φ(xk) − qk(αkd
LP

k /τ) = φ(xk) − �k(αkd
LP

k /τ) − 1
2 (αk/τ)2(dLP

k )TBkd
LP

k

≤ η [φ(xk) − �k(αkd
LP

k /τ)] .(3.11)

Now using assumption P2, (2.1), (3.4), and Lemma 3.1, this inequality implies that

1
2 (αk/τ)2(dLP

k )TBkd
LP

k ≥ (1 − η) [φ(xk) − �k(αkd
LP

k /τ)]
1
2 (αk/τ)2βγ2‖dLP

k ‖2
LP ≥ (1 − η)(αk/τ)Ψk(Δ

LP

k )
1
2 (αk/τ)βγ2‖dLP

k ‖LP ΔLP

k ≥ (1 − η) min(ΔLP

k , 1)Ψk(1)

αk‖dLP

k ‖LP ≥ 2(1 − η)τ

βγ2
min

(
1,

1

ΔLP

k

)
Ψk(1).(3.12)

Since αkd
LP

k = dC

k , this inequality combined with (3.10) gives the second inequality in
(3.9).

Our next result is crucial. It provides lower bounds on both the trust-region
radius Δk and the length of the Cauchy step at a noncritical iterate in the case where
the trust-region radius for the linearized problem stays bounded.

Lemma 3.6. Suppose Algorithm 2.1 is applied to the problem (1.2) and that
assumptions P1 and P2 hold. Suppose that {ΔLP

k } is bounded above and that Ψk(1) ≥
δ > 0 for all k. Then there exists a constant Δmin > 0 such that

Δk ≥ Δmin and αkΔ
LP

k ≥ Δmin

γ
(3.13)

for all k.
Proof. By assumption, there exists Δmax ≥ 1 such that

ΔLP

k ≤ Δmax for all k.(3.14)

This inequality, the assumption Ψk(1) ≥ δ, and Lemma 3.5 imply

‖dC

k‖LP ≥ min

(
Δk

γ
,ΔLP

k ,Δcrit

)
,(3.15)

where

Δcrit = min

(
1

λ
,
2(1 − η)τ

βγ2Δmax

)
δ.(3.16)
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If the iteration is successful (ρk ≥ ρu), the rule (2.4) for choosing ΔLP

k in step 5
of the algorithm ensures that ΔLP

k+1 ≥ ‖dC

k‖LP and therefore

ΔLP

k+1 ≥ min

(
Δk

γ
,ΔLP

k ,Δcrit

)
.(3.17)

Let us now consider the case in which the iteration is unsuccessful. Using Lemma 3.3
and (3.15), we have that

φ(xk) − qk(dk) ≥ φ(xk) − qk(d
C

k) ≥ ηαk min (ΔLP

k , 1) δ = ηαkΔ
LP

k min

(
1

ΔLP

k

, 1

)
δ

≥ ηδ

Δmax

αkΔ
LP

k ≥ ηδ

Δmax

min

(
Δk

γ
,ΔLP

k ,Δcrit

)
.

(3.18)
From Lemma 3.4 and (3.18) we have that

1 − ρk ≤ |φ(xk + dk) − qk(dk)|
φ(xk) − qk(dk)

≤ M‖dk‖2Δmax

ηδmin

(
Δk

γ
,ΔLP

k ,Δcrit

) .(3.19)

This implies that ‖dk‖ and (1 − ρk) are related by the inequality

‖dk‖2 ≥ (1 − ρk)ηδ

MΔmax

min

(
Δk

γ
,ΔLP

k ,Δcrit

)
(3.20)

at each step. Now, since the iteration is unsuccessful, ρk < ρu and 1 − ρk > 1 − ρu,
which, using (2.1) and (3.20), implies

θ2‖dk‖2
LP ≥ θ2

γ2
‖dk‖2 ≥ θ2 (1 − ρu)ηδ

γ2MΔmax

min

(
Δk

γ
,ΔLP

k ,Δcrit

)

≥ min

(
Δk

γ
,ΔLP

k ,Δcrit,
(1 − ρu)ηθ2δ

γ2MΔmax

)2

.

Using this fact and the lower bound in (2.6), we have that, if the step is unsuccessful,

ΔLP

k+1 ≥ min

(
Δk

γ
,ΔLP

k ,Δcrit,
(1 − ρu)ηθ2δ

γ2MΔmax

)
.(3.21)

Since the right side of (3.21) is clearly less than or equal to the right side of (3.17),
which holds when the step is accepted, then (3.21) must hold at each iteration.

We can consider Δk in a similar fashion. If Δk was decreased because ρk < ρs,
then 1 − ρk > 1 − ρs and (3.20) implies

κ2
l

γ2
‖dk‖2 ≥ (1 − ρs)ηκ

2
l δ

γ2MΔmax

min

(
Δk

γ
,ΔLP

k ,Δcrit

)

≥ min

(
Δk

γ
,ΔLP

k ,Δcrit,
(1 − ρs)ηκ

2
l δ

γ2MΔmax

)2

.

Together with (2.3) this implies

Δk+1

γ
≥ min

(
Δk

γ
,ΔLP

k ,Δcrit,
(1 − ρs)ηκ

2
l δ

γ2MΔmax

)
.(3.22)
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Since Δk is not reduced when ρk ≥ ρs, (3.22) must then hold at each iteration.
Now we can combine the recursions (3.21) and (3.22) to yield

min

(
Δk+1

γ
,ΔLP

k+1

)
≥ min

(
Δk

γ
,ΔLP

k ,Δcrit,
(1 − ρs)ηκ

2
l δ

γ2MΔmax

,
(1 − ρu)ηθ2δ

γ2MΔmax

)
,(3.23)

which holds at every iteration. Applying this recursion over the entire sequence implies
that for all k

min

(
Δk

γ
,ΔLP

k

)
≥ min

(
Δ0

γ
,ΔLP

0 ,Δcrit,
(1 − ρs)ηκ

2
l δ

γ2MΔmax

,
(1 − ρu)ηθ2δ

γ2MΔmax

)
≡ Δlow.

Thus we can conclude that Δk ≥ Δmin ≡ γΔlow for all k. It then follows from (3.15)
and the fact that Δlow ≤ Δcrit that

αkΔ
LP

k ≥ ‖dC

k‖LP ≥ Δlow =
Δmin

γ

for all k.
This immediately enables us to deduce that if the algorithm is unable to make

progress, it must be because it has reached a critical point.
Corollary 3.7. Suppose that assumptions P1 and P2 hold and that there are

only a finite number of iterations for which ρk ≥ ρu. Then xk = x∗ for all sufficiently
large k, and x∗ is a critical point of φ(x).

Proof. Step 4 of the algorithm ensures that if there are only a finite number
of (successful) iterations for which ρk ≥ ρu, then xk = x∗ for all k > k0 for some
k0 ≥ 0. Moreover, Ψk(1) = Ψk0(1) for all k ≥ k0. Furthermore, as ρk < ρu for
all k ≥ k0, the update rules for the trust regions imply that Δk converges to zero
and ΔLP

k is bounded above for all k. But then Ψk(1) = 0 for all k ≥ k0, since
otherwise Lemma 3.6 contradicts the fact that Δk converge to zero. It thus follows
from Definition 3.1 that x∗ is a critical point of φ.

Finally we are able to state our main global convergence result.
Theorem 3.8. Suppose Algorithm 2.1 is applied to problem (1.2) and that as-

sumptions P1 and P2 hold. If the sequence {φ(xk)} is bounded below, then either

Ψl(1) = 0 for some l ≥ 0

or

lim inf
k→∞

Ψk(1) = 0.

Proof. If there are only a finite number of successful iterations, the first of the
stated possibilities follows immediately from Corollary 3.7. Otherwise, there is an
infinite subsequence K of successful iterations. This means that ρk ≥ ρu, and {φ(xk)}
is bounded from below for all k ∈ K.

The proof now proceeds by contradiction. Assume there is a constant δ such that
Ψk(1) ≥ δ > 0 for all k ∈ K. We will consider separately the two cases: when the LP
trust-region radius {ΔLP

k } is bounded above and when {ΔLP

k } is unbounded.
Case 1. If {ΔLP

k } is bounded above, it follows from Lemma 3.6 that Δk ≥ Δmin >
0.
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For our infinite subsequence K of successful iterations, Lemmas 3.3 and 3.6 give

φ(xk) − φ(xk+1) ≥ ρu(φ(xk) − qk(dk))

≥ ρuηαk min(ΔLP

k , 1)δ

≥ ρuηαkΔ
LP

k min(1, 1/ΔLP

k )δ

≥ ρuηΔminδ/(γΔmax) > 0,

for all k ∈ K, where Δmax > 1 is the upper bound for ΔLP

k . But then summing this
inequality over all k ∈ K contradicts the fact that the sequence {φ(xk)} is bounded
from below. Thus Case 1 does not occur.

Case 2. Suppose that the LP trust-region radius {ΔLP

k } is unbounded. Then,
since the radius is only increased in step 5 of Algorithm 2.1 when αk ≥ 1, there is an
infinite sequence K such that ΔLP

k > 1, αk ≥ 1, and ρk ≥ ρu for all k ∈ K. Then from
Lemma 3.3 we have

φ(xk) − φ(xk+1) ≥ ρu(φ(xk) − qk(dk))

≥ ρuηαk min(ΔLP

k , 1)Ψk(1)

≥ ρuηΨk(1)

≥ ρuηδ,

for all k ∈ K. This again contradicts the assumption that {φ(x)} is bounded from
below, and Case 2 cannot occur.

Cases 1 and 2 therefore imply that the assumption Ψk(1) ≥ δ > 0 for all k must
be false, which proves the desired result

lim inf
k→∞

Ψk(1) = 0.

This result guarantees that if φ(x) is bounded below, the criticality criterion Ψk(1)
eventually becomes arbitrarily small. This implies that if the sequence {xk} is bounded,
there exists an accumulation point of Algorithm 2.1 which is a critical point for (1.2).

4. A penalty method for nonlinear programming. We now discuss how
to automatically adjust the penalty parameter σ as our algorithm proceeds so as to
encourage convergence to a critical point of (1.1). We will make use of the following
definitions.

We let

v(x) = ‖h(x)‖ + ‖g−(x)‖(4.1)

be a measure of constraint violation, so that the penalty function (1.3) can be written
as

φσ(x) = f(x) + σv(x).(4.2)

We define a (piecewise) linear model of the constraint violation by

�v(x, d) = ‖h(x) + ∇h(x)T d‖ + ‖(g(x) + ∇g(x)T d)−‖.(4.3)

We can therefore write the model (1.4) of the penalty function as

�φσ (x, d) = f(x) + ∇f(x)T d + σ�v(x, d).(4.4)
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Since the penalty parameter σ will now vary, we write the measure of criticality (3.2)
for the penalty function as

Ψσ(x,Δ) = �φσ (x, 0) − min
‖d‖≤Δ

�φσ (x, d).(4.5)

Definition 3.1 states that x∗ ∈ Rn is a critical point of the penalty function φσ if
Ψσ(x∗, 1) = 0. Criticality of the measure of constraint violation v(x) will be measured
by the function

θ(x,Δ) = �v(x, 0) − min
‖d‖≤Δ

�v(x, d).(4.6)

Definition 4.1. x∗ ∈ Rn is a critical point of the infeasibility measure v(x) if
θ(x∗, 1) = 0.

It is well known [10] that the penalty function (4.2) is exact in the sense that, for
sufficiently large values of σ, strict local minimizers of the nonlinear program (1.1) that
satisfy the Mangasarian–Fromovitz constraint qualification (MFCQ) are minimizers of
φσ. We are also interested in the converse result, given that our algorithm minimizes
the penalty function.

Theorem 4.1. If x∗ is a critical point of φσ for some σ and is feasible for (1.1),
then x∗ is a KKT point of the nonlinear program (1.1). If x∗ is infeasible and is a
critical point of φσ for all sufficiently large σ, then x∗ is an infeasible critical point of
v(x).

Proof. At a feasible critical point x∗ of φσ, the vector d = 0 minimizes �φσ (x∗, d),
which implies that d = 0 is an optimal feasible solution of the linear program

minimize
d

dT∇f(x∗)

subject to h(x∗) + ∇hi(x∗)
T d = 0,

g(x∗) + ∇gi(x∗)
T d ≥ 0.

(4.7)

Since the constraints of (4.7) are linear, the KKT conditions for (4.7) are satisfied,
and the KKT conditions for (4.7) are identical to the KKT conditions for (1.1).

Suppose that x∗ is infeasible and assume, by way of contradiction, that θ(x∗, 1) >
0. Then by (4.6), there exists ‖d∗‖ ≤ 1 such that �v(x∗, 0) − �v(x∗, d

∗) > 0, and
therefore for any σ large enough

−∇f(x∗)
T d∗ + σ (�v(x∗, 0) − �v(x∗, d

∗)) > 0

or

�φσ (x∗, 0) − �φσ (x∗, d
∗) > 0.

By (4.4) this implies that Ψσ(x∗, 1) > 0 for arbitrarily large σ, contradicting the
assumption that x∗ is a critical point for φσ for all large σ. This contradiction implies
that if x∗ is infeasible, then θ(x∗, 1) = 0.

4.1. Penalty update procedure. Our penalty parameter strategy is based on
our belief that it is as important to try to decrease the violation v(x) as it is to aim
for criticality of φσ(x). Since we cannot be sure that there is a (locally) feasible point
for the constraints (1.1c)–(1.1b), we might instead measure the quality of the current
violation in terms of its criticality, θ(x,Δ). Thus we contend it is reasonable to ask
that the current value of the penalty parameter σ always satisfies

Ψσ(xk, 1) ≥ ξσθ(xk, 1)
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for some predefined constant ξ ∈ (0, 1), and to increase the current value if this
inequality fails. Hence we cannot consider our iterate to be near a critical point for
φσ(x) unless it is near a critical point of v(x).

The use of the criticality measure Ψσ(xk, 1) requires the solution of an LP with
radius 1. Since the algorithm computes the quantity Ψσ(xk,Δk) at every iteration, we
would instead prefer to use this quantity to estimate criticality, thereby avoiding the
extra computational cost of solving a second LP. As we show below, this is possible
so long as Δk lies within a preset interval [δmin, δmax]. If Δk is not in this interval,
we will use Ψσ(xk, δk) to measure criticality, where δk is the closest value to Δk in
[δmin, δmax].

Based on this strategy, the set of permissible penalty parameters at an iterate xk,
with trust-region radius Δk, is defined as

Ω(xk, δk)
def
= {σ | Ψσ(xk, δk) ≥ ξσθ(xk, δk)} .

Of course, computation of the quantity θ(xk, δk) also involves the solution of an
additional LP, but once xk is near the feasible region, linearized feasibility is likely to
be attainable inside the trust region so that θ(xk, δk) = v(xk), and the stronger but
easier-to-check condition, Ψσ(xk, δk) ≥ ξσv(xk), will often hold.

We now describe an algorithm for solving the nonlinear programming problem
(1.1) in which the penalty parameter is updated at every iteration. It makes use of
Algorithm 2.1 to generate steps.

Algorithm 4.1: Penalty Method for Solving (1.1)

Initial data: x1, σ0. Set the initial parameters of Algorithm 2.1 as well as
ε > 0, 0 < ξ < 1, and 0 < δmin ≤ δmax.

For k = 1, 2, . . ., until a stopping test for (1.1) is satisfied, perform the fol-
lowing steps.
1. Let δk = mid(δmin,Δ

LP

k , δmax).
If σk−1 ∈ Ω(xk, δk),

set σk = σk−1.
Else,

choose any σk ∈ Ω(xk, δk) for which σk ≥ σk−1 + ε.
2. Perform steps 1–5 of Algorithm 2.1.

As was our stated intention, the penalty update strategy in step 1 allows us to (re-)use
quantities computed at Δk whenever Δk ∈ [δmin, δmax]. It also ensures that

Ψσk
(xk, δk) ≥ ξσkθ(xk, δk)(4.8)

is satisfied at each iteration, and that if σ is increased, it is because σk−1 /∈ Ω(xk, δk);
i.e.,

Ψσk−1
(xk, δk) < ξσk−1θ(xk, δk).(4.9)

It is always possible to find a point in Ω(xk, δk) for any ξ < 1 so that step 1 of
Algorithm 4.1 is well defined. To see this, note that definitions (4.1)–(4.6) imply that

Ψσ(xk, δk) = σv(xk) − min
‖d‖≤δk

(
∇f(xk)

T d + σ�v(xk, d)
)

(4.10)
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≥ σv(xk) − ‖∇f(xk)‖δk − σ min
‖d‖≤δk

�v(xk, d)

= −‖∇f(xk)‖δk + σ

(
v(xk) − min

‖d‖≤δk
�v(xk, d)

)
= −‖∇f(xk)‖δk + σθ(xk, δ),(4.11)

and thus that σ ∈ Ω(xk, δk) for all

σ ≥ ‖∇f(xk)‖δk
(1 − ξ)θ(xk, δk)

.(4.12)

Notice, however, that it is highly likely that this value will grow without bound if xk

approaches feasibility, so the simpler expedient of always setting σk to ensure (4.12)
is not to be recommended.

4.2. Penalty method analysis. We begin by recasting the inequality (4.8) in
terms of Ψσ(xk, 1) instead of Ψσ(xk, δk). To do this we recall Lemma 3.1 and note
that since the function θ(x, δ), like Ψ(x, δ), is monotonically increasing and concave
in δ, the same arguments as used in the proof of Lemma 3.1 imply that

min(δk, 1)θ(xk, 1) ≤ θ(xk, δk) ≤ max(δk, 1)θ(xk, 1).(4.13)

This then implies the following bound.
Lemma 4.2. The values σk generated by Algorithm 4.1 satisfy

Ψσk
(xk, 1) ≥ ξ min

(
δmin,

1

δmax

)
σkθ(xk, 1).(4.14)

Proof. Using (3.6) followed by (4.8) followed by (4.13) yields

Ψσk
(xk, 1) ≥ Ψσk

(xk, δk)

max(δk, 1)
≥ ξσkθ(xk, δk)

max(δk, 1)
≥ ξσk

min(δk, 1)

max(δk, 1)
θ(xk, 1),

which gives (4.14), since δk ∈ [δmin, δmax].
We now present two convergence results for Algorithm 4.1 that rely heavily on

the convergence properties of Algorithm 2.1. We first consider the case in which the
penalty parameter is updated only a finite number of times.

Theorem 4.3. Suppose Algorithm 4.1 applied to (1.1) generates a bounded se-
quence of iterates and that assumptions P1 and P2 hold. If {σk} is bounded, then
there is a cluster point x∗ of the sequence {xk} which is either a KKT point of the
nonlinear program (1.1) or a critical point of v.

Proof. Since {σk} is bounded, it follows from step 1 of Algorithm 4.1 that σk = σ
is constant for all large k. Algorithm 4.1 therefore reduces to Algorithm 2.1, i.e.,
to the minimization of a single penalty function. By Theorem 3.8, if {φσk

(xk)} is
bounded below, there is a limit point x∗ of the sequence of iterates {xk} such that

Ψσ(x∗, 1) = 0.(4.15)

If x∗ is infeasible, since there is a subsequence {xl} with Ψσ(xl, 1) → 0 and since
(4.14) holds at each iteration, we must have that θ(xl, 1) → 0. Then, since θ(·, 1) is
continuous, θ(x∗, 1) = 0. Therefore, x∗ is an infeasible critical point.

If x∗ is feasible, i.e., v(x∗) = 0, then it follows immediately from Theorem 4.1
that x∗ is a KKT point for the nonlinear program (1.1).
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Our final result describes possible outcomes when the penalty parameter is un-
bounded.

Theorem 4.4. Suppose that Algorithm 4.1 generates a bounded sequence of iter-
ates {xk} and that {σk} → ∞. Then either

(i) the sequence {xk} is not asymptotically feasible (i.e., v(xk) 	→ 0), in which
case there is an infeasible cluster point x∗ that satisfies θ(x∗, 1) = 0; or

(ii) the sequence {xk} is feasible in the sense that v(xk) → 0. In this case, either
(a) there is a cluster point of {xk} that satisfies the KKT conditions, or (b) there is
a feasible cluster point of {xk} at which MFCQ is violated.

Proof. Consider the sequence of iterates at which the penalty parameter is in-
creased. For each k in this subsequence, condition (4.9) holds, and thus we have

Ψσk−1
(xk, δk) < ξσk−1θ(xk, δk).

Now (4.11) holds here, so

Ψσk−1
(xk, δk) ≥ −‖∇f(xk)‖δk + σk−1θ(xk, δk)

and thus, using (4.13),

(1 − ξ)σk−1 ≤ ‖∇f(xk)‖δk
θ(xk, δk)

≤ ‖∇f(xk)‖δk
θ(xk, 1) min(1, δk)

≤ ‖∇f(xk)‖δmax

θ(xk, 1)
.(4.16)

But as {σk}, and consequently {σk−1}, is assumed unbounded and {∇f(xk)} is
bounded, it follows that, for that subsequence of {xk} for which σ was increased, we
have θ(xk, 1) → 0.

If lim sup v(xk) > 0, then, since the sequence {xk} is bounded and θ(xk, 1) → 0,
there is a limit point with v(x̂) > 0 and θ(x̂, 1) = 0; i.e., x̂ is an infeasible stationary
point of v(x). This implies (i) in that case.

On the other hand, if lim v(xk) = 0, then there is a cluster point x̂ with v(x̂) = 0.
If x̂ satisfies MFCQ, then ∇h(x̂) has full rank and there is a direction ‖dM‖ < δmin

such that

∇h(x̂)T dM = 0 = −h(x̂) and ∇g(x̂)T dM + g(x̂) > 0.

Suppose by way of contradiction that x̂ is not a KKT point. Then there is a first-order
feasible descent direction ‖dF ‖ < δmin such that

∇h(x̂)T dF = 0 = −h(x̂), ∇g(x̂)T dF + g(x̂) ≥ 0, and ∇f(x̂)T dF < 0.

Clearly, there is a convex combination d̂ = (1 − α)dF + αdM , with α ∈ (0, 1), such
that

∇h(x̂)T d̂ + h(x̂) = 0,(4.17)

∇g(x̂)T d̂ + g(x̂) > 0, and ∇f(x̂)T d̂ < 0.

Now since ∇h(x̂) has full rank, for any x sufficiently near x̂ there is a unique
vector d(x) of the form

d(x) = d̂ + ∇h(x̂)u(x)(4.18)

for some u(x) ∈ Rm, which (nonuniquely) solves

h(x) + ∇h(x)T d(x) = 0.(4.19)
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To see this, note that (4.18)–(4.19) imply[
h(x) + ∇h(x)T d̂

]
+ ∇h(x)T∇h(x̂)u(x) = 0.(4.20)

Since h is smooth, this equation shows that u(x) is uniquely defined in a neighborhood
of x̂ and varies continuously with x—and so does d(x). Furthermore, by (4.17) the
term in square brackets in (4.20) can be made arbitrarily small if x is close to x̂, and

hence d(x) is arbitrarily close to d̂.
Using these facts we have that d(x) satisfies

∇g(x)T d(x) + g(x) > 0,(4.21)

∇f(x)T d(x) < 0(4.22)

for x sufficiently near x̂.
Now note that since ‖d(x)‖ < δmin, we have by (4.3), (4.19), and (4.21) that

�v(x, d(x)) = 0. By the nonnegativity of �v(x, d(x)) and the definition (4.6), this
implies that θ(x) = �v(x, 0) = v(x). In addition, since ∇f(x)T d(x) < 0, we have from
(4.10) that

Ψσ(x, δ) > σv(x) = σθ(x, δ)

for any δ ≥ δmin. Therefore, for any iterate xk sufficiently near x̂, σ ∈ Ω(xk, δk)
for all σ ≥ 0. As a result, for this subsequence of iterates, σ is never updated in a
neighborhood of x̂.

This argument applies to any feasible limit point that satisfies MFCQ. Therefore,
it is not possible for all such points to have a descent direction, for otherwise the
penalty parameter would be updated only a finite number of times, contradicting the
assumption that σk → ∞. In other words, we cannot have that all limit points satisfy
MFCQ and are not KKT points. This proves (ii).

Thus we are able to embed a relatively simple penalty-parameter update scheme
within Algorithm 2.1 and derive useful convergence results. Another possibility which
could be tried is to update the penalty parameter as needed once a globally convergent
method has approximately minimized φσ with the current (fixed) σ. Rules to achieve
this are known [4, 11], but we are concerned that this may prove to be inefficient,
particularly when an inappropriate initial σ is specified.

In the current version of the exact penalty method Slique [1], the penalty pa-
rameter is updated by a procedure that requires σk ∈ Ω(xk, δk) at each iteration, as
well as some further conditions. Therefore, Theorem 4.3 essentially holds for Slique.3

However, because of the additional conditions on σk, it is not clear whether a result
like Theorem 4.4 can be proved for Slique.

5. Conclusions and perspectives. In this paper we have proposed a trust-
region algorithm for nonlinear optimization that uses a combination of linear and
quadratic model steps and has separate, quasi-autonomous trust regions to control
these. At least one subsequence generated by the algorithm is shown to be glob-
ally convergent to a critical point of the problem under modest assumptions. Our
framework for trust-region radius updates is deliberately general. This is because we
wished it to apply in the case of the current implementation of our evolving nonlinear
programming code Slique [1] as well as to cover its future evolution.

3This is true of the current implementation, but the description in [1] differs in some minor
details.
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We have not considered the ultimate convergence rate of the algorithm, nor its
ability to identify the optimal active constraints in a finite number of iterations (these
two aspects are most likely closely linked [8]), although we have strong numerical
evidence to suggest that the latter does occur and that the convergence rate may
thereafter be made to be superlinear. The study of these and other issues is ongoing.

Acknowledgment. The authors are grateful to two anonymous referees for their
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Abstract. We consider the problem of minimizing a polynomial function on Rn, known to
be hard even for degree 4 polynomials. Therefore approximation algorithms are of interest. Lasserre
[SIAM J. Optim., 11 (2001), pp. 796–817] and Parrilo [Math. Program., 96 (2003), pp. 293–320] have
proposed approximating the minimum of the original problem using a hierarchy of lower bounds
obtained via semidefinite programming relaxations. We propose here a method for computing tight
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method is applied to several examples.
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1. Introduction. We consider the problem

p∗ := inf
x∈Rn

p(x)(1)

of minimizing a polynomial p in n indeterminates over Rn. We may assume that p has
an even degree 2m, since otherwise p∗ = −∞. There are three possibilities: Either p
has an infinite infimum (i.e., p∗ = −∞), p has a finite infimum (e.g., for the polynomial
p(x1, x2) = x2

1 + (x1x2 − 1)2), or p has a minimum. Computing the infimum of a
polynomial is a hard problem, already for degree 4 polynomials. Indeed, it contains
the problem of deciding whether a matrix is copositive, which is known to be co-NP-
hard [21], with an n× n matrix P being copositive if p(x) :=

∑n
i,j=1 Pijx

2
ix

2
j ≥ 0 for

all x ∈ Rn, i.e., if p∗ = 0. Alternatively, problem (1) contains the problem of deciding
whether an integer sequence a1, . . . , an can be partitioned, which is known to be NP-
complete [7], with a1, . . . , an being partitionable if there exists x ∈ {±1}n such that
aTx = 0, i.e., if the infimum of the polynomial p(x) := (aTx)2 +

∑n
i=1(x

2
i − 1)2 is

equal to 0.

1.1. Some known approaches to polynomial unconstrained minimiza-
tion. An approach followed by some authors (e.g., by Hägglöf, Lindberg, and Steven-
son [8]) is to look at the first order conditions ∂p/∂xi = 0 (i = 1, . . . , n). Various
algebraic techniques can be used for determining the real solutions to this system
of polynomial equations; e.g., using Gröbner bases and the eigenvalue method, using
resultants and discriminants, or homotopy methods (see, e.g., [3]; see [25] for a discus-
sion and comparison). However, there are several difficulties with such an approach.
It is computationally expensive (e.g., computing a Gröbner basis may be computa-
tionally very demanding), the number of critical points can be infinite, and, moreover,
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this approach applies only if the polynomial p attains its minimum. We will come
back to this type of approach later in this section.

Hanzon and Jibetean [9] (see also Jibetean [12]) proposed going around these
difficulties by considering a perturbation

pλ(x) := p(x) + λ

(
n∑

i=1

x2m+2
i

)
(2)

of the original polynomial p for small λ > 0. Set

p∗λ := inf
x∈Rn

pλ(x).

Thus, p∗ ≤ p∗λ ≤ p∗ + λ‖x∗‖2m+2 if x∗ is a global minimizer of p. The perturbed
polynomial has the following properties: pλ attains its minimum, the set of critical
points of pλ is finite, and the limit of the minima p∗λ as λ → 0 is equal to the infimum
p∗ of p. Moreover, if p has a global minimum, then the limit set as λ ↓ 0 of the set
of global minimizers of pλ is contained in the set of global minimizers of p, and each
connected component of the set of global minimizers of p contains a point which is the
limit of a branch of local minimizers of pλ. Exploiting these facts, Hanzon and Jibetean
proposed an exact algorithm for computing the limit p∗ of the minima p∗λ as well as
a global minimizer of p (if some exist). Their algorithm uses algebraic techniques,
some of them closely related to the algebraic machinery developed by Basu, Pollack,
and Roy [1]. Hanzon and Jibetean’s method applies to any polynomial p, i.e., no
assumption is made on the existence of a minimum. However, its computational cost
is very high and the algorithm can be applied in practice only to small instances.

Another type of approach consists of solving a convex (in fact, semidefinite) re-
laxation of the original problem; see, e.g., Lasserre [15], Parrilo [22, 23], and Shor [28].
The approach applies more generally to the problem

p∗ := inf
x∈K

p(x), where K := {x ∈ Rn | h1(x) ≥ 0, . . . , h�(x) ≥ 0}(3)

of minimizing p over a set defined by polynomial inequalities and equations (treating
an equation h(x) = 0 as two opposite inequalities: h(x) ≥ 0, −h(x) ≥ 0). Following
Lasserre [15], set di := 	deg(hi)/2
 and, for an integer k ≥ max(	deg(p)/2
, d1, . . . , d�),
consider the semidefinite program

p∗L,k := inf pT y s.t. Mk(y) � 0, Mk−di(hiy) � 0 (i = 1, . . . , �), y0 = 1(4)

(the moment relaxation of order k of (3)), and its dual

ρ∗k := sup ρ s.t. p(x) − ρ = u0 +
∑�

i=1 uihi, where
u0, u1, . . . , u� are sum of squares of polynomials
and deg(u0),deg(u1h1), . . . ,deg(u�h�) ≤ 2k

(5)

(the sum of squares relaxation of order k of (3)). Program (4) uses the variables y =
(yα)α∈S2k

, Mk(y) := (yα+α′)α,α′∈Sk
is the moment matrix of order k, Mk−di

(hiy) are
localizing matrices, and for an integer k, we set Sk := {α ∈ Zn

+ | |α| :=
∑n

i=1 αi ≤ k}.
Then ρ∗k ≤ p∗L,k ≤ p∗, ρ∗k ≤ ρ∗k+1, and p∗L,k ≤ p∗L,k+1. Under some assumption on K,
there is asymptotic convergence of the parameters ρ∗k, μ

∗
k to p∗. The following cases

are of particular interest for our purpose:
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(I) K = {x ∈ Rn |
∑n

i=1 x
2
i ≤ R2}. Then there is asymptotic convergence of ρ∗k

and p∗L,k to p∗ (see [15]).
(II) K = {x ∈ Rn | h1(x) = 0, . . . , h�(x) = 0} and the polynomials h1, . . . , h�

generate a zero-dimensional ideal I (i.e., they have finitely many common
complex zeros). Then there is finite convergence of p∗L,k to p∗, and of ρ∗k
when h1, . . . , h� form a Gröbner basis of I (see [18]) or when I is radical (see
[24]).

(III) K = {x ∈ Rn | ∂p
∂xi

(x) = 0 (i = 1, . . . , n)}. Then there is asymptotic
convergence of ρ∗k and p∗k to p∗, and finite convergence when the ideal Igrad
generated by the polynomials ∂p

∂xi
(i = 1, . . . , n) is radical (see [6]). (By case

(II) there is finite convergence of p∗k to p∗ when Igrad is zero-dimensional.)
Henrion and Lasserre [11] gave the following stopping criterion: If the optimum solu-
tion y to (4) satisfies the rank condition

rankMk(y) = rankMk−d(y), where d := max(d1, . . . , d�),(6)

then p∗k = p∗. See section 2.2 for details.
For our original unconstrained minimization problem (1) (then � = 0 and K =

Rn), we have p∗L,k = p∗L,m ≤ p∗ for all k ≥ m, with equality p∗L,m = p∗ if and only
if p − p∗ is a sum of squares. One possible option to better approximate p∗ is to
transform the unconstrained problem (1) into a constrained problem of the form (3).
This is possible if p attains its minimum, as p∗ can then be formulated as

p∗ = p∗grad := inf p(x) s.t. ∂p(x)/∂xi = 0 (i = 1, . . . , n).(7)

The equality p∗ = p∗grad does not hold in general if p does not attain its minimum;

for instance, p∗ = 0 and p∗grad = 1 for p(x1, x2) = x2
1 + (x1x2 − 1)2; p∗ = −∞ and

p∗grad = 0 for p(x) = x3. If p has a minimum and if some upper bound R is known
a priori on the norm of a global minimizer, then p∗ can also be expressed as

p∗ = min p(x) s.t.

n∑
i=1

x2
i ≤ R2.(8)

A major drawback of approaches based on formulations like (7) or (8) is that it is
not clear how to test whether a polynomial has a minimum and, for (8), how to
find a ball containing a global minimizer. We will, however, present in section 2.1 a
result of Marshall [19] concerning a class of polynomials for which such a ball can be
determined beforehand.

1.2. Our approach. In this paper we propose the following strategy for getting
around these difficulties. Following Hanzon and Jibetean [9], we consider the per-
turbed polynomial pλ from (2). As computing the exact limit p∗ of the minima p∗λ
is not a realistic option for large problems, we work toward the less ambitious goal
of computing a good upper approximation p∗λ of p∗ for some small value of λ. As
mentioned earlier, the polynomial pλ enjoys several properties (that p may not have
in general). Namely, pλ attains its minimum, which can thus be formulated as

p∗λ = min
x∈Vλ∩Rn

pλ(x),(9)

where

Vλ :=

{
x ∈ Cn | hλ,i(x) :=

∂pλ
∂xi

(x) = 0 (i = 1, . . . , n)

}
,
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and the set Vλ is finite (|Vλ| ≤ (2m + 1)n). Moreover, one can give an explicit radius

Rλ =
nm

λ

∑
α�=0

|pα|(10)

for a ball containing the global minima of pλ (see Corollary 3); thus

p∗λ = min
x∈Bλ

pλ(x),(11)

where

Bλ :=

{
x ∈ Rn | hλ,0(x) := R2

λ −
n∑

i=1

x2
i ≥ 0

}
.

By minimizing p(x) over the algebraic set Vλ ∩ Rn or over the ball Bλ, one obtains
even better bounds μ∗

λ and β∗
λ, respectively; that is,

p∗ ≤ μ∗
λ := min

x∈Vλ∩Rn
p(x) ≤ p∗λ, p∗ ≤ β∗

λ := min
x∈Bλ

p(x) ≤ p∗λ.

As the parameters μ∗
λ and β∗

λ are expressed via constrained polynomial programs
of the form (3), a first option is to apply Lasserre’s approach for computing them.
Namely, for any integer k ≥ m + 1, consider the programs

μ∗
L,k,λ := inf pT y s.t. y0 = 1, Mk(y) � 0,

Mk−m−1(hλ,iy) = 0 (i = 1, . . . , n),
(12)

β∗
L,k,λ := inf pT y s.t. y0 = 1, Mk(y) � 0, Mk−1(hλ,0y) � 0.(13)

Then

μ∗
L,k,λ ≤ μ∗

L,k+1,λ ≤ μ∗
λ, β∗

L,k,λ ≤ β∗
L,k+1,λ ≤ β∗

λ for k ≥ m + 1.

As k goes to infinity, there is asymptotic convergence of β∗
L,k,λ to β∗

λ (recall case (I))
and finite convergence of the parameters μ∗

L,k,λ to μ∗
λ (recall case (II)).

As the set Vλ is finite, another option for computing the bound μ∗
λ is to apply the

semidefinite representation result for finite varieties of Laurent [18]. Namely, μ∗
λ can

be expressed as the optimum of the semidefinite program

μ∗
λ = min pT y s.t. MB(y) � 0, y0 = 1,(14)

involving a combinatorial moment matrix MB(y). Here, y = (yβ)β∈B ∈ RB, where

B := {β ∈ Zn | 0 ≤ βi ≤ 2m (i = 1, . . . , n)}

has the property that the set of monomials {xβ | β ∈ B} forms a basis of the space
R[x1, . . . , xn]/Iλ, and Iλ is the ideal generated by hλ,i = ∂pλ/∂xi (i = 1, . . . , n). The
matrix MB(y) is obtained from a classical moment matrix by “factoring” through Iλ,
which, roughly speaking, means that the equations hλ,i(x) = 0 are used for expressing
any yα (α ∈ Zn

+) in terms of yβ (β ∈ B). As a by-product, this implies the finite
convergence of the bounds μ∗

L,k,λ from (12) to μ∗
λ; more precisely, μ∗

L,k,λ = μ∗
λ for

k ≥ 2nm (by Theorem 23 in [18]).
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The semidefinite program (14) is more compact than (12) (for any k ensuring
finite convergence). Indeed, program (14) involves only one linear matrix inequality
(LMI) and |B| = (2m + 1)n variables, whereas (12) involves n + 1 LMIs and

(
n+2k

2k

)
variables. Moreover the size of the matrix MB(y) is |B| = (2m+1)n, which is smaller
than the size

(
n+k
k

)
of the matrix Mk(y) for any k ≥ 2nm. Solving the semidefinite

program (14) is, however, still out of reach for large n or m. Moreover, the entries of
MB(y) are polynomial in 1/λ (and linear in y) and thus, for λ close to 0, they may
be ill-conditioned. These difficulties can be addressed in the following way. Given an
integer k, m ≤ k ≤ 2nm, consider the truncated semidefinite program obtained by
considering the principal submatrix of MB(y), denoted MBk

(y), indexed by the subset
Bk := B ∩ Sk, and set

μ∗
k,λ := inf pT y s.t. MBk

(y) � 0, y0 = 1.(15)

Thus,

μ∗
k,λ ≤ μ∗

k+1,λ ≤ μ∗
2nm,λ = μ∗

λ.

When the optimum solution MBk
(y) satisfies the following rank condition

rankMBh
(y) = rankMBh−1

(y)(16)

for some m ≤ h ≤ k, one can conclude that the optimum value of the truncated
problem (15) is an upper bound for the infimum p∗; that is, p∗ ≤ μ∗

k,λ ≤ μ∗
λ. Moreover,

one can extract a point x for which p∗ ≤ p(x) ≤ μ∗
k,λ, thus giving a certificate for

the claimed upper bound μ∗
k,λ on p∗ (see Corollary 19). In this way, one is (often)

able to compute a very good upper approximation of p∗ by solving a much smaller
semidefinite program. Moreover the degree in 1/λ of the entries of MBk

(y) is at
most k −m (see Theorem 18) and thus remains small for small values of k. Several
examples illustrating this procedure are given in section 3.2. In most cases one is
able to conclude that the parameter μ∗

k,λ from program (15) is an upper bound for
p∗ already for k = m + 1 or m + 2, in which case the entries of MBk

(y) are at most
quadratic in 1/λ, and we are thus able to carry out the computations for a small
perturbation parameter λ ∼ 10−4 and sometimes even smaller. By the results of [9],
for such small λ, the extracted minimizer xλ is very close to a global minimizer of p
(if some exist); this will be verified in the examples.

Given an integer k ≥ m, program (15) can be seen as a “compact” analogue of
program (12). We can prove the following interlacing property for their optimal values
(see Theorem 17):

μ∗
k,λ ≤ μ∗

L,k+1,λ ≤ μ∗
k+1,λ(17)

for m ≤ k ≤ 2nm, with equality μ∗
2nm,λ = μ∗

L,2nm,λ = μ∗
λ; see Examples 4, 5, 6 for

a numerical comparison. Program (12) involves matrices of size |Sk| =
(
n+k
k

)
and

|S2k| =
(
n+2k

2k

)
variables, whereas its compact analogue (15) involves matrices of size

|Bk| = |Sk ∩B| and |B2k| = |S2k ∩B| variables. For k ≤ 2m, Bk = Sk, but B2k is then
already significantly smaller than S2k. This is illustrated in Table 1, which displays
some values of |S2k \ B2k| = |S2k \ B| for k = m + 1,m + 2.

1.3. Contents of the paper. The paper is organized as follows. Section 2 con-
tains preliminaries about polynomials and about classical and combinatorial moment
matrices and their application to polynomial optimization. In section 3, we present
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Table 1

Gain in number of variables when using program (15) instead of program (12).

|S2m+2 \ B| |S2m+4 \ B| for m ≥ 2 |S2m+4 \ B| for m = 1

n n(n + 1) 4n + 12
(
n
2

)
+ 12

(
n
3

)
+ 4

(
n
4

)
4n + 11

(
n
2

)
+ 12

(
n
3

)
+ 4

(
n
4

)
n = 2 6 20 19

n = 3 12 60 57

n = 4 20 140 136

n = 5 30 280 275

n = 10 110 2860 2850

our method for computing the upper approximations μ∗
λ for the infimum p∗ of a poly-

nomial p over Rn, and in section 3.2 we present several examples on which our method
has been tested.

2. Preliminaries.

2.1. Polynomials. We begin with some preliminaries on ideals of polynomi-
als. Throughout the paper, R[x1, . . . , xn] denotes the ring of real polynomials in n
indeterminates. For an integer k ≥ 0, Sk denotes the set of α ∈ Zn

+ with |α| :=∑n
i=1 αi ≤ k. Write a polynomial p ∈ R[x1, . . . , xn] with (total) degree at most k as

p(x) =
∑

α∈Sk
pαx

α, where xα denotes the monomial xα := xα1
1 · · ·xαn

n . As usual,
we identify a polynomial p of degree at most k with the sequence of its coefficients
p = (pα)α∈Sk

.
Let I be an ideal in R[x1, . . . , xn]. The set

V = V (I) := {x ∈ Cn | f(x) = 0 ∀f ∈ I}

is its associated (complex) variety. The ideal I is said to be zero-dimensional if
|V | < ∞. The sets I(V ) := {f ∈ R[x1, . . . , xn] | f(v) = 0 ∀v ∈ V } and

√
I :=

{f ∈ R[x1, . . . , xn] | fk ∈ I for some integer k ≥ 1} are again ideals in R[x1, . . . , xn],
which obviously contain the ideal I. The Nullstellensatz asserts that these two ideals
coincide; namely,

√
I = I(V ). The ideal I is said to be radical when I =

√
I. Hence,

by the Nullstellensatz,

I is radical ⇐⇒ the polynomials vanishing at all points of V
are precisely the polynomials in I.

(18)

The following result, relating the dimension of the quotient vector space R[x1, . . . , xn]/I
and the cardinality of V , can be found, e.g., in [2, section 5.3]:

|V | < ∞ ⇐⇒ dim R[x1, . . . , xn]/I < ∞,
|V | ≤ dim R[x1, . . . , xn]/I, with equality if and only if I is radical.

(19)

We now recall a result of Marshall [19] giving a sufficient condition for a polyno-
mial to have a minimum. Given a nonzero polynomial p, let p̃ be its highest degree
homogeneous component, defined as the sum of the terms of p having maximum degree,
and set

p̃S := min
x∈S

p̃(x), where S :=

{
x ∈ Rn

∣∣∣∣
n∑

I=1

x2
i = 1

}
.

If p̃S < 0, then p has obviously an infinite infimum, i.e., p∗ = −∞. If p̃S > 0, then,
following Marshall [19], p is said to be stably bounded from below and, as the next
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result shows, p attains its minimum. On the other hand, no conclusion can be drawn
when p̃S = 0; indeed, p may have an infinite infimum (e.g., for p(x1, x2) = x2

1 + x2),
a finite infimum (e.g., for p(x1, x2) = x2

1 + (x1x2 − 1)2), or a minimum (e.g., for
p(x1, x2) = x2

1x
2
2).

Lemma 1 (see [19]). Assume p is stably bounded from below. Given x ∈ Rn,

p(x) ≤ 0 =⇒ ‖x‖ ≤ max

⎛
⎝ 1

p̃S

∑
α:|α|≤deg(p)−1

|pα|, 1

⎞
⎠.(20)

In particular, any global minimum of p belongs to the ball centered at the origin with
radius Rp := max(1, 1

p̃S

∑
α:1≤|α|≤deg(p)−1 |pα|).

Proof. Say p has degree d and write p = p̃ + g, where all terms of p̃ have degree
d and all terms of g have degree ≤ d− 1. Let x ∈ Rn \ {0} such that p(x) ≤ 0. Thus,
p̃(x) ≤ −g(x) ≤

∑
α:|α|≤d−1 |pα||xα|. By assumption, p̃(x) = ‖x‖dp̃( x

‖x‖ ) ≥ ‖x‖dp̃S >

0. On the other hand, if ‖x‖ ≥ 1 and |α| ≤ d − 1, then |xα| ≤ ‖x‖|α| ≤ ‖x‖d−1.
Combining these two facts, we find the relation (20). If x is a global minimum of
p, then p(x) ≤ p(0) and thus ‖x‖ ≤ Rp follows from (20) applied to the polynomial
p− p(0).

In general, the polynomial p may not be stably bounded from below and it may
not even have a minimum. However, for any positive λ, the perturbed polynomial pλ
is stably bounded from below. Indeed, if p has degree 2m, then the highest degree
homogeneous component of pλ is equal to λ

∑n
i=1 x

2m+2
i , whose minimum value over

the unit sphere is equal to λ
nm as the next lemma shows.

Lemma 2. Given an integer m ≥ 2, the minimum value taken by
∑n

i=1 x
2m
i over

the unit sphere is equal to 1
nm−1 .

Proof. By evaluating f(x) :=
∑

i x
2m
i at the point x := 1√

n
(1, . . . , 1), we find that

the minimum value fS of f over the unit sphere is at most 1
nm−1 . To show the reverse

inequality, note that fS is equal to the minimum value of g(x) :=
∑n

i=1 x
m
i over x ∈ Rn

+

with
∑n

i=1 xi = 1. Let x be a minimizer to this program. Applying the Karush–
Kuhn–Tucker conditions, there exist λ ∈ R, z ∈ Rn

+ such that ∇g(x) − λe − z = 0

and xT z = 0. As x, z ≥ 0, xizi = 0 for all i and ∂g
∂xi

(x) = λ if zi = 0. Say,
z1 = · · · = zp = 0, zp+1, . . . , zn > 0 for some p ≤ n; thus xp+1 = · · · = xn = 0. For

i = 1, . . . , p, ∂g
∂xi

(x) = λ = mxm−1
i . From this follows that x1 = · · · = xp = 1

p . Now,

g(x) = 1
pm−1 ≥ 1

nm−1 as p ≤ n.
Corollary 3. Given a polynomial p of degree 2m, the global minima of the

perturbed polynomial pλ(x) = p(x) + λ(
∑n

i=1 x
2m+2
i ) are located in the ball Bλ with

radius Rλ := nm

λ

∑
α�=0 |pα|.

2.2. Moment matrices. We recall here some results about moment matrices
that we need in the paper. Given a probability measure μ on Rn, the quantity
yα :=

∫
xαμ(dx) is called its moment of order α. A probability measure with finite

support is of the form μ =
∑r

i=1 λiδxi , where λi > 0,
∑r

i=1 λi = 1, xi ∈ Rn (the
atoms of the measure); then μ is said to be r-atomic. Here, δx is the Dirac measure
at x ∈ Rn, having mass 1 at x and mass 0 elsewhere.

The moment problem concerns the characterization of the sequences y ∈ RS2k

(k ≥ 1) that are the sequences of moments of some probability measure μ; in that
case one also says that μ is a representing measure for y. Given y ∈ RS2k , its moment
matrix of order k is the matrix Mk(y) indexed by Sk with (α, β)th entry yα+β for
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α, β ∈ Sk. Given a polynomial h(x) of degree 2d or 2d − 1, define the vector hy
with entries (hy)α :=

∑
γ hγyα+γ for α ∈ S2k−2d; Mk−d(hy) is known as a localizing

moment matrix. A well-known necessary condition for the existence of a representing
measure for y is the positive semidefiniteness of its moment matrix.

Lemma 4. If y ∈ RS2k has a representing measure μ, then Mk(y) � 0. Moreover,
if the support of μ is contained in the set {x | h(x) ≥ 0}, where h(x) is a polynomial
of degree 2d or 2d− 1, then Mk−d(hy) � 0.

Proof. For p ∈ RSk , we have

pTMk(y)p =
∑

α,β∈Sk

pαpβyα+β =
∑

α,β∈Sk

pαpβ

∫
xα+βdμ(x) =

∫
p(x)2dμ(x) ≥ 0,

which shows that Mk(y) � 0. If the support of μ is contained in {x | h(x) ≥ 0}, one
can verify that pTMk−d(hy)p =

∫
p(x)2h(x)dμ(x) ≥ 0 for all p ∈ RSk−d , which shows

that Mk−d(hy) � 0.

Curto and Fialkow [4, 5] prove some results showing that, under some rank con-
dition, the necessary conditions from the above lemma are also sufficient for the
existence of a representing measure. A key notion is that of “flat extension.” Let X
be a symmetric matrix and let A be a principal submatrix of X. One says that X is
a flat extension of A if rank X = rank A. Then X � 0 ⇐⇒ A � 0.

Theorem 5 (see [4]). Let y ∈ RS2k . If Mk(y) � 0 and Mk(y) is a flat extension
of Mk−1(y), then y has a representing measure which is (rank Mk(y))-atomic.

The proof uses the following property of the kernel of Mk(y), which also permits
one to derive Corollary 7 below.

Lemma 6 (see [4]). Assume that Mk(y) � 0 and let f, g ∈ R[x1, . . . , xn], whose
product h := fg has degree deg(h) ≤ k − 1. Then Mk(y)f = 0 implies Mk(y)h = 0.

Corollary 7. If Mk(y) � 0 and rank Mh(y) = rank Mh−1(y) for some 1 ≤
h ≤ k − 1, then rank Mk−1(y) = rank Mk−2(y).

Theorem 8 (see [5]; see [17] for a short proof). Let y ∈ RS2k , h1, . . . , h� ∈
R[x1, . . . , xn], di := 	deg(hi)/2
, and d := max(d1, . . . , d�). Assume that Mk(y) � 0,
Mk−di(hiy) � 0 (for i = 1, . . . , �), and rank Mk(y) = rank Mk−d(y). Then y has a
representing measure μ supported by the set {x | h1(x) ≥ 0, . . . , h�(x) ≥ 0}; moreover
μ is (rank Mk(y))-atomic.

The above results underlie the semidefinite relaxations (4) and (5) of problem
(3). In particular, as an application of Theorem 8, one finds the stopping criterion of
Henrion and Lasserre [11]: If Mk(y) is an optimum solution to (4) satisfying the rank
condition (6), then p∗L,k = p∗. This is a very useful fact, as it permits one very often
in practice to conclude that the relaxation (4) of a given order k solves the original
problem (3) at optimality for small values of k. The following two results imply the
asymptotic (or finite) convergence of the parameters ρ∗k and p∗L,k to the optimum p∗

in cases (I) and (III) mentioned in section 1.1.

Theorem 9 (see [26]). Let K = {x ∈ Rn | h1(x) ≥ 0, . . . , h�(x) ≥ 0} and

M := {u0 +
∑�

i=1 uihi | u0, u1, . . . , u� are sums of squares of polynomials}. Assume
that K is compact and that there exists a polynomial u ∈ M for which the set {x ∈
Rn | u(x) ≥ 0} is compact. Then every positive polynomial on K belongs to M .

Theorem 10 (see [6]). Given a polynomial p, define K := {x ∈ Rn | ∂p
∂xi

(x) =
0 (i = 1, . . . , n)} and let Igrad be the ideal generated by ∂p/∂xi (i = 1, . . . , n). If p is
positive on K, then p is a sum of squares of polynomials modulo Igrad. When Igrad
is radical, the same conclusion holds if p is nonnegative on K.
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2.3. Combinatorial moment matrices. Let I be a zero-dimensional ideal in
R[x1, . . . , xn] with V = V (I) as associated complex variety. With respect to a given
monomial ordering, let G be a Gröbner basis of I and let S be the associated set of
standard monomials consisting of the monomials that are not divisible by the leading
term of any polynomial in G. Let B be the set of exponents of the standard monomials;
that is, S = {xβ | β ∈ B}. The set S is a basis of R[x1, . . . , xn]/I; that is, for every
polynomial f ∈ R[x1, . . . , xn], there exists a unique polynomial r(x) =

∑
β∈B rβx

β for
which f − r ∈ I; r is called the residue of f modulo I.

Given y = (yβ)β∈B ∈ RB, let MB(y) be the B × B matrix whose (α, β)th entry
is equal to

∑
γ∈B rγyγ for α, β ∈ B, where

∑
γ∈B rγx

γ is the residue of xαxβ modulo
I; MB(y) is called the combinatorial moment matrix of y. In other words, MB(y) is
obtained from a classical moment matrix by expressing all entries of y in terms of
those indexed by the standard monomials using the equations defining I. For v ∈ Rn,
define the vector ζv := (vβ)β∈B ∈ RB. It is not difficult to check that if v ∈ V ∩ Rn,
then MB(ζv) = ζvζ

T
v is positive semidefinite. Hence, MB(y) � 0 if y belongs to the

cone generated by the vectors ζv (v ∈ V ∩ Rn). Laurent [18] shows that equivalence
holds.

Theorem 11 (see [18]). Let I be a zero-dimensional ideal in R[x1, . . . , xn], let
V be the associated variety, and let {xβ | β ∈ B} be the set of standard monomials
with respect to some monomial ordering. Let y ∈ RB and let MB(y) be its associated
combinatorial moment matrix. Then MB(y) � 0 if and only if y belongs to the cone
generated by ζv (v ∈ V ∩ Rn); that is, y is the sequence of moments (of order α ∈ B)
of a nonnegative atomic measure μ whose support is contained in V ∩ Rn.

2.4. Truncated combinatorial moment matrices. We assume in this section
and the next one that the ideal I is generated by n polynomials of the form

hi(x) := x2m+1
i − h̃i(x) for i = 1, . . . , n,(21)

where deg(h̃i) ≤ 2m and m ≥ 1 is a given integer. In that case, we can prove some
results about flat extensions of truncated combinatorial moment matrices, which will
be useful for our application to optimization.

The polynomials h1, . . . , hn form a Gröbner basis of the ideal I (with respect
to a total degree monomial ordering) (apply [2, section 2.6]). Therefore, the set of
standard monomials is S = {xβ | β ∈ B}, where

B := {β ∈ Zn | 0 ≤ βi ≤ 2m ∀i = 1, . . . , n}.(22)

It follows from (19) that the ideal I is zero-dimensional. Given an integer 1 ≤ k ≤
2nm, define

Bk := B ∩ Sk = {β ∈ B | |β| ≤ k}.(23)

Lemma 12. Given f ∈ R[x1, . . . , xn], let r be its residue modulo I. Then deg(r) ≤
deg(f).

Proof. Fix a total degree monomial ordering. Then the division algorithm applied
for dividing f by h1, . . . , hn yields a decomposition f =

∑n
i=1 uihi + r, where r(x) =∑

β∈B rβx
β is the residue of f , and deg(uihi) ≤ deg(f) whenever ui �= 0 (see [2,

section 2.3]). Therefore, deg(r) ≤ deg(f).
For a monomial xα, let r(α)(x) denote its residue modulo I; by Lemma 12, r(α)(x)

is of the form r(α)(x) =
∑

β∈Bk
r
(α)
β xβ if |α| ≤ k. Therefore, given a truncated
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sequence y ∈ RB2k , one can define its truncated combinatorial moment matrix MBk
(y)

as the matrix indexed by Bk whose (α, β)th entry is yT r(α+β) for α, β ∈ Bk. We now
indicate how to extend a combinatorial moment matrix to a classical moment matrix.

Definition 13. Given y ∈ RB2k , extend y to ỹ ∈ RS2k by setting

ỹγ := yT r(γ) for γ ∈ S2k,(24)

where r(γ)(x) is the residue of xγ modulo I.
Lemma 14. Let y ∈ RB2k , with ỹ ∈ RS2k its extension from (24). Let f be a

polynomial of degree at most 2k and r its residue modulo I. Then fT ỹ = rT y.

Proof. Using (24), we find that fT ỹ =
∑

δ fδ ỹδ =
∑

δ fδy
T r(δ) =

∑
β,δ fδr

(δ)
β yβ ,

while yT r =
∑

β rβyβ . Hence it suffices to show that the two polynomials r(x)

and s(x) :=
∑

β,δ fδr
(δ)
β xβ are identical. For this, note that s(x) =

∑
δ fδr

(δ)(x) ≡∑
δ fδx

δ = f(x) ≡ r(x) modulo I. Hence, r = s, since both r and s are polynomials
using only standard monomials.

Lemma 15. Let y ∈ RB2k , with ỹ ∈ RS2k its extension from (24). Then Mk(ỹ) is
a flat extension of MBk

(y).
Proof. By the definition of ỹ, the principal submatrix of Mk(ỹ) indexed by Bk

coincides with MBk
(y). Consider a column Cγ of Mk(ỹ) indexed by γ ∈ Sk \ Bk. We

verify that Cγ =
∑

β∈Bk
r
(γ)
β Cβ ; that is,

ỹα+γ =
∑
β∈Bk

r
(γ)
β ỹα+β ∀α ∈ Sk.

For this consider the polynomial f(x) := xα+γ −
∑

β∈Bk
r
(γ)
β xα+β . As f has degree at

most 2k and f ∈ I, it follows from Lemma 14 that fT ỹ = 0, which gives the desired
relation.

Corollary 16. Let y ∈ RB2k , with ỹ ∈ RS2k its extension from (24). Assume
that MBh

(y) is a flat extension of MBh−1
(y) for some 1 ≤ h ≤ k. (Then this holds

for h = k or k − 1 by Corollary 7.) Then (ỹα)α∈S2h
(and thus (yα)α∈B2h

) is the
sequence of moments of an r-atomic measure μ, where r := rank MBh

(y). Moreover,
if h ≥ 2m + 1, then the support of μ is contained in V .

Proof. By Lemma 15, Mh(ỹ) is a flat extension of Mh−1(ỹ). Hence, by Theo-
rem 5, (yα)α∈S2h

has an r-atomic representing measure μ, where r = rank Mh(ỹ) =
rank MBh

(y). If h ≥ 2m+1, then the polynomials hi(x) (i = 1, . . . , n) generating the
ideal I belong to the kernel of Mh(ỹ) (by the construction of ỹ). Hence, the support
of μ is contained in the set of common zeros of the hi’s, i.e., in the variety V .

2.5. Optimization and extraction of solutions. Given a polynomial p ∈
R[x1, . . . , xn], consider the problem

p∗ := min p(x) s.t. h1(x) = 0, . . . , hn(x) = 0,

where h1, . . . , hn are as in (21). We can assume that p has degree at most 2m;
otherwise replace p by its residue modulo the ideal I. We first compare the following
two hierarchies of lower bounds for p∗, defined for k ≥ m:

μ∗
k := inf pT y s.t. MBk

(y) � 0, y0 = 1,(25)

μ∗
L,k := inf pT y s.t. y0 = 1, Mk(y) � 0,

Mk−m−1(hiy) = 0 (i = 1, . . . , n),
(26)
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where we omit the condition Mk−m−1(hiy) = 0 when k = m. If k = m, the two
programs (25) and (26) are identical and thus μ∗

m = μ∗
L,m. Moreover, by Theorem

11 (and Theorem 23 in [18]), μ∗
2nm = μ∗

L,2nm = p∗. One can show the following
interlacing property for the parameters μ∗

k and μ∗
L,k, which implies the interlacing

property (17) for the two hierarchies of bounds from (12) and (15).
Theorem 17. μ∗

k−1 ≤ μ∗
L,k ≤ μ∗

k for all k ≥ m + 1.
Proof. Let z be a feasible solution to (26), i.e., Mk(z) � 0, Mk−m−1(hiz) = 0,

z0 = 1. We observe first that fT z = 0 for every polynomial f ∈ I with degree at
most 2k − 1. Indeed, as f ∈ I, f =

∑n
i=1 uihi, where deg(uihi) ≤ deg(f) ≤ 2k − 1,

i.e., deg(ui) ≤ 2k − 1 − (2m + 1) = 2k − 2m − 2 whenever ui �= 0. Moreover,
f(x) =

∑n
i=1

∑
γ,δ(ui)γ(hi)δx

γ+δ. Hence,

fT z =
∑
β

fβzβ =
∑
β

zβ

n∑
i=1

∑
γ,δ|γ+δ=β

(ui)γ(hi)δ =

n∑
i=1

∑
γ

(ui)γ
∑
δ

(hi)δzγ+δ.

Now,
∑

δ(hi)δzγ+δ = (hiz)γ = 0 since |γ| ≤ deg(ui) ≤ 2k−2m−2 and Mk−m−1(hiz) =
0. Therefore, we find that fT z = 0. Hence, if we denote by y the restriction of z to
RB2k , then zγ = yT r(γ) for |γ| ≤ 2k − 1. Hence MBk−1

(y) coincides with the princi-
pal submatrix of Mk(z) indexed by Bk−1 and thus MBk−1

(y) � 0. This implies that
pT z = pT y ≥ μ∗

k−1 and thus μ∗
L,k ≥ μ∗

k−1.

Consider now a feasible solution y ∈ RB2k to (25). Let ỹ be its extension to RS2k

from (24). Then Mk(ỹ) � 0 by Lemma 15. It remains to verify that Mk−m−1(hiỹ) = 0,
i.e., that (hiỹ)α =

∑
γ(hi)γ ỹα+γ is equal to 0 for |α| ≤ 2k−2m−2. As the polynomial

f(x) := hi(x)xα belongs to I and its degree is at most 2k, it follows from Lemma 14
that fT ỹ = 0, which gives the desired relation. Hence, ỹ is feasible for (26), which
implies that pT y = pT ỹ ≥ μ∗

L,k and thus μ∗
k ≥ μ∗

L,k.
Let y be an optimum solution to (25). Assume that rankMBh

(y) = rankMBh−1
(y)

=: r for some 1 ≤ h ≤ k. By Corollary 16, (yβ)β∈B2h
is the sequence of moments

of a measure μ =
∑r

i=1 λiδvi
(λi > 0,

∑
i λi = 1, vi ∈ Rn). If h ≥ m, then p∗ ≥

μ∗
k = pT y =

∑
i λip(vi) ≥ mini p(vi); moreover, v1, . . . , vr belong to V (I) and thus

are global minimizers of p over the set {x ∈ Rn | h1(x) = · · · = hn(x) = 0} when
h ≥ 2m + 1. We now indicate how to extract the points v1, . . . , vr from the matrix
MBh

(y); this is analogous to the extraction procedure in [11] (for program (26)).
As rankMBh

(y) = rankMBh−1
(y) = r, one can find a subset A of Bh−1, |A| =

r, indexing a positive definite principal submatrix A of MBh
(y). If h ≤ 2m, let

J denote the ideal generated by the kernel of MBh
(y) and, if h ≥ 2m + 1, let J

be the ideal generated by I and the kernel of MBh
(y). Obviously, {v1, . . . , vr} ⊆

V (J). On the other hand, A is a basis of R[x1, . . . , xn]/J (easy to verify) and thus
dim R[x1, . . . , xn]/J = r, which implies that |V (J)| ≤ r (by (19)). Therefore, V (J) =
{v1, . . . , vr} and J is a zero-dimensional radical ideal. Thus, determining v1, . . . , vr
amounts to finding the common zeros to the polynomials in J , which can be done with
the eigenvalue method, briefly described below (see, e.g., [3, Chapter 2, section 4]).

For a polynomial f , the multiplication matrix Mf is the |A| × |A| matrix whose
αth column (for α ∈ A) contains the coefficients in the base A of the residue modulo
J of the polynomial xαf(x). If f is chosen in such a way that the values f(v) are
distinct for v ∈ V (J), then the right eigenspaces of Mf are one-dimensional and
spanned by the vectors (vα)α∈A (for v ∈ V (J)) (Proposition 4.7 in [3]). Hence, the
points v1, . . . , vr of V (J) can be determined from the right eigenvectors of Mf .

In our extraction procedure, we construct the base A in a “greedy manner”;
starting from the constant monomial 1, we insert in A as many low degree monomials
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as possible. Then, given an eigenvector (vα)α∈A (or a scalar multiple of it), it is
easy to recover the components of v (in fact, immediate, if A contains the monomials
x1, . . . , xn). We determine the multiplication matrices Mxi (for f = xi, i = 1, . . . , n)
in the following way. As before let A be the principal submatrix of MBh

(y) indexed
by A and let Ui be the submatrix of MBh

(y) with row indices A and column indices
the set xiA := {xix

α | α ∈ A}. When h ≤ 2m (which is the case considered for
practical applications), Mxi

= A−1Ui. (Indeed, given β ∈ A, let v be the column
of MBh

(y) indexed by xix
β , u := (vα)α∈A the corresponding column of Ui, and

c = (cα)α∈A the unique scalars permitting to express v as v =
∑

α∈A cαCα, with Cα

being the column of MBh
(y) indexed by xα. Then c = A−1u and the polynomial

xix
β −

∑
α∈A cαx

α belongs to the ideal J generated by the kernel of MBh
(y). Thus∑

α∈A cαx
α is the residue of xix

β modulo J ; i.e., c is the corresponding column of
Mxi .) Then, for an arbitrary polynomial f , its multiplication matrix Mf is given
by Mf = f(Mx1

, . . . ,Mxn
), whose eigenvectors can be used for extracting the global

optimizers.

Let us make a comment at this point. For solving our original problem of min-
imizing p over the set of real points in V (I), one could use the following strategy:
Determine all points in V (I) (using the eigenvalue method) and evaluate p at the
real points. This is, however, computationally expensive, as this involves computing
the eigenvalues of a multiplication matrix whose size is |B| = (2m + 1)n, thus expo-
nential in the number of variables. Instead, we propose to solve the relaxed convex
program (25) for small values of k. Typically it has an optimum solution of small
rank r and, when the rank condition holds, one can extract a solution by computing
the eigenvalues of a much smaller matrix of size r.

3. Application to unconstrained polynomial minimization.

3.1. Our method. Let us return to the problem (1) of computing the infimum
p∗ of a polynomial p over Rn. As before, we assume that p has degree 2m and, for
λ > 0, we consider the perturbed polynomial pλ as in (2) and set p∗λ := infx∈Rn pλ(x).
For i = 1, . . . , n, let

hλ,i(x) := ∂pλ(x)/∂xi = ∂p(x)/∂xi + λ(2m + 2)x2m+1
i(27)

denote the partial derivatives of pλ(x). Let Iλ be the ideal generated by hλ,1, . . . , hλ,n

and let Vλ := V (Iλ) be its associated variety. Up to a constant factor, each hλ,i(x) is

of the form x2m+1
i + h̃i(x), where h̃i(x) has degree at most 2m− 1, and thus we are

in the situation of section 2.4. Therefore, for λ �= 0, the set {xβ | β ∈ B}, where B is
as in (22), is the set of standard monomials, forming a basis of R[x1, . . . , xn]/Iλ, and
Iλ is a zero-dimensional ideal.

As pλ attains its minimum, it follows that it attains its minimum at a critical
point. That is, infx∈Rn pλ(x) = minx∈Vλ∩Rn pλ(x). If x∗ is a global minimizer of p,
then p∗ ≤ p∗λ ≤ pλ(x∗) ≤ p∗ + λ‖x∗‖2m+2. As p(x) ≤ pλ(x) for all x, we have

p∗ ≤ μ∗
λ := min

x∈Vλ∩Rn
p(x) ≤ min

x∈Vλ∩Rn
pλ(x).

As Iλ is a zero-dimensional ideal, we can apply Theorem 11 and compute the bound
μ∗
λ via the following semidefinite program:

μ∗
λ = min pT y s.t. MB(y) � 0, y0 = 1,(28)
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where B is defined in (22). Given an integer m ≤ k ≤ 2nm, one can consider the
following semidefinite program involving truncated combinatorial moment matrices:

μ∗
k,λ := inf pT y s.t. MBk

(y) � 0, y0 = 1,(29)

where Bk is as in (23). These parameters define a hierarchy of lower bounds for μ∗
λ,

μ∗
m,λ ≤ · · · ≤ μ∗

k,λ ≤ · · · ≤ μ∗
2nm,λ = μ∗

λ,(30)

where the last equality holds since B2nm = B.
Let us give some information about the structure of the matrix MBk

(y). For
α, β ∈ Bk, the (α, β)th entry of MBk

(y) is equal to yT r(α+β), where r(α+β)(x) is
the residue of xα+β modulo the ideal Iλ. This residue is obtained by dividing the
monomial xα+β by the polynomials hλ,i from (27), forming a Gröbner basis of Iλ.
Hence, the entries of MBk

(y) are polynomial in 1/λ (and linear in y). The next result
gives an estimate on the degree in 1/λ of the entries of MBk

(y).
Theorem 18. For k = m, . . . , 2nm, the matrices MBk

(y) are polynomial matrices
in 1/λ; the maximal degree in 1/λ of the entries of MBk

(y) is at most k −m.
Proof. Consider a monomial xγ where γ ∈ Zn

+ with |γ| ≥ 2m. We show by
induction on |γ| that the coefficients of the residue of xγ modulo the ideal Iλ are
polynomial in 1/λ with degree at most 	(|γ| − 2m)/2
. If γi ≤ 2m for all i = 1, . . . , n,
then xγ is a standard monomial; that is, its residue is xγ whose degree in 1/λ is 0.
Suppose, e.g., that γ1 ≥ 2m + 1. Then xγ = x2m+1

1 xγ̃ , where γ̃1 = γ1 − 2m − 1 and

γ̃i = γi for i ≥ 2. Thus, |γ̃| = |γ| − 2m− 1 and xγ ≡ − 1
2m+2

1
λ

∂p(x)
∂x1

xγ̃ modulo Iλ. As

the degree of xγ̃∂p(x)/∂x1 is at most 2m − 1 + |γ̃| = |γ| − 2, we know by induction
that the degree in 1/λ of its residue is at most 	(|γ|−2−2m)/2
 = 	(|γ|−2m)/2
−1.
Therefore, the degree in 1/λ of the residue of xγ is at most 	(|γ| − 2m)/2
. The
theorem now follows since each entry of MBk

(y) is the residue of a monomial of
degree at most 2k.

As MBm(y) does not depend on λ, the matrix MBm(y) coincides with the classical
matrix Mm(y). Hence, the first member μ∗

m,λ in the hierarchy (30) does not depend
on λ and is equal to p∗L,m, the Lasserre lower bound for p∗ from (4); thus,

μ∗
m,λ = p∗L,m ≤ p∗.

It is not clear a priori on which side of p∗ the parameter μ∗
k,λ is located when m < k <

2nm. In some cases, one can derive this information with the help of the following
result.

Corollary 19. Let MBk
(y) be an optimum solution to program (29) defining

μ∗
k,λ. Assume that rank MBh

(y) = rank MBh−1
(y) for some m ≤ h ≤ k. Then

p∗ ≤ μ∗
k,λ ≤ μ∗

λ and one can extract a point x ∈ Rn for which p∗ ≤ p(x) ≤ μ∗
k,λ.

Moreover, μ∗
k,λ = μ∗

λ if h ≥ 2m + 1.
Proof. By Corollary 16, (yα)α∈B2h

is the sequence of moments of a probability
measure μ =

∑r
i=1 λiδvi

. Hence, μ∗
k,λ = pT y =

∑r
i=1 λip(vi) ≥ mini p(vi) ≥ p∗. If

h ≥ 2m + 1, then v1, . . . , vr ∈ Vλ and thus μ∗
k,λ = μ∗

λ.
Let us point out that, for the problem of computing the minimum p∗ of a polyno-

mial of the form p =
∑n

i=1 cix
2m+2
i + p0 where deg p0 ≤ 2m+1 (c1, . . . , cn ∈ R \ {0}),

our method can be applied directly to p, without any perturbation. Namely, let r be
the residue of p modulo the ideal generated by ∂p/∂xi (i = 1, . . . , n); then

p∗ = min rT y s.t. MB(y) � 0, y0 = 1,
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and the parameters μ∗
k from (25) are lower bounds for p∗, with equality μ∗

k = p∗ if
rankMBh

(y) = rankMBh−1
(y) for some 2m + 1 ≤ h ≤ k. See Examples 9 and 10 in

the next section for an illustration.
We now illustrate our method on two small examples; both will be revisited in

the next section.
Example 1. Consider the polynomial p(x1, x2) = x2

1 + x2 and its perturbation
pλ(x1, x2) = p(x1, x2) + λ(x4

1 + x4
2). Then p∗ = −∞. One can compute explicitly the

set Vλ of solutions to the system

∂pλ
∂x1

= 2x1(2λx
2
1 + 1) = 0,

∂pλ
∂x2

= 4λx3
2 + 1 = 0.

Namely, Vλ consists of the nine points (x1, x2) with x1 = 0,±i
√

1/2λ, and x2 =

− 3
√

1/4λ,−j 3
√

1/4λ,−j2 3
√

1/4λ (where i, j ∈C, i2 =−1, j3 = 1). Hence, (0,− 3
√

1/4λ)
is the only real point in Vλ and thus the unique minimizer of p over Vλ. This implies
that μ∗

λ = − 3
√

1/4λ.
Example 2. Consider the polynomial p(x1, x2) = (x2

1 + x2
2 − 1)2 whose minimum

is p∗ = 0 attained at all points on the unit circle. One can verify that the set Vλ

contains 25 points, among them 9 real points, namely, (0, 0) and

(i) (x1, x2) = ±(0, a), ±(a, 0), where a :=
√

(−1 +
√

6λ + 1)/3λ;

(ii) (x1, x2) = (±b,±b), where b :=
√

(−2 +
√

6λ + 4)/3λ.

The minimum of p over Vλ is μ∗
λ = (2b2−1)2, which is attained at the points (±b,±b)

in (ii). As a = 1 + o(1) and b = 1/
√

2 + o(1), the limit as λ ↓ 0 of the real points in
Vλ are the points (0,±1), (±1, 0), (±1/

√
2,±1/

√
2) on the unit circle together with

the origin.

3.2. Examples. We present here several examples on which our method has
been tested. Let p be the polynomial whose infimum p∗ is to be found and let 2m
be its degree. We compute the approximations μ∗

k,λ of p∗ provided by program (29).

The computation is carried out for several values of λ, ranging typically from 10−1

to 10−4 (sometimes much smaller). We solve the program (29) for increasing values
of k starting from k = m. Let MBk

(y∗) be the returned optimum solution and μ∗
k,λ

the returned optimum value. At k = m, we find the Lasserre lower bound p∗L,m

for p∗.
At each step k, we check whether the rank condition (16) holds; if not, we go to

the next step k + 1. More precisely, we have the following:
• If k = m, then μ∗

m,λ = p∗L,m ≤ p∗. Moreover, μ∗
m,λ = p∗L,m = p∗ if

rankMBm(y∗) = rank MBm−1(y
∗); i.e., the infimum p∗ has been found.

• If k ≥ m + 1, and rank MBh
(y∗) = rank MBh−1

(y∗) =: r for h = k or
h = k − 1, then μ∗

k,λ ≥ p∗; moreover, one can extract r points x ∈ Rn, and
evaluating p at any such point x gives a certified upper bound on p∗.

There are two phases in the resolution of program (29): (1) Compute the en-
tries of the matrix variable MBk

(y) in (29); that is, compute the residue of xα+β

modulo Iλ with respect to the basis B for each α, β ∈ Bk; and (2) solve the semidef-
inite program (29). The first phase is carried out using Mathematica 4.2, and the
semidefinite programming problem is solved with SeDuMi 1.05 (used with accuracy
parameter pars.eps = 0). When evaluating the rank of a matrix we consider the
eigenvalues with a precision of 10−3; that is, we ignore all decimals starting with the
fifth one.
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In the tables below, at a given order k, (rk, rk−1, rk−2) is the triple consisting
of the ranks of the matrices MBk

(y∗), MBk−1
(y∗), MBk−2

(y∗), where MBk
(y∗) is the

optimum solution to (29) returned by the algorithm.
In some examples, we also compute the upper approximations μ∗

L,k,λ on p∗ ob-
tained from program (12), and some other approximations obtained by minimiz-
ing p over a ball. Then (rk, rk−1, . . .) contains the ranks of the matrices Mk(y

∗),
Mk−1(y

∗), . . . , where Mk(y
∗) is the optimum solution to (12) (or (4) when optimizing

over a ball).
Example 1 (revisited). Consider again the polynomial p(x1, x2) = x2

1 + x2 with
infimum p∗ = −∞. Then n = 2, m = 1, |B1| = 3, |B2| = 6, |B| = 9. When computing
the Lasserre lower bound p∗L,1, GloptiPoly returns as expected that the “SeDuMi
dual may be unbounded.” As can be seen in Table 2, our algorithm retrieves a very
accurate estimate of the minimizer (0,− 3

√
1/4λ).

Table 2

Bounds μ∗
k,λ for Example 1.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−3 2 (1,1,1) −6.2996 (0,−6.2996)

10−6 2 (1,1,1) −62.9961 (0,−62.9961)

10−9 2 (1,1,1) −629.9606 (0,−629.9606)

Example 2 (revisited). Consider again the polynomial p(x1, x2) = (x2
1 + x2

2 − 1)2

with infimum p∗ = 0 attained at the points of the unit circle. Then n = 2, m = 2,
|B2| = 6, |B3| = 10, |B4| = 15, |B| = 25. The Lasserre lower bound is p∗L,2 =

2.82 10−11 ≤ p∗ (with r2 = 5, r1 = 3).
Again, one can see in Table 3 that the algorithm retrieves very accurate estimates

of the four minimizers (±b,±b) of p over Vλ. Moreover, μ∗
4,10−3 ≥ p∗ and μ∗

4,10−3 ∼
10−7 is an accurate estimate of p∗ = 0.

Table 3

Bounds μ∗
k,λ for Example 2.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−2 3 (4,4,4) 1.3854 10−5 (±0.7058,±0.7058)

10−3 3 (9,5,3) 1.3320 10−7 none

10−3 4 (4,4,4) 1.4043 10−7 (±0.7070,±0.7070)

Example 3. Consider the polynomial p(x1, x2) = (x2
1 + 1)2 + (x2

2 + 1)2 − 2(x1 +
x2 + 1)2. Then n = 2, m = 2, |B3| = 10, |B4| = 15, |B| = 25. It is known (see [15])
that p∗ = −11.4581 is attained at the point (1.3247, 1.3247), and that the polynomial
p(x)−p∗ is a sum of squares. Indeed, p∗L,2 = −11.4581 and, as r2 = r1 = 1, GloptiPoly
extracts the minimizer (1.3247, 1.3247). Nevertheless Table 4 shows the behavior of
our method on this example.

We have also computed the bound β∗
L,k,λ from (13), computing the order k

moment relaxation for the minimum of p over the ball with radius Rλ as in (10).
Here, Rλ = 56

λ . For λ = 10−1, k = 2, Rλ = 560 and GloptiPoly returns the value
β∗
L,2,1/10 = −11.4581 and extracts the solution (1.3247, 1.3247).

Example 4. Consider the polynomial p(x1, x2) = 1/27 + x2
1x

2
2(x

2
1 + x2

2 − 1), a
dehomogenized version of the Motzkin polynomial, considered in [11]. Then n = 2,
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Table 4

Bounds μ∗
k,λ for Example 3.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−2 3 (1,1,1) −11.4548 (1.3109, 1.3109)

10−3 3 (1,1,1) −11.4580 (1.3233, 1.3233)

10−4 3 (1,1,1) −11.4581 (1.3246, 1.3246)

10−5 3 (1,1,1) −11.4581 (1.3247, 1.3247)

Table 5a

Bounds μ∗
k,λ for Example 4.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−2 4 (11,8,6) −8.8740 10−5 none

10−2 5 (4,4,4) 2.1500 10−6 (±0.5761,±0.5761)

10−3 4 (11,8,6) −0.0060 none

10−3 5 (4,4,4) 2.1897 10−8 (±0.5772,±0.5772)

10−4 4 (11,8,6) −0.0336 none

10−4 5 (4,4,4) 1.9042 10−10 (±0.5773,±0.5773)

Table 5b

Bounds μ∗
L,k,λ for Example 4.

λ Order k (rk, rk−1, . . . , r1) μ∗
L,k,λ Extracted solutions

10−2 4 (15,10,6,3) −1.0815 none

10−2 5 (21,15,8,6,3) −0.0060 none

10−2 6 (11,4,4,4,4,3) 2.1904 10−8 none∗

10−2 7 (-,4,4,4,4,4,3) 2.1904 10−8 (±0.5772,±0.5772)

10−3 4 (15,10,6,3) −1.3072 none

10−3 5 (21,15,8,6,3) −0.0332 none

10−3 6 (11,4,4,4,4,3) 2.1993 10−10 none∗

10−3 7 (-,4,4,4,4,4,3) 2.3084 10−10 (±0.5773,±0.5773)

10−4 4 (15,10,6,3) −1.1225 none

10−4 5 (21,15,10,6,3) −0.0909 none

10−4 6 (11,4,4,4,4,3) 1.0209 10−11 none∗

10−4 7 (-,4,4,4,4,4,3) 1.498 10−11 (±0.5773,±0.5773)

m = 3, |B3| = 10, |B4| = 15, |B5| = 21, |B| = 49. It is known that p has minimum
p∗ = 0, attained at (±1/

√
3,±1/

√
3), and p is not a sum of squares. As Table 5a

shows, our algorithm finds a very accurate estimate of p∗ and of its minimizers at the
relaxation of order 5 when using the perturbation λ = 10−4.

We have also computed the parameters μ∗
L,k,λ from (12) using GloptiPoly. The

results are shown in Table 5b. We have |S4| = 15, |S5| = 21, |S6| = 28, |S7| = 36. (At
the relaxation of order 7, GloptiPoly does not return the value of the rank of M7(y),
which is indicated by “-” in the table.) At the relaxation of order 6, GloptiPoly
does not yet extract a solution since the stronger rank condition (6) does not hold.
However, this stronger condition is needed only to be able to claim that the extracted
solution does satisfy the constraints ∂pλ/∂xi = 0 (i = 1, . . . , n). As rankMk−1(y) =
rankMk−2(y) one could already extract a solution at order 6, which permits us to
claim that μ∗

L,6,λ ≥ p∗. Note, however, that our algorithm based on combinatorial
moment matrices is able to find an upper bound for p∗ at order k = 5 already.
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Moreover, at a given order k, the parameter μ∗
k,λ is a more accurate approximation

of p∗ than the parameter μ∗
L,k,λ.

Finally we have computed the bounds β∗
L,k,λ from (13). Here, the radius is Rλ =

24
λ . For λ = 1/10 and k = 3, 4, 5, SeDuMi reports that the “dual may be unbounded.”
For λ = 1, one finds β∗

L,3,λ = −3.9722 (with (r3, r2, r1) = (8, 6, 3), thus no solution
extracted) and SeDuMi reports that the “dual may be unbounded” for k ≥ 4.

When using the radius R = 20 (instead of Rλ), the smallest order k for which
the rank condition holds for the moment relaxation is k = 6, where we find the upper
bound 8.5345 10−12 for p∗ and GloptiPoly extracts the solution (±0.5774,±0.5774).

If we use a smaller radius R = 2, then the rank condition holds already at the
moment relaxation of order k = 3, where we find the upper bound 1.2561 10−13 for
p∗ and GloptiPoly extracts the solutions (±0.5774,±0.5774).

Therefore, the approach via optimization on a ball seems to work well only if one
knows a priori a small ball containing a global minimizer.

Example 5. Consider the polynomial p(x1, x2) = x2
2 + (x1x2 − 1)2. This is a

classical example of a polynomial having a finite infimum, which is not attained;
p∗ = 0 as limε↓0 p(1/ε, ε) = 0. Here, n = 2, m = 2, |B2| = 6, |B3| = 10, |B| = 25. The
Lasserre lower bound is p∗L,2 = 5.4776 10−5 and Table 6a shows the bounds μ∗

k,λ.

Table 6a

Bounds μ∗
k,λ for Example 5.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−2 3 (2,2,2) 0.3385 ±(1.3981, 0.4729)

10−3 3 (2,2,2) 0.2082 ±(1.9499, 0.4060)

10−4 3 (2,2,2) 0.1232 ±(2.6674, 0.3287)

10−5 3 (2,2,2) 0.0713 ±(3.6085, 0.2574)

10−6 3 (2,2,2) 0.0408 ±(4.8511, 0.1977)

10−7 3 (3,2,2) 0.0231 ±(6.4986, 0.1503)

10−8 3 (3,2,2) 0.0131 ±(8.6882, 0.1136)

10−9 3 (8,4,2) 0.0074 none

10−10 3 (7,4,2) 0.0041 none

We have also computed the bounds μ∗
L,k,λ, shown in Table 6b. When the order k

is marked with an asterisk (like 6∗), this means that we have rescaled the problem for
SeDuMi (setting pars.scaling = [1 10]). (This is advised when the expected solutions
have large entries; see the manual for GloptiPoly [10]. Without rescaling, the solution
returned by GloptiPoly is approximatively 1, which is the value of p at the point (0, 0)
of Vλ, and thus not the true minimum.) Recall that |S3| = 10, |S4| = 15, |S5| = 21,
|S6| = 28.

One can make the following observations regarding the results from Tables 6a and
6b. While our algorithm extracts the correct solutions at order k = 3, when using the
moment relaxation to program (7) GloptiPoly needs to go to higher orders to be able
to extract solutions. We have computed (with Mathematica) the points in the gradient
variety Vλ; it turns out that there are three real points which are (0, 0) and the two
points extracted by the algorithms for the given values of λ in Tables 6a and 6b.

Example 6. Consider the polynomial q(z1, z2, z3, z4, z5) =
∑5

i=1

∏
j �=i(zi − zj),

which is again an instance of a nonnegative polynomial which is not a sum of squares,
due to Lax–Lax and Schmüdgen. More such examples can be found, e.g., in [27].
Introducing new variables xi := z1 − zi+1 (i = 1, . . . , 4), minimizing q(z) is equivalent
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Table 6b

Bounds μ∗
L,k,λ for Example 5.

λ Order k (rk, . . . , r1) μ∗
L,k,λ Extracted solutions

10−2 3 (10,6,2) 0.0096 none

10−2 4 (7,2,2,2) 0.3385 none

10−2 5 (-,2,2,2,2) 0.3385 ±(1.3981, 0.4729)

10−3 3 (10,6,2) 0.0105 none

10−3 4 (7,2,2,2) 0.2082 none

10−3 5 (-,2,2,2,2) 0.2082 ±(1.9499, 0.4060)

10−4 3 (10,6,2) 0.0095 none

10−4 4 (7,2,2,2) 0.1232 none

10−4 5 (-,2,2,2,2) 0.1233 ±(2.6674, 0.3287)

10−5 5 (-,2,2,2,2) 0.0718 ±(3.6085, 0.2574)

10−6 6∗ (-,-,2,2,2,2) 0.0408 ±(4.8511, 0.1977)

10−7 6∗ (-,-,2,2,2,2) 0.0231 ±(6.4986, 0.1503)

10−8 6∗ (-,-,2,2,2,2) 0.0131 ±(8.6882, 0.1136)

10−9 6∗ (-,-,2,2,2,2) 0.0074 ±(11.6026, 0.0856)

10−10 6∗ (-,-,2,2,2,2) 0.0042 ±(15.4849, 0.0643)

to minimizing a polynomial p in the four variables x1, . . . , x4. After performing this
substitution, we have n = 4, m = 2, |B2| = 15, |B3| = 35, |B4| = 70, |B| = 625.
When computing the lower bound p∗L,2, SeDuMi reports that the “primal problem is
infeasible” and the “dual problem may be unbounded.” Table 7a gives some values
of μ∗

k,λ.

Table 7a

Bounds μ∗
k,λ for Example 6.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−1 3 (20,10,5) −0.0575 none

10−1 4 (5,5,5) −8.9342 10−8 ±(0.0407, 0.0445, 0.0482, 0.0520)

approx. (0,0,0,0) three times

Table 7b gives some values of the parameter μ∗
L,k,λ. At order k = 3, for λ =

10−1, 10−2, SeDuMi reports that the “dual problem may be unbounded.” On this
example the parameter μ∗

L,k,λ appears to be a more accurate approximation of p∗

than μ∗
k,λ.

Table 7b

Bounds μ∗
L,k,λ for Example 6.

λ Order k (r3, r2, r1) μ∗
L,k,λ Extracted solutions

10−1 4 (1,1,1) 6.0249 10−15 10−8(−0.6138,−0.7014, 0.5825, 0.9606)

10−2 4 (1,1,1) 3.9252 10−14 10−8(0.0602, 0.4502,−0.0416,−0.2084)

As the polynomial p is homogeneous, i.e., p(tx) = t2mp(x) for all x (m = 2 here),
there are in fact two possibilities for its infimum: Either p∗ = 0 if p is nonnegative,
or p∗ = −∞ otherwise. The parameters μ∗

k,λ and μ∗
L,k,λ are upper bounds for p∗.

Hence, if for some small λ they are close to 0, it is then quite likely that p∗ = 0 (since
μ∗
λ converges to p∗ as λ ↓ 0), but this cannot be claimed with certitude. On the other
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hand, such upper bounds will be useful for proving that p∗ = −∞. Indeed, if we find
a negative upper bound for p∗, then we can conclude that p∗ = −∞; moreover, any
extracted solution gives a certificate for this. See Example 8 for an illustration.

When p is homogeneous, one can also test its nonnegativity by computing its
minimum p∗B over the unit ball B. Indeed, either p∗B = 0 if p is nonnegative, or p∗B < 0
otherwise. However, if p is nonnegative but not a sum of squares, then the moment
relaxation (4) of any order k is never exact; i.e., the inequality p∗L,k ≤ p∗B is always
strict (and thus the optimum matrix does not satisfy the rank condition). (Indeed,
suppose that p∗L,k = p∗B = 0. For k large enough, there is no duality gap between (4)
and (5), and (5) attains its supremum (see [15]). Hence, ρ∗k = p∗L,k = p∗B = 0, implying

that p can be written as p = u+(1−
∑

i x
2
i )v, where u, v are sums of squares. As p is

homogeneous, this implies easily that p must be a sum of squares (see [14]), yielding
a contradiction.) Let us illustrate this in our current example. Table 7c shows the
values p∗L,k obtained for the moment relaxations (4) for the minimum p∗B of p over
the unit ball. Recall that |S5| = 126, |S6| = 210.

Table 7c

Bounds from optimizing over a ball for Example 6.

Order k (rk, rk−1, . . . , r1) p∗L,k Extracted solutions

2 (10,5) −0.0375 none

3 (25,15,5) −0.0035 none

4 (39,29,15,5) −7.7935 10−4 none

5 (55,44,29,15,5) −2.7268 10−4 none

6 (210,126,70,29,15,5) −1.1936 10−4 none

Example 7. Consider the matrix

P =

⎛
⎜⎜⎜⎜⎝

1 −1 1 1 −1
−1 1 −1 1 1

1 −1 1 −1 1
1 1 −1 1 −1

−1 1 1 −1 1

⎞
⎟⎟⎟⎟⎠

and the associated homogeneous polynomial q(x) =
∑5

i,j=1 x
2
ix

2
jPij (Example 5.4 in

[22]). The matrix P is said to be copositive when q is nonnegative. Testing matrix
copositivity is a co-NP-complete problem [21]. Although some necessary and sufficient
conditions for the copositivity of a matrix are known (see, e.g., [13]), their algorithmic
application is computationally too expensive. An alternative consists therefore of
using numerical algorithms for testing (non)copositivity. Parrilo [22, 23] introduced
the following criterion, useful for proving copositivity. Namely, if the polynomial
(
∑n

i=1 x
2
i )

rq(x) is a sum of squares for some integer r ≥ 0, then q is nonnegative and
thus P is copositive. For the matrix P considered in the present example, it is known
that this criterion is satisfied for r = 1.

Let us nevertheless see the behavior of our method in this example. Due to sym-
metry, the polynomial q is nonnegative if and only if the (dehomogenized) polynomial
p(x) := q(x1, x2, x3, x4, 1) is nonnegative. Then n = 4, m = 2, |B2| = 15, |B3| = 35,
|B4| = 70, |B5| = 122, |B| = 625. The Lasserre lower bound is p∗L,2 = −1.4955 106

with (r1, r2) = (5, 15) and Table 8 gives the parameters μ∗
k,λ.

Example 8. Let G = (V,E) be a graph with node set V = {1, . . . , n} and let
AG be its adjacency matrix, with (AG)ij = 1 if ij ∈ E and (AG)ij = 0 otherwise for
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Table 8

Bounds μ∗
k,λ for Example 7.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

10−2 3 (18,6,3) −1.5407 none

10−2 4 (4,4,4) 1.3854 10−5 (±0.7058, 0, 0,±0.7058)

10−3 4 (4,4,4) 1.3854 10−5 (±0.7058, 0, 0,±0.7058)

10−4 4 (9,7,5) 1.5544 10−7 none

i, j ∈ V . Consider the matrix

P := t(I + AG) − J,

where t ∈ R, I is the identity matrix and J is the all-ones matrix, and the associated
homogeneous polynomial p(x) :=

∑n
i,j=1 x

2
ix

2
jPij . By the Motzkin–Straus theorem

[20], p is nonnegative (i.e., p∗ = 0) (equivalently, P is a copositive matrix) if and only
if t ≥ α(G), where α(G) is the stability number of G, i.e., the largest cardinality of a
stable set in G. In Example 7, G is the circuit (1, 4, 2, 5, 3) on 5 nodes with α(G) = 2
and P = 2(I + AG) − J , which is therefore copositive. Consider now the case when
G is the path (1, 4, 2, 5, 3) on 5 nodes and t = 2, giving the matrix

P =

⎛
⎜⎜⎜⎜⎝

1 −1 −1 1 −1
−1 1 −1 1 1
−1 −1 1 −1 1

1 1 −1 1 −1
−1 1 1 −1 1

⎞
⎟⎟⎟⎟⎠.

Then P is not copositive, as t < α(G) = 3 (note also p(1, 1, 1, 0, 0) = −3). This
is confirmed by the results about p∗ from Table 9a, where we have n = 5, m = 2,
|B1| = 6, |B2| = 21, |B3| = 56, |B4| = 126, |B| = 3125.

Table 9a

Bounds μ∗
k,λ for Example 8, when G is the path on 5 nodes and t = 2.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

1 3 (8,7,4) −1.3333 none

1 4 (8,8,7) −1.3333 two of the extracted solutions:

±(0.8165, 0.8165, 0.8165, 0, 0)

(0.8165 ∼
√

2/3)

10−1 3 (8,7,4) −133.3333 none

10−1 4 (8,8,7) −133.3333 two of the extracted solutions:

±(2.5820, 2.5820, 2.5820, 0, 0)

(2.5820 ∼
√

20/3)

10−2 3 (8,7,4) −1.3333 104 none

Consider now the case when G is the circuit (1, 2, 3, 4, 5, 6) on 6 nodes and t = 2.
Again the corresponding matrix P is not copositive, since t < α(G) = 3. This is
confirmed by the results about p∗ from Table 9b. Because of symmetry, we made
the computations for the polynomial p(x1, x2, x3, x4, x5, 1). Then n = 5, m = 2,
|B2| = 21, |B3| = 56, |B4| = 126.
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Table 9b

Bounds μ∗
k,λ for Example 8, when G is the circuit on 6 nodes and t = 2.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

1 3 (4,4,3) −2.2660 (0,±0.9036, 0,±0.9036, 0)

10−1 3 (8,7,4) −106.6640 none

10−1 4 (8,8,7) −106.6640 -

10−2 3 (8,7,4) −1.3067 104 none

In both instances we find a point x with p(x) < 0 (which certifies that P is not
copositive) at the relaxation of order 3 or 4, already for the perturbation λ = 1. The
bounds μ∗

3,λ decrease rapidly as λ goes to 0.
Consider finally the case when G is the circuit (1, 2, 3, 4, 5, 6, 7) on 7 nodes and

t = 2. Again, P is not copositive since t < α(G) = 3. Due to symmetry it suffices
to consider the polynomial p where we set x7 = 1. Then n = 6, m = 2, |B2| = 28,
|B3| = 84 and |B4| = 210. Table 9c shows some parameters μ∗

3,λ which again decrease
rapidly as λ becomes small.

Table 9c

Bounds μ∗
k,λ for Example 8, when G is the circuit on 7 nodes and t = 2.

λ Order k (rk, rk−1, rk−2) μ∗
k,λ Extracted solutions

1 3 (62,24,7) −4.1114 none

10−1 3 (62,24,7) −304.7340 none

10−2 3 (66,24,7) −3.0745 104 none

10−3 3 (83,27,7) −3.0808 106 none

Example 9. Consider the polynomial p(x) =
∑

i=1,2,3 x
8
i + p0(x), where p0(x)

is the Motzkin polynomial x2
1x

2
2(x

2
1 + x2

2 − 3x2
3) + x6

3. It is known that p∗ = 0 and
that p is not a sum of squares (in fact, p is not a sum of squares modulo its gradient
ideal [6]). In view of the form of p, we can apply directly our method for computing
p∗ without perturbing p. Table 10 shows values of the parameter μ∗

k from (25); as
μ∗
k ≤ p∗ ≤ 0, we can conclude that p∗ ∼ 0 already at the relaxation of order k = 4.

Here n = 3, m = 3, |B3| = 20, |B4| = 35, |B5| = 56, |B6| = 84.

Table 10

Bounds μ∗
k,λ for Example 9.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

3 (12,2,1) −1 none

4 (4,4,4) −1.1990 10−9 ±(0.0220, 0.0440, 0.0263)

and approx. (0,0,0) twice

5 (4,4,4) −1.9880 10−10 ±(0.0160, 0.0319, 0.0274)

and approx. (0,0,0) twice

6 (4,4,4) −8.8465 10−11 ±(0.0143, 0.0285, 0.0256)

and approx. (0,0,0) twice

Example 10. Consider the polynomial p(x) = (aTx)2 +
∑n

i=1(x
2
i − 1)2, where

a1, . . . , an are given positive integers. As mentioned in the introduction, the sequence
a = (a1, . . . , an) can be partitioned if and only if p∗ = 0, in which case a global mini-
mizer is ±1-valued and thus provides a partition of the sequence. Deciding whether an
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Table 11a

The sequence a = (2, 2, 2, 3, 3) is partitionable with aT x = 0 at the returned solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (10,5,1) 2.3994 10−9 none

3 (2,2,2) 2.5072 10−10 ±(1, 1, 1,−1,−1)

Table 11b

The sequence a = (1, 2, 3, 4, 5) is not partitionable as p∗ ≥ μ∗
3 ≥ μ∗

2 > 0; its minimum gap is 1,
realized at ±(1, 1,−1, 1,−1), obtained by rounding the extracted solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (12,5,1) 0.0639 none

3 (2,2,2) 0.0657 ±(1.0157, 1.0308,−0.9477, 1.0590,−0.9069)

Table 11c

The sequence a = (2, 2, 3, 4, 5) is partitionable with aT x = 0 at the returned solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (2,2,1) 2.2649 10−12 ±(1, 1,−1, 1,−1)

Table 11d

The sequence a = (3, 3, 4, 5, 6, 7) is partitionable with aT x = 0 at the returned solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (15,6,1) −1.5649 10−8 none

3 (4,4,3) 1.3816 10−8 ±(1,−1,−1, 1, 1,−1), ±(1,−1, 1,−1,−1, 1)

integer sequence can be partitioned is an NP-complete problem, and, more generally,
computing the parameter γ := minz∈{±1}n |aT z| (the minimum gap of the sequence
a1, . . . , an) is NP-hard.

It is interesting to note1 that γ = 0 (resp., γ = 1) if p∗ ≤ 1
s2 and s :=

∑n
i=1 ai is

even (resp., odd); moreover, a partition realizing the minimum gap can be obtained
from a real point x with p(x) ≤ 1

s2 by letting z := sign(x) (with zi = 1 if xi > 0
and zi = −1 otherwise). More generally, a similar argument permits us to show
that a partition realizing the minimum gap γ can be derived from a global minimizer
x to the polynomial pC(x) := (aTx)2 + C2

∑n
i=1(x

2
i − 1)2 by letting z := sign(x),

C := 1
2 (maxi ai)(

∑
i ai).

Again we can apply directly our method (without perturbation) for computing
the minimum p∗ of the polynomial p. If we find a positive lower bound μ∗

k, then we
can conclude that the sequence cannot be partitioned. Although this approach can be
used only for sequences of small length n (where the minimum gap could in fact easily
be found directly), we consider below some sequences of length n = 5, 6, 7, 10, 11 to
see the behavior of the method. We have m = 1, (|B1|, |B2|, |B3|) = (6, 21, 51) (resp.,
(7, 28, 78), (8, 36, 113), (11, 66, 276), (12, 78, 353)) if n = 5 (resp., n = 6, n = 7, n = 10,
n = 11) and |B| = 3n. Results are shown in Tables 11a–11h.

1Indeed, let x ∈ Rn such that p(x) ≤ 1
s2

; thus |aT x|, |x2
i − 1| ≤ 1

s
. Define z := sgn(x), i.e.,

zi := 1 if xi > 0 and zi = −1 otherwise. Then |aT z| ≤ |aT (x − z)| + |aT x| ≤ 1 + 1
s
< 2; indeed,

|aT (x− z)| ≤
∑

i
ai|xi − zi| ≤

∑
i
ai|xi − zi||xi + zi| =

∑
i
ai|1− x2

i | ≤
1
s

∑
i
ai = 1. As |aT z| has

the same parity as s =
∑

i
ai, a

T z = 0 if s is even, and aT z = ±1 otherwise, which shows that the
±1-vector z provides a partition of the sequence a1, . . . , an realizing the minimum gap.



512 DORINA JIBETEAN AND MONIQUE LAURENT

Table 11e

The sequence a = (1, 1, 2, 2, 3, 3, 13) is not partitionable as p∗ ≥ μ∗
2 > 0; its minimum gap is 1,

realized at ±(1, 1, 1, 1, 1, 1,−1), obtained by rounding the extracted solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (2,2,1) 0.0188 ±(1.0045, 1.0045, 1.0090, 1.0090, 1.0135, 1.0135,−0.9342)

Table 11f

The sequence a = (1, 1, 2, 2, 3, 3, 14) is not partitionable, as p∗ ≥ μ∗
2 > 0; its minimum gap is

2, realized at ±(1, 1, 1, 1, 1, 1,−1), obtained by rounding the extracted solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (2,2,1) 0.0628 ±(1.0073, 1.0073, 1.0145, 1.0145, 1.0215, 1.0215,−0.8736)

Table 11g

The sequence a = (1, 2, 3, 20, 5, 6, 7, 10, 11, 77) is not partitionable as p∗ ≥ μ∗
2 > 0; its minimum

gap is 12, realized at ±(1, 1, 1, 1, 1, 1, 1, 1, 1,−1), obtained by rounding the extracted solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (2,2,1) 0.0758 ±(1.0015, 1.0029, 1.0044, 1.0282, 1.0073,

1.0087, 1.0101, 1.0144, 1.0158,−0.8580)

Table 11h

The sequence a = (1, 2, 3, 20, 5, 6, 7, 10, 11, 77, 3) is not partitionable as p∗ ≥ μ∗
2 > 0; its mini-

mum gap is 9, realized at ±(1, 1, 1, 1, 1, 1, 1, 1, 1,−1, 1), obtained by rounding the extracted solutions.

Order k (rk, rk−1, rk−2) μ∗
k Extracted solutions

2 (2,2,1) 0.0441 ±(1.0012, 1.0023, 1.0035, 1.0225, 1.0058,

1.0069, 1.0080, 1.0114, 1.0126,−0.8943, 1.0035)

4. Conclusions. We consider the problem of computing the global infimum p∗

of a multivariate polynomial p of degree 2m. We propose a method for determining
upper approximations μ∗

λ (or μ∗
k,λ for some integer k ≥ m) for the infimum that

converge to p∗ as λ goes to 0. In the examples in which our method was tested, a
tight upper bound μ∗

k,λ for p∗ is very often found for k small (k = m+ 1 or m+ 2) by
solving a semidefinite program of reasonable size, together with a real point x whose
evaluation p(x) gives a certificate for the upper bound. For small λ, p(x) is in fact
very close to the infimum p∗ and x is close to a global minimizer (if some exists),
which has been confirmed in the examples.

Our method applies to any polynomial; in particular, no assumption about the
existence of a minimum is needed. In fact, it works with a perturbation pλ of p,
which has the property of having a minimum as well as a finite set Vλ of critical
points. Moreover, the minima μ∗

λ of p over the set Vλ converge to p∗ as λ goes to
0. One has two options for computing the minimum μ∗

λ: Either apply the moment
relaxations of Lasserre [15] or apply the more compact relaxations via combinatorial
moment matrices of Laurent [18] as proposed here. A feature of this second approach
is that one has to solve smaller semidefinite programs, and, moreover, one can often
extract a solution (giving a certified upper bound for p∗) at an earlier stage than in
the approach based on the classical moment relaxation. In fact, our method can be
applied directly to polynomials of the form p =

∑
i cix

2m
i + p0, where ci �= 0 and

deg(p0) ≤ 2m− 1, without perturbing p; then it gives a monotonically nondecreasing
hierarchy of lower bounds μ∗

k on the infimum. A limitation for our method is the size
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of the matrix variable MBk
(y), which has to be generated and then processed by the

semidefinite solver. Thus it applies only to medium-size problems.

Previous methods of Lasserre [15] and Parrilo [23] approximate the infimum of p
by giving a hierarchy of lower bounds for p∗. Thus in a sense the various methods
complement each other.

Parrilo’s method computes for an integer k ≥ 0 the parameter γ∗
k := sup γ such

that (
∑

i x
2
i )

k(p(x) − γ(
∑

i x
2
i )

m) is a sum of squares of polynomials. It is useful
for proving that a homogeneous polynomial p is nonnegative, i.e., p∗ = 0; indeed, if
γ∗
k ≥ 0 for some k, then p is nonnegative. On the other hand, our method is useful

for proving that a homogeneous polynomial is not nonnegative (e.g., for proving that
a matrix is not copositive). Indeed, if one finds an upper bound μ∗

k,λ < 0 for p∗, then
p is not nonnegative; in the examples such certified negative upper bounds on the
infimum p∗ are (often) found for a small order k = m + 1 or m + 2.

When applied to the unconstrained minimization of p, Lasserre’s approach gives
a lower bound p∗L,m for p∗, with equality p∗ = p∗L,m if and only if p − p∗ is a sum of
squares. One can construct a hierarchy of lower bounds converging to p∗ by consid-
ering the constrained problem of minimizing p over its gradient variety (when p has a
minimum) or over a ball (when a ball is known a priori containing a global minimum).

Let us finally mention another method based on perturbations recently introduced
by Lasserre [16]. Given ε > 0 and an integer k ≥ 0, define the perturbed polynomial

pk,ε := p + ε
∑k

r=0

∑n
i=1

x2r
i

r! . Lasserre [16] defines the parameter

�∗k,ε := inf pTk,εy s.t. Mk(y) � 0, y0 = 1,

and shows that, given ε > 0, p∗ ≤ �∗k,ε for k large enough, and �∗k,ε ≤ p∗ + ε
∑n

i=1 e
x2
i if

x is a global minimum of p. From the numerical results given in [16], it appears that
the bound �∗k,ε is sensitive to the parameter ε (e.g., �∗k,ε does not approximate p∗ very
well for some values of k and small ε) and �∗k,ε provides less good approximations of
p∗ than when solving a constrained program with the first order conditions (which is,
however, allowed only when p has a minimum).
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Canad. J. Math., 17 (1965), pp. 533–540.
[21] K. G. Murty and S. N. Kabadi, Some NP-complete problems in quadratic and nonlinear

programming, Math. Program., 39 (1987), pp. 117–129.
[22] P. A. Parrilo, Structured Semidefinite Programs and Semialgebraic Geometry Methods in

Robustness and Optimization, Ph.D. thesis, California Institute of Technology, Pasadena,
CA, 2000.

[23] P. A. Parrilo, Semidefinite programming relaxations for semialgebraic problems, Math. Pro-
gram., 96 (2003), pp. 293–320.

[24] P. Parrilo, An Explicit Construction of Distinguished Representations of Polynomials Non-
negative over Finite Sets, Preprint, ETH, Zürich, 2002.
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SECOND-ORDER BEHAVIOR OF PATTERN SEARCH∗
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Abstract. Previous analyses of pattern search algorithms for unconstrained and linearly con-
strained minimization have focused on proving convergence of a subsequence of iterates to a limit
point satisfying either directional or first-order necessary conditions for optimality, depending on
the smoothness of the objective function in a neighborhood of the limit point. Even though pat-
tern search methods require no derivative information, we are able to prove some limited directional
second-order results. Although not as strong as classical second-order necessary conditions, these
results are stronger than the first-order conditions that many gradient-based methods satisfy. Under
fairly mild conditions, we can eliminate from consideration all strict local maximizers and an entire
class of saddle points.
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convergence analysis, second-order optimality conditions

AMS subject classifications. 90C30, 90C56, 65K05

DOI. 10.1137/04060367X

1. Introduction. In this paper, we consider the class of generalized pattern
search (GPS) algorithms applied to the linearly constrained optimization problem,

min
x∈X

f(x),(1.1)

where the function f : Rn → R ∪ {∞}, and X ⊆ Rn is defined by a finite set of
linear inequalities, i.e., X = {x ∈ Rn : Ax ≥ b}, where A ∈ Rm×n and b ∈ Rm.
We treat the unconstrained, bound constrained, and linearly constrained problems
together because in these cases, we apply the algorithm, not to f , but to the “barrier”
objective function fX = f + ψX , where ψX is the indicator function for X; i.e., it is
zero on X and infinity elsewhere. If a point x is not in X, then we set fX(x) = ∞,
and f is not evaluated. This is important in many practical engineering problems in
which f is expensive to evaluate.

The class of derivative-free pattern search algorithms was originally defined and
analyzed by Torczon [27] for unconstrained optimization problems with a continuously
differentiable objective function f . Torczon’s key result is the proof that there exists
a subsequence of iterates that converges to a point x∗ which satisfies the first-order
necessary condition, ∇f(x∗) = 0. Lewis and Torczon [20] add the valuable connection
between pattern search methods and positive basis theory [16] (the details of which are
ingrained into the description of the algorithm in section 2). They extend the class to
solve problems with bound constraints [21] and problems with a finite number of linear
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constraints [22], showing that if f is continuously differentiable, then a subsequence
of iterates converges to a point satisfying the Karush–Kuhn–Tucker (KKT) first-order
necessary conditions for optimality.

Audet and Dennis [7] add a hierarchy of convergence results for unconstrained
and linearly constrained problems whose strength depends on the local smoothness of
the objective function. They apply principles of the Clarke [12] nonsmooth calculus
to show convergence to a point having nonnegative generalized directional derivatives
in a set of directions that positively span the tangent cone there. They show con-
vergence to a first-order stationary (or KKT) point under the weaker hypothesis of
strict differentiability at the limit point and illustrate how the results of [21, 22, 27]
are corollaries of their own work.

Audet and Dennis also extend GPS to categorical variables [6], which are discrete
variables that cannot be treated by branch and bound techniques. This approach is
successfully applied to engineering design problems in [2] and [19]. The theoretical
results here can certainly be applied to these mixed variable problems, with the caveat
that results would be with respect to the continuous variables (i.e., while holding
the categorical variables fixed). An adaptation of the results in [6] to more general
objective functions using the Clarke [12] calculus can be found in [1].

The purpose of this paper is to provide insight into the second-order behavior of
the class of GPS algorithms for unconstrained and linearly constrained optimization.
This may seem somewhat counterintuitive, in that, except for the approach described
in [3], GPS methods do not even use first derivative information. However, the nature
of GPS in evaluating the objective in multiple directions does, in fact, lend itself to
some limited discovery of second-order theorems, which are generally stronger than
what can be proved for many gradient-based methods. Specifically, while we cannot
ensure positive semidefiniteness of the Hessian matrix in all directions (and, in fact,
we show a few counterexamples), we can establish this result with respect to a certain
subset of the directions, so that the likelihood of convergence to a point that is not a
local minimizer is reasonably small.

This paper does not address the question of second-order behavior of GPS algo-
rithms for general nonlinear constraints. Extending convergence results of basic GPS
to problems with nonlinear constraints requires augmentation to handle these con-
straints. Lewis and Torczon [23] do this by approximately solving a series of bound
constrained augmented Lagrangian subproblems [14], while Audet and Dennis [9] use
a filter-based approach [17]. The results presented here may be extendable to the
former but not the latter, since the filter approach given in [9] cannot be guaranteed
to converge to a first-order KKT point. The direct search algorithm of Lucidi, Scian-
drone, and Tseng [24] applies positive basis theory to handle nonlinear constraints
in a way similar to GPS, but it requires constraint derivatives and satisfaction of a
sufficient decrease condition to ensure convergence, which [23] and [9] do not. Because
of dissatisfaction with these limitations, Audet and Dennis [8] recently introduced the
class of mesh-adaptive direct search (MADS) algorithms, a generalization of GPS that
achieves first-order convergence for nonlinear constrained problems by generating a set
of feasible directions that, in the limit, becomes asymptotically dense in the tangent
cone. We plan to study second-order convergence properties of MADS in future work.

The remainder of this paper is organized as follows. In the next section, we briefly
describe the basic GPS algorithm, followed by a review of known convergence results
for basic GPS algorithms in section 3. In section 4, we show that, while convergence to
a local maximizer is possible, it can only happen under some very strong assumptions
on both the objective function and the set of directions used by the algorithm. In
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section 5, we introduce additional theorems to describe second-order behavior of GPS
more generally, along with a few examples to illustrate the theory and show that
certain hypotheses cannot be relaxed. Section 6 offers some concluding remarks.

Notation. R, Q, Z, and N denote the set of real numbers, rational numbers,
integers, and nonnegative integers, respectively. For any set S, |S| denotes the car-
dinality of S, and −S is the set defined by −S = {−s : s ∈ S}. For any finite set
A, we may also refer to the matrix A as the one whose columns are the elements of
A. Similarly, for any matrix A, the notation a ∈ A means that a is a column of A.
For x ∈ X, the tangent cone to X at x is TX(x) = cl{μ(w − x) : μ ≥ 0, w ∈ X},
and the normal cone NX(x) to X at x is the polar of the tangent cone; namely,
NX(x) = {v ∈ Rn : vTw ≤ 0 ∀w ∈ TX(x)}. It is the nonnegative span of all
outwardly pointing constraint normals at x.

2. Generalized pattern search algorithms. For unconstrained and linearly
constrained optimization problems, the basic GPS algorithm generates a sequence
of iterates having nonincreasing function values. Each iteration consists of two main
steps, an optional search phase and a local poll phase, in which the barrier objective
function fX is evaluated at a finite number of points that lie on a mesh, with the goal
of finding a point with lower objective function value, which is called an improved
mesh point.

The mesh is not explicitly constructed; rather, it is conceptual. It is defined
primarily through a set of positive spanning directions D in Rn, i.e., where every
vector in Rn may be represented as a nonnegative linear combination of the elements
of D. For convenience, we also view D as a real n × nD matrix whose nD columns
are its elements. The only other restriction on D is that it must be formed as the
product

D = GZ,(2.1)

where G ∈ Rn×n is a nonsingular real generating matrix, and Z ∈ Zn×nD is an
integer matrix of full rank. In this way, each direction dj ∈ D may be represented as
dj = Gzj , where zj ∈ Zn is an integer vector. At iteration k, the mesh is defined by
the set

Mk =
⋃

x∈Sk

{x + ΔkDz : z ∈ NnD},(2.2)

where Sk ∈ Rn is the set of points where the objective function f had been evaluated
by the start of iteration k, and Δk > 0 is the mesh size parameter that controls
the fineness of the mesh. This construction is the same as that of [8] and [9], which
generalizes the one given in [7]. It ensures that all previously computed iterates will
lie on the current mesh.

The search step is simply an evaluation of a finite number of mesh points. It
retains complete flexibility in choosing the mesh points, with the only caveat being
that the points must be finite in number (including none). This could include a few
iterations using a heuristic, such as a genetic algorithm, random sampling, etc., or, as
is popular among many in industry (see [5, 10, 11, 25]), the approximate optimization
on the mesh of a less expensive surrogate function. A related algorithm that does not
require the surrogate solution to lie on the mesh (but requires additional assumptions
for convergence) is found in [15].



518 MARK A. ABRAMSON

If the search step fails to generate an improved mesh point, the poll step is
performed. This step is much more rigid in its construction, but this is necessary
in order to prove convergence. The poll step consists of evaluating fX at points
neighboring the current iterate xk on the mesh. This set of points Pk is called the
poll set and is defined by

Pk = {xk + Δkd : d ∈ Dk ⊆ D} ⊂ Mk,(2.3)

where Dk is a positive spanning set of directions taken from D. We write Dk ⊂ D to
mean that the columns of Dk are taken from the columns of D. Choosing a subset
Dk ⊂ D of positive spanning directions at each iteration also adds the flexibility that
will allow us to handle linear constraints in an efficient fashion.

If either the search or poll step is successful in finding an improved mesh point,
then the iteration ends immediately, with that point becoming the new iterate xk+1.
In this case, the mesh size parameter is either retained or increased (i.e., the mesh is
coarsened). If neither step finds an improved mesh point, then the point xk is said to
be a mesh local optimizer and is retained as the new iterate xk+1 = xk, and the mesh
size parameter is reduced (i.e., the mesh is refined).

The rules that govern mesh coarsening and refining are as follows. For a fixed
rational number τ > 1 and two fixed integers w− ≤ −1 and w+ ≥ 0, the mesh size is
updated according to the rule

Δk+1 = τwkΔk,(2.4)

where wk ∈ {0, 1, . . . , w+} if the mesh is coarsened, or wk ∈ {w−, w− + 1, . . . ,−1} if
the mesh is refined.

From (2.4), it follows that, for any k ≥ 0, there exists an integer rk such that

Δk+1 = τ rkΔ0.(2.5)

The basic GPS algorithm is given in Figure 2.1.

Generalized pattern search (GPS) algorithm.

Initialization: Let S0 be a set of initial points, and let x0 ∈ S0 satisfy fX(x0) < ∞
and fX(x0) ≤ fX(y) for all y ∈ S0. Let Δ0 > 0, and let D be a finite set of
nD positive spanning directions. Define M0 ⊂ X according to (2.2).

For k = 0, 1, 2, . . . , perform the following:
1. SEARCH step: Optionally employ some finite strategy seeking an improved

mesh point; i.e., xk+1 ∈ Mk satisfying fX(xk+1) < fX(xk).
2. POLL step: If the search step was unsuccessful or not performed, evaluate

fX at points in the poll set Pk (see (2.3)) until an improved mesh point
xk+1 is found, or until all points in Pk have been evaluated.

3. Update: If search or poll finds an improved mesh point,
Update xk+1, and set Δk+1 ≥ Δk according to (2.4);
Otherwise, set xk+1 = xk, and set Δk+1 < Δk according to (2.4).

Fig. 2.1. Basic GPS algorithm.

With the addition of linear constraints, in order to retain first-order convergence
properties, the set of directions Dk must be chosen to conform to the geometry of the
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constraints. The following definition, found in [7] (as an abstraction of the ideas and
approach of [22]), gives a precise description for what is needed for convergence.

Definition 2.1. A rule for selecting the positive spanning sets Dk = D(k, xk) ⊆
D conforms to X for some ε > 0 if at each iteration k and for every boundary point
y ∈ X satisfying ‖y − xk‖ < ε the tangent cone TX(y) is generated by nonnegative
linear combinations of the columns of Dk.

Using standard linear algebra tools, Lewis and Torczon [22] provide a clever algo-
rithm to actually construct the sets Dk. If these sets are chosen so that they conform
to X, all iterates lie in a compact set, and f is sufficiently smooth, then a subsequence
of GPS iterates converges to a first-order stationary point [7, 22].

3. Existing convergence results. Before presenting new results, it is impor-
tant to state what is currently known about the convergence properties of GPS for
linearly constrained problems.

We first make the following assumptions:
A1: All iterates {xk} produced by the GPS algorithm lie in a compact set.
A2: The set of directions D = GZ, as defined in (2.1), includes tangent cone

generators for every point in X.
A3: The rule for selecting positive spanning sets Dk conforms to X for some

ε > 0.
Assumption A1, which is already sufficient to guarantee the existence of con-

vergent subsequences of the iteration sequence, is a standard assumption [6, 7, 9,
14, 15, 17, 21, 22, 27]. A sufficient condition for this to hold is that the level set
L(x0) = {x ∈ X : f(x) ≤ f(x0)} is compact. We can assume that L(x0) is bounded,
but not closed, since we allow f to be discontinuous and extended valued. Thus we
can assume that the closure of L(x0) is compact. We should also note that most real
engineering optimization problems have simple bounds on the design variables, which
is enough to ensure that Assumption A1 is satisfied, since iterates lying outside of
X are not evaluated by GPS. In the unconstrained case, note that Assumptions A2
and A3 are automatically satisfied by any positive spanning set constructed from the
product in (2.1).

Assumption A2 is automatically satisfied if G = I and the constraint matrix A
is rational, as is the case in [22]. Note that the finite number of linear constraints
ensures that the set of tangent cone generators for all points in X is finite, which
ensures that the finiteness of D is not violated.

If f is lower semicontinuous at any GPS limit point x̄, then f(x̄) ≤ limk f(xk),
with equality if f is continuous [7]. Of particular interest are limit points of certain
subsequences (indexed by some index set K) for which limk∈K Δk = 0. We know that
at least one such subsequence exists because of Torczon’s [27] key result, restated here
for convenience.

Theorem 3.1. The mesh size parameters satisfy lim infk→+∞ Δk = 0.
From this result, we are interested in subsequences of iterates that converge to a

limit point associated with Δk converging to zero. The following definitions are due
to Audet and Dennis [7].

Definition 3.2. A subsequence of GPS mesh local optimizers {xk}k∈K (for
some subset of indices K) is said to be a refining subsequence if {Δk}k∈K converges
to zero.

Definition 3.3. Let x̂ be a limit point of a refining subsequence {xk}k∈K . A
direction d ∈ D is said to be a refining direction of x̂ if xk + Δkd ∈ X and f(xk) ≤
f(xk + Δkd) for infinitely many k ∈ K.



520 MARK A. ABRAMSON

Audet and Dennis [6] prove the existence of at least one convergent refining sub-
sequence. An important point is that, since a refining direction d is one in which
xk + Δkd ∈ X infinitely often in the subsequence, it must be a feasible direction at
the x̂, and thus lies in the tangent cone TX(x̂).

The key results of Audet and Dennis are now given. The first shows directional
optimality conditions under the assumption of Lipschitz continuity and is obtained by
a very short and elegant proof (see [7]) using Clarke’s [12] definition of the generalized
directional derivative. Audet [4] provides an example to show that Lipschitz conti-
nuity (and even differentiability) is not sufficient to ensure convergence to a Clarke
stationary point (i.e., where zero belongs to the Clarke generalized gradient). The
second result, along with its corollary for unconstrained problems, shows convergence
to a point satisfying first-order necessary conditions for optimality. The latter two
results were originally proved by Torczon [27] and Lewis and Torczon [21, 22] under
the assumption of continuous differentiability of f on the level set containing all of
the iterates. Audet and Dennis [7] prove the same results, stated here, requiring only
strict differentiability at the limit point.

Theorem 3.4. Let x̂ be a limit of a refining subsequence, and let d ∈ D be any
refining direction of x̂. Under Assumptions A1–A3, if f is Lipschitz continuous near
x̂, then the generalized directional derivative of f at x̂ in the direction d is nonnegative,
i.e., f◦(x̂; d) ≥ 0.

Theorem 3.5. Under Assumptions A1–A3, if f is strictly differentiable at a
limit point x̂ of a refining subsequence, then ∇f(x̂)Tw ≥ 0 for all w ∈ TX(x̂), and
−∇f(x̂) ∈ NX(x̂). Thus, x̂ satisfies the KKT first-order necessary conditions for
optimality.

Corollary 3.6. Under Assumption A1, if f is strictly differentiable at a limit
point x̂ of a refining subsequence, and if X = Rn or x̂ ∈ int(X), then ∇f(x̂) = 0.

Although GPS is a derivative-free method, its strong dependence on the set of
mesh directions presents some advantages in terms of convergence results. For exam-
ple, if f is only Lipschitz continuous at certain limit points x∗, Theorem 3.4 provides a
measure of directional optimality there in terms of the Clarke generalized directional
derivatives being nonnegative [7]. In the next two sections, we attempt to prove cer-
tain second-order optimality conditions, given sufficient smoothness of the objective
function f . Our goal is to quantify our belief that convergence of GPS to a point that
is not a local minimizer is very rare.

4. GPS and local maximizers. We treat the possibility of convergence to a
local maximizer separate from other stationary points because what we can prove
requires far less stringent assumptions. We begin with an example, provided by
Charles Audet, to show that it is indeed possible to converge to a maximizer, even
when f is smooth.

Example 4.1. Let f : R2 → R be the continuously differentiable function defined
by

f(x, y) = −x2y2.

Choose (x0, y0) = (0, 0) as the initial point, and set D = [e1, e2,−e1,−e2], where e1

and e2 are the standard coordinate directions. Now observe that if the search phase
is empty, then the iteration sequence begins at the global maximizer (0, 0), but can
never move off of that point because the directions in D are lines of constant function
value. Thus the sequence xk converges to the global maximizer (0, 0).
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Example 4.1 is clearly pathological. Had we started at any other point or polled
in any other direction (that is not a scalar multiple of a coordinate direction), the
algorithm would not have stalled at the maximizer (0, 0). However, it is clear that
the method of steepest descent and even Newton’s method would also fail to move
away from this point.

From this example, one can envision other cases (also pathological) in which con-
vergence to a local maximizer is possible, but without starting there. However, we
can actually characterize these rare situations in which convergence to a maximizer
can occur. Lemma 4.2 shows that convergence would be achieved after only a finite
number of iterations. Under a slightly stronger assumption, Theorem 4.3 ensures
that convergence to a maximizer means that every refining direction is a direction
of constant function value. This very restrictive condition is consistent with Exam-
ple 4.1. Corollary 4.4 establishes the key result that, under appropriate conditions,
convergence to a strict local maximizer cannot occur. This result does not hold for
gradient-based methods, even when applied to smooth functions.

Lemma 4.2. Let x̂ be the limit of a refining subsequence. If f is lower semi-
continuous at x̂, and if x̂ is a local maximizer of f in X, then xk = x̂ is achieved in
a finite number of iterations.

Proof. Since x̂ = limk∈K xk is a local maximizer for f in X, there exists an open
ball B(x̂, ε) of radius ε, centered at x̂, for some ε > 0, such that f(x̂) ≥ f(y) for all
y ∈ B(x̂, ε) ∩ X. Then for all sufficiently large k ∈ K, xk ∈ B(x̂, ε) ∩ X, and thus
f(x̂) ≥ f(xk). But since GPS generates a nonincreasing sequence of function values,
and since f is lower semicontinuous at x̂, it follows that

f(xk) ≤ f(x̂) ≤ f(xk+1) ≤ f(xk),(4.1)

and thus f(xk) = f(x̂), for all sufficiently large k ∈ K. But since GPS iterates satisfy
xk+1 �= xk only when f(xk+1) < f(xk), it follows that xk = x̂ for all sufficiently large
k.

Theorem 4.3. Let x̂ be the limit of a refining subsequence. If f is lower semi-
continuous in a neighborhood of x̂, and if x̂ is a local maximizer of f in X, then every
refining direction is a direction of constant function value.

Proof. Let d ∈ D(x̂) be a refining direction. Since x̂ is a local maximizer, there

exists δ̂ > 0 such that x̂+ td ∈ X and f(x̂) ≥ f(x̂+ td) for all t ∈ (0, δ̂). Now suppose

that there exists δ ∈ (0, δ̂) such that f is continuous in B(x̂, δ) and f(x̂) > f(x̂ + td)
for all t ∈ (0, δ). Then f(x̂) > f(x̂ + Δkd) for Δk ∈ (0, δ). But since Lemma 4.2
ensures convergence of GPS in a finite number of steps, we have the contradiction,
f(x̂) = f(xk) ≤ f(xk +Δkd) = f(x̂+Δkd) for all sufficiently large k. Therefore there
must exist δ > 0 such that f(x̂) = f(x̂ + td) for all t ∈ (0, δ).

Corollary 4.4. The GPS algorithm cannot converge to any strict local maxi-
mizer of f at which f is lower semicontinuous.

Proof. If x̂ is a strict local maximizer of f in X, then the first inequality of (4.1)
is strict, yielding the contradiction, f(xk) < f(x̂) ≤ f(xk).

The assumption that f is lower semicontinuous at x̂ is necessary for all three of
these results to hold. As an example, consider the function f(x) = 1 if x = 0, and
x2 otherwise. This function has a strict local maximum at 0, and there are clearly
no directions of constant function value. It is easy to see that any sequence of GPS
iterates will converge to zero, and by choosing an appropriate starting point and mesh
size, we can prevent convergence in a finite number of iterations. The theory is not
violated because f is not lower semicontinuous there.
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The additional assumption in Theorem 4.3 of lower semicontinuity in a neigh-
borhood of the limit point (not just at the limit point) is needed to avoid other
pathological examples, such as the function f(x) = 0 if x ∈ Q and −x2 if x /∈ Q.
Continuity of f only holds at the local maximizer 0, and there are no directions of
constant function value. A typical instance of GPS that uses rational arithmetic would
stall at the starting point of 0.

5. Second-order theorems. An interesting observation about Example 4.1 is
that even though (0, 0) is a local (and global) maximizer, the Hessian matrix is equal
to the zero matrix there, meaning that it is actually positive semidefinite. This may
seem counterintuitive, but it is simply a case where the curvature of the function is
described by Taylor series terms of higher than second order.

Thus an important question not yet answered is whether GPS can converge to
a stationary point at which the Hessian is not positive semidefinite (given that the
objective is twice continuously differentiable near the stationary point). The following
simple example demonstrates that it is indeed possible, but once again the algorithm
does not move off of the starting point.

Example 5.1. Let f : R2 → R be the continuously differentiable function defined
by

f(x, y) = xy.

Choose (x0, y0) = (0, 0) as the initial point, and set D = [e1, e2,−e1,−e2], where e1

and e2 are the standard coordinate directions. Now observe that if the search step
is empty, then the iteration sequence begins at the saddle point (0, 0), but can never
move off of that point because the directions in D are lines of constant function value.
Thus the sequence xk converges to the saddle point. Furthermore, the Hessian of f at
(0, 0) is given by

∇2f(0, 0) =

[
0 1
1 0

]
,

which is indefinite, having eigenvalues of ±1.
This result is actually not surprising, since many gradient-based methods have

this same limitation. However, the results that follow provide conditions by which a
pseudo-second-order necessary condition is satisfied—one that is weaker than the tra-
ditional second-order necessary condition, but stronger than the first-order condition
that is all that can be guaranteed by most gradient-based methods.

We are now ready to present one of the main results of this paper. This will require
the use of the Clarke [12] calculus in a manner similar to that of [7], but applied to f ′

instead of f itself. We will denote by f◦◦(x; d1, d2) the Clarke generalized directional
derivative in the direction d2 of the directional derivative f ′(x; d1) of f at x in the
fixed direction d1. In other words, if g(x) = f ′(x; d1), then f◦◦(x; d1, d2) = g◦(x; d2).
We should note that this is consistent with the concepts and notation given in [13]
and [18]; however, we have endeavored to simplify the discussion for clarity. First, we
give a general lemma that is independent of the GPS algorithm. The theorem and
corollary that follow will be key to establishing a pseudo-second-order result for GPS.

Lemma 5.2. Let f : Rn → R be continuously differentiable at x, and let f ′(·;±d)
be Lipschitz near x. Then

f◦◦(x; d, d) = lim sup
y→x,t↓0

f(y + td) − 2f(y) + f(y − td)

t2
.
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Proof. In general, we can apply the definition of the generalized directional deriva-
tive and the backward difference formula for directional derivatives to obtain

f◦◦(x; d, d) = g◦(x; d) = lim sup
y→x,t↓0

g(y + td) − g(y)

t

= lim sup
y→x,t↓0

f ′(y + td; d) − f ′(y; d)

t

= lim sup
y→x,t↓0

1

t

[
lim
s→0

f(y + td) − f(y + td− sd)

s
− lim

s→0

f(y) − f(y − sd)

s

]

= lim sup
y→x,t↓0

[
lim
s→0

f(y + td) − f(y + (t− s)d) − f(y) + f(y − sd)

ts

]

= lim sup
y→x,t↓0

[
f(y + td) − 2f(y) + f(y − td)

t2

]
,

where the last equation follows from letting s approach zero as t does (which is allow-
able, since the limit as s → 0 exists and is independent of how it is approached).

Theorem 5.3. Let x̂ be the limit of a refining subsequence, and let D(x̂) be
the set of refining directions for x̂. Under Assumptions A1–A3, if f is continuously
differentiable in a neighborhood of x̂, then for every direction d ∈ D(x̂) such that
±d ∈ D(x̂) and f ′(·;±d) is Lipschitz near x̂, f◦◦(x̂; d, d) ≥ 0.

Proof. From Lemma 5.2, it follows that

f◦◦(x̂; d, d) = lim sup
y→x̂,t↓0

f(y + td) − 2f(y) + f(y − td)

t2

≥ lim
k∈K

f(xk + Δkd) − 2f(xk) + f(xk − Δkd)

Δ2
k

≥ 0,

since ±d ∈ D(x̂) means that f(xk) ≤ f(xk ± Δkd) for all k ∈ K.
Corollary 5.4. Let x̂ be the limit of a refining subsequence, and let D(x̂) be the

set of refining directions for x̂. Under Assumptions A1–A3, if f is twice continuously
differentiable at x̂, then dT∇2f(x̂)d ≥ 0 for every direction d satisfying ±d ∈ D(x̂).

Proof. This follows directly from Theorem 5.3 and the fact that, when ∇2f(x̂)
exists, dT∇2f(x̂)d = f◦◦(x; d, d).

The following example illustrates how a function can satisfy the hypotheses of
Theorem 5.3, but not those of Corollary 5.4.

Example 5.5. Consider the strictly convex function f : R → R defined by

f(x) =

{
x2 if x ≥ 0,

−x3 if x < 0.

GPS will converge to the global minimizer at x = 0 from any starting point. The
derivative of f is given by

f ′(x) =

{
2x if x ≥ 0,

−3x2 if x < 0.

Clearly, f ′ is (Lipschitz) continuous at all x ∈ R, satisfying the hypotheses of Theo-
rem 5.3. The second derivative of f is given by

f ′′(x) =

{
2 if x > 0,

−6x if x < 0,
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and it does not exist at x = 0. Thus, the hypotheses of Corollary 5.4 are violated.
The conclusion of Theorem 5.3 can be verified by examining the Clarke derivatives of
f ′ at x = 0:

f◦◦(0; d, d) = lim sup
y→0,t↓0

f(y + td) − f(y) + f(y − td)

t2

≥ lim sup
y→0,t↓0

(y + td)2 − (2y)2 + (y − td)2

t2

= lim sup
y→0,t↓0

y2 + 2ytd + t2d2 − 2y2 + y2 − 2ytd + t2d2

t2

= 2d2 ≥ 0.

5.1. Results for unconstrained problems. For unconstrained problems, re-
call that if f is twice continuously differentiable at a stationary point x∗, the second-
order necessary condition for optimality is that ∇2f(x∗) is positive semidefinite; that
is, vT∇2f(x∗)v ≥ 0 for all v ∈ Rn. The following definition gives a pseudo-second-
order necessary condition that is not as strong as the traditional one.

Definition 5.6. Suppose that x∗ is a stationary point of a function f : Rn → Rn

that is twice continuously differentiable at x∗. Then f is said to satisfy a pseudo-
second-order necessary condition at x for an orthonormal basis V ⊂ Rn if

vT∇2f(x∗)v ≥ 0 ∀v ∈ V.(5.1)

We note that (5.1) holds for −V as well; therefore, satisfying this condition means
that it holds for a set of “evenly distributed” vectors in Rn.

Now recall that a symmetric matrix is positive semidefinite if and only if it has
nonnegative real eigenvalues. The following theorem gives an analogous result for
matrices that are positive semidefinite with respect to only an orthonormal basis. We
note that this general linear algebra result is independent of the convergence results
presented in this paper.

Theorem 5.7. Let B ∈ Rn×n be symmetric, and let V be an orthonormal basis
for Rn. If B satisfies vTBv ≥ 0 for all v ∈ V , then the sum of its eigenvalues is
nonnegative. If B also satisfies vTBv > 0 for at least one v ∈ V , then this sum is
positive.

Proof. Since B is symmetric, its Schur decomposition can be expressed as B =
QΛQT , where Λ = diag(λ1, λ2, . . . , λn) and Q ∈ Rn×n is an orthogonal matrix whose
columns qi, i = 1, 2, . . . , n, are the orthonormal eigenvectors corresponding to the real
eigenvalues λi, i = 1, 2, . . . , n. Then for each vi ∈ V , i = 1, 2, . . . , n,

0 ≤ vTi Bvi = vTi QΛQT vi =

n∑
j=1

λj(Q
T vi)

2
j =

n∑
j=1

λj(q
T
j vi)

2,(5.2)

and, since {qj}nj=1 and {vi}ni=1 are both orthonormal bases for Rn, it follows that

0 ≤
n∑

i=1

vTi Bvi =

n∑
i=1

n∑
j=1

λj(q
T
j vi)

2 =

n∑
j=1

λj

n∑
i=1

(vTi qj)
2 =

n∑
j=1

λj‖qj‖2
2 =

n∑
j=1

λj .(5.3)

To obtain the final result, observe that making just one of the inequalities in (5.2)
strict yields a similar strict inequality in (5.3), and the result is proved.
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It is easy to see from this proof that if V happens to be the set of eigenvectors Q of
B, then B is positive (semi)definite, since in this case, (5.2) yields qTj vi = qTj qi = δij ,
which means that λi ≥ (>)0.

We now establish pseudo-second-order results for GPS by the following two the-
orems. The first theorem requires convergence in a finite number of steps, while the
second necessitates the use of a more specific set of positive spanning directions.

Theorem 5.8. Let V be an orthonormal basis in Rn. Let x̂ be the limit of
a refining subsequence, and let D(x̂) be the set of refining directions for x̂. Under
Assumption A1, if f is twice continuously differentiable at x̂, Dk ⊃ V infinitely often
in the subsequence, and xk = x̂ for all sufficiently large k, then f satisfies a pseudo-
second-order necessary condition for V at x̂.

Proof. For all k ∈ K and d ∈ D(x̂), we have f(xk + Δkd) ≥ f(xk). Furthermore,
for all sufficiently large k ∈ K, since xk = x̂, a simple substitution yields f(x̂+Δkd) ≥
f(x̂) for all d ∈ D(x̂). For each d ∈ D(x̂), Taylor’s theorem yields

f(x̂ + Δkd) = f(x̂) + Δkd
T∇f(x̂) +

1

2
Δ2

kd
T∇2f(x̂)d + O(Δ3

k).

Since Corollary 3.6 ensures that ∇f(x̂) = 0, we have

0 ≤ f(x̂ + Δkd) − f(x̂) =
1

2
Δ2

kd
T∇2f(x̂)d + O(Δ3

k),

or dT∇2f(x̂)d ≥ O(Δk) for all d ∈ D(x̂) and for all sufficiently large k ∈ K. The
result is obtained by taking limits of both sides (in K) and noting that D(x̂) must
contain V .

Theorem 5.9. Let V be an orthonormal basis in Rn. Let x̂ be the limit of
a refining subsequence, and let D(x̂) be the set of refining directions for x̂. Under
Assumption A1, if f is twice continuously differentiable at x̂ and Dk ⊇ V ∪ −V
infinitely often in the subsequence, then f satisfies a pseudo-second-order necessary
condition for V at x̂. Furthermore, the sum of the eigenvalues of ∇2f(x̂) must be
nonnegative.

Proof. Since D(x̂) ⊂ D is finite, it must contain V ∪ −V , and the result follows
directly from Corollary 5.4 and Definition 5.6. The final result follows directly from
the symmetry of ∇2f(x̂) and Theorem 5.7.

The significance of Theorem 5.9 is that if f is sufficiently smooth, then the choice
of orthonormal mesh directions at each iteration will ensure that the pseudo-second-
order necessary condition is satisfied, and that the sum of the eigenvalues of ∇2f(x̂)
will be nonnegative. Thus, under the assumptions, GPS cannot converge to any saddle
point whose Hessian has eigenvalues that sum to less than zero.

These saddle points (to which GPS cannot converge) are those which have suffi-
ciently large regions (cones) of negative curvature. To see this, consider the contra-
positive of Theorem 5.7 applied to the Hessian at the limit point; namely, if the sum
of the eigenvalues of ∇2f(x̂) is negative, then for any orthonormal basis V ∈ Rn, at
least one vector v ∈ V must lie in a cone of negative curvature (i.e., vT∇2f(x̂)v < 0).
Since the angle between any two of these orthogonal directions is 90 degrees, there
must be a cone of negative curvature with an angle greater than 90 degrees.

The following example shows that even for orthonormal mesh directions, it is
still possible to converge to a saddle point—even when not starting there. It also
illustrates our assertion about cones of negative curvature.
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Fig. 5.1. For f(x, y) = (9x − y)(11x − y), the cones of negative curvature at the saddle point
(0, 0) are shown in the shaded area between the lines y = 9x and y = 11x.

Example 5.10. Let f : R2 → R be the twice continuously differentiable function
defined by

f(x, y) = 99x2 − 20xy + y2 = (9x− y)(11x− y).(5.4)

Choose (x0, y0) = (1, 1) as the initial point, and set D = {e1, e2,−e1,−e2}, where e1

and e2 are the standard coordinate directions. Now observe that at the saddle point
(0, 0), directions of negative curvature lie only between the lines y = 9x and y = 11x.
Thus, to avoid the saddle point, the GPS sequence would have to include a point inside
the narrow cone formed by these two lines, when sufficiently close to the origin. If
the search step is empty, and the polling directions in D are chosen consecutively in
the poll step (i.e., we poll in the order e1, e2,−e1,−e2), then the iteration sequence
arrives exactly at the origin after 10 iterations and remains there because none of
the directions in D point inside of a cone of negative curvature. Figure 5.1 shows
the cones of negative curvature for f near the saddle point. Note that these cones,
depicted in the shaded areas, are very narrow compared to those of positive curvature.
Thus, for the search directions in D, it will be difficult to yield a trial point inside one
of these cones.

On the other hand, if our objective function were −f , then the cones of negative
curvature would be depicted by the nonshaded areas. In this case, Theorem 5.7 ensures
that GPS cannot converge to the saddle point, since any set of 2n orthonormal direc-
tions would generate a trial point inside one of these cones and thus a lower function
value than that of the saddle point.
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5.2. Results for linearly constrained problems. We now treat the linear
constrained problem given in (1.1). At this point, we note that there are two equivalent
formulations for the classical KKT first-order necessary conditions for optimality, one
of which is imbedded in Theorem 3.5. It states that a point x∗ satisfies the first-order
necessary conditions if ∇f(x∗)Tw ≥ 0 for all directions w in the tangent cone TX(x∗)
at x∗, and −∇f(x∗) lies in the normal cone NX(x∗) at x∗. However, since we do
not have such a straightforward description of a second-order necessary condition in
this form, we now give a more traditional form of the KKT necessary conditions,
from which we will be able to establish a sensible pseudo-second-order condition. The
following lemma, given without proof, is taken from a well-known textbook [26].

Lemma 5.11. If x∗ is a local solution of (1.1), then for some vector λ of Lagrange
multipliers,

1. ∇f(x∗) = ATλ, or, equivalently, WT∇f(x∗) = 0;
2. λ ≥ 0;
3. λT (Ax∗ − b) = 0;
4. WT∇2f(x∗)W is positive semidefinite,

where the columns of W form a basis for the null-space of the active constraints at
x∗.

The first three conditions of Lemma 5.11 are generally referred to as first-order
necessary conditions, while the last is the second-order necessary condition. Conver-
gence of a subsequence of GPS iterates to a point satisfying first-order conditions
has been proved previously [7, 22] and is summarized in Theorem 3.5. Based on the
second-order condition, we now provide a pseudo-second-order necessary condition
for linearly constrained problems that is analogous to that given in Definition 5.6 for
unconstrained problems.

Definition 5.12. For the optimization problem given in (1.1), let W be an or-
thonormal basis for the null-space of the binding constraints at x∗, where x∗ satisfies
the KKT first-order necessary optimality conditions, and f is twice continuously dif-
ferentiable at x∗. Then f is said to satisfy a pseudo-second-order necessary condition
for W at x∗ if

wT∇2f(x∗)w ≥ 0 ∀w ∈ W.(5.5)

The following theorem shows that the condition given in (5.5) has an equivalent
reduced Hessian formulation similar to Definition 5.6. It is formulated to be a general
linear algebra result, independent of the GPS algorithm.

Theorem 5.13. Let B ∈ Rn×n be symmetric, and let W ∈ Rn×p be a matrix
with orthonormal columns {wi}pi=1, where p ≤ n. Then the following two statements
are equivalent:

1. wT
i Bwi ≥ 0, i = 1, 2, . . . , p.

2. There exists a matrix Y whose columns {yi}pi=1 form an orthonormal basis
for Rp such that yTj W

TBWyj ≥ 0, j = 1, 2, . . . , p.

Proof. Suppose wT
i Bwi ≥ 0, i = 1, 2, . . . , p. Then eTi Bei ≥ 0, i = 1, 2, . . . , p, and

the result holds since {ei}pi=1 are orthonormal.

Conversely, suppose there exists Y ∈ Rp×p such that yTj W
TBWyj ≥ 0, j =

1, 2, . . . , p. Let Z = WY with columns {zi}pi=1. Then for i = 1, 2, . . . , p, we have
zTi Bzi = yTi W

TBWyi ≥ 0. Furthermore, the columns of Z are orthonormal, since
zTi zj = (Wyi)

T (Wyj) = yTi W
TWyj = yTi yj = δij (the last step by the orthogonality

of Y ).
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Assumptions A2–A3 ensure that the GPS algorithm chooses directions that con-
form to X [7, 21, 22]. This means that the finite set T of all tangent cone generators
for all points x ∈ X must be a subset of D, and that if an iterate xk is within ε > 0
of a constraint boundary, then certain directions in T must be included in Dk. An
algorithm that identifies these directions Tk ⊆ T , in the nondegenerate case, is given
in [22], where it is noted that Tk is chosen so as to contain a (positive) basis for
the null-space of the ε-active constraints at xk. Thus, the set of refining directions
D(x̂) will always contain tangent cone generators at x̂, a subset of which forms a
basis for null-space of the active constraints at x̂. We will denote this null-space by
N (Â), where Â is the matrix obtained by deleting the rows of A corresponding to the
nonactive constraints at x̂.

However, in order to exploit the theory presented here we require the following
additional assumption so that D(x̂) will always contain an orthonormal basis for
N (Â).

A4: The algorithm that computes the tangent cone generators at each iteration
includes an orthonormal basis for the null-space of the ε-active constraints at each
iterate.

Furthermore, since N (Â) contains the negative of any vector in the space, we can
prove convergence to a point satisfying a pseudo-second-order necessary condition by
including Tk ∪ −Tk in each set of directions Dk.

The next theorem establishes convergence of a subsequence of GPS iterates to a
point satisfying a pseudo-second-order necessary condition, similar to that of Theo-
rem 5.8 under the fairly strong condition that convergence occurs in a finite number
of steps.

Theorem 5.14. Let V be an orthonormal basis for Rn. Let x̂ be the limit of
a refining subsequence, and let D(x̂) be the set of refining directions for x̂. Under
Assumptions A1–A4, if f is twice continuously differentiable at x̂, and, for all suf-
ficiently large k, Dk ⊃ V ∪ Tk and xk = x̂, then f satisfies a pseudo-second-order
necessary condition for some orthonormal basis of N (Â) at x̂.

Proof. For all k ∈ K and d ∈ D(x̂), we have f(xk + Δkd) ≥ f(xk). Furthermore,
for all sufficiently large k ∈ K, since xk = x̂, a simple substitution yields f(x̂+Δkd) ≥
f(x̂) for all d ∈ D(x̂). For each d ∈ D(x̂), Taylor’s theorem yields

f(x̂ + Δkd) = f(x̂) + Δkd
T∇f(x̂) +

1

2
Δ2

kd
T∇2f(x̂)d + O(Δ3

k).

For d ∈ N (Â), Lemma 5.11 ensures that dT∇f(x̂) = 0, and thus

0 ≤ f(x̂ + Δkd) − f(x̂) =
1

2
Δ2

kd
T∇2f(x̂)d + O(Δ3

k),

or dT∇2f(x̂)d ≥ O(Δk) for all d ∈ D(x̂) ∩ N (Â) and for all sufficiently large k ∈ K.
The result is obtained by taking limits of both sides (in K), since D(x̂) must contain
an orthonormal basis for N (Â).

In the theorem that follows, we show that, given sufficient smoothness of f , if
mesh directions are chosen in a fairly standard way, a subsequence of GPS iterates
converges to a point satisfying a pseudo-second-order necessary condition. The the-
orem is similar to Theorem 5.9. Once again, the corollary to this theorem identifies
an entire class of saddle points to which GPS cannot converge.

Theorem 5.15. Let V be an orthonormal basis for Rn. Let x̂ be the limit
of a refining subsequence, and let D(x̂) be the set of refining directions for x̂. Under



SECOND-ORDER BEHAVIOR OF PATTERN SEARCH 529

Assumptions A1–A4, if f is twice continuously differentiable at x̂ and Dk ⊃ V ∪−V ∪
Tk ∪ −Tk infinitely often in the subsequence, then f satisfies a pseudo-second-order
necessary condition for some orthonormal basis of N (Â) at x̂.

Proof. From the discussion following Theorem 5.13, D(x̂) contains an orthonormal
basis W for N (Â). Since D is finite, for infinitely many k, we have −W ⊆ −Tk ⊂ Dk,
which means that −W ⊆ D(x̂). Thus, D(x̂) ⊇ W ∪−W , where W is an orthonormal
basis for N (Â), and the result follows from Corollary 5.4 and Definition 5.12.

Corollary 5.16. If hypotheses of Theorem 5.15 hold, then the sum of the
eigenvalues of the reduced Hessian WT∇2f(x̂)W is nonnegative, where the columns
of W form a basis for the null-space of the active constraints at x̂.

Proof. Theorem 5.15 ensures that the pseudo-second-order condition holds; i.e.,
wT∇2f(x̂)w ≥ 0 for all w ∈ W . Then for i = 1, 2, . . . , |W |, eTi WT∇2f(x̂)Wei ≥ 0,
where ei denotes the ith coordinate vector in R|W |. Since WT∇2f(x̂)W is symmet-

ric and {ei}|W |
i=1 forms an orthonormal basis for R|W |, the result follows from Theo-

rem 5.7.

6. Concluding remarks. Clearly, the class of GPS algorithms can never be
guaranteed to converge to a point satisfying classical second-order necessary conditions
for optimality. However, we have been able to show the following important results,
which are surprisingly stronger than what has been proved for many gradient-based
(and some Newton-based) methods:

• Under mild assumptions, GPS can converge to a local maximizer only if it
does so in a finite number of steps, and if all the directions used infinitely
often are directions of constant function value at the maximizer (Lemma 4.2,
Theorem 4.3).

• Under mild assumptions, GPS cannot converge to or stall at a strict local
maximizer (Corollary 4.4).

• If f is sufficiently smooth and mesh directions contain an orthonormal basis
and its negatives, then a subsequence of GPS iterates converges to a point
satisfying a pseudo-second-order necessary condition for optimality (Theo-
rems 5.9 and 5.15).

• If f is sufficiently smooth and mesh directions contain an orthonormal basis
and its negatives, then GPS cannot converge to a saddle point at which
the sum of the eigenvalues of the Hessian (or reduced Hessian) are negative
(Theorem 5.9 and Corollary 5.16).

Thus an important characteristic of GPS is that, given reasonable assumptions, the
likelihood of converging to a point that does not satisfy second-order necessary con-
ditions is small.
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Abstract. In the early eighties �Lojasiewicz [in Seminari di Geometria 1982-1983, Università
di Bologna, Istituto di Geometria, Dipartimento di Matematica, 1984, pp. 115–117] proved that a
bounded solution of a gradient flow for an analytic cost function converges to a well-defined limit
point. In this paper, we show that the iterates of numerical descent algorithms, for an analytic cost
function, share this convergence property if they satisfy certain natural descent conditions. The
results obtained are applicable to a broad class of optimization schemes and strengthen classical
“weak convergence” results for descent methods to “strong limit-point convergence” for a large class
of cost functions of practical interest. The result does not require that the cost has isolated critical
points and requires no assumptions on the convexity of the cost nor any nondegeneracy conditions
on the Hessian of the cost at critical points.
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1. Introduction. Unconstrained numerical optimization schemes can be classi-
fied into two principal categories: line-search descent methods and trust-region meth-
ods. Seminal work by Goldstein [16] and Wolfe [36] on line-search descent methods
introduced easily verifiable bounds on step-size selection that led to weak convergence
results (lim ‖∇φ(xk)‖ = 0) for a wide class of inexact line-search descent algorithms;
see, e.g., [15, Theorem 2.5.1] or [30, Theorem 3.2]. For trust-region methods, classical
convergence results guarantee weak convergence (lim ‖∇φ(xk)‖ = 0) if the total model
decrease is at least a fraction of that obtained at the Cauchy point; see, e.g., [30, The-
orem 4.8] or [7, Theorem 6.4.6]. Thus, classical convergence results establish that
accumulation points of the sequence of iterates are stationary points of the cost func-
tion φ. Convergence of the whole sequence to a single limit point is not guaranteed.
Curry [8, p. 261] first gave the following intuitive counterexample to the existence of
such a result for steepest descent methods with line minimization.

Let G(x, y) = 0 on the unit circle and G(x, y) > 0 elsewhere. Outside
the unit circle let the surface have a spiral gully making infinitely
many turns about the circle. The path1 C will evidently follow the
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gully and have all points of the circle as limit points.2

It is possible to prove single limit-point convergence for descent algorithms by
exploiting additional properties of the cost that ensure critical points are isolated
or impose nondegeneracy conditions on the Hessian of the cost on critical sets [17].
Strong convexity of the cost function guarantees that the global minimum is a unique
isolated critical point of the cost function and single limit-point convergence is recov-
ered; see, e.g., Byrd and Nocedal [4] for the BFGS algorithm and Kiwiel and Murty
[18] for the steepest descent method. Convergence results obtained by Dunn [12, The-
orem 4.3] require a uniform growth condition of φ and uniqueness of the minimizer
within a certain subset. For a class of approximate trust-region methods, Moré and
Sorensen [29, Theorem 4.13] show that if the Hessian of φ is nonsingular at an accu-
mulation point x∗, then the whole sequence converges to x∗. Conn et al. [6] (or see [7,
Theorem 6.5.2]) show that the same result holds for a class of trust-region methods
that ensure a fraction of Cauchy decrease. The capture theorem [1], for a class of
line-search methods, shows convergence to a single local minimum x∗, provided x∗ is
an isolated stationary point of φ and the iteration comes sufficiently close to x∗; see
also [13].

In this paper, we consider the question of convergence given certain regularity
conditions on the cost function considered. The motivation for our study is a result
in dynamical systems theory that has only recently become widely recognized. For
a generic smooth cost function, the ω-limit set [35, p. 42] of a bounded gradient
flow is a connected subset of critical points, and not necessarily a single point [17,
Prop. C.12.1]. If the cost function is real analytic,3 then �Lojasiewicz’s theorem [25]
states that the associated gradient flow converges to a single limit point; see section 2
or the introduction of [20] for an overview of �Lojasiewicz’s argument. A comprehensive
treatment of the continuous-time convergence results with applications in optimization
theory is contained in the Diploma thesis [22]. The key to the proof lies in showing
that the total length of the solution trajectory to the gradient flow is bounded. The
proof utilizes the �Lojasiewicz gradient inequality (see Lemma 2.1) which gives a lower
bound for the norm of the gradient of φ in terms of φ itself. Due to the importance
of this result in the motivation of our work, we provide a review of this result in the
early part of the paper, and go on to present an explicit counterexample that shows
that single limit-point convergence cannot be proved in general for C∞ cost functions.

The main contribution of the paper is to adapt these results to iterates of nu-
merical descent algorithms. We define a pair of descent conditions termed the strong
descent conditions that characterize the key properties of a sequence of iterates that
leads to single limit-point convergence. These conditions are deliberately chosen to be
as weak as possible in order to apply to the widest possible class of numerical descent
algorithms. For line-search methods, it is sufficient to impose an angle condition and
the first Wolfe condition (also known as Armijo’s condition). For trust-region meth-
ods, we give several easily verified conditions involving the Cauchy point that guaran-
tee that the strong descent conditions hold. The main theorem uses these conditions
to prove that the whole sequence of iterates {xk} of a numerical descent algorithm,
applied to an analytic cost function, either escapes to infinity (i.e., ‖xk‖ → +∞) or
converges to a single limit point. An interesting aspect of the development is that

2A point x is a limit point or accumulation point of a sequence {xk}k∈N if there exists a subse-
quence {xki

}i∈N that converges to x.
3A real function is said to be analytic if it possesses derivatives of all orders and agrees with its

Taylor series in the neighborhood of every point.
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the strong descent conditions themselves do not guarantee convergence to a critical
point of the cost, ‖∇φ(xk)‖ �→ 0. However, combining single limit-point convergence
with classical weak convergence results leads to convergence to a single critical point
for a wide range of classical numerical descent algorithms applied to analytic cost
functions.

Apart from ensuring continuity of φ, the only purpose of the analyticity assump-
tion is to guarantee that the �Lojasiewicz gradient inequality holds in a neighborhood
of every point. Therefore, the domain of application of our results goes beyond the
(already large) class of analytic functions to functions that satisfy a simple growth
condition (see (2.7)). If moreover it is known that a point x∗ is an accumulation
point, then in order to have convergence of the whole sequence to x∗ it is sufficient to
require that this growth condition holds in a neighborhood of x∗.

A preliminary version of the results presented in this paper appeared in the pro-
ceedings of the 13th MTNS conference [28]. Generalizations to Riemannian manifolds
have been considered in [22].

The paper is organized as follows. The continuous-time case is reviewed in sec-
tion 2 and the Mexican hat example is presented. The general convergence theory for
descent iterations is developed in section 3 and applied to line-search and trust-region
methods in section 4. Conclusions are presented in section 5.

2. Convergence of analytic gradient descent flows. In this section, we
briefly review �Lojasiewicz’s argument for the convergence of analytic gradient flows
and give an explicit counterexample to show that single limit-point convergence does
not hold for certain C∞ gradient flows. In the past five years, many authors have
revisited the original gradient flow convergence results of �Lojasiewicz [25]. Our pre-
sentation follows the generalization proposed by Lageman [22], where the steepest
descent direction was relaxed to an angle condition. The proof is included to provide
motivation for the discrete-time analysis in section 3. A concise presentation of the
standard argument for �Lojasiewicz’s theorem is contained in [20].

Let Rn be the linear space of column vectors with n components, endowed with
the usual inner product 〈x, y〉 = xT y. Let ∇φ(x) := (∂1φ(x), . . . , ∂nφ(x))T denote
the Euclidean gradient of the differentiable function φ. A point x∗ where ∇φ(x∗) = 0
is called a stationary point or critical point of φ.

The proof of �Lojasiewicz’s theorem is based on the following property of real
analytic functions.

Lemma 2.1 (�Lojasiewicz gradient inequality). 4 Let φ be a real analytic function
on a neighborhood of x∗ in Rn. Then there are constants c > 0 and μ ∈ [0, 1) such
that

‖∇φ(x)‖ ≥ c|φ(x) − φ(x∗)|μ(2.1)

in some neighborhood U of x∗.
Proof. See [24, p. 92], [2, Prop. 6.8], or the short proof in [21].
Theorem 2.2. Let φ be a real analytic function and let x(t) be a C1 curve in

Rn, with ẋ(t) = dx
dt (t) denoting its time derivative. Assume that there exist a δ > 0

4The �Lojasiewicz gradient inequality is a special instance of a more general �Lojasiewicz inequal-
ity [23, 26]. The latter result has been used in the study of error bounds of analytic inequality systems
in optimization [27, 9]. In turn, such error bounds have been used in the convergence analysis of
optimization algorithms in the same general spirit as in the present paper; see, e.g., [14, 37]. We
thank an anonymous reviewer for pointing this out.
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and a real τ such that for t > τ , x(t) satisfies the angle condition

dφ(x(t))

dt
≡ 〈∇φ(x(t)), ẋ(t)〉 ≤ −δ‖∇φ(x(t))‖‖ẋ(t)‖(2.2)

and a weak decrease condition[
d

dt
φ(x(t)) = 0

]
⇒ [ẋ(t) = 0].(2.3)

Then, either limt→+∞ ‖x(t)‖ = ∞ or there exists x∗ ∈ Rn such that limt→+∞ = x∗.
Proof. Assume that ‖x(t)‖ � +∞ as t → +∞. Then x(t) has an accumulation

point x∗ in Rn. It remains to show that limt→+∞ x(t) = x∗ and the proof will be
complete.

It follows from (2.2) that φ(x(t)) is nonincreasing. Moreover, since x∗ is an
accumulation point of x(t), it follows by continuity of φ that

φ(x(t)) ↓ φ(x∗).

We distinguish two cases.
Case (i). There exists a t1 > τ such that φ(x(t1)) = φ(x∗). Since φ(x(t)) is

nonincreasing then it is straightforward to see that φ(x(t)) = φ(x∗) and d
dtφ(x(t)) = 0

for all t ≥ t1. From the weak decrease condition (2.3) this implies that ẋ(t) = 0 for
all t ≥ t1 and x(t) = x(t1) = x∗.

Case (ii). φ(x(t)) > φ(x∗) for all t > τ . In order to simplify the forthcoming
equations we assume without loss of generality that φ(x∗) = 0. It follows from the
�Lojasiewicz gradient inequality (Lemma 2.1) and from (2.2) that

dφ(x(t))

dt
≤ −δ‖∇φ(x(t))‖‖ẋ(t)‖ ≤ −δc|φ(x(t))|μ‖ẋ(t)‖(2.4)

holds in a neighborhood U of x∗ for some μ ∈ [0, 1). Since we have assumed that
φ(x(t)) > φ(x∗) = 0, it follows from (2.4) that

c1
d(φ(x(t)))1−μ

dt
≤ −‖ẋ(t)‖,(2.5)

where c1 := [δc(1 − μ)]−1 > 0. Given t1 and t2 with τ < t1 < t2, if x(t) ∈ U for all
t ∈ (t1, t2), then by integration of (2.5)

L12 :=

∫ t2

t1

‖ẋ(t)‖dt ≤ c1((φ(x(t1)))
1−μ − (φ(x(t2)))

1−μ) ≤ c1(φ(x(t1)))
1−μ.(2.6)

Now let r be such that Br(x
∗) ⊂ U , where

Br(x
∗) := {x ∈ Rn : ‖x− x∗‖ < r}.

We show that x(t) eventually enters and remains in Br(x
∗). Since r is arbitrarily

small, it follows that x(t) converges to x∗ and the theorem will be proven.
Let t1 be such that ‖x(t1)− x∗‖ < r/2 and c1φ

1−μ(x(t1)) < r/2. Such a t1 exists
by continuity of φ since x∗ is an accumulation point of x(t) and φ(x∗) = 0. Then we
show that the entire trajectory after t1 lies in Br(x

∗). By contradiction, suppose not,
and let t2 be the smallest t > t1 such that ‖x(t2) − x∗‖ = r. Then x(t) lies in U for
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Fig. 2.1. A plot of the smooth “Mexican hat” function defined in (2.8).

all t ∈ (t1, t2). Therefore (2.6) holds and it follows that L12 ≤ c1(φ(x(t1)))
1−μ < r/2.

Then ‖x(t2) − x∗‖ ≤ ‖x(t2) − x(t1)‖ + ‖x(t1) − x∗‖ < L12 + r/2 < r, which is a
contradiction. Thus x(t) remains in Br(x

∗) for all t ∈ [t1,+∞), and the proof is
complete.

The role of the weak decrease condition (2.3) is to prevent the trajectory x(t)
from wandering endlessly in the critical set ∇φ = 0. It is possible to weaken this
condition somewhat to allow the trajectory to spend finite periods of time wandering
in this set as long as it eventually either converges or continues to decrease the cost
(see [22]).

Considering Theorem 2.2, a natural question to ask is if it is possible to relax
the condition of analyticity on the cost function and retain the convergence results.
Clearly, analyticity is principally used to invoke the �Lojasiewicz gradient inequality.
The rationale goes through if φ is continuous at an accumulation point x∗ of x(t) and
a growth condition of the type

‖∇φ(x∗)‖ ≥ ψ(φ(x(t)) − φ(x∗))(2.7)

holds in a neigborhood of x∗, where 1/ψ is positive and integrable on an interval (0, ε).
In practice, such a growth condition may be difficult to check. This is especially true
when no accumulation point is known a priori so that the condition must be verified
on a set.

Theorem 2.2 does not hold for the general class of smooth cost functions φ ∈ C∞.
It is instructive to provide an explicit counterexample. The following function f ∈ C∞

(cf. Figure 2.1) is a smooth example of a “Mexican hat” cost function. Let

f(r, θ) :=

{
e
− 1

1−r2

[
1 − 4r4

4r4+(1−r2)4 sin
(
θ − 1

1−r2

)]
if r < 1,

0 if r ≥ 1,
(2.8)

where (r, θ) denote polar coordinates in R2.
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Since 0 ≤ 4r4

4r4+(1−r2)4 < 1 for all r < 1, it follows that f(r, θ) > 0 for all r < 1.

The exponential factor in f ensures that all derivatives at r = 1 are well defined (and
equal to zero) and it follows that f ∈ C∞. The example has been constructed such
that, for initial conditions (r0, θ0) with θ0(1 − r2

0) = 1 and 0 < r0 < 1, the solution
(r(t), θ(t)) of the gradient descent flow (expressed in polar coordinates) satisfies

θ(t) =
1

1 − r(t)2
.(2.9)

By inspection, the ω-limit set of the trajectory (2.9) considered is the entire circle
{(r, θ) r = 1}.

The origin of the colloquial name “Mexican hat” function for a counterexample
of this form is not clear. Certainly, the structure of the counterexample was known
by the time of Curry [8]. Prior examples of Mexican hats were proposed in [38]
(mentioned in [1, Exercise 2.18]) and [31, Example 3, p. 13]. The merit of the cost
function (2.8) is to provide a closed-form trajectory (2.9) and render the convergence
analysis trivial.

3. Convergence of analytic descent iterations. In this section, a discrete-
time analogue of Theorem 2.2 (�Lojasiewicz’s theorem with an angle condition) is
obtained. We propose a pair of “strong descent conditions” that encapsulate the key
properties of the iterates of a numerical descent algorithm that lead to single limit-
point convergence for an analytic cost function. In later sections we show that the
strong descent conditions are satisfied naturally by most numerical descent algorithm
iterates.

3.1. Main result. In the discrete-time case, a solution trajectory is a sequence
{xk} instead of a curve x(t). The key to extending the results of section 2 to this
case is to adapt the conditions (2.2) and (2.3) to the discrete-time case. For (2.2) we
propose a primary descent condition:

φ(xk) − φ(xk+1) ≥ σ‖∇φ(xk)‖‖xk+1 − xk‖(3.1)

for all k and for some σ > 0. Condition (3.1) is satisfied under Armijo’s condition (4.4)
along with an angle condition (4.2). This fact will be exploited in section 4.1 in the
context of line-search methods. Moreover (3.1) is sufficiently general to accomodate
the framework of trust-region methods; see section 4.2.

Condition (3.1) itself does not preclude {xk} from endlessly wandering in a critical
set of φ. To overcome this, we introduce a complementary descent condition:

[φ(xk+1) = φ(xk)] ⇒ [xk+1 = xk] .(3.2)

This condition simply requires that any nonvanishing update, xk+1 �= xk, produce
a change in the cost function. Condition (3.2) adds information to (3.1) only when
xk is a critical point (i.e., ∇φ(xk) = 0). Note that conditions (3.1) and (3.2) allow
the sequence {xk} to stagnate for arbitrarily many iterations, a behavior observed,
e.g., in trust-region methods when the model estimate turns out to be so poor that
the proposed update is rejected (see section 4.2). Together, we term conditions (3.1)
and (3.2) the strong descent conditions.

Definition 3.1 (strong descent conditions). We say that a sequence {xk} in Rn

satisfies the strong descent conditions if (3.1) and (3.2) hold for some σ > 0 and for
all k larger than some K.
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The main result (Theorem 3.2 below) shows that if the iterates {xk} of a nu-
merical descent algorithm satisfy the strong descent conditions (Definition 3.1) and
the cost function φ is analytic, then {xk} converges to a single point or diverges to
infinity. Note that we do not claim that the limit point is a stationary point of φ;
indeed, the assumptions are not strong enough (in particular, they do not preclude
stagnation). For classical descent algorithms, convergence to a stationary point can
be obtained by invoking classical weak convergence results (∇φ → 0) in combination
with Theorem 3.2.

Theorem 3.2 (main result). Let φ : Rn �→ R be an analytic cost function. Let
the sequence {xk}k=1,2,... satisfy the strong descent conditions (Definition 3.1). Then,
either limk→∞ ‖xk‖ = +∞, or there exists a single point x∗ ∈ Rn such that

lim
k→∞

xk = x∗.

Proof. Without loss of generality, discard all iterates up to the K iterate and
relabel the sequence, such that (3.1) and (3.2) hold explicitly on the new sequence.
Assume moreover that ‖xk‖ � ∞; i.e., {xk} has at least one accumulation point x∗

in Rn. It is sufficient to show that limk→+∞ xk = x∗ to complete the proof.
For simplicity, we assume without loss of generality that φ(x∗) = 0. If the se-

quence {xk} is eventually constant (i.e., there exists a K such that xk = xK for all
k > K), then the result follows directly. For the remaining case we remove from the
sequence all the xk’s such that xk+1 = xk and we renumber the sequence accordingly.
It follows that the new sequence is infinite, never stagnates, and admits the same limit
set as the original sequence. By continuity of φ, since x∗ is an accumulation point of
{xk} and φ(xk) is strictly decreasing as a consequence of (3.2), it follows that

φ(x0) > φ(x1) > · · · > 0.(3.3)

(Note that this is the only place in this proof where (3.2) is utilized.)
It then follows from the �Lojasiewicz gradient inequality (Lemma 2.1) and the

primary descent condition (3.1) that, in some neighborhood U of x∗,

φ(xk) − φ(xk+1) ≥ σ‖∇φ(xk)‖‖xk+1 − xk‖ ≥ σc|φ(xk)|μ‖xk+1 − xk‖.

That is, since we have shown that φ(xk) > 0 for all k,

‖xk+1 − xk‖ ≤ φ(xk) − φ(xk+1)

σc (φ(xk))μ
,(3.4)

provided xk belongs to U .
Since μ ∈ [0, 1), it follows from (3.3) that 1

(φ(xk))μ ≤ 1
φμ for all φ in the interval

[φ(xk+1), φ(xk)], and therefore

φ(xk) − φ(xk+1)

(φ(xk))μ
=

∫ φ(xk)

φ(xk+1)

1

(φ(xk))μ
dφ ≤

∫ φ(xk)

φ(xk+1)

1

φμ
dφ(3.5)

=
1

1 − μ

(
(φ(xk))

1−μ − (φ(xk+1))
1−μ

)
.

Substituting (3.5) into (3.4) yields

‖xk+1 − xk‖ ≤ 1

σc(1 − μ)

(
(φ(xk))

1−μ − (φ(xk+1))
1−μ

)
.(3.6)
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This bound plays a role similar to the bound (2.5) on the exact derivative obtained
in the continuous-time case.

Given k2 > k1 such that the iterates xk1
up to xk2−1 belong to U , we have

k2−1∑
k=k1

‖xk+1 − xk‖ ≤ c1
(
(φ(xk1))

1−μ − (φ(xk2))
1−μ

)
≤ c1(φ(xk1))

1−μ,(3.7)

where c1 = [σc(1 − μ)]−1. This bound plays the same role as (2.6).

Now the conclusion comes much as in the proof of Theorem 2.2. Let r > 0 be
such that Br(x

∗) ⊂ U , where

Br(x
∗) = {x ∈ Rn : ‖x− x∗‖ < r}

is the open ball of radius r centered at x∗. Let k1 be such that ‖xk1 − x∗‖ < r/2 and
c1(φ(xk1

))1−μ < r/2. Such a k1 exists since x∗ is an accumulation point and φ(x∗) = 0.
Then we show that xk2 ∈ Br(x

∗) for all k2 > k1. By contradiction, suppose not, and
let K be the smallest k > k1 such that ‖xK − x∗‖ ≥ r. Then xk remains in U for

k1 ≤ k < K, so it follows from (3.7) that
∑K−1

k=k1
‖xk+1 − xk‖ ≤ c1(φ(xk1

))1−μ < r/2.

It then follows that ‖xK − x∗‖ ≤ ‖xK − xk1
‖ + ‖xk1 − x∗‖ ≤

∑K−1
k=k1

‖xk+1 − xk‖ +
‖xk1

− x∗‖ < r
2 + r

2 ≤ r. But we have supposed that ‖xK − x∗‖ ≥ r, which is a
contradiction.

We have thus shown that, given r sufficiently small, there exists k1 such that
‖xk2 − x∗‖ < r for all k2 > k1. Since r > 0 is arbitrary (subject to Br(x

∗) ⊂ U),
this means that the whole sequence {xk} converges to x∗, and the proof is com-
plete. (The same conclusion follows by noting that the “length”

∑+∞
k=1 ‖xk+1 −xk‖ is

finite.)

3.2. Discussion. We now comment on Theorem 3.2 and propose a few variations
and extensions to this result.

3.2.1. C∞ is not sufficient to guarantee single limit-point convergence.
Similar to the continuous-time case, it is natural to wonder whether the analyticity
assumption on φ can be relaxed to indefinite differentiability (φ ∈ C∞). The answer
is again negative: as we now show, there exist a sequence {xk} in Rn and a function
φ in C∞ such that {xk} satisfies the strong descent conditions (Definition 3.1) and
nevertheless the limit set of {xk} contains more than one point of Rn.

Consider the Mexican hat function (2.8) and let xk = (rk cos θk, rk sin θk)
T with

θk = kω and rk =
√

(θk − 1)/θk, so that xk belongs to the trajectory given by (2.9).
Choose ω > 0 such that ω/π is an irrational number. Then the limit set of {xk} is
the unit circle in R2. However, f is C∞ and the primary descent condition (3.1) is

satisfied for σ = 1−e−ω

4 . Indeed, simple manipulations yield

∂rf(rk, θk) = −e
− 1

1−r2
k

2rk(1−r2
k)2

4r4
k+(1−r2

k)4
,

1
r∂θf(rk, θk) = −e

− 1

1−r2
k

4r3
k

4r4
k+(1−r2

k)4
,

‖∇xf(xk)‖ = e−θk 2rk
4r4

k+(1−r2
k)4

√
(1 − r2

k)
4 + 4r4

k.

Thus ‖∇xf(xk)‖ ≤ 2e−kω when rk is sufficiently close to 1, i.e., when k is sufficiently
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large. Thus

f(xk) − f(xk+1) = e−kω − e−(k+1)ω = e−kω(1 − e−ω) ≥ 1−e−ω

4 2e−kω 2

≥ 1−e−ω

4 ‖∇f(xk)‖‖xk − xk+1‖.

3.2.2. Ruling out escape to infinity. There are several ways to rule out the
case limk→+∞ ‖xk‖ = ∞ in Theorem 3.2. Convergence results often assume that φ has
compact sublevel sets, in which case {xk} is bounded. Note also that limk→∞ ‖xk‖ =
+∞ occurs if and only if {xk} has no accumulation point in Rn.

It is interesting to consider what happens in the close vicinity of a critical point.
Proposition 3.3 guarantees that if the iteration starts close enough to a local minimum
x∗ of φ, and if the complementary descent condition (3.2) is replaced by a termination
condition, then the sequence of iterates stays in a neighborhood of x∗. Strengthening
the weak descent condition to condition (3.9) is required since it is not possible to
center the analysis at an accumulation point as was done in the proof of Theorem 3.2.

Proposition 3.3 (Lyapunov stability of minima). Let x∗ be a (possibly nonstrict)
local minimum of the analytic cost function φ. Let

xk+1 = F (xk)(3.8)

be a discrete-time dynamical system satisfying the primary descent condition (3.1)
and the termination condition

∇φ(xk) = 0 ⇒ terminate.(3.9)

Then x∗ is Lyapunov-stable for (3.8). That is, given ε > 0, there exists δ > 0 such
that

‖x0 − x∗‖ ≤ δ ⇒ ‖xk − x∗‖ ≤ ε for all k.

Proof. Without loss of generality, we again assume that φ(x∗) = 0. Let Um

be a neighborhood of x∗ such that φ(x) ≥ φ(x∗) for all x ∈ Um. Let U�L be a
neighborhood of x∗ where the �Lojasiewicz inequality (Lemma 2.1) holds. Let ε be
such that Bε(x

∗) ⊂ Um ∩ U�L. Let δ < ε/2 be such that c1(φ(x))1−μ < ε/2 for all
x ∈ Bδ(x

∗), where c1 = [σc(1 − μ)]−1 and c, μ, and σ are the constants appearing
in the �Lojasiewicz inequality and the primary descent condition (3.1). Then we show
that xk belongs to Bε(x

∗) and the proof is complete. By contradiction, suppose that
xk eventually leaves Bε(x

∗). Let K be the smallest k such that xk is not in Bε(x
∗).

We dismiss the trivial case where the algorithm terminates. Thus ∇φ(xk) �= 0 for all
k < K. It follows that φ(xk) > 0 for all k < K; otherwise the assumption on Um

would not hold. The rationale given in the proof of Theorem 3.2 yields that

‖xk − x0‖ ≤ c1(φ(x0))
1−μ < ε/2

for all k ≤ K, and it follows from the triangle inequality that ‖xK − x∗‖ < ε, which
is a contradiction.

Note that Proposition 3.3 is a Lyapunov stability result and one must prove local
attractivity of x∗ in addition to Proposition 3.3 to prove asymptotic stability of x∗.
It would be sufficient to additionally require weak convergence of the iterates (i.e.,
∇φ(xk) → 0) and that x∗ is an isolated stationary point of φ. A similar result is given
by the capture theorem [1].
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3.2.3. A stronger result. The proof of Theorem 3.2 does not use the analyt-
icity of φ to its full extent. Instead, the proof requires only that φ be continuous
at the accumulation point x∗ and that the �Lojasiewicz gradient inequality hold in a
neighborhood of x∗.

There is a large class of functions that are not real analytic but nevertheless satisfy
the �Lojasiewicz gradient inequality; see, e.g., [19, 3]. As an illustration, consider
φ(x) = f(g(x)), where g is real analytic and f is C1. Assume for simplicity that
g(x∗) = 0 and f(0) = 0, and so φ(x∗) = 0. Assume moreover that f ′(0) = c1 > 0,
where f ′ denotes the first derivative of f . Since f ′ ◦ g is continuous, it follows that
there exists a neighborhood U of x∗ such that f ′(g(x)) > c1

2 for all x ∈ U . Shrinking
U if necessary, it follows from the �Lojasiewicz gradient inequality on g that there
are constants c > 0 and μ ∈ [0, 1) such that ‖∇φ(x)‖ = |f ′(g(x))| · ‖∇g(x)‖ ≥
c1
2 ‖∇g(x)‖ ≥ c1

2 c|g(x)|μ for all x ∈ U . Shrinking U further if necessary, since f ′(0) =
c1 > 0, f(0) = 0, and f ∈ C1, we have |g(x)| ≥ |f(g(x))|/(2c1) for all x ∈ U .
Consequently, ‖∇φ(x)‖ ≥ c1c

2(2c1)μ
|φ(x)|μ for all x ∈ U , and this is a �Lojasiewicz

inequality.
It is interesting to consider what would be the weakest general condition on the

cost function that would ensure single limit-point convergence of a descent iteration
under the strong descent conditions (Definition 3.1). In general, this question is
difficult to answer; however, the following result provides the weakest condition on
the cost function such that the proof given for Theorem 3.2 applies. Note that the
class of functions covered is again larger than those satisfying the �Lojasiewicz gradient
inequality, shown earlier to be a superset of analytic functions.

Theorem 3.4. Let x∗ be a point of Rn and let φ be a cost function on Rn

continuous at x∗. Assume that there exist a neighborhood U of x∗, an ε > 0, and a
nondecreasing strictly positive function ψ : (0, ε) → R such that 1/ψ is integrable over
(0, ε) and

‖∇φ(x)‖ ≥ ψ(φ(x) − φ(x∗))

for all x in {x ∈ U : 0 < φ(x) − φ(x∗) < ε}. Consider a sequence {xk} satisfying
the strong descent conditions (Definition 3.1) and assume that x∗ is an accumulation
point of {xk}. Then limk→∞ xk = x∗.

4. Application to classical optimization schemes. In this section, we show
that the strong descent conditions (Definition 3.1) hold for a wide variety of nu-
merical optimization methods. Consequently, these methods have single limit-point
convergence when the cost function is analytic, or more generally when the condi-
tions of Theorem 3.4 are satisfied. We will successively consider methods of the
line-search type and of the trust-region type. References on numerical optimization
include [10, 15, 1, 30, 7].

4.1. Convergence of line-search methods. Any line-search method proceeds
in two steps. First, the algorithm chooses a search direction pk from the current iterate
xk. Then the algorithm searches along this direction for a new iterate

xk+1 = xk + αkpk(4.1)

satisfying some criteria.
We first consider the choice of the search direction pk. An obvious choice is the

steepest descent direction pk = −∇φ(xk), which is often relaxed to a direction pk
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satisfying an angle condition

〈pk,∇φ(xk)〉
‖pk‖‖∇φ(xk)‖

= cos θk ≤ −δ < 0;(4.2)

i.e., the angle between pk and −∇φ(xk) is bounded away from 90◦. A wide variety of
optimization schemes obtain the search direction by solving an equation of the form

Bkpk = −∇φ(xk).(4.3)

In particular, the choice Bk = ∇2φ(xk), the Hessian of φ at xk, yields the Newton
direction. When some approximation of the Hessian is used, pk is called a quasi-
Newton search direction. From (4.2) and (4.3), standard manipulations (see, e.g., [30,
p. 45]) yield cos θk ≥ 1/κ(Bk), where κ(Bk) = ‖Bk‖ ‖B−1

k ‖ is the condition number
of Bk. Therefore, for the angle condition (4.2) to hold true with (4.3), it is sufficient
that the condition number of Bk be bounded.

Now consider the choice of αk in (4.1). A very usual condition on α is the first
Wolfe condition, also known as the Armijo condition (see, e.g., [30]):

φ(xk) − φ(xk+1) ≥ −c1〈∇φ(xk), xk+1 − xk〉,(4.4)

where c1 ∈ (0, 1) is a constant. The Armijo condition is satisfied for all sufficiently
small values of αk. Therefore, in order to ensure that the algorithm makes sufficient
progress, it is usual to require moreover that, for some constant c2 ∈ (c1, 1),

〈∇φ(xk+1), xk+1 − xk〉 ≥ c2〈∇φ(xk), xk+1 − xk〉,(4.5)

known as the curvature condition. Conditions (4.4) and (4.5) are known collectively
as the Wolfe conditions. Several schemes exist that compute an αk such that the
Wolfe conditions hold; see, e.g., [1, 30].

Theorem 4.1. (i) Consider the line-search descent algorithm given by (4.1). Let
the algorithm terminate if ∇φ(xk) = 0. Assume that the search direction pk sat-
isfies the angle condition (4.2). Let the step-size be selected such that the Armijo
condition (4.4) holds. Then the strong descent conditions (Definition 3.1) hold.

(ii) Assume moreover that the cost function φ is analytic. Then either limk→∞ ‖xk‖ =
+∞, or there exists a single point x∗ ∈ Rn such that

lim
k→∞

xk = x∗.

(iii) In the latter case, if moreover the curvature condition (4.5) holds, then x∗ is
a stationary point of φ, i.e.,

∇φ(x∗) = 0.

Proof. (i) Combining the angle condition (4.2) and the Armijo condition (4.4)
yields φ(xk) − φ(xk+1) ≥ c1δ‖∇φ(xk)‖‖xk+1 − xk‖, i.e., the primary descent condi-
tion (3.1) with σ = c1δ. The complementary descent condition (3.2) is also satisfied:
if ∇φ(xk) = 0, then the algorithm terminates and if ∇φ(xk) �= 0, then (3.2) follows
from (3.1).

(ii) The proof is direct from (i) and Theorem 3.2.
(iii) The proof is a direct consequence of (ii) and a classical convergence result

(proven, e.g., in [15, Theorem 2.5.1] and [30, section 3.2]).
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4.2. Convergence of trust-region methods. Most trust-region methods com-
pute the trust-region step such that the model decrease is at least a fraction of that
obtained at the so-called Cauchy point. This condition alone is not sufficient to guar-
antee that the primary descent condition (3.1) holds. However, we show in this section
that the strong descent conditions (Definition 3.1) hold under a mild modification of
the Cauchy decrease condition.

Before stating the results in Theorem 4.4, we briefly review the underlying prin-
ciples of trust-region methods. The vast majority of trust-region methods proceed
along the following lines. At each iterate xk, a model mk(p) is built that agrees with
φ(xk + p) to the first order, that is,

mk(p) = φ(xk) + ∇φ(xk)
T p +

1

2
pTBkp,(4.6)

where Bk is some symmetric matrix. Then the problem

min
p∈Rn

mk(p) s.t. ‖p‖ ≤ Δk,(4.7)

where Δk > 0 is the trust-region radius, is solved within some approximation, yielding
an update vector pk. Finally the actual decrease of φ is compared with the decrease
predicted by mk in the ratio

ρk =
φ(xk) − φ(xk + pk)

mk(0) −mk(pk)
.(4.8)

If ρ is exceedingly small, then the model is very bad: the step must be rejected and
the trust-region radius must be reduced. If ρ is small but less dramatically so, then
the step is accepted but the trust-region radius is reduced. If ρ is close to 1, then
there is a good agreement between the model and the function over the step, and the
trust region can be expanded. This can be formalized into the following algorithm
(similar formulations are given, e.g., in [29, 7]).

Algorithm 4.2 (trust region; see, e.g., [30]). Given Δ̄ > 0, Δ0 ∈ (0, Δ̄), and
η ∈ (0, 1

4 ):
for k = 0, 1, 2, . . .

Obtain pk, ‖pk‖ < Δk, by (approximately) solving (4.7);
evaluate ρk from (4.8);
if ρk < 1

4
Δk+1 = 1

4‖pk‖
else if ρk > 3

4 and ‖pk‖ = Δk

Δk+1 = min(2Δk, Δ̄)
else

Δk+1 = Δk;
if ρk > η

xk+1 = xk + pk
else

xk+1 = xk;
end (for).

Trust-region methods essentially differ in the way they approximately solve the
trust-region subproblem (4.7). Most of the algorithms compute a step such that
the model decrease is at least a fraction of that obtained at the Cauchy point. By
definition, the Cauchy point is the solution pCk of the one-dimensional problem

pCk = arg min{mk(p) : p = α∇φ(xk), ‖p‖ ≤ Δk}.(4.9)
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The class of methods that ensure a fraction of the Cauchy decrease includes the dogleg
method of Powell [32], the double-dogleg method of Dennis and Mei [11], the truncated
conjugate-gradient method of Steihaug [33] and Toint [34], and the two-dimensional
subspace minimization strategy of Byrd, Schnabel, and Shultz [5]. These methods
have weak convergence properties (‖∇φ(xk)‖ → 0) in general; see, e.g., [30, Theo-
rem 4.8]. Other methods, including the one of Moré and Sorensen [29], do even better
as they attempt to find a nearly exact solution of the trust-region subproblem (4.7).
In this case a strong limit-point convergence result is available [29, Theorem 4.13]
under some additional hypotheses, including nonsingularity of the Hessian of φ at an
accumulation point.

Assuming that the cost function φ is analytic, we have to check that the strong de-
scent conditions (Definition 3.1) hold in order to apply our main result (Theorem 3.2)
and conclude to single limit-point convergence.

The following technical lemma will prove to be useful.
Lemma 4.3. If pCk is the Cauchy point defined in (4.9), then

mk(0) −mk(p
C
k ) ≥ 1

2
‖∇φ(xk)‖‖pCk ‖.

Proof. The Cauchy point pCk is given explicitly by (see, e.g., [30, eq. (4.8)])

pCk = −τk
Δk

‖∇φ(xk)‖
∇φ(xk),(4.10a)

where

τk =

{
1 if ∇φ(xk)

TBk∇φ(xk) ≤ 0;

min( ‖∇φ(xk)‖3

Δk∇φ(xk)TBk∇φ(xk)
, 1) otherwise.

(4.10b)

We have

mk(0) −mk(p
C
k ) − 1

2
‖∇φ(xk)‖ ‖pCk ‖ = βk

(
1 − τkΔk

‖∇φ(xk)‖3
∇φ(xk)

TBk∇φ(xk)

)

with βk := 1
2τkΔk‖∇φ(xk)‖; thus the claim is equivalent to

1 − τkΔk

‖∇φ(xk)‖3
∇φ(xk)

TBk∇φ(xk) ≥ 0,

which follows from the definition of τk.
Due to the variety of trust-region methods and the flexibility in the choice of

the update direction, it is not possible to prove a generic convergence result of the
nature of Theorem 4.1. Instead, Theorem 4.4 provides several easily verified conditions
for the iterates of Algorithm 4.2 in order that its iterates satisfy the strong descent
conditions (Definition 3.1). Once this is verified then the results of Theorem 3.2 apply.
Convergence to a critical point again depends on additional weak convergence results
for the algorithm considered.

The conditions given in Theorem 4.4 are progressively more restrictive on the
iterates of Algorithm 4.2. Condition (B) imposes condition (3.1) on the model mk.
We show that this in turn implies condition (3.1) on the cost function φ. Condition
(C) imposes a fraction of the Cauchy decrease that becomes more restrictive as the
ratio ‖pk‖/‖pCk ‖ grows. Condition (D) simply states that the model decrease is at
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least a fraction of that obtained at the Cauchy point. This condition holds for most of
the standard trust-region algorithms. However, (D) alone is not sufficient to guarantee
single limit-point convergence for analytic φ. To see this, consider, for example, the
function in R3 given by

f(x) =

(√
x2

1 + x2
2 − 1

)2

+ x2
3

which has a symmetry of revolution around the third axis. If Bk is chosen to be
singular along the θ direction, then a sequence {xk} can be constructed that satisfies
(D) but nevertheless loops endlessly toward the set {x : x2

1 +x2
2 = 1, x3 = 0}. Condi-

tion (D) becomes sufficient with complementary conditions, like (E) which imposes a
bound on ‖pk‖/‖pCk ‖ or like (F) which imposes that Bk remains positive definite and
does not become ill-conditioned.

Theorem 4.4. Let {xk}, {Δk}, {pk}, {φ(xk)}, {∇φ(xk)}, and {Bk} be infinite
sequences generated by Algorithm 4.2 (trust region). Let mk, ρk, and pCk be defined
as in (4.6), (4.8), and (4.9), respectively. Consider the following conditions.

(A) The strong descent conditions (Definition 3.1) hold.
(B) There exists σ1 > 0 such that for all k with ∇φ(xk) �= 0,

mk(0) −mk(pk) ≥ σ1‖∇φ(xk)‖‖pk‖.(4.11)

(C) There exists σ2 > 0 such that for all k with ∇φ(xk) �= 0,

mk(0) −mk(pk)

mk(0) −mk(pCk )
≥ σ2

‖pk‖
‖pCk ‖

.(4.12)

(D) There exists c2 > 0 such that for all k with ∇φ(xk) �= 0,

mk(0) −mk(pk) ≥ c2(mk(0) −mk(p
C
k )).(4.13)

(E) There exists κ1 > 0 such that for all k with ∇φ(xk) �= 0,

‖pk‖ ≤ κ1‖pCk ‖.(4.14)

(F) Bk is positive definite for all k and there exists a κ2 ≥ 1 such that cond(Bk) :=
‖Bk‖‖B−1

k ‖ ≤ κ2 for all k (where the matrix norms are 2-norms).
Then (D) and (F) ⇒ (D) and (E) ⇒ (C) ⇒ (B) ⇒ (A). Furthermore, if (A) holds
and the cost function φ is analytic, then either limk→∞ ‖xk‖ = +∞ or there exists a
single point x∗ ∈ Rn such that limk→∞ xk = x∗.

Proof. First note that the condition ∇φ(xk) �= 0 guarantees that pCk �= 0 and
mk(0) −mk(p

C
k ) > 0.

(D) and (F) ⇒ (D) and (E). If ‖pCk ‖ = Δk, then (E) holds with κ1 = 1. Assume
then that ‖pCk ‖ < Δk. Let λmax(Bk), respectively, λmin(Bk), denote the largest,
respectively, smallest, eigenvalue of the positive definite matrix Bk. Then

‖∇φ(xk)‖
λmax(Bk)

≤ ‖∇φ(xk)‖3

∇φ(xk)TBk∇φ(xk)
= ‖pCk ‖,(4.15)

where the equality follows from (4.10) and ‖pCk ‖ < Δk. In view of (D), one has
mk(0) −mk(pk) ≥ 0 and thus −∇φ(xk)

T pk − 1
2p

T
kBkpk ≥ 0. Therefore

1

2
λmin(Bk)‖pk‖2 ≤ 1

2
pTkBkpk ≤ −∇φ(xk)

T pk ≤ ‖∇φ(xk)‖ ‖pk‖.(4.16)
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It follows from (4.15) and (4.16) that

‖pk‖ ≤ 2
‖∇φ(xk)‖
λmin(Bk)

≤ 2
λmax(Bk)

λmin(Bk)
‖pCk ‖ = 2cond(Bk)‖pCk ‖ ≤ 2κ2‖pCk ‖;

i.e., (E) holds with κ1 := 2κ2.
(D) and (E) ⇒ (C). The proof is direct, with σ2 = c2/κ1.
(C) ⇒ (B). The proof directly follows from Lemma 4.3, with σ1 = σ2/2.
(B) ⇒ (A). If xk+1 = xk, then the strong descent conditions trivially hold. As-

sume then that xk+1 �= xk, in which case the complementary descent condition (3.2)
holds by the definition of Algorithm 4.2. If ∇φ(xk) = 0, then the primary descent
condition (3.1) trivially holds. On the other hand, if ∇φ(xk) �= 0, then it follows from
(B) that (3.1) holds with σ = ησ1, where η is defined in Algorithm 4.2.

The final claim follows directly from Theorem 3.2.
Convergence of the iterates of Algorithm 4.2 to a critical point depends on ad-

ditional weak convergence (‖∇φ(xk)‖ → 0) results for the particular algorithm con-
sidered. For example, if assumptions (D) and (E) hold, φ is analytic, and ‖Bk‖ ≤ β
for some constant β, then either limk→∞ ‖xk‖ = +∞ or there exists a single point
x∗ ∈ Rn such that

lim
k→∞

xk = x∗ and ∇φ(x∗) = 0.

This follows from the above result along with a classical convergence result for trust-
region methods (see [30, Theorem 4.8]).

5. Conclusion. We have shown strong limit-point convergence results that do
not rely on the usual requirement that critical points are isolated. Instead, we require
two conditions: the �Lojasiewicz gradient inequality (2.1), i.e., a lower bound on the
norm of the gradient of the cost function in terms of the cost function itself, and
some “strong descent conditions” stated in Definition 3.1. The �Lojasiewicz gradient
inequality is satisfied in particular for analytic cost functions. The strong descent
conditions are satisfied for a wide variety of optimization schemes; they include line-
search methods with an angle condition on the search direction and Armijo’s condition
on the step length, and trust-region methods under the condition that the length of
the update vector is bounded by a multiple of the length of the Cauchy update.
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A NOTE ON TRUST-REGION RADIUS UPDATE∗

JÉRÔME M. B. WALMAG† AND ÉRIC J. M. DELHEZ‡

Abstract. In classical trust-region optimization algorithms, the radius of the trust region is
reduced, kept constant, or enlarged after, respectively, unsuccessful, successful, and very successful
iterations. We propose here to refine the empirical rules used for this update by the definition of a
new set of iterations that we call “too successful iterations.” At such iterations, a large reduction of
the objective function is obtained despite a crude local approximation of the objective function; the
trust region is thus kept nearly constant instead of being enlarged.

The new update rules preserve the strong convergence property of traditional trust-region meth-
ods. They can also be generalized to define a self-adaptive trust-region algorithm along the lines
introduced by Hei [J. Comput. Math., 21 (2003), pp. 229–236].

Numerical experiments carried out on 70 unconstrained problems from the CUTEr collection
demonstrate the positive impact of the modified update strategy on the efficiency and robustness of
quasi-Newton variants of a trust-region solver, when BFGS or SR1 updates of the approximation of
the Hessian matrix are carried at all iterations.

Key words. unconstrained optimization, nonlinear optimization, trust region, radius update
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1. Introduction. Trust-region methods are increasingly used in applied math-
ematics and engineering to tackle optimization problems. They indeed provide an
efficient alternative to the usual line-search methods that demand repeated and costly
evaluations of the objective function. A very general framework for trust-region meth-
ods can be found in Conn, Gould, and Toint [3].

In this paper, we consider a trust-region method applied to the unconstrained
optimization problem

find x∗ = arg min
x∈Rn

f(x),(1.1)

where f(x) is a real-valued twice-continuously differentiable function. This formu-
lation is typical of many parameter identification problems and is therefore of very
general use. The ideas developed here are, however, directly applicable to constrained
optimization problems as well.

Trust-region methods are iterative methods whose key ideas are as follows. At
each iteration, an analytical local model m(k)(x(k) + s) of the true objective function
is built around the current iterate x(k). A trial point

x̃(k+1) = x(k) + s(k+1)(1.2)

is then generated using a solution s(k+1) of the subproblem

find s(k+1) = arg min
s∈B(k)

m(k)(x(k) + s),(1.3)
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where B(k) is defined as

B(k) =
{
s ∈ Rn, ‖s‖ ≤ Δ(k)

}
(1.4)

with ‖ · ‖ being the �2-norm and Δ(k) > 0.
The model function m(k) is deemed to provide a valid approximation of the ob-

jective function f in B(k); hence the name of trust region for B(k) and the name of
trust-region radius for Δ(k). As a model function m(k)(x) is often available in closed
form, appropriate techniques can be applied to find an approximate minimizer (any
step giving a decrease of the model function that is lower than or equal to a fraction of
the reduction obtained at the so-called Cauchy point is appropriate; see Conn, Gould,
and Toint [3] for more details) of subproblem (1.3). Adequacy of the predicted reduc-
tion and true variation of the objective function is measured by means of the ratio

ρ(k) =
f(x(k)) − f(x̃(k+1))

m(k)(x(k)) −m(k)(x̃(k+1))
,(1.5)

where x̃(k+1) is the trial point. This trial point is accepted as new iterate x(k+1) if a
sufficient reduction of the true objective function is achieved, i.e., if ρ(k) ≥ η1, where
η1 is a predefined positive threshold. The iteration is then said to be successful. If
not, the iteration is unsuccessful, the trial point is rejected, and x(k+1) = x(k).

The ratio ρ(k) defined by (1.5) provides a measure of the fidelity of the model m(k)

to the true objective function f in the neighborhood of the current iterate. It is then
used to update the radius Δ(k) of the trust region from one iteration to the other. The
usual empirical rules for this update can be summarized as follows (see, e.g., Gould
et al. [7]):

Δ(k+1) =

⎧⎨
⎩

α1 Δ(k) if ρ(k) < η1,
Δ(k) if η1 ≤ ρ(k) < η2,
α2 Δ(k) if ρ(k) ≥ η2,

(1.6)

where α1, α2, η1, and η2 are predefined constants such that

0 < η1 ≤ η2 < 1 and α1 < 1 < α2.(1.7)

In other words, the radius of the trust region is reduced after unsuccessful iterations
and kept constant or increased after successful iterations.

The update strategy defined by (1.6) is likely to have a strong influence on the
performance of the algorithm. On the one hand, if the radius of the trust region is too
small, the successive iterates will remain close to each other, and the algorithm will
converge slowly. On the other hand, if the trust region is too large, the algorithm will
perform a large number of successive unsuccessful iterations. The update strategy
is therefore critical for the efficiency of the algorithm but has received only little
attention so far. Various values for parameters (1.7) are used by different authors
(e.g., Dennis and Mei [4], Gould et al. [8]), but the general formula (1.6) is seldom
questioned. Hei [10] generalizes (1.6) to allow for a more continuous dependency
of the trust-region radius on ρ(k). Byrd, Khalfan, and Schnabel [2] suggest further
refinement when ρ(k) < 0, i.e., when the radius is too large or the approximation of
the objective function by the model function is so bad that some drastic action should
be taken. See section 4 for further refinements.

In this paper, we introduce a refinement of (1.6) that is applicable when ρ(k) is
much larger than unity and show, on a subset of problems from the CUTEr set (see
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Gould, Orban, and Toint [9]), that this modification is beneficial to the performance
of the algorithm. The generalization of this new update strategy is also developed
along the lines defined by Hei [10].

2. The too successful iterations. Iterations of the third category defined
in (1.6) are called very successful because they produce reductions of the true ob-
jective function that are similar to or larger than the reductions predicted by the
model m(k). As suggested by (1.6), the usual approach in such a case is to enlarge
the trust region. The rationale for this increase of Δ(k) is that we are confident that
the model is accurate in a large region about the current iterate and the algorithm
should therefore be allowed to take bigger steps if required.

This is, however, only part of the story. While very successful iterations deserve
their name because of the decrease of the objective function that they produce, they
may rely on inaccurate local models m(k) if ρ(k) is significantly larger than unity. In
this case, the decrease of the objective function appears rather fortunate, and there
is no reason to be overconfident in the model m(k). This suggests the definition of
the set of too successful iterations characterized by ρ(k) > η3, where η3 > 1 is a
predetermined constant, and the replacement of (1.6) by

Δ(k+1) =

⎧⎪⎪⎨
⎪⎪⎩

α1 Δ(k) if ρ(k) < η1,
Δ(k) if η1 ≤ ρ(k) < η2,
α2 Δ(k) if η2 ≤ ρ(k) ≤ η3,
α3 Δ(k) if ρ(k) > η3,

(2.1)

where

0 < η1 ≤ η2 < 1 < η3(2.2)

and

α1 < 1 < α3 < α2.(2.3)

The usual update rules (1.6) appear as a particular case of the new rules (2.1),
where η3 = +∞.

According to (2.1), the maximum increase of the radius of the trust region occurs
when ρ(k) is close to one, i.e., when the model function m(k) provides an accurate local
approximation of the objective function. At too successful iterations, the reduction of
the objective function obtained at iteration k is significantly larger than the reduction
expected from m(k). While this iteration allows the algorithm to progress towards
the optimum, there is no reason to believe that the next step will be as fortunate as
the current one since m(k+1) is likely to be as inaccurate as m(k). It therefore seems
safer to avoid increasing the size of the trust region too rapidly, and we take α3 < α2.

One could conclude that the trust region must shrink after too successful itera-
tions. We take, however, α3 > 1—but close to unity—to match the convergence cri-
teria presented by Conn, Gould, and Toint [3] for the general trust-region algorithm.
Indeed, these authors proved global convergence, at least to a first-order critical point,
for the general update strategy defined by the constants η1, η2, γ1, γ2, γ3, and γ4 such
that

0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1 < γ3 ≤ γ4(2.4)
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and the update rules

Δ(k+1) ∈

⎧⎨
⎩

[ γ1Δ
(k) , γ2Δ

(k) ] if ρ(k) < η1,
[ γ2Δ

(k) , Δ(k) ] if ρ(k) ∈ [η1 , η2[,
[ γ3Δ

(k) , γ4Δ
(k) ] if ρ(k) ≥ η2.

(2.5)

Obviously, the modified update rules (2.1) satisfy the convergence criteria given by
Conn, Gould, and Toint [3], and the strong general convergence properties of trust-
region methods are therefore retained (at least if the model and objective function
share the same value and gradient at the current iterate and if the other convergence
conditions discussed in Chapter 6 of [3] are met).

3. Self-adaptive trust-region algorithm. The concept of too successful it-
erations can also be used in the context of the self-adaptive trust-region method
introduced by Hei [10]. The idea presented in Hei [10] is simply to allow the up-
dated trust-region radius Δ(k+1) to vary more or less continuously with the ratio ρ(k)

according to

Δ(k+1) = R(ρ(k)) Δ(k),(3.1)

where R is some appropriate function such that the convergence conditions (2.5)
are satisfied. Obviously, the usual update rules (1.6) are a particular case of (3.1)
corresponding to a staircase function R1 (Figure 3.1, top left). Hei [10] suggests using
nondecreasing R-functions such as

R2(ρ
(k)) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

α1 if ρ(k) ≤ 0,

α1 + (1 − α1)
(

ρ(k)

η2

)2

if 0 < ρ(k) < η2,

α3 + (α2 − α3) exp

{
−
(

ρ(k)−1
η2−1

)2
}

if η2 ≤ ρ(k) < 1,

2α2 − α2 exp(1 − ρ(k)) if ρ(k) ≥ 1,

(3.2)

where α1 < 1 < α3 < α2 and η2 < 1 are appropriate constants (Figure 3.1, bottom
left). This R2 function is qualitatively similar to the original update rule R1 since it
allows the trust region to grow after too successful iterations.

To generalize the modified update rules (2.1), we define Λ-functions as one-
dimensional functions Λ(t) defined in R such that

1. Λ(t) is nondecreasing in ]−∞, 1] and nonincreasing in [1,+∞[,

2. limt→−∞ Λ(t) = α1,

3. limt→η−
2

Λ(t) = 1,

4. Λ(η2) > α3 > 1,

5. Λ(1) = α2,

6. limt→+∞ Λ(t) = α3,
where the constants α1, α2, α3 satisfy condition (2.3) and η2 is the usual threshold
used for the definition of very successful iterations.

The update rule

Δ(k+1) = Λ(ρ(k)) Δ(k)(3.3)

is then a special case of (2.5) with γ1 = α1, γ3 = α3, γ4 = α2, and γ2 = Λ(η1), so that
the convergence properties hold. The modified update rules (2.1) can be described by
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Fig. 3.1. Self-adaptive functions used in the numerical experiments.

a staircase function Λ1 (Figure 3.1, top right) of the form (3.3). As a generalization
of (3.2), we propose to use the Λ-function defined by

Λ2(ρ
(k)) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

α1 if ρ(k) ≤ 0,

α1 + (1 − α1)
(

ρ(k)

η2

)2

if 0 < ρ(k) < η2,

α3 + (α2 − α3) exp

{
−
(

ρ(k)−1
η2−1

)2
}

if ρ(k) ≥ η2.

(3.4)

This Λ2-function is qualitatively similar to the update rule Λ1 since it allows the trust
region to grow only if ρ(k) is about unity (Figure 3.1, bottom right).

4. Refinements. Some refinements for trust-region radius update have been
introduced in the literature (see in particular Conn, Gould, and Toint [3]). They
usually appear as empirical “tricks” introduced to improve efficiency. None of these
tricks appears similar to the too successful iterations defined in this paper.

The first convenient rule is quite natural as soon as numerical experiments are
made: a user-defined maximum trust-region radius Δmax is simply introduced to
prevent too large trust regions. In some cases, it is also used to prove convergence to
second-order critical points (e.g., [3]).

Another refinement is to base the trust-region radius update on the step length.
For example, the following quite cumbersome rule has been proposed (Conn, Gould,
and Toint [3]):

Δ(k+1) =

⎧⎪⎪⎨
⎪⎪⎩

max(α2‖s(k)‖,Δ(k)) if ρ(k) ≥ η2,
Δ(k) if ρ(k) ∈ [η1, η2[,
α1‖s(k)‖ if ρ(k) ∈ [0, η1[,

min[α1‖s(k)‖,max(γ1, γ
(k)
bad) Δ(k)] if ρ(k) < 0,

(4.1)
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where γ1 is a given constant and

γ
(k)
bad =

(1 − η2) s
(k)T∇xf(x(k))

(1 − η2)[f(x(k)) + s(k)T∇xf(x(k))] + η2m(k)(x̃(k)) − f(x̃(k))
.(4.2)

These rules may still be applied in the same way even if we introduce too successful
iterations. However, for the sake of simplicity, they are not used in the following
numerical experiments.

5. Numerical experiments. The ideas introduced in sections 2 and 3 are first
illustrated on a variant of the classical Rosenbrock banana function. The influence of
the modified update rules on the robustness and efficiency of a trust-region solver is
then assessed on 70 small-scale problems of the CUTEr test set.

5.1. Particular implementation of the trust-region algorithm. The par-
ticular version of the trust-region algorithm used in this study is based on quadratic
models

m(k)(x(k) + s) = f(x(k)) + sT∇xf(x(k)) +
1

2
sTH(k)s,(5.1)

where f(x(k)) and ∇xf(x(k)) are readily available at each iteration while H(k) ap-
proximates the Hessian matrix. Two strategies are used for the approximation of the
Hessian matrix: the symmetric rank one (SR1) update formula and the Broyden–
Fletcher–Goldfarb–Shanno (BFGS) formula (see, e.g., Fletcher [6]).

In a first step, these quasi-Newton update formulas are used after every iteration
(successful or not). Another quasi-Newton strategy is discussed in section 5.4. The
versions of the algorithm using the SR1 and BFGS approaches are referred to as,
respectively, Trust-SR1 and Trust-BFGS. Global convergence of the Trust-BFGS al-
gorithm towards first-order critical points can be proved, while Trust-SR1 converges
towards second-order critical points (Conn, Gould, and Toint [3]). The quadratic
subproblems (1.3) are solved using the GQT routines of Moré and Sorensen [11]. The
values of the parameters of the different update rules are listed in Table 5.1.

Table 5.1

Parameters of the update rule used in the numerical experiments.

Parameter Value Parameter Value

α1 0.5 η1 0.01
α2 2 η2 0.95
α3 1.01 η3 1.05

5.2. Rosenbrock’s banana function. A first test of the ideas presented in
the previous sections is provided by the minimization of a logarithmic variant of the
well-known Rosenbrock function (see Fletcher [6])

f(x1, x2) = ln
[
1 + 10000(x2 − x2

1)
2 + (1 − x1)

2
]
.(5.2)

This function has a deep, curved valley following the parabola x2 = x2
1, and its

minimizer is (x1, x2) = (1, 1). Figure 5.1 shows the evolution of the objective function
with both algorithms Trust-SR1 and Trust-BFGS associated with the four update
rules R1, R2, Λ1, and Λ2, while the numbers of iterations required to reach convergence
are listed in Table 5.2. For completeness, the behavior of a Newton version of the
algorithm using the exact Hessian matrix is also shown.
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Fig. 5.1. The value of the objective function on successive iterations. The starting point
is (x1, x2) = (1, 0) and the initial trust-region radius is Δ(0) = 1. The stopping criterion is
‖∇xf(x(k))‖ ≤ 5 × 10−6.

Table 5.2

Number of iterations for the logarithmic Rosenbrock problem. In parenthesis: number of suc-
cessful iterations.

Trust-SR1 Trust-BFGS Trust-Newton

R1 388 (211) 317 (176) 72 (46)
R2 312 (153) 506 (260) 74 (46)
Λ1 195 (152) 96 (87) 55 (48)
Λ2 203 (164) 94 (86) 56 (49)

With all the Newton, SR1, and BFGS versions of the algorithm, the Λ-functions
appear much more efficient than the R-functions. The suggested algorithmic modifi-
cations decrease the number of iterations and then the number of evaluations of the
objective function at no additional cost. It can also be seen that the proportion of
successful iterations is greater with Λ-functions than with R-functions.

The lower number of iterations obtained with Λ-functions results from the com-
bination of two effects. The first is a reduction of the number of iterations induced
by the conservative update rule; this prevents the algorithm from wasting time with
too large steps that produce unsuccessful iterations. The second effect is related
to the SR1 and BFGS updates of the Hessian matrix; it is therefore irrelevant for
the Newton version of the algorithm. The many unsuccessful iterations carried out
with the R-function versions of the algorithm produce large steps s(k) and inaccurate
quasi-Newton updates of the Hessian matrix. On the contrary, the Λ-function ap-
proach tends to give shorter trial steps s(k) when the model does not fit the objective
function, and hence provides a more accurate quasi-Newton update.

5.3. Performances on a test set. A systematic comparison between the dif-
ferent trust-region radius updates is carried out for the 70 twice-continuously dif-
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Table 5.3

Names and sizes of the selected CUTEr problems.

Name n Name n Name n Name n

3PK 30 DENSCHNF 2 HYDC20LS 99 PFIT1LS 3
AKIVA 2 DJTL 2 JENSMP 2 PFIT2LS 3
ALLINITU 4 ENGVAL2 3 KOWOSB 4 PFIT3LS 3
BARD 3 EXPFIT 2 LOGHAIRY 2 PFIT4LS 3
BEALE 2 GROWTHLS 3 MARATOSB 2 ROSENBR 2
BIGGS6 6 GULF 3 MEXHAT 2 S308 2
BOX3 3 HAIRY 2 MEYER3 3 SINEVAL 2
BRKMCC 2 HATFLDD 3 OSBORNEA 5 SISSER 2
BROWNBS 2 HATFLDE 3 OSBORNEB 11 SNAIL 2
BROWNDEN 4 HEART6LS 6 PALMER1C 8 STRATEC 10
CLIFF 2 HEART8LS 8 PALMER1D 7 TOINTGOR 50
CUBE 2 HELIX 3 PALMER2C 8 TOINTPSP 50
DECONVU 61 HIELOW 3 PALMER3C 8 TOINTQOR 50
DENSCHNA 2 HIMMELBB 2 PALMER4C 8 VIBRBEAM 8
DENSCHNB 2 HIMMELBF 4 PALMER5C 6 YFITU 3
DENSCHNC 2 HIMMELBG 2 PALMER6C 8 ZANGWIL2 2
DENSCHND 3 HIMMELBH 2 PALMER7C 8
DENSCHNE 3 HUMPS 2 PALMER8C 8

ferentiable small-scale unconstrained problems (n ≤ 100; see Table 5.3) with first
derivatives available contained in the CUTEr test set (see Bongartz et al. [1] and
Gould, Orban, and Toint [9]). Results are analyzed by means of performance profiles
proposed by Dolan and Moré [5]. Separate profiles are computed for the SR1 and
BFGS update rules.

For both the SR1 and BFGS update rules, we define the set P of np (= 70) test
problems and the set S of the four solvers implementing the different update rules
for the radius of the trust region (R1, R2, Λ1, Λ2). For each problem p ∈ P and
solver s ∈ S, the number of iterations Np,s needed to solve problem p with solver s is
evaluated. A performance ratio

rp,s =
Np,s

min{Np,s : s ∈ S}

is then built by comparing the number of iterations, i.e., the number of objective func-
tion evaluations, required by solver s to solve problem p with the best performance
obtained by any solver on this problem. An arbitrarily large (rM = 100) performance
ratio is assigned to a solver s when it is unable to solve a given problem. The perfor-
mance profile of a solver s is defined as the cumulative distribution function for the
performance ratio

Ps(τ) =
1

np
|Js(τ)| ,(5.3)

where Js(τ) = {p ∈ P : rp,s ≤ τ}. With such definitions, Ps(1) appears as the proba-
bility that the solver s will win over the rest of the solvers and can therefore be used
to compare the average speed of the algorithms. The limit

P ∗
s = lim

τ→r−M

Ps(τ)

is the probability for the solver s to solve a problem and can therefore be used to
compare the robustness of the algorithms. These values are shown in Table 5.4.
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Table 5.4

Speed and robustness of the different algorithms.

Trust-SR1 Trust-BFGS
Ps(1) P ∗

s Ps(1) P ∗
s

R1 0.30 0.74 0.43 0.83
R2 0.46 0.80 0.36 0.84
Λ1 0.54 0.94 0.53 0.96
Λ2 0.50 0.96 0.46 0.93
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Fig. 5.2. Complete performance profiles of different versions of the algorithm for 70 problems
of the CUTEr test set. The numerical experiments use values of Table 5.1, an initial trust-region
radius of Δ(0) = 1, and a stopping criterion ‖∇xf(x(k))‖ / ‖∇xf(x(0))‖ ≤ 10−6. The two bottom
figures are zooms of the two top ones.

Overall, the variants using Λ-functions perform substantially better from the
points of view of both efficiency and robustness than do those based on the usual
R-functions (see Tables 5.5 and 5.6 for details). This larger efficiency of the Λ ver-
sions is clearly demonstrated by the plots of the complete performance profiles (Figure
5.2) with corresponding curves lying above the curves of the R versions for all values
of τ .

5.4. Interaction between the quasi-Newton update rule and the trust-
region radius update strategy. As mentioned above in the analysis of the Rosen-
brock problem, there is a clear interaction between the update rule of the Hessian
matrix and the update rule of the radius of the trust region. The results discussed so
far were obtained using an unconditional quasi-Newton update; i.e., the approxima-
tion of the Hessian matrix was updated at each iteration, whether successful or not.
Such an update strategy can be justified by the hope of improving convergence by
the use of all available information at successive trial points. However, this approach
turns out to be detrimental to the performance of the algorithm in the case of long
trial steps, resulting in the “pollution” of the Hessian matrix by bad updates which are
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Table 5.5

Detailed results for Trust-SR1 with unconditional quasi-Newton update: number of iterations
for each selected problem. In parenthesis: number of successful iterations. Symbols “−” and “∗∗”
mean, respectively, that a trial point produces “out of range values” and that the number of iterations
exceeds 10, 000. An exponent star means that convergence occurs towards a different local minimizer
with a greater objective function value; this is not regarded as a failure here.

Name R1 R2 Λ1 Λ2

3PK 66 (50) 71 (49) 68 (50) 67 (46)
AKIVA 20 (13) 19 (12) 15 (11) 15 (11)
ALLINITU 10 (9) 14 (11) 10 (9) 12 (10)
BARD 19 (14) 13 (13) 16 (14) 12 (12)
BEALE 26 (19) 17 (15) 17 (15) 17 (16)
BIGGS6 − 57 (38) 46 (38) 44 (39)
BOX3 9 (9) 18 (11) 9 (9) 14 (12)
BRKMCC 5 (4) 5 (4) 5 (4) 5 (4)
BROWNBS 50 (40) 50 (41) 43 (37) 49 (44)
BROWNDEN 24 (21) 25 (21) 19 (18) 23 (21)
CLIFF 1 (1) 1 (1) 1 (1) 1 (1)
CUBE ∗∗ ∗∗ 58 (42) 58 (51)
DECONVU 62 (42) 68 (50) 63 (43) 71 (58)
DENSCHNA 9 (9) 9 (9) 9 (9) 9 (9)
DENSCHNB 11 (10) 10 (10) 10 (10) 10 (10)
DENSCHNC 14 (14) 13 (12) 14 (14) 13 (12)
DENSCHND 23 (23) 22 (22) 28 (26) 23 (23)
DENSCHNE − ∗∗ 22 (21) 30 (29)
DENSCHNF 9 (9) 11 (10) 9 (9) 10 (9)
DJTL 5369 (2695) ∗∗ 256 (171) ∗∗
ENGVAL2 53 (40) ∗∗ 33 (28) 32 (27)
EXPFIT ∗∗ ∗∗ 21 (16) 16 (14)
GROWTHLS 29∗ (19∗) − 51 (37) 46 (39)
GULF 63 (41) − 43 (37) 53 (45)
HAIRY 44 (30) 52 (34) 56 (50) 206 (194)
HATFLDD 24 (20) ∗∗ 27 (22) 28 (26)
HATFLDE 18 (15) 32 (23) 13 (10) 26 (21)
HEART6LS ∗∗ ∗∗ ∗∗ 5070 (4059)
HEART8LS ∗∗ ∗∗ ∗∗ 1492 (1196)
HELIX 35 (26) 80 (49) 34 (26) 27 (23)
HIELOW 15 (11) 16 (12) 20 (16) 17 (13)
HIMMELBB 3 (3) 3 (3) 3 (3) 3 (3)
HIMMELBF 20 (18) 36 (26) 35 (27) 28 (26)
HIMMELBG 11 (8) 12 (9) 10 (7) 9 (7)
HIMMELBH 7 (7) 7 (7) 7 (7) 7 (7)
HUMPS 221 (138) 178 (118) 138 (108) 307 (266)
HYDC20LS 228 (166) 160 (131) 209 (165) 158 (136)
JENSMP ∗∗ ∗∗ 38 (31) 33 (29)
KOWOSB 83 (49) ∗∗ 31 (26) 31 (22)
LOGHAIRY 276 (187) 1267 (912) ∗∗ ∗∗
MARATOSB 9 (7) 8 (6) 9 (7) 8 (6)
MEXHAT 19 (17) 19 (17) 19 (17) 19 (17)
MEYER3 33∗ (21∗) 35∗ (24∗) 38 (32) 40 (32)
OSBORNEA − − − −
OSBORNEB 62 (41) 81 (57) 80 (61) 78 (61)
PALMER1C 7 (7) 7 (7) 7 (7) 7 (7)
PALMER1D 8 (8) 9 (9) 8 (8) 9 (9)
PALMER2C 7 (7) 7 (7) 7 (7) 7 (7)
PALMER3C 7 (7) 7 (7) 7 (7) 7 (7)
PALMER4C 7 (7) 7 (7) 7 (7) 7 (7)
PALMER5C 7 (7) 7 (7) 7 (7) 7 (7)
PALMER6C 8 (8) 9 (9) 8 (8) 9 (9)
PALMER7C 5 (5) 6 (6) 5 (5) 6 (6)
PALMER8C 6 (6) 7 (7) 7 (7) 7 (7)
PFIT1LS − − 651 (516) 255 (209)
PFIT2LS − − 198 (155) 48 (40)
PFIT3LS − − 515 (408) 502 (406)
PFIT4LS − − 816 (622) 755 (590)
ROSENBR 1399 (706) ∗∗ 43 (33) 59 (49)
S308 11 (11) 10 (10) 11 (11) 12 (12)
SINEVAL 3613 (1814) 535 (246) 141 (108) 159 (129)
SISSER 9 (9) 9 (9) 9 (9) 9 (9)
SNAIL 185 (98) 45 (26) 177 (149) 191 (173)
STRATEC ∗∗ 91 (59) 87 (63) 75 (58)
TOINTGOR 45 (32) 48 (40) 46 (35) 49 (41)
TOINTPSP 86 (49) 75 (46) 62 (44) 49 (37)
TOINTQOR 25 (24) 25 (22) 25 (24) 25 (22)
VIBRBEAM 72 (33) 110 (68) 58 (29) 55 (31)
YFITU ∗∗ 860 (433) 163 (122) 194 (150)
ZANGWIL2 2 (2) 2 (2) 2 (2) 2 (2)
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Table 5.6

Detailed results for Trust-BFGS with unconditional quasi-Newton update: number of iterations
for each selected problem. In parenthesis: number of successful iterations. Symbols “−” and “∗∗”
mean, respectively, that a trial point produces “out of range values” and that the number of iterations
exceeds 10, 000. An exponent star means that convergence occurs towards a different local minimizer
with a greater objective function value; this is not regarded as a failure here.

Name R1 R2 Λ1 Λ2

3PK 154 (117) 116 (96) 183 (157) 117 (99)
AKIVA 18 (11) 18 (11) 16 (12) 13 (9)
ALLINITU 11 (10) 10 (9) 11 (10) 10 (9)
BARD 16 (15) 16 (16) 16 (15) 16 (16)
BEALE 13 (13) 16 (16) 13 (13) 13 (13)
BIGGS6 41 (38) 42 (38) 38 (36) 41 (40)
BOX3 9 (9) 15 (15) 9 (9) 15 (15)
BRKMCC 6 (5) 6 (5) 6 (5) 6 (5)
BROWNBS 35 (34) 52 (45) 35 (34) 42 (38)
BROWNDEN 24 (19) 24 (19) 23 (19) 24 (20)
CLIFF 1 (1) 1 (1) 1 (1) 1 (1)
CUBE ∗∗ 67 (59) 49 (44) 39 (36)
DECONVU 100 (81) 105 (103) 101 (80) 102 (99)
DENSCHNA 9 (9) 9 (9) 9 (9) 9 (9)
DENSCHNB 9 (9) 9 (9) 9 (9) 9 (9)
DENSCHNC 13 (13) 14 (14) 13 (13) 14 (14)
DENSCHND 15 (14) 21 (20) 20 (19) 25 (24)
DENSCHNE − − 34 (33) 37 (35)
DENSCHNF 8 (8) 8 (8) 8 (8) 8 (8)
DJTL ∗∗ ∗∗ ∗∗ ∗∗
ENGVAL2 33 (29) 31 (28) 29 (26) 27 (25)
EXPFIT 17 (16) 16 (14) 17 (15) 15 (14)
GROWTHLS − − 196 (172) 48 (46)
GULF ∗∗ 23 (17) 51 (40) 51 (44)
HAIRY 52 (34) 70 (45) 99 (87) 160 (150)
HATFLDD 22 (21) 23 (23) 22 (21) 25 (25)
HATFLDE 29 (27) 21 (21) 29 (27) 22 (22)
HEART6LS ∗∗ ∗∗ 1634 (1457) ∗∗
HEART8LS ∗∗ ∗∗ 876 (801) 346 (324)
HELIX 21 (18) 24 (23) 22 (20) 26 (24)
HIELOW 20 (15) 17 (13) 19 (14) 18 (14)
HIMMELBB 3 (3) 3 (3) 3 (3) 3 (3)
HIMMELBF 34 (33) 36 (35) 35 (34) 32 (31)
HIMMELBG 11 (9) 11 (9) 9 (7) 9 (7)
HIMMELBH 8 (7) 8 (7) 8 (7) 8 (7)
HUMPS 428 (262) 258 (157) 122 (90) 7496 (7441)
HYDC20LS 347 (286) 369 (341) 347 (286) 369 (341)
JENSMP ∗∗ − 45 (39) 36 (32)
KOWOSB 30 (28) 30 (28) 30 (28) 33 (32)
LOGHAIRY 449 (300) 491 (331) ∗∗ ∗∗
MARATOSB 27 (20) 19 (12) 27 (20) 14 (8)
MEXHAT 14 (12) 14 (12) 14 (12) 14 (12)
MEYER3 83∗ (66∗) 66∗ (57∗) 415 (387) 394 (386)
OSBORNEA − − − −
OSBORNEB 62 (53) 63 (58) 61 (54) 57 (53)
PALMER1C 20 (17) 32 (29) 20 (17) 32 (29)
PALMER1D 20 (19) 21 (19) 19 (18) 22 (20)
PALMER2C 16 (15) 15 (14) 16 (15) 15 (14)
PALMER3C 16 (15) 27 (26) 15 (14) 27 (26)
PALMER4C 12 (11) 19 (18) 12 (11) 18 (17)
PALMER5C 18 (13) 20 (17) 18 (13) 20 (17)
PALMER6C 18 (17) 12 (11) 18 (17) 12 (11)
PALMER7C 15 (14) 11 (10) 14 (13) 11 (10)
PALMER8C 17 (16) 19 (18) 16 (15) 19 (18)
PFIT1LS − − 449 (402) 27 (23)
PFIT2LS 154 (124) − 357 (326) ∗∗
PFIT3LS − − 921 (846) 332 (315)
PFIT4LS − − 470 (432) 522 (498)
ROSENBR 118 (68) 40 (35) 35 (31) 35 (31)
S308 13 (13) 13 (13) 13 (13) 16 (14)
SINEVAL 187 (128) 195 (124) 89 (76) 87 (80)
SISSER 9 (9) 9 (9) 9 (9) 9 (9)
SNAIL 632 (328) 343 (186) 98 (92) 103 (98)
STRATEC 72 (63) 80 (71) 72 (63) 79 (71)
TOINTGOR 75 (61) 76 (73) 75 (61) 76 (74)
TOINTPSP 62 (44) 60 (50) 62 (44) 62 (51)
TOINTQOR 47 (29) 42 (40) 47 (29) 42 (40)
VIBRBEAM 112 (81) 68 (50) 70 (52) 91 (71)
YFITU 89 (75) 107 (82) 76 (67) 80 (72)
ZANGWIL2 2 (2) 2 (2) 2 (2) 2 (2)
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difficult to compensate. This is particularly true when the initial trust-region radius
is too big for the problem at stake. Thanks to their conservative nature, Λ-functions
suppress such long steps and therefore prevent the associated pollution of the Hessian
matrix.

Empirical solutions have been proposed to tackle the problem of inaccurate quasi-
Newton updates produced by long steps. Byrd, Khalfan, and Schnabel [2] suggest
skipping the update when the variation of f at the current iteration is too large, i.e.,
when

f(x(k) + s(k)) − f(x(k)) > 0.5
[
f(x(0)) − f(x(k))

]
.(5.4)

Implementing condition (5.4) with R-functions does not bring any improvement in
the Rosenbrock problem; the decrease of the objective function at the first iteration is
so large that (5.4) is never activated. The empirical rule (5.4) is very sensitive to the
initial value f(x(0)) of the objective function. Also, as used by Byrd, Khalfan, and
Schnabel [2], equation (5.4) transforms the first iterations into a pure backtracking line
search along the steepest descent direction. Indeed, starting with the identity matrix
as the initial guess of the Hessian matrix, the trial points remain along the steepest
descent direction as long as the update of H(k) is skipped. If f(x(1)) is used rather
than f(x(0)) in (5.4), the update of the Hessian matrix is skipped at iterations 2–8,
and convergence is achieved after 345 iterations with the Trust-BFGS-R2 algorithm
(against 506 without (5.4); cf. Table 5.2). While the initial convergence is largely
improved, the positive effect disappears after iteration 8; the accumulated decrease
f(x(1))− f(x(k)) of the objective function is too large for (5.4) to be activated before
convergence.

In essence, the introduction of Λ-functions achieves the same goal as the empirical
rule (5.4) but in a more efficient way. In Rosenbrock’s problem, condition (5.4) is never
met when Λ-functions are used to update the radius of the trust region. As a result,
convergence is achieved in 94 iterations with the Λ2-function. Also, the new update
rules of the trust-region radius do not show the same critical dependency on the initial
guess as for (5.4).

Another widely used approach for avoiding bad quasi-Newton updates consists
of skipping the update of H(k) when the iteration is unsuccessful (see the discussion
in Byrd, Khalfan, and Schnabel [2]). This approach, hereafter referred to as the
conditional update approach, is easily implemented. As shown by the results of its
application to the 70 problems of the test set introduced above (Table 5.7), this
conditional update strategy is both robust and efficient: used in combination with
the usual R-functions, it induces a drastic decrease of the number of iterations in
comparison with the corresponding unconditional update. In this respect, it offers an
alternative to the Λ-functions.

Now, the different update rules of the approximation of the Hessian matrix can be
combined with the different update strategies of the trust-region radius. The detailed
results of the combinations using the conditional quasi-Newton update rule are also
listed in Table 5.7 and can be compared with Tables 5.5 and 5.6. In order to compare
the different combinations, new performance profiles are computed separately for the
SR1 and BFGS update rules. To simplify the analysis, only the staircase R1- and
Λ1-functions are considered in combination with the unconditional and conditional
update strategies. The performance profiles (Figure 5.3) confirm the better perfor-
mances of Λ-functions with respect to R-functions in the unconditional case. With
the usual R1 versions, the conditional approach also behaves better than the uncon-
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Table 5.7

Detailed results for the conditional Hessian update approach, BFGS, and SR1 with quasi-
Newton update, and R1 and Λ1 trust-region radius update: number of iterations for each selected
problem. Symbols “−” and “∗∗” mean, respectively, that a trial point produces “out of range values”
and that the number of iterations exceeds 10, 000.

Name SR1-R1 SR1-Λ1 BFGS-R1 BFGS-Λ1

3PK 57 (35) 57 (35) 166 (143) 147 (123)
AKIVA 18 (10) 18 (11) 18 (10) 18 (11)
ALLINITU 12 (10) 12 (10) 14 (11) 14 (11)
BARD 14 (13) 13 (12) 17 (16) 17 (16)
BEALE 23 (15) 23 (16) 13 (13) 13 (13)
BIGGS6 57 (31) 55 (34) 50 (36) 45 (40)
BOX3 9 (9) 9 (9) 9 (9) 9 (9)
BRKMCC 5 (4) 5 (4) 6 (5) 6 (5)
BROWNBS 159 (96) 114 (72) 69 (49) 69 (48)
BROWNDEN 22 (16) 21 (18) 40 (25) 28 (21)
CLIFF 1 (1) 1 (1) 1 (1) 1 (1)
CUBE 90 (53) 96 (60) 64 (43) 45 (37)
DECONVU 171 (103) 128 (83) 124 (101) 124 (101)
DENSCHNA 9 (9) 9 (9) 9 (9) 9 (9)
DENSCHNB 11 (10) 10 (10) 9 (9) 9 (9)
DENSCHNC 14 (14) 14 (14) 13 (13) 13 (13)
DENSCHND 23 (23) 24 (22) 21 (18) 21 (20)
DENSCHNE 28 (19) 27 (22) − 34 (29)
DENSCHNF 9 (9) 9 (9) 8 (8) 8 (8)
DJTL 189 (104) 180 (98) 188 (100) 188 (100)
ENGVAL2 79 (42) 60 (38) 29 (26) 31 (27)
EXPFIT 15 (13) 15 (13) 13 (11) 13 (11)
GROWTHLS 55 (32) 70 (44) 42 (26) 161 (141)
GULF 94 (53) 242 (129) 45 (33) 46 (41)
HAIRY 79 (57) 141 (127) 102 (70) 115 (101)
HATFLDD 97 (47) 93 (47) 24 (23) 24 (23)
HATFLDE 42 (24) 35 (23) 22 (21) 22 (21)
HEART6LS 9552 (5247) ∗∗ 2518 (1589) ∗∗
HEART8LS 593 (365) 414 (276) 685 (456) 386 (323)
HELIX 27 (24) 34 (27) 34 (22) 24 (21)
HIELOW 43 (15) 23 (14) 21 (16) 21 (16)
HIMMELBB 3 (3) 3 (3) 3 (3) 3 (3)
HIMMELBF 22 (20) 37 (29) 32 (31) 34 (33)
HIMMELBG 14 (7) 13 (7) 12 (7) 11 (7)
HIMMELBH 7 (7) 7 (7) 10 (8) 10 (8)
HUMPS 274 (170) 227 (173) 143 (90) 247 (185)
HYDC20LS 112 (91) 112 (91) 296 (237) 296 (237)
JENSMP 60 (28) 43 (31) 46 (32) 50 (39)
KOWOSB 36 (22) 60 (36) 51 (30) 38 (33)
LOGHAIRY ∗∗ ∗∗ 2027 (1360) ∗∗
MARATOSB 13 (6) 12 (6) 122 (78) 149 (125)
MEXHAT 31 (18) 27 (18) 23 (16) 23 (16)
MEYER3 222 (108) 274 (146) 124 (75) 64 (49)
OSBORNEA 36 (17) 33 (18) 88 (55) 73 (57)
OSBORNEB 142 (86) 100 (68) 73 (58) 68 (58)
PALMER1C 7 (7) 7 (7) 34 (23) 34 (23)
PALMER1D 8 (8) 8 (8) 42 (29) 42 (29)
PALMER2C 7 (7) 7 (7) 34 (22) 34 (22)
PALMER3C 7 (7) 7 (7) 39 (26) 40 (27)
PALMER4C 7 (7) 7 (7) 30 (20) 30 (20)
PALMER5C 7 (7) 7 (7) 26 (19) 26 (19)
PALMER6C 8 (8) 8 (8) 14 (13) 14 (13)
PALMER7C 5 (5) 5 (5) 19 (17) 16 (15)
PALMER8C 6 (6) 7 (7) 21 (19) 22 (20)
PFIT1LS 77 (40) 62 (35) 449 (299) 274 (246)
PFIT2LS 900 (506) 897 (532) 108 (69) 81 (66)
PFIT3LS 1246 (705) 1430 (837) 479 (300) 315 (272)
PFIT4LS 1932 (1095) 2147 (1261) 683 (432) 509 (416)
ROSENBR 70 (46) 96 (64) 52 (33) 38 (32)
S308 11 (11) 11 (11) 13 (13) 13 (13)
SINEVAL 238 (147) 268 (163) 106 (71) 76 (68)
SISSER 9 (9) 9 (9) 9 (9) 9 (9)
SNAIL 222 (148) 256 (190) 152 (96) 106 (95)
STRATEC 149 (85) 172 (103) 84 (70) 84 (69)
TOINTGOR 78 (51) 87 (56) 89 (73) 89 (73)
TOINTPSP 71 (42) 62 (41) 75 (54) 75 (54)
TOINTQOR 27 (25) 27 (25) 56 (37) 56 (37)
VIBRBEAM 134 (59) 109 (58) 125 (78) 114 (79)
YFITU 499 (262) 700 (377) 133 (85) 106 (83)
ZANGWIL2 2 (2) 2 (2) 2 (2) 2 (2)
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Fig. 5.3. Complete performance profiles of different versions of the algorithm for 70 problems
of the CUTEr test set. The numerical experiments use values of Table 5.1, an initial trust-region
radius of Δ(0) = 1, and a stopping criterion ‖∇xf(x(k))‖ / ‖∇xf(x(0))‖ ≤ 10−6. The two bottom
figures are zooms of the two top ones.

ditional update strategy: the former appears much more robust than the latter. The
average speed of the unconditional approach is, however, significantly higher in the
BFGS case. Among the four algorithms, the combination of the Λ1-function for the
radius of the trust region with the unconditional quasi-Newton update can be recom-
mended. Although it is slightly less robust than the two conditional variants, it is
significantly faster than the other three algorithms.

6. Conclusion. Trust-region methods are increasingly used in applied mathe-
matics and engineering to tackle optimization problems. The update strategy of the
radius is likely to have a strong influence on the convergence properties of the algo-
rithm. This paper provides a rather new empirical trust-region radius update strategy
based on the idea that very successful iterations may in fact be too successful and
negatively affect the subsequent iterations. This occurs when the actual reduction of
the objective function is significantly larger than expected reduction from the anal-
ysis of the local model function. In this case, unlike the usual approach, we suggest
keeping the trust-region radius nearly unchanged.

This strategy is very intuitive and widely applicable. The general convergence
properties of trust-region algorithms are preserved by the proposed self-adaptive ra-
dius update. Close to convergence, most of the iterations are indeed very successful,
and the trust-region constraint becomes irrelevant in the local subproblem. The con-
vergence rate is therefore unaffected by the radius update rule.

Numerical experiments with a quasi-Newton trust-region algorithm using several
update rules show that the new update strategy improves the convergence speed by
preventing the pollution of the Hessian matrix by inaccurate quasi-Newton updates.
While only slightly affecting robustness, the combination of this new strategy with
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an unconditional quasi-Newton update of the approximation of the Hessian matrix
results in the most efficient algorithm.
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Abstract. We present a new asynchronous parallel pattern search (APPS) method which is
different from that developed previously by Hough, Kolda, and Torczon. APPS efficiently uses
parallel and distributed computing platforms to solve science and engineering design optimization
problems where derivatives are unavailable and cannot be approximated. The original APPS was
designed to be fault-tolerant as well as asynchronous and was based on a peer-to-peer design. Each
process was in charge of a single, fixed search direction. Our new version is based instead on a
manager-worker paradigm. Though less fault-tolerant, the resulting algorithm is more flexible in
its use of distributed computing resources. We further describe how to incorporate a zero-order
sufficient decrease condition and handle bound constraints. Convergence theory for all situations
(unconstrained and bound constrained as well as simple and sufficient decrease) is developed. We
close with a discussion of how the new APPS will better facilitate the future incorporation of linear
and nonlinear constraints.
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1. Introduction. Asynchronous parallel pattern search (APPS) is a variation
on parallel pattern search that uses parallel resources more efficiently by eliminating
synchronization [12]. Pattern search methods [18, 20, 21, 26] and, more generally,
generating set search (GSS) methods [14, 15] are geared toward solving science and
engineering optimization problems that lack explicit derivative information. These
problems are typically characterized by objective functions based on complex and ex-
pensive computer simulations. GSS methods are provably convergent to a stationary
point if the underlying objective function is suitably smooth; further, GSS methods
often work well in practice (with some theoretical justification; see, e.g., [1]) even on
nonsmooth problems; see, e.g., [8] and references therein.

The original APPS algorithm is described in [12], and analysis follows in [16, 17].
The motivation for an asynchronous version of parallel pattern search has not changed
from that described in [12]:

A single synchronization step at the end of every iteration. . . is nei-
ther appropriate nor effective when any of the following factors holds:
function evaluations finish in varying amounts of time (even on equiv-
alent processors), the processors employed in the computation possess
different performance characteristics, or the processors have varying
loads.
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However, another driving motivation for the original APPS was the need for a method
that was tolerant to various types of failures that might cause synchronous parallel
pattern search to completely fail or be extremely slow to converge. To facilitate fault-
tolerance, the original APPS algorithm was based on a peer-to-peer model and used
PVM [7] as the communication architecture. The new APPS is based instead on
a manager-worker paradigm, sacrificing some fault-tolerance in exchange for greater
simplicity and flexibility. Further, the new version is based on MPI [25], which many
users seem to prefer to PVM. (Is should be noted that some fault-tolerant versions of
MPI do exist [4] but such functionality is still rare.)

The sacrifices in terms of fault-tolerance are minimal since checkpointing to disk
in the manager-worker version can be used in lieu of a peer-to-peer design. The
checkpoint data is small, consisting of only the current best point and correspond-
ing function value. The primary difference between peer-to-peer and checkpointing
manager-worker implementations is that the checkpoint version requires some mech-
anism for restarting (either manual or automated) after a failure, whereas the peer-
to-peer continues without any intervention.

In the original APPS, there were multiple agents (i.e., the peers), each of which
owned part of the logic of the search. These agents had to correspond with one another
regarding algorithmic events (a better point, single direction convergence, and overall
convergence), not to mention different types of faults; see [12] for more details. With
a single manager process controlling all the logic of the search, these complexities are
eliminated. Since the number of worker processes is typically very small (1 to 100
workers) and each communicates infrequently and asynchronously with the manager,
it is unlikely that there will be any sort of communication bottleneck at the manager
process.

In our description of the new APPS, we present additional modifications for a
zero-order (i.e., does not use gradient information) sufficient decrease condition and
for bound constraints. The adaptation of a zero-order sufficient decrease condition
to pattern search has been discussed in several contexts [14, 23], including a different
take on peer-to-peer asynchronous parallel pattern search [6]. In particular, the gen-
eralization of pattern search to GSS in [14] was motivated by the desire to incorporate
generic globalization strategies, including sufficient decrease, into the framework. The
use of a sufficient decrease condition yields greater flexibility in the selection of search
directions at each iteration. Handling bound constraints for pattern search has also
been the subject of several papers [19, 22, 14]. Some problematic numerical results in
the original APPS paper [12, Table 5.6] are the result of not appropriately handling
the bound constraints.

The organization of this paper is as follows. In section 2, we review the parallel
pattern search algorithm and variants that can be used for sufficient decrease and/or
bound constraints; known convergence results are summarized in section 2.4. The
new APPS algorithm is presented in section 3, along with its own corresponding
variants. An illustrative example of the new APPS algorithm is presented in section 4.
Convergence theory follows in section 5. Numerical results comparing the synchronous
and asynchronous versions are presented in section 6. We conclude with commentary
on the algorithm and associated theory, pointers to its implementation and more
numerical results, and ideas for future work in section 7. Table 1.1 summarizes the
differences between the new and original versions of APPS. For those familiar with
the original APPS, a discussion of the evolution from that one to this one is discussed
in Appendix A.

For the purposes of this text, we consider both the unconstrained and bound-
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Table 1.1

Comparison of new and original APPS.

New APPS Original APPS

Parallel model Manager-worker Peer-to-peer

Load Balancing Each evaluation is assigned
dynamically to a worker
process.

Each evaluation is assigned to
the agent process that owns
the corresponding direction.

Communication
architecture

MPI (or PVM) PVM, or any fault-tolerant
architecture

Fault-tolerance achieved
by. . .

Checkpointing to disk Automatic run-time recovery

Provably convergent in
unconstrained case

Yes Yes [17]

. . . in bound constrained
case

Yes Possible, but has not been
published

. . . using zero-order
sufficient decrease
condition

Yes Possible, but has not been
published

Can be modified to run
in synchronous mode?

Yes, very easily Not easily

Can the directions
change?

Yes, at successful iterations.
Also possible at unsuccessful
iterations, but more difficult
to implement.

Possible at successful
iterations, but very difficult
to implement.

constrained nonlinear optimizations problems. The unconstrained problem is given
by

min
x∈Rn

f(x).(1.1)

Here f : Rn → R and x ∈ Rn. The bound constrained problem is given by

min f(x)
subject to � ≤ x ≤ u.

(1.2)

The function f is the same as for the unconstrained problem. The upper and/or lower
bounds are optional on an element-by-element basis; specifically, � is an n-vector with
entries in R∪{−∞} and u is an n-vector with entries in R∪{+∞}. The set Ω denotes
the feasible region; i.e.,

Ω = {x ∈ Rn : � ≤ x ≤ u}.

The unconstrained problem can be thought of as a special case of the bound con-
strained problem; in other words, Ω = Rn in the unconstrained problem.

2. Review of parallel pattern search. We briefly review parallel pattern
search (PPS) with simple decrease and its extensions for sufficient decrease and bound
constraints. We refer throughout to pattern search, although it might be more ac-
curate to refer to GSS; recall that the generalization of pattern search to GSS was
motivated by the desire to bring in different globalization strategies, including suf-
ficient decrease [14]. We conclude by presenting unified convergence results. This
review lays the groundwork for the description of the asynchronous methods.
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Initialization.

Let Δtol > 0 be the step length convergence tolerance.

Set x0 ∈ Ω to be some feasible initial guess.

Set D0 =
{
d
(1)
0 , . . . , d

(p0)
0

}
to be the initial set of search directions.

Set Δ0 > Δtol to be the initial value of the step length.

Iteration. For k = 0, 1, . . .

Step 1. Generate a set of trial points corresponding to the search
directions; i.e.,

Xk =
{
xk + Δ̃

(i)
k d

(i)
k : 1 ≤ i ≤ pk and Δ̃

(i)
k ≥ Δtol

}
.

Send all points in Xk to the evaluation queue.

Step 2. Wait until all trial points in the evaluation queue have been
evaluated. Collect those points in the set Yk.

Step 3. If there exists a trial point in yk ∈ Yk such that
f(yk) < f(xk) − ρ(Δk), then goto Step 4; else goto Step 5.

Step 4. The iteration is successful:

– Set xk+1 = yk.

– Choose a new Dk+1 =
{
d
(1)
k+1, . . . , d

(pk+1)
k+1

}
.

– Set Δk+1 = Δk.

– Go to Step 1.

Step 5. The iteration is unsuccessful:

– Set xk+1 = xk.

– Set Dk+1 = Dk (and pk+1 = pk).

– Set Δk+1 = 1
2Δk

– If Δk+1 < Δtol, terminate; else, goto Step 1.

Fig. 2.1. PPS algorithm (with synchronization).

The generic algorithm is presented in Figure 2.1, and the notation used is as
follows. Subscripts denote the iteration index. The vector xk ∈ Rn denotes the best
point (i.e., the point with the smallest known function value) at the beginning of
iteration k. The set

Dk =
{
d
(1)
k , . . . , d

(pk)
k

}
denotes the set of search directions at iteration k, and the number of search directions
in Dk is denoted by pk. Superscripts denote the direction index, which ranges between
1 and pk at iteration k. The value Δk denotes the step length at iteration k, and the

values Δ̃
(i)
k ∈ [0,Δk], for i = 1, . . . , pk, denote the corresponding pseudo step lengths.

The function ρ(·) denotes the forcing function.
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In Step 1 of Figure 2.1, a set of trial points is generated, denoted by Xk. The
method for choosing the pseudo step lengths is discussed in detail in the subsections

that follow. In general, Δ̃
(i)
k = Δk unless bound constraints are involved.

In Step 2 of Figure 2.1, the trial points are evaluated, and the results are collected
in Yk. For PPS, Yk = Xk for all k; however, this will not be the case for the
asynchronous version in section 3. Step 2 is where parallelism may be employed, in
which case the pk function evaluations are executed in parallel. The algorithm does
not go on to the next step until all evaluations have completed, so this is the point of
synchronization. Furthermore, this is typically the most computationally expensive
step because pk function evaluations must be computed.

In Step 3 of Figure 2.1, the decrease condition is evaluated. The choice of the func-
tion ρ(·) is discussed in detail in section 2.1 and section 2.2. If the decrease condition
is satisfied, then the iteration is termed successful ; otherwise, it is unsuccessful.

As an aside, we make the following remark. If multiple points in Yk produce
decrease, any one can be chosen as yk without impacting the convergence theory in
section 2.4. However, from a practical perspective, a point that yields the smallest
function value should be selected.

The algorithm executes Step 4 of Figure 2.1 if the iteration is successful. The next
iterate xk+1 is updated to be the trial point that produced decrease in the function, yk.
A new set of search directions may also be selected at this point. The search directions
must be chosen in a particular way to guarantee that the algorithm will converge. The
criteria are detailed in the subsections that follow. For simplicity, a choice that always
works is the set of plus and minus unit vectors, i.e., Dk = {±e1,±e2, . . . ,±en} and
pk = 2n for k = 1, 2, . . ..

The algorithm executes Step 5 of Figure 2.1 if the iteration is unsuccessful. In this
case, the step length Δk is reduced by a factor of two. In practice, termination occurs
when the step length is less then Δtol > 0. However, for the purposes of studying the
asymptotic behavior of the algorithm, Δtol = 0.

2.1. PPS with simple decrease. Let us consider PPS with simple decrease
for the unconstrained optimization problem (1.1). The term simple decrease means
that only f(yk) < f(xk) is required in Step 3. In other words, the function ρ(·) is
assumed to be identically zero.

Below, we describe the four conditions that specialize the algorithm in Figure 2.1
to be PPS with simple decrease (in the unconstrained case).

The first two conditions have to do with the selection of the search directions,
Dk. It is useful to decompose the set of search directions as Dk = Gk ∪ Hk. The
subset Gk is the core set of search directions (the poll set), while the subset Hk is a
possibly empty set of additional search directions (the search set) [3, 14]. The two
subsets play different roles in the analysis and are constructed according to different
rules. The subset Gk is key to the convergence analysis and must satisfy very specific
properties as outlined below. On the other hand, the subset Hk is subject to only
those requirements that ensures it does not interfere with convergence. This means
the subset Hk can be populated with directions that might accelerate the search by,
for example, allowing very long steps.

Condition 1 requires that the cosine measure of the subset Gk be uniformly
bounded; see [14] for a discussion of cosine measure.
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Condition 1. Every Gk positively spans Rn. Furthermore, there exists a
constant cmin > 0, both independent of k, such that κ(Gk) ≥ cmin for all k,
where

κ(Gk) ≡ min
v∈Rn

max
d∈Gk

vT d

‖ v ‖ ‖ d ‖ .

Condition 2 requires that the search directions in Gk be uniformly bounded in
length.

Condition 2. There exist βmin > 0 and βmax > 0, independent of k, such
that for all k the following holds:

βmin ≤ ‖ d ‖ ≤ βmax for all d ∈ Gk.

Parts (a)–(c) of Condition 3 set more specific conditions for selecting the search
directions; these conditions are important in the simple decrease case. Essentially, all
search directions must be derived from a fixed, finite set G. Part (c) explains how the
optional set Hk must be formed. Condition 3 also requires that the forcing function is
identically zero in part (d) and that the pseudo step lengths are chosen appropriately
in part (e).

Condition 3 (rational lattice).
(a) There exists a finite set G = {d(1), . . . , d(p)} such that every vector

d(i) ∈ G is of the form d(i) = Bc(i), where B ∈ Rn×n is a nonsingular
matrix and c(i) ∈ Qn.

(b) All search directions in Gk are chosen from G; i.e., Gk ⊆ G for all k.
(c) All search directions in Hk are nonnegative integer combinations of the

elements of G;. i.e., Hk ⊂
{∑p

i=0 ξ
(i)d(i) | ξ(i) ∈ {0, 1, 2, . . .}

}
for all k.

(d) The forcing function is identically zero, i.e., ρ(t) ≡ 0.

(e) All pseudo step lengths satisfy Δ̃
(i)
k ∈ {0,Δk}.

Conditions 1–3 are not difficult to satisfy; consider, for example,

Dk = {±e1,±e2, . . . ,±en} for all k.

Since we are only considering the unconstrained problem in this subsection, we
further assume that the pseudo step lengths are always equal to the step length, i.e.,

Δ̃
(i)
k = Δk for i = 1, . . . , pk, k = 1, 2, . . . .

This is Condition 6, formalized in the discussion of bound constraints.

2.2. PPS with sufficient decrease. Let us consider PPS with sufficient de-
crease for the unconstrained optimization problem (1.1). In this case, ρ(·) is a nonzero
function, in contrast to the simple decrease case.

There are four conditions that specialize the algorithm in Figure 2.1 to be PPS
with sufficient decrease (in the unconstrained case). As before, Conditions 1, 2, and
6 are imposed. Condition 3 is replaced instead by the following.
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Condition 4 (forcing function).
(a) The function ρ(Δ) is a nonnegative continuous function on Δ ∈ [0,+∞).
(b) The function ρ(Δ)/Δ monotonically decreases to zero as Δ ↓ 0.

A common choice that satisfies Condition 4 is

ρ(Δ) = αΔ2,

where α is some fixed, positive constant. For a complete discussion of forcing functions
for GSS, see [14] and references therein.

2.3. PPS with bound constraints. Let us consider PPS for the bound con-
strained optimization problem (1.2). Adapting PPS for bound constraints affects the
choice of search directions and the choice of the pseudo step lengths. The adaptation
is largely independent of the choice of simple or sufficient decrease, except for the
particulars of choosing the pseudo step lengths.

Three conditions specialize the algorithm in Figure 2.1 to be PPS with bound
constraints.

In the bound constrained case, the search directions must conform to the ge-
ometry of the nearby boundary, so Condition 5 requires that Gk be the coordinate
search directions [19]. Condition 5 replaces Condition 1 and Condition 2 since these
conditions are trivially satisfied by this choice of Gk. Condition 5 is more restrictive
than absolutely necessary and more general selection criteria may be employed; e.g.,
see the requirements on choosing search directions for general linear constraints in
[14, 15].

Condition 5. For all k, we have Gk = {±e1, . . . ,±en}.

The second condition is either Condition 3 or Condition 4, depending on the
choice of simple or sufficient decrease.

The final condition is the one we have already referred to, having to do with the
choice for pseudo step lengths. Special choices for these values are required in the

case of bound constraints. There are several ways that Δ̃
(i)
k can be chosen so long as

Condition 6, which states that the full step is used if possible, is satisfied.

Condition 6. If xk + Δkd
(i)
k ∈ Ω, then Δ̃

(i)
k = Δk.

Three possible strategies for choosing admissible values for Δ̃
(i)
k are described in [15]

for the case of general linear constraints; we present two here. The simplest choice is
the following:

Δ̃
(i)
k =

{
Δk if xk + Δkd

(i)
k ∈ Ω,

0 otherwise.
(2.1)

A more sophisticated choice may be employed in the sufficient decrease case:

taking the longest possible feasible step. Define Δ̃
(i)
k as the solution to

max Δ̃

subject to 0 ≤ Δ̃ ≤ Δk,

xk + Δ̃ d
(i)
k ∈ Ω.

(2.2)
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Note that only elementary algebra is required to solve (3.2)

2.4. PPS convergence theory. Before discussing convergence theory, we present
some useful definitions and assumptions.

In any practical situation, Δtol > 0. However, for the purposes of studying the
asymptotic behavior of the algorithm, Δtol = 0.

The following assumptions on the function are employed later theorems.

Assumption 1. The set Lf (x0) = {x ∈ Ω : f(x) ≤ f(x0)} is bounded.

Assumption 2. The function f is bounded below on Ω.

Assumption 3. The function f is continuously differentiable on Lf (x0).

Assumption 4. The gradient ∇f is Lipschitz continuous with constant M on
Lf (x0).

Assumption 4 is stronger than necessary and can be replaced by assuming only
continuous differentiability. (See the note at the end of section 3.6 in [14].) In that
case, we let M = ω(x, r), where ω denotes the modulus of continuity, i.e.,

ω(x, r) = max{‖∇f(y) −∇f(x)‖ | ‖y − x‖ ≤ r}.

In constrained optimization, we can measure progress to a KKT point using the
following analogue of ‖∇f(x) ‖. For x ∈ Ω, define

χ(x) = max
x+w∈Ω
‖w ‖≤1

−∇f(x)Tw.

The function χ is particularly suitable for the analysis of pattern search (and GSS)
methods [14, 15]. It has the following three properties [2]: χ(x) is continuous, χ(x) ≥
0, and χ(x) = 0 if and only if x is a KKT point. Note that χ(x) ≡ ‖∇f(x) ‖ if
Ω = Rn.

Now that the assumptions and notation have been established, we can present
the convergence results for PPS.

Theorem 2.1 (see [14] and references therein). Consider the optimization prob-
lem (1.1), satisfying Assumptions 1–4. Let the PPS algorithm in Figure 2.1 satisfy
Conditions 1, 2, either 3 or 4, and 6. Then

lim inf
k→+∞

‖∇f(xk) ‖ = 0.

Theorem 2.2 (see [14, 15] and references therein). Consider the optimization
problem (1.2), satisfying Assumptions 1–4. Let the PPS algorithm in Figure 2.1 satisfy
Conditions either 3 or 4, 5, and 6. Then

lim inf
k→+∞

χ(xk) = 0.

The next sections describe an asynchronous version of parallel pattern search and
its convergence theory.
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3. APPS. The premise of APPS is that greater efficiency in parallel processor
utilization will enable faster solution in comparison with synchronous pattern search.
The original peer-to-peer version has indeed demonstrated faster execution times [12].
The new version is based on a manager-worker design, and that it also demonstrates
faster execution times in section 6. A comparison between the manager-worker and
peer-to-peer approaches is presented in Table 1.1 and Appendix A.

As mentioned in section 2, the synchronization point in pattern search occurs
in Step 2 of Figure 2.1, where the algorithm is required to wait until the evaluation
of every trial point is complete before continuing. The difference between the syn-
chronous and asynchronous versions is that the asynchronous version need not wait
until all function evaluations complete before moving on to the decision step (Step 3).
Instead, the points with incomplete function evaluations are stored in a queue, and
the algorithm moves ahead based on the best information available to it.

The flexibility of APPS necessitates a small amount of additional bookkeeping,
as observed in [12]. Each trial point must “remember” how it was generated. More
specifically, let y be a trial point generated at Step 1 in iteration k using direction i;
then the following information is also stored:

• Parent(y) = its parent, xk,
• ParentFx(y) = its parent’s function value, f(xk),
• Dir(y) = its direction index, i, and

• Step(y) = its step length, Δ
(i)
k (defined below).

It is not necessary that the actual parent be stored; instead, a unique identifier is
sufficient. In terms of implementation, the additional storage is for this bookkeeping
negligible.

The manager-worker APPS algorithm, presented in in Figure 3.1, has the same
structure as PPS in Figure 2.1. We discuss the major differences.

The notation is the same as for PPS, with the following exceptions and additions.
There is no longer a single step length Δk at step k; instead, there is a step length

associated with each direction, denoted by Δ
(i)
k . As before, we assume that Δ̃

(i)
k = Δ

(i)
k

in the unconstrained case. We introduce a minimum step length, Δmin, defined by
the integer Γmin. There is an evaluation queue which may not be completely emptied
in each iteration. Correspondingly, we introduce the set Ak containing the indices of
the search directions that, at the start of iteration k, are “active”; in other words,
those directions that have an associated trial point in the evaluation queue. Further,
we define qmax to be the maximum number of points the queue holds.

In Step 1 of Figure 3.1, the trial points are generated. The selection criteria for
generating new trial points have changed slightly and now take into account whether
a given search direction is active. The set Ak+1 is set during this step, and it may be
reset or modified in Step 4 or Step 5.

In Step 2 of Figure 3.1, a set of evaluated trial points, denoted Yk, is collected. In
contrast to Step 2 of Figure 2.1, this step does not wait until all trial points have been
evaluated before moving on. Thus, it may be the case that Yk �= Xk and further that
Yk �⊆ Xk. Note that if it is always the case that Yk = Xk, then the APPS algorithm
in Figure 3.1 is equivalent to the PPS algorithm in Figure 2.1 with the exception of
how Δk+1 is reset in Step 4, which is inconsequential in practice as discussed below.

Step 3 of Figure 3.1 now selects a subset of the trial points to consider for a simple
decrease comparison with respect to the current best point. The subset includes those
points that satisfy a sufficient decrease condition with respect to their corresponding
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Initialization.

Set x0 ∈ Ω be some feasible initial guess.

Set D0 =
{
d
(1)
0 , . . . , d

(p0)
0

}
to be the initial set of search directions.

Let Δtol > 0 be the step length convergence tolerance.

Set Δ
(i)
0 = Δ0 > Δtol for i = 1, . . . , p0 to be the initial step lengths.

Let Γmin ∈ Z with Γmin ≥ 0. Set Δmin = 2−ΓminΔ0.
Set A0 = ∅. Let qmax be the evaluation queue size.

Iteration. For k = 0, 1, . . .

Step 1. Generate a (possibly empty) set of trial points

Xk =
{
xk + Δ̃

(i)
k d

(i)
k : 1 ≤ i ≤ pk, i �∈ Ak, and Δ̃

(i)
k > Δtol

}
.

Then, send the set of points Xk to the evaluation queue.

Set Ak+1 = {i : Δ̃
(i)
k > Δtol}.

Step 2. Collect a nonempty set Yk of evaluated trial points.

Step 3. Let Ȳk ⊆ Yk be the subset of trial points that satisfy the sufficient
decrease condition (see Figure 3.2). If there exists a trial point
yk ∈ Ȳk such that f(yk) < f(xk), then goto Step 4; else goto Step 5.

Step 4. The iteration is successful.

– Set xk+1 = yk.

– Choose a new Dk+1 =
{
d
(1)
k+1, . . . , d

(pk+1)
k+1

}
.

– Let Δ̂ = Step(yk), i.e., the step length that produced yk.

– Set Δ
(i)
k+1 = max{Δ̂,Δmin} for i = 1, . . . , pk+1.

– Reset Ak+1 = ∅.
– Prune the evaluation queue to (qmax − pk+1) or fewer entries.

– Go to Step 1.

Step 5. The iteration is unsuccessful.

– Set xk+1 = xk.

– Set Dk+1 = Dk (and pk+1 = pk).

– Let Ik = {Dir(y) : y ∈ Yk and Parent(y) = xk}, i.e., the
directions that generated the points that have xk as their parent.

– Update Ak+1 ← Ak+1 \ Ik where Ak+1 is defined in Step 1.

– Set Δ
(i)
k+1 =

{
1
2Δ

(i)
k , if i ∈ Ik

Δ
(i)
k , if i �∈ Ik

for i = 1, . . . , pk+1.

– If Δ
(i)
k+1 < Δtol for i = 1, . . . , pk+1, terminate. Else, goto Step 1.

Fig. 3.1. Manager-worker APPS algorithm.
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For each y ∈ Yk

– Let f(ŷ) = ParentFx(y), i.e., the function value of the parent of y.

– Let Δ̂ = Step(y), i.e., the step length that produced y.

– Define the set Ȳk =
{
y ∈ Yk : f(y) < f(ŷ) − ρ(Δ̂)

}
.

Fig. 3.2. Sufficient decrease condition for Step 3 in APPS (Figure 3.1).

parent function values. The specific criteria are presented in Figure 3.2 and discussed
in more detail in section 3.1 and section 3.2.

In the case of a successful iteration (Step 4), the primary difference between APPS
(Figure 3.1) and PPS (Figure 2.1) is the step length update. In both cases, the step
length is updated to be the same as the step length that produced yk. In PPS, this
is simply Δk. However, in APPS, the step used to produce yk is stored as Step(yk),
part of the extra bookkeeping described above. All pk+1 step lengths are reset to the
larger of either Step(yk) or the quantity Δmin. If Δmin ≤ Δtol, this has no affect in
practice, but it is important in the convergence theory (where it cannot be less than
Δtol since Δtol = 0). A successful iteration clears the active directions, so Ak+1 is
reset to the empty set. At this point, the evaluation queue needs to be pruned to
prevent it from growing too large; such a measure has analytical (see Condition 9) as
well as practical benefits. Any or all points may be pruned.

In the case of an unsuccessful iteration (Step 5 in Figure 3.1), the step lengths are
reduced individually depending on the trial points in Yk. Specifically, each evaluated
trial point is considered, and if the trial point’s parent is not xk, then it is discarded.
(Recall that keeping track of the parent is part of the bookkeeping described above.)
Otherwise, the corresponding step is reduced by a factor of two. The correct step is
identified by the direction index that was used to generate the trial point (also part
of the bookkeeping). Termination is essentially the same, except that there are now
pk+1 steps, all of which must be less than the specified tolerance before the algorithm
terminates.

3.1. APPS with simple decrease. In the simple decrease version of APPS,
Conditions 1–3 are imposed as in the synchronous version discussed in section 2.1.
Condition 6 is replaced with Condition 7 (see section 3.3); the new condition handles
the multiple, possibly different step lengths.

In the simple decrease case, we can assume, without loss of generality, that Ȳk =
Yk in Step 3. The reasoning is that it cannot be the case that a trial point y satisfies
f(y) < f(xk) but not f(y) < f(ŷ) (where ŷ is the parent of y). Since ŷ is a previous
best point, it must be true that f(xk) ≤ f(ŷ).

3.2. APPS with sufficient decrease. In the sufficient decrease version of
APPS, Conditions 1, 2, 4, and 7 (the replacement for Condition 6) are enforced.

Implementing sufficient decrease in an asynchronous environment adds a layer
of difficulty because the sufficiency condition is with respect to the parent of the
trial point. There is no assurance that xk is the parent of the trial point, as in the
synchronous case. Consequently, in the asynchronous case, determining whether or
not an evaluated trial point is a new best point becomes a two-step process. First,
the point is checked to see if it satisfies a sufficient decrease condition with respect
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to its parent’s function value (see Figure 3.2). Second, it is assessed to see if simple
decrease with respect to the current xk is satisfied.

For example, consider an evaluated trial point y at iteration k. Let f(ŷ) =
ParentFx(y) be the parent function value, and let Δ̂ = Step(y) be the step length
that produced y. To be a candidate for new best point, y must satisfy

f(y) < min{f(ŷ) − ρ(Δ̂), f(xk)}.

3.3. APPS with bound constraints. Bound constraints are handled essen-
tially the same as before. Now, however, Condition 6 must be modified to reflect the
pk independent step lengths. Condition 7 results.

Condition 7. If xk + Δ
(i)
k d

(i)
k ∈ Ω, then Δ̃

(i)
k = Δ

(i)
k .

Similarly, the step calculations in (2.1) and (2.2) need to be modified. The fol-
lowing choice is suitable for either simple or sufficient decrease [15]:

Δ̃
(i)
k =

{
Δ

(i)
k if xk + Δ

(i)
k d

(i)
k ∈ Ω,

0 otherwise.
(3.1)

In the sufficient decrease case, taking the longest possible feasible step is an alternative

[15]. Define Δ̃
(i)
k as the solution to

max Δ̃

subject to 0 ≤ Δ̃ ≤ Δ
(i)
k ,

xk + Δ̃ d
(i)
k ∈ Ω.

(3.2)

4. An illustrated example of APPS. A two-dimensional example is presented
in Figures 4.1 and 4.2. The contour plot of the objective function uses darker shading
to indicate lower function values. Each figure represents the state of the algorithm
at an iteration. The square denotes the best point (i.e., xk) at that iteration, and
the circles denote points in the evaluation queue after Step 1 is completed. The lines
denote the search directions. For simplicity, we use the same set of search directions
throughout: Dk = {e1, e2,−e1,−e2}. The points are labeled with letters, and the
algorithm is initialized with the starting point x0 = a and an initial step length of
Δ0 = 1.

Before we continue, it is important to note the following. At each iteration, the
set of evaluated trial points returned in Step 2 could be any nonempty subset of points
in the evaluation queue—the choice of this subset is not controlled by the APPS algo-
rithm. Thus, the set Yk at each iteration can be interpreted as the result of random
chance. (In truth, we have crafted the selection in this example to demonstrate cer-
tain features of the algorithm.) The algorithm makes no assumption that the points
in the evaluation queue finish being evaluated in any particular order.

A couple of algorithmic choices also influence our example. In Step 2, we assume
that no sufficient decrease criteria is employed (i.e., ρ ≡ 0) so that Ȳk ≡ Yk for all
k. In Step 4, we assume that qmax = 6.

Iteration 0 illustrates an unsuccessful iteration. We assume that only two eval-
uations (b and e) are returned in Step 2. Neither b nor e improves the function
value, so the iteration is unsuccessful. The parent of both b and e is x0 = a and
their corresponding direction indices are 0 and 3, thus I0 = {0, 3} in Step 5. The
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a b

c

d

e

Iteration 0
x0 = a
Δ

(0)
0 = Δ

(1)
0 = Δ

(2)
0 = Δ

(3)
0 = 1

A0 = ∅
X0 = {b, c,d, e} Queue = {b, c,d, e}
Y0 = {b, e} Queue = {c,d}
Unsuccessful (I0 = {0, 3})

a

c

d f

g

Iteration 1
x1 = a
Δ

(0)
1 = Δ

(3)
1 = 1

2 ,Δ
(1)
1 = Δ

(2)
1 = 1

A1 = {1, 2}
X1 = {f, g} Queue = {c,d, f, g}
Y1 = {f, g} Queue = {c,d}
Successful (f) Pruned Queue = {c,d}

c

d f h

i

j

k

Iteration 2
x2 = f
Δ

(0)
2 = Δ

(1)
2 = Δ

(2)
2 = Δ

(3)
2 = 1

2
A2 = ∅
X2 = {h, i, j, k} Queue = {c,d,h, i, j, k}
Y2 = {c, j,h} Queue = {d, i, k}
Successful (c) Pruned Queue = {i, k}

Fig. 4.1. Example APPS iterations: part 1.

step lengths corresponding to those directions are reduced by a factor of 2. Note that
points c and d remain in the evaluation queue.

Iteration 1 illustrates a successful iteration. In Step 1, this iteration generates
only two new trial points (f and g) because Directions 1 and 2 are already active (i.e.,
A1 = {1, 2}). In Step 2, we assume points f and g are returned. Since f reduces the
function value, this iteration is successful. All step lengths for the next iteration are
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i

k

c l

m

n

o

Iteration 3
x3 = c
Δ

(0)
3 = Δ

(1)
3 = Δ

(2)
3 = Δ

(3)
3 = 1

A3 = ∅
X3 = {l,m,n, o} Queue = {i, k, l,m,n, o}
Y3 = {i, l,m, o} Queue = {k,n}
Successful (l) Pruned Queue = {k,n}

k

n l p

q

r

s

Iteration 4
x4 = l
Δ

(0)
4 = Δ

(1)
4 = Δ

(2)
4 = Δ

(3)
4 = 1

A4 = ∅
X4 = {p, q, r, s} Queue = {k,n,p, q, r, s}
Y4 = {k,n} Queue = {p, q, r, s}
Unsuccessful (I4 = ∅)

l p

q

r

s

Iteration 5
x5 = l
Δ

(0)
5 = Δ

(1)
5 = Δ

(2)
5 = Δ

(3)
5 = 1

A5 = {0, 1, 2, 3}
X5 = ∅ Queue = {p, q, r, s}
. . .

Fig. 4.2. Example APPS iterations: part 2.

reset to the length of the step length that produced f (i.e., Δ̂ = 1
2 ). No pruning of

the queue is necessary.

Iteration 2 illustrates “disconnected” points in the evaluation queue and a suc-
cessful iteration that results from one of these disconnected points. Two points remain
in the evaluation queue, and four new trial points are generated and added in Step 1.
Because x2 �= x1, the older points in the queue are no longer connected to the current
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best point and so are referred to as disconnected. In Step 2, we assume the evaluation
for the point c is finally returned (along with j and h) and results in another successful
step. All step lengths for the next iteration are set to the step length that produced
c (i.e., Δ̂ = 1), and this step is from Iteration 0. This time, the evaluation queue is
pruned by removing the oldest point, d.

Iteration 3 illustrates two points with improved function values returning simul-
taneously (i and l). As with synchronous parallel pattern search, we will assume that
we take the best one, although this is not strictly necessary in terms of the theory.

Iteration 4 illustrates an unsuccessful iteration that results in no changes and
thus no new trial points in the next iteration. Here, points k and n finish their
evaluations and the result is an unsuccessful iteration. However, since both points are
disconnected (i.e., neither has l as its parent), no step lengths are reduced in Step 5.

At the beginning of Iteration 5, no new trial points are generated, and four points
remain in the evaluation queue. The process continues from there, marching toward
a local minimizer.

5. APPS convergence theory. We develop convergence theory for APPS, con-
cluding with results analogous to Theorems 2.1 and 2.2. The analysis borrows heavily
from [14, 15, 17]. We begin in section 5.1 by determining bounds on ‖∇f(xk) ‖ and
χ(xk) in terms of the step lengths. Next, in section 5.2, we present some results
showing that a subsequence of the step lengths go to zero. Finally, in section 5.3, we
give the convergence results.

It is implicitly assumed in the discussion of the asymptotic behavior that Δtol = 0
in Figure 3.1.

We make explicit the bound on the number pk of search directions in Dk in
Condition 8. This is an implicit assumption in PPS.

Condition 8. There exists pmax, independent of k, such that for all k,
pk ≤ pmax.

We also need to ensure that a trial point cannot languish in the evaluation queue
indefinitely. This is also an implicit assumption in PPS.

Condition 9. If a trial point is submitted to the evaluation queue at iteration
k, either its evaluation will have completed or it will have been pruned from
the evaluation queue by iteration k + η.

Condition 9 is not saying that every function evaluation requires η iterations;
instead, this is an upper bound on the number of iterations. In fact, the value of η may
be quite large. A sticky point here is that an iteration does not necessarily correspond
to a unit of time, so it is difficult to specify a maximum number of iterations for a
function evaluation. However, if we assume that a unit of time is associated with an
iteration, this assumption can be enforced as follows. Without loss of generality, let
the minimum iteration time correspond to 1 time unit. Now, suppose that there are w
workers available for computing function evaluations and that the maximum number
of time units required to compute a single function evaluation on a single worker is
φ. Next, assume that trial points submitted to the evaluation queue are sent to the
workers in order (although there is no assumption that the function evaluations finish
in order). Finally, assume the maximum queue size is qmax ≥ pmax and is always
pruned to a size no greater than (qmax − pk+1) for any successful iteration. Then, η
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can explicitly be computed as

η = φ
⌈qmax

w

⌉
.

From an implementation point of view, the critical requirement is that the evaluation
queue cannot be allowed to grow too large, and so the pruning in Step 4 is necessary
for enforcing Condition 9.

5.1. Bounding the measure of stationarity. Theorem 5.1, below, applies to
the unconstrained case and bounds the norm of the gradient as a function of the step
length. This result and its proof are nearly identical to Theorem 3.3 in [14]. The
difference is identifying those iterations for which such a bound can be shown. The
necessary condition is that there must have been at least one contraction in every
direction since the last successful iteration.

Theorem 5.1. Consider the optimization problem (1.1), satisfying Assump-
tions 3–Lipschitz. Let the APPS algorithm in Figure 3.1 satisfy Conditions 1, 2,
either 3 or 4, and 7. For every k such that

Δ̂k ≡ max
1≤i≤pk

{
2Δ

(i)
k

}
≤ Δmin,(5.1)

we have

‖∇f(xk) ‖ ≤ 1

cmin

[
MΔ̂kβmax +

ρ(Δ̂k)

Δ̂kβmin

]
.(5.2)

Proof. By hypothesis (5.1), Δ
(i)
k < Δmin for all i = 1, . . . , pk. This implies that

there has been at least one contraction along each direction since that last successful
iteration, so

0 ≤ f(xk + 2Δ
(i)
k d

(i)
k ) − f(xk) + ρ(2Δ

(i)
k ) for i = 1, . . . , pk.(5.3)

The value of 2Δ
(i)
k comes in because the current value of Δ

(i)
k is half of that for which

the contraction was done. Also note that it is assumed Δ̃
(i)
k = Δ

(i)
k by Condition 7.

Since, by hypothesis, Condition 1 is satisfied, there exists an ı̄ ∈ {1, . . . , pk} such
that

cmin ‖∇f(xk) ‖ ‖ d(ı̄)
k ‖ ≤ −∇f(xk)

T d
(ı̄)
k .(5.4)

Employing Assumption 3, the mean value theorem can be applied to (5.3) for
i = ı̄ to conclude that there exists ᾱ ∈ [0, 1] such that

f(xk + 2Δ
(ı̄)
k d

(ı̄)
k ) − f(xk) = 2Δ

(ı̄)
k ∇f(xk + ᾱ2Δ

(ı̄)
k d

(ı̄)
k )T d

(ı̄)
k .(5.5)

Combining (5.3) and (5.5), dividing through by 2Δ
(ı̄)
k , and subtracting ∇f(xk)

T d
(ı̄)
k

from both sides yields

−∇f(xk)
T d

(ı̄)
k ≤

(
∇f(xk + ᾱ 2Δ

(ı̄)
k d

(ı̄)
k ) −∇f(xk)

)T

d
(ı̄)
k +

ρ(2Δ
(ı̄)
k )

2Δ
(ı̄)
k

≤ ‖∇f(xk + ᾱ 2Δ
(ı̄)
k d

(ı̄)
k ) −∇f(xk) ‖ ‖ d(ı̄)

k ‖ +
ρ(2Δ

(ı̄)
k )

2Δ
(ı̄)
k

.
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Using (5.4) to replace the left-hand side and dividing through by ‖ d(ı̄)
k ‖, we now

have

cmin ‖∇f(xk) ‖ ≤ ‖∇f(xk + ᾱ2Δ
(ı̄)
k d

(ı̄)
k ) −∇f(xk) ‖ +

1

‖ d(ı̄)
k ‖

ρ(2Δ
(ı̄)
k )

2Δ
(ı̄)
k

.(5.6)

Since ∇f is Lipschitz (Assumption 4), the norm of any search direction is bounded
(Condition 2), and ᾱ ∈ [0, 1], it follows that

‖∇f(xk + ᾱ2Δ
(ı̄)
k d

(ı̄)
k ) −∇f(xk) ‖ ≤ M

(
ᾱ 2Δ

(ı̄)
k ‖ d(ı̄)

k ‖
)
≤ MΔ̂kβmax.(5.7)

Now, either ρ is identically zero (Condition 3) or ρ(t)/t is monotonically decreasing
as t ↓ 0 (Condition 4). In either case,

1

‖ d(ı̄)
k ‖

ρ(2Δ
(ı̄)
k )

2Δ
(ı̄)
k

≤ 1

βmin

ρ(Δ̂k)

Δ̂k

.(5.8)

Note that the lower bound in Condition 2 is also employed in the above inequality.
Finally, combining (5.6), (5.7), and (5.8) and dividing by cmin yields (5.2). Hence,

the claim.
A similar result can be proved in the constrained case that is nearly identical to

Theorem 4.4 in [15]. The same adaptations are used as in the unconstrained case, so
the proof is left to the reader.

Theorem 5.2. Consider the optimization problem (1.2), satisfying Assumptions
1, 3, and 4. Let the APPS algorithm in Figure 3.1 satisfy Conditions either 3 or 4,
5, and 7. Let ε� > 0 be given. Then there exists a constant c such that, for every k
that satisfies

Δ̂k ≡ max
1≤i≤pk

{
2Δ

(i)
k

}
≤ max

{
Δmin,

ε�
βmax

}
,(5.9)

we have

χ(xk) ≤ c

[
MΔ̂kβmax +

ρ(Δ̂k)

Δ̂kβmin

]
.(5.10)

5.2. Globalization. Before we proceed to the globalization results, it is neces-
sary to introduce some additional notation and assumptions.

We define Γ
(i)
k for all k and i = 1, . . . , pk as

Γ
(i)
k = log2

(
Δ0

Δ
(i)
k

)
.(5.11)

We can conclude that Γ
(i)
k ∈ Z because any Δ

(i)
k is an integral power of 2 times the

initial step size, i.e.,

Δ
(i)
k+1 = 2−Γ

(i)

k Δ0.

The following Lemma 5.3 applies to APPS with a sufficient decrease condition.
Because xk is not necessarily the parent of xk+1, the proof is somewhat different than
its synchronous analogue, Theorem 3.4 in [14].
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Additional notation is required for the proof. For any successful iteration k, a
set of ancestors may be constructed for the point xk+1. Let Πk denote the iteration
indices of the ancestors of xk+1 as well as (k+ 1) itself, and let �k denote the number
of ancestors. (The size of Πk will be �k +1). To illustrate, consider again the example
of section 4. Iterations 1, 2, and 3 are successful and yield the following ancestor sets:

Π1 = {0, 2}, �1 = 1,
Π2 = {0, 3}, �2 = 1,
Π3 = {0, 1, 4} �3 = 2.

It is important to note that 0 is necessarily in every set Πk since x0 is an ancestor to
every point.

Lemma 5.3. Consider the optimization problem (1.1) or (1.2), satisfying As-
sumption 2. Let the APPS algorithm in Figure 3.1 satisfy Conditions 4, 8, and 9.
Then there exists an index j and a set K ⊂ {1, 2, . . .} such that

lim
k∈K

Γ
(j)
k = +∞.

Proof. Suppose the lemma is false. Then there exists Γ� such that Γ
(i)
k < Γ� for

all k and i = 1, . . . , pk. Consequently, the step lengths are bounded below:

Δ
(i)
k ≥ Δ� = 2−Γ�Δ0 for all k and i = 1, . . . , pk.(5.12)

Then, by Condition 4, the forcing term is bounded below as well:

ρ(Δ
(i)
k ) ≥ ρ� = ρ(Δ�) for all k and i = 1, . . . , pk.(5.13)

Suppose k is a successful iteration, and let Πk = {i1, i2, . . . , i�k+1}. Since each
child-parent pair satisfies the sufficient decrease condition, we can apply a telescoping
sum argument and (5.13) to obtain

f(xk+1) − f(x0) =

�k∑
j=1

{
f
(
xij+1

)
− f

(
xij

)}
≥ �k ρ�.(5.14)

Another consequence of the lower bound on the step lengths in (5.12) is that each
parent can only have a finite number of children. Specifically, a parent can have no
more than c = pmax (Γ� + 1) children where the bound pmax comes from Condition 8.
Thus, if iteration k is successful, xk+1 must have at least �k/c� ancestors. Combining
this information with (5.14) yields

f(xk+1) ≥ k
(ρ�
c

)
+ f(x0).

Let S denote the subsequence of successful iterates. By Condition 9, the maximum
number of iterations to evaluate a single trial point is bounded. This coupled with
the method by which step lengths are updated implies that there must be infinitely
many successful steps, i.e., S is infinite. Thus,

lim
k∈S

f(xk+1) ≥ lim
k∈S

k
(ρ�
c

)
+ f(x0) = +∞.

This contradicts Assumption 2. Hence, the claim.
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Before we can establish a result analogous to Lemma 5.3 for the simple decrease
case, we first state a result regarding the structure of the iterates. It is a standard
result, so no proof is provided here; see instead, e.g., [14].

Proposition 5.4 (see [17]). Consider the optimization problem (1.1) or (1.2).
Consider the APPS algorithm in Figure 3.1 satisfying Condition 3. Let Γ > 0 be a
constant. Then, for any k with

Γ ≤ Γ
(i)
j for all j ≤ k, i = 1, . . . , pj ,

the following holds:

xk+1 = x0 + 2−Γ Δ0

p∑
i=1

ζk(i,Γ) d(i),(5.15)

where ζk(i,Γ) ∈ Z for each i = 1, . . . , p and k = 0, 1, 2, . . ..
Given this result, the fact that the ζk(i,Γ) are integral, and the set G is as

described in Condition 3, all iterates lie on on the lattice

M(x0,Δ0,G,Γ) =

{
x0 + 2−ΓΔ0

p∑
i=1

ζ(i)d(i) : i ∈ Z

}
.

We can now present our result.
Lemma 5.5. Consider the optimization problem (1.1) or (1.2), satisfying As-

sumption 1. Let the APPS algorithm in Figure 3.1 satisfy Conditions 3 and 9. Then,
there exists an index j and a set K ⊂ {1, 2, . . .} such that

lim
k∈K

Γ
(j)
k = +∞.

Proof. Suppose not. Then there exists Γ� such that Γ
(i)
k < Γ� for all k and i =

1, . . . , pk. By Proposition 5.4, every iterate must lie on the lattice M(x0,Δ0,G,Λ�).
On the other hand, by Assumption 1, every iterate must lie in the bounded set Lf (x0).
The intersection of M(x0,Δ0,G,Γ�) and Lf (x0) is finite, so every successful iterate
is drawn from a finite set. Next, observe that a successful point can be successful only
once because Step 3 in Figure 3.1 requires strict improvement. Therefore, there can
be only finitely many successful iterates; let k̂ denote the last successful iterate.

After iteration k̂, the set of search directions does not change. Further, by Con-
dition 9, there is a contraction in the step length along each direction at least once
per η iterations. Thus,

lim
k→∞

max
1≤i≤pk

{
Δ

(i)
k

}
= 0.

So, necessarily, min{Γ(i)
k } → +∞. This contradicts our original assumption. Hence,

the claim.
Both Lemma 5.3 and Lemma 5.5 lead to the following general result regarding

the step lengths. Additional notation is required for this proof. Define

Γ̃
(i)
k = Γ

(i)
k − Γmin.

This quantity is equal to the number of contractions required to go from Δmin to Δ
(i)
k .
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Theorem 5.6. Consider the optimization problem (1.1) or (1.2), satisfying As-
sumptions 1 and 2. Let the APPS algorithm in Figure 3.1 satisfy Conditions either 3
or 4, 8, and 9, Then, there exists a set K ⊂ {1, 2, . . .} such that

lim
k∈K

{
max

1≤i≤pk

Δ
(i)
k

}
= 0.

Proof. By either Lemma 5.3 (using Assumption 2 and Conditions 4, 8, and 9) or
Lemma 5.5 (using Assumption 1 and Conditions 3 and 9), we have that there exists
an index j and set K such that

lim
k∈K

Γ
(j)
k = +∞.

Without loss of generality, assume that

Γ
(j)
k > η (Γmin + 1) for all k ∈ K,(5.16)

where η is as defined in Condition 9.

Then if k ∈ K, by (5.16), Γ̃
(i)
k > 0 and there has not been a success for at least

Γ̃
(j)
k iterations. On the other hand, by (5.16), �Γ̃(j)

k /η� > 0 and there has been at

least �Γ̃(j)
k /η� contractions in all other directions. Thus,

Γ̃
(i)
k ≥ �Γ̃(j)

k /η� for k ∈ K, 1,≤ i ≤ pk, i �= j.

Thus,

lim
k∈K

{
min

1≤i≤pk

Γ
(i)
k

}
= +∞.

Hence, the claim.

5.3. Convergence results. Using the machinery built in sections 5.1 and 5.2,
results following Theorems 2.1 and 2.2 are immediate.

Theorem 5.7. Consider the optimization problem (1.1), satisfying Assump-
tions 1–4. Let the APPS algorithm in Figure 3.1 satisfy Conditions 1, 2, either 3
or 4, 7, 8, 9. Then

lim inf
k→+∞

‖∇f(xk) ‖ = 0.

Theorem 5.8. Consider the optimization problem (1.2), satisfying Assump-
tions 1–4. Let the APPS algorithm in Figure 3.1 satisfy Conditions either 3 or 4,
5, 7, 8, 9. Then

lim inf
k→+∞

χ(xk) = 0.

6. Numerical results. As compared to (synchronous) PPS, the advantage of
APPS is more efficient use of computation resources. Using PVM, the original APPS
was shown to be faster than PPS on several different examples [12]. In later exper-
iments on a small collection of test problems, “single-agent” versions of APPS (very
similar to the new APPS proposed here) using MPI and PVM were shown to be
overall faster than the original version of APPS using PVM [11].



REVISITING ASYNCHRONOUS PARALLEL PATTERN SEARCH 583

Table 6.1

Comparison of PPS and APPS: average results over parallel multiple runs.

Problem Method Final F Time (s) % Idle V1 V2 Evals Cache

UNC5
APPS 1.24×105 63.9 1.11 10 74 274 36

PPS 1.24×105 101.2 29.22 9 78 273 39

UNC6
APPS 1.24×105 73.1 0.85 86 66 306 36

PPS 1.24×105 106.1 17.64 135 69 345 39

CON5
APPS 1.39×105 72.5 1.05 11 1 342 39

PPS 1.39×105 106.8 28.24 7 3 325 37

CON6
APPS 1.39×105 97.1 0.82 129 2 435 43

PPS 1.39×105 106.0 17.61 111 3 355 32

HC
APPS 2.38×104 207.1 1.65 2 80 152 24

PPS 2.38×104 242.3 20.54 2 77 128 20

In this section, we present comparisons of the new version of APPS with PPS, both
using MPI. We use APPSPACK 4.0 [8, 13] for our comparisons because it implements
both PPS and APPS. The APPS implementation is identical to what is shown in
Figure 3.1, and the PPS implementation is the same as APPS except that, in Step 2,
we wait for all evaluations to be completed so that Yk = Xk. We used the default
settings for all parameters except that “Scaling” was set equal to the upper bounds
and “Step Tolerance” was set to 0.02. Full details of the implementation can be found
in [8].

The methods are compared on a set of five proposed benchmark test problems
in well-field design (UNC5, UNC6, CON5, CON6) and hydraulic capture (HC), as
described in detail in [5]. The problems are based on the MODFLOW [24] simulator
from the U.S. Geological Survey. Problems UNC5 and CON5 each have 10 variables,
UNC6 and CON6 each have 18 variables, and HC has 12 variables. The problems
have bound constraints and three nonlinear constraints. The nonlinear constraints
were treated by using an extreme barrier approach that sets f(x) = +∞ whenever
a constraint is violated. The nonlinear constraints are separated into two categories:
Category 1 is constraints that can be checked before the simulator is called and are
inexpensive to check; Category 2 is constraints that cannot be checked until after the
simulator has been called and are therefore expensive to check.

Table 6.1 compares APPS and PPS on the test problems. We ran each problem 10
times on 11 nodes of Sandia’s Catalyst Linux cluster, using MPICH [9, 10]. The Final
F column lists the optimal function value, Time (s) lists the average parallel run time
in seconds, % Idle lists the average per worker idle time, V1 lists the average number
of constraint violations for Category 1 constraints, V2 lists the average number of
constraints violations for Category 2 constraints, Evals lists the number of successful
(i.e., feasible) evaluations, and Cache lists the total number of evaluations (including
infeasible) that were looked up in the cache. Note that the sum of columns V2 and
Evals gives the total number of calls to the simulator. Because APPS is asynchronous,
the results can vary from run to run. In particular, it can converge to different local
minima. This happened twice for problem UNC6 and twice for problem CON5. The
function values were fairly close, but the other numbers (e.g., run times) were better,
so those results were removed from the averages. Otherwise, all the methods converged
to the same final value. We also had to discard one APPS run from the HC results
because it had a bogus time reported.
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Compared to PPS, APPS reduced the run time up to 37%. This can be attributed
to better load balancing, resulting is substantially less idle time per worker process.
The speculative nature of APPS can lead to more work: for problem CON6, APPS
had 22% more calls to the simulator and was only 8% faster. On the other hand, it
sometimes results in less work: for problem UNC6, APPS had 10% fewer calls to the
simulator and ran 31% faster.

7. Conclusions. We presented a new version of APPS based on a manager-
worker paradigm. This algorithm encapsulates either simple or sufficient decrease as
well as the ability to handle bound constraints. A nice feature of this version of APPS
is that it closely mirrors PPS (at least as described here).

In fact, neither PPS nor APPS has been presented in its most general form. For
example, these algorithms handle updating the step lengths in a particular way. At
unsuccessful iterations, the contraction factor in Step 5 is hardwired to 1

2 ; in fact,
this could be any fixed value in the interval (0, 1), with the additional requirement
that the value be rational in the simple decrease case. Similarly, an expansion factor
could be used on successful iterations in Step 4. In both cases, these terms could be
adaptive (i.e., different at each iteration). We also assume that the search directions
are fixed between successful iterations. This is not required for PPS; however, we have
presented it that way because it makes the description of APPS more straightforward.
Finally, it is possible to modify APPS so that the search directions are allowed to
change at even unsuccessful iterations provided that adequate controls are in place
for globalization.

Likewise, some of the assumptions and conditions employed in the convergence
analysis can be relaxed. We need not assume that the gradient is Lipschitz (Assump-
tion 4); instead, continuous differentiability is sufficient. Part (d) in Condition 3 can
be changed to say that either ρ is identically zero or it satisfies Condition 4; in other
words, the argument based on lattice structure is independent of the decrease condi-
tion. Part (e) in Condition 3 can be generalized to say that the pseudo step can be
anything of the form 2−ΓΔ0 for Γ ∈ Z. Part (b) in Condition 4 is more restrictive
than necessary for PPS (which only needs that ρ(t) monotonically decreases), but this
more restrictive assumption is needed by APPS. Condition 5 can be weakened, but
the resulting condition is much more complex (see Condition 1 in [15]).

The convergence theory borrows heavily from the analysis of GSS in [14, 15] as
well as the analysis of the original APPS [17]. The convergence results presented in
section 5 are weak convergence results because it is possible that only a subsequence of
the iterates will converge to a stationary point. Although strong convergence results
are possible in the synchronous case [14], it is unclear whether such assurances can
be made for the asynchronous algorithm because strong convergence requires that the
algorithm always take the best direction at each iteration. Local convergence results
exist for PPS [14] but are left as a topic for future study for APPS.

Just like the original version of APPS, the new version of APPS demonstrates
faster execution times than its synchronous counterpart. More information on the test
problems and a comparison of APPS with other derivative-free optimization methods
can be found in [5]. We used APPSPACK 4.0 [13] for testing, full details of which are
provided in [8].

We close by pointing toward the future. As we have already stated, one objective
of the redesign of APPS is to enable easier incorporation of methods for handling
linear constraints. In that case, the search directions must conform to the nearby
boundary [20, 15], so the ability to change the search directions in Step 4 makes this
relatively simple. This will be pursued in future research.
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Appendix A. Evolution of peer-to-peer to manager-worker. The switch
from the peer-to-peer version [12] to manager-worker was gradual and largely the
result of user requests. As mentioned in the introduction, peer-to-peer APPS is based
on the concept of what are called agents. Each agent handles a single direction (and
up to one corresponding trial point) and launches its own workers to execute the
function evaluation. Thus, there is one agent per search direction and the number
of search directions is necessarily fixed. The working assumption is that there is one
direction per processor and one processor per machine.

The first step in the evolution to the manager-worker design is motivated by
multiprocessor (i.e., SMP) machines. On a cluster of machines that each have, say,
four processors, it is more efficient to have one agent (as opposed to four) for every
four search directions. The peer-to-peer design remained intact, but a single agent
could handle multiple search directions. The directions sharing a common agent also
shared one common best point. In fact, this is equivalent to the original peer-to-peer
model with instantaneous communication between appropriate subsets of the agents.
Once agents were designed and implemented to handle multiple directions, having one
agent handle all directions was trivial.

The difference between this first manager-worker concept and the algorithm de-
scribed here is the handling of the search directions. Having a fixed set of search
directions is fairly crucial to the peer-to-peer design. In particular, it is implemented
so that there is at most one function evaluation per search direction at any given
time. The disconnected points described in section 4 cannot exist. Although it would
certainly be possible to design a peer-to-peer APPS that allows the search directions
to change as the optimization progresses, it is much simpler to do this in a manager-
worker context.
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Abstract. We propose a relaxation scheme for mathematical programs with equilibrium con-
straints (MPECs). In contrast to previous approaches, our relaxation is two-sided: both the com-
plementarity and the nonnegativity constraints are relaxed. The proposed relaxation update rule
guarantees (under certain conditions) that the sequence of relaxed subproblems will maintain a
strictly feasible interior—even in the limit. We show how the relaxation scheme can be used in
combination with a standard interior-point method to achieve superlinear convergence. Numerical
results on the MacMPEC test problem set demonstrate the fast local convergence properties of the
approach.
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1. Introduction. Consider the generic mathematical program with equilibrium
constraints (MPEC), expressed as

(MPEC) minimize
x

f(x)

subject to c(x) = 0,

min(x1, x2) = 0,

x0 ≥ 0,

where x = (x0, x1, x2) ∈ Rp×n×n, f : Rp+2n → R is the objective function, and
c : Rp+2n → Rm is a vector of constraint functions. The complementarity constraint
min(x1, x2) = 0 requires that either [x1]j or [x2]j vanishes for each component j =
1, . . . , n and that the vectors x1 and x2 are nonnegative. See the survey paper by
Ferris and Pang [5] for examples of complementarity models and the monographs by
Luo, Pang, and Ralph [13] and Outrata, Kocvara, and Zowe [17] for details on MPEC
theory and applications.

MPECs can be reformulated as standard nonlinear programs (NLPs) by replacing
the nonsmooth complementarity constraint by a set of equivalent smooth constraints:

min(x1, x2) = 0 ⇐⇒ X1x2 = 0, x1, x2 ≥ 0,
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where X1 = diag(x1). However, these constraints do not admit a strictly feasible
point, which implies that both the linear independence and the weaker Mangasarian–
Fromovitz constraint qualifications are violated at every feasible point. These condi-
tions are key ingredients for standard convergence analyses of NLP methods.

We propose a strategy that forms a sequence of NLP approximations to the
MPEC, each with a feasible set that has a strict interior and that will typically
satisfy a constraint qualification. In contrast to previous approaches, the relaxation
is two-sided: both the complementarity (X1x2 = 0) and the nonnegativity (x1, x2 ≥
0) constraints are relaxed. The proposed relaxation update rules guarantee (under
certain conditions) that the sequence of relaxed subproblems will maintain a strictly
feasible interior—even in the limit. Consequently, a standard interior method may be
applied to the relaxed subproblem, as we show in section 4. The relaxation scheme
could, in principle, be used in combination with other Newton-type methods, such as
sequential quadratic programming or linearly constrained Lagrangian [8] methods.

1.1. Other work on MPECs. The direct application of off-the-shelf nonlinear
optimization codes to MPECs was long neglected following early reports of their
poor performance. See, for example, Luo, Pang, and Ralph [13] and, more recently,
Anitescu [1], who describes the poor performance of the popular MINOS [15] code on
MacMPEC [11] test problems. Interest in the application of standard NLP methods
to MPECs has been revitalized for two reasons, however. First, it is now clear that the
approach makes sense because strong stationarity implies the existence of standard
NLP multipliers for MPECs in their NLP form, albeit an unbounded set (see Fletcher
et al. [6]). Second, Fletcher and Leyffer [7] report promising numerical results for
sequential quadratic programming (SQP) codes. These favorable numerical results
are complemented by the local convergence analysis in [6].

Considerable effort has gone into the specialization of standard nonlinear pro-
gramming methods in answer to the attendant difficulties of reformulating MPECs
as NLPs. The approaches can be roughly divided into two categories: penalization
and relaxation strategies. Such a categorization may be viewed as synthetic, how-
ever, because both approaches share the same philosophy: to relax the troublesome
complementarity constraints. The difference is evident in the methodology.

The first analyses of penalization approaches can be found in Scholtes and Stöhr
[21] and in Anitescu [1]. The strategy is to eliminate the explicit complementarity
constraints X1x2 = 0 by adding an exact penalty function to the objective to account
for complementarity violation. The structural ill-posedness is thereby removed from
the constraints. Anitescu gives conditions under which SQP methods with an elastic
mode, such as SNOPT, will converge locally at a fast rate when applied to MPECs.
Hu and Ralph [9] analyze the global convergence of the penalization method with
exact solves. Anitescu [2] gives global convergence results with inexact solves. The
penalization approach has been applied within the interior-point context by Benson,
Shanno, and Vanderbei [4] and Leyffer, Lopez-Calva, and Nocedal [10]. Both papers
report very good numerical results. Leyffer, Lopez-Calva, and Nocedal also give a
comprehensive global and local convergence analysis of the penalization approach
within an interior-point framework.

The relaxation approach (sometimes called regularization) keeps the complemen-
tarity constraints explicit but relaxes them to X1x2 ≤ δk, where δk is a positive vector
that is driven to zero. This scheme replaces the MPEC by a sequence of relaxed sub-
problems whose strictly feasible region is nonempty. The approach was extensively
analyzed by Scholtes [22]. We call this a one-sided relaxation scheme to contrast it
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against our approach. The one-sided relaxation strategy has been adopted by Liu and
Sun [12] and Raghunathan and Biegler [18]. Liu and Sun propose an interior method
that solves each of the relaxed subproblems to within a prescribed tolerance. On the
other hand, the method of Raghunathan and Biegler takes only one iteration of an
interior method on each of the relaxed subproblems. A difficulty associated with both
methods is that the strictly feasible regions of the relaxed problems become empty
in the limit, and this may lead to numerical difficulties. Raghunathan and Biegler
address this difficulty by using a modified search direction that ensures that their
algorithm converges locally at a quadratic rate.

The relaxation scheme that we propose (described in section 3) does not force
the strictly feasible regions of the relaxed MPECs to become empty in the limit. As
a result, one can apply a standard interior method to the relaxed problems without
having to modify the search direction, as in [18]. But like [18], our algorithm (de-
scribed in section 4) performs only one interior iteration per relaxed problem. We
show in section 4.2 that it converges locally at a superlinear rate, and in section 5
we discuss some implementation issues. We illustrate in section 6 the performance
of the algorithm on a subset of the MacMPEC test problems. The numerical results
seem to reflect our local convergence analysis and give evidence to the algorithm’s
effectiveness in practice.

1.2. Definitions. Unless otherwise specified, the function ‖x‖ represents the
Euclidean norm of a vector x. With vector arguments, the functions min(·, ·) and
max(·, ·) apply componentwise to each element of the arguments. Denote by [ · ]i the
ith component of a vector. The uppercase variables X, S, V , and Z denote diagonal
matrices formed from the elements of the vectors x, s, v, and z, respectively. Let g(x)
denote the gradient of the objective function f(x). Let A(x) denote the Jacobian of
c(x), a matrix whose ith row is the gradient of [c(x)]i. Let Hi(x) denote the Hessian
of [c(x)]i.

We make frequent use of standard definitions for linear independence constraint
qualification (LICQ) and strict complementary slackness (SCS), and the second order
sufficiency condition (SOSC). These definitions can be found in [16, Ch. 12].

2. Optimality conditions for MPECs. The standard KKT theory of non-
linear optimization is not directly applicable to MPECs because standard constraint
qualifications do not hold. There is a simple way around this problem, however, as
observed by Scheel and Scholtes [20]. At every feasible point of the MPEC one can
define the relaxed NLP, which is typically well behaved in nonlinear programming
terms. It is shown in [20] that the KKT conditions of the relaxed NLP are necessary
optimality conditions for (MPEC), provided that the relaxed NLP satisfies LICQ.

2.1. First-order conditions and constraint qualification. Let x̄ be feasible
with respect to (MPEC). The relaxed NLP at x̄ is defined as

(RNLPx̄) minimize
x

f(x)

subject to c(x) = 0, x0 ≥ 0

[x1]j = 0, [x2]j ≥ 0 for all j such that [x̄1]j = 0 < [x̄2]j ,

[x1]j ≥ 0, [x2]j = 0 for all j such that [x̄1]j > 0 = [x̄2]j ,

[x1]j ≥ 0, [x2]j ≥ 0 for all j such that [x̄1]j = 0 = [x̄2]j .

The feasible region defined by the bound constraints of (RNLPx̄) is larger than that
defined by the equilibrium constraints. Hence the term relaxed NLP. Most important,
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the problematic equilibrium constraints of (MPEC) have been substituted by a better-
posed system of equality and inequality constraints.

Define

L(x, y) = f(x) − yTc(x)

as the Lagrangian function of RNLPx̄.
Despite a possibly larger feasible set, it can be shown that if LICQ holds for

(RNLPx∗), its KKT conditions are also necessary optimality conditions for (MPEC)
[20]. This observation leads to the following stationarity concept for MPECs.

Definition 2.1. A point (x∗, y∗, z∗) is strongly stationary for (MPEC) if it
satisfies the KKT conditions for (RNLPx∗):

∇xL(x∗, y∗) = z∗,(2.1a)

c(x∗) = 0,(2.1b)

min(x∗
0, z

∗
0) = 0,(2.1c)

min(x∗
1, x

∗
2) = 0,(2.1d)

[x∗
1]j [z

∗
1 ]j = 0,(2.1e)

[x∗
2]j [z

∗
2 ]j = 0,(2.1f)

[z∗1 ]j , [z
∗
2 ]j ≥ 0, if [x∗

1]j = [x∗
2]j = 0.(2.1g)

With the relaxed NLP we can define a constraint qualification for MPECs anal-
ogous to LICQ and deduce a necessary optimality condition for MPECs.

Definition 2.2. The point x∗ satisfies MPEC linear independence constraint
qualification (MPEC-LICQ) for (MPEC) if it is feasible and if LICQ holds at x∗ for
(RNLPx∗).

Proposition 2.3 (see, for example, Scheel and Scholtes [20]). If x∗ is a local
minimizer for (MPEC) at which MPEC-LICQ holds, then there exist unique multi-
pliers y∗ and z∗ such that (x∗, y∗, z∗) is strongly stationary.

2.2. Strict complementarity and second-order sufficiency. Through the
relaxed NLP we can define strict complementarity and second-order conditions for
MPECs. These play a crucial role in the development and analysis of the relaxation
scheme proposed in this paper.

We define two different strict complementary slackness conditions for MPECs.
The first of the two is stronger and is the one assumed in [22, Theorem 4.1]. It
requires all multipliers z0, z1, and z2 to be strictly complementary with respect to
their associated primal variables. In our analysis, we only assume the second, less
restrictive condition, which only requires strict complementarity of z0.

Definition 2.4. The triple (x∗, y∗, z∗) satisfies the MPEC strict complemen-
tary slackness (MPEC-SCS) condition for (MPEC) if it is strongly stationary, if
max(x∗

0, z
∗
0) > 0, and if [x∗

i ]j + [z∗i ]j 
= 0 for each i = 1, 2 and j = 1, . . . , n.
Definition 2.5. The triple (x∗, y∗, z∗) satisfies MPEC weak strict comple-

mentary slackness (MPEC-WSCS) for (MPEC) if it is strongly stationary and if
max(x∗

0, z
∗
0) > 0.

We define two second-order sufficient conditions for MPECs: MPEC-SOSC and
MPEC-SSOSC. The first condition is equivalent to the RNLP-SOSC defined by Ralph
and Wright [19, Definition 2.7]. The second condition is stronger than the RNLP-
SSOSC defined in [19, Definition 2.8].
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The tangent cone of the feasible set of (RNLPx∗) is given by

T = {αp | α > 0, p ∈ Rn}
∩ {p | A(x∗)p = 0}
∩ {p | [p0]j ≥ 0 for all j such that [x∗

0]j = 0}.

The second-order sufficient condition for optimality depends on positive curvature of
the Lagrangian in a subspace, i.e.,

(2.2) pT∇2
xxL(x∗, y∗)p > 0, p 
= 0,

for all p in some subset of the feasible directions T .
Definition 2.6. The triple (x∗, y∗, z∗) satisfies the MPEC second-order suffi-

ciency condition (MPEC-SOSC) for (MPEC) if it is strongly stationary and if (2.2)
holds for all nonzero p ∈ F , where

F def
= {p ∈ T | [p0]j = 0 for all j such that [x∗

0]j = 0 (and [z∗0 ]j > 0),

[p0]j ≥ 0 for all j such that [x∗
0]j = 0 (and [z∗0 ]j = 0),

[pi]j = 0 for all j such that [x∗
i ]j = 0 (and [z∗i ]j 
= 0), i = 1, 2,

[pi]j ≥ 0 for all j such that [x∗
i ]j = 0 (and [z∗i ]j = 0), i = 1, 2,

[pi]j = 0 for all j such that [x∗
i ]j = 0 < [x∗

� ]j , i, � = 1, 2, i 
= �}.

If the last two conditions in the definition of F are dropped, we obtain a stronger
second-order condition, which is equivalent to the one assumed in [22, Theorem 4.1].

Definition 2.7. The triple (x∗, y∗, z∗) satisfies MPEC strong second-order suffi-
ciency condition (MPEC-SSOSC) for (MPEC) if it is strongly stationary and if (2.2)
holds for all nonzero p ∈ F , where

F def
= {p ∈ T | [p0]j = 0 for all j such that [x∗

0]j = 0 (and [z∗0 ]j > 0),

[p0]j ≥ 0 for all j such that [x∗
0]j = 0 (and [z∗0 ]j = 0),

[pi]j = 0 for all j such that [x∗
i ]j = 0 (and [z∗i ]j 
= 0), i = 1, 2}.

Note that MPEC-SSOSC ensures that the Hessian of the Lagrangian has posi-
tive curvature in the range space of all nonnegativity constraints (x1, x2 ≥ 0) whose
multipliers are zero. Note also that MPEC-SOSC and -SSOSC are equivalent when
MPEC-SCS holds.

In our analysis, we assume MPEC-WSCS and -SSOSC. However, we note that
our results are also valid under MPEC-SCS and -SOSC. To see this, simply note that
MPEC-SCS implies MPEC-WSCS and that MPEC-SOSC and -SSOSC are equivalent
when MPEC-SCS holds. Thus our analysis holds either under MPEC-SCS and -SOSC,
or under a weaker SCS (at the expense of assuming a stronger SOSC).

Raghunathan and Biegler [18] make a strict complementarity assumption that is
more restrictive than MPEC-WSCS but less restrictive than MPEC-SCS. In particu-
lar, they require max(x∗

0, z
∗
0) > 0 and [z∗i ]j 
= 0 for all j such that [x̄1]j = [x̄2]j = 0.

This condition is termed upper-level SCS (MPEC-USCS) in [19]. The strength of the
second-order condition they assume is also between that of MPEC-SOSC and MPEC-
SSOSC. In particular, their second-order condition is obtained from the MPEC-SOSC
by dropping the last condition in the definition of F .
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3. A strictly feasible relaxation scheme. In this section we propose a relax-
ation scheme for which the strictly feasible region of the relaxed problems may remain
nonempty even in the limit.

A standard relaxation of the complementarity constraint proceeds as follows. The
complementarity constraint min(x1, x2) = 0 is first reformulated as the system of
inequalities X1x2 ≤ 0 and x1, x2 ≥ 0. A vector δc ∈ Rn of strictly positive parameters
relaxes the complementarity constraint to arrive at

(3.1) X1x2 ≤ δc, x1, x2 ≥ 0.

The original complementarity constraint is recovered when δc = 0. Note that at
all points feasible for (MPEC) the gradients of the active constraints in (3.1) are
linearly independent when δc > 0. Moreover, the strictly feasible region of the relaxed
constraints (3.1) is nonempty when δc > 0. Unfortunately, the strictly feasible region
of the relaxed MPEC becomes empty as the components of δc tend to zero.

3.1. A two-sided relaxation. In contrast to (3.1), our proposed scheme addi-
tionally relaxes each component of the bounds x1, x2 ≥ 0 by the amounts [δ1]j > 0
and [δ2]j > 0 so that the relaxed complementarity constraints become

(3.2) X1x2 ≤ δc, x1 ≥ −δ1, x2 ≥ −δ2,

where δc, δ1, δ2 ∈ Rn are vectors of strictly positive relaxation parameters. Note
that for any relaxation parameter vectors (δ1, δ2, δc) that satisfy max(δc, δ1) > 0
and max(δc, δ2) > 0, the strictly feasible region of (3.2) is nonempty, and the active
constraint gradients are linearly independent.

The main advantage of the strictly feasible relaxation scheme (3.2) is that there
is no need to drive both relaxation parameters to zero to recover a stationary point of
the MPEC. As we show in Theorem 3.1, for any strongly stationary point of (MPEC)
that satisfies MPEC-LICQ, -WSCS, and -SSOSC, there exist relaxation parameter
vectors (δ∗1 , δ

∗
2 , δ

∗
c ) satisfying max(δ∗c , δ

∗
1) > 0 and max(δ∗c , δ

∗
2) > 0 such that the

relaxed MPEC satisfies LICQ, SCS, and SOSC.

3.2. An example. The intuition for the relaxation scheme proposed in sec-
tion 3.1 is best appreciated with an example. Consider the MPEC [22]

(3.3)
minimize

x

1
2

[
(x1 − a)2 + (x2 − b)2

]
subject to min(x1, x2) = 0

and the associated relaxed MPEC derived by applying the relaxation (3.2) to (3.3):

(3.4)

minimize
x

1
2

[
(x1 − a)2 + (x2 − b)2

]
subject to x1 ≥ −δ1,

x2 ≥ −δ2,

X1x2 ≤ δc.

For any choice of parameters a, b > 0, (3.3) has two local minimizers: (a, 0) and
(0, b). Each is strongly stationary and satisfies MPEC-LICQ, -SCS, and -SOSC and
thus they also satisfy MPEC -LICQ, -WSCS, and -SSOSC. Evidently, these local
minimizers are also minimizers of (3.4) for δc = 0 and for any δ1, δ2 > 0. If the data
are changed so that a > 0 and b < 0, then the point (a, 0) is a unique minimizer
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of (3.3), and also a unique minimizer of (3.4) for any δc > 0 and for δ1 = δ2 = 0.
Moreover, if a, b < 0, then (0, 0) is the unique minimizer of (3.3) and also a unique
minimizer of (3.4) for any δc > 0 and for δ1 = δ2 = 0. Thus there is no need to drive
both δc and δ1, δ2 to zero to recover a stationary point of (MPEC).

A key property of MPECs that we exploit is the fact that the MPEC multipliers
provide information about which relaxation parameters need to be driven to zero. To
illustrate this, let us suppose a, b > 0 and consider the local minimizer (a, 0) of the
MPEC. In this simple example the minimizer of the relaxed problem will lie on the
curve X1x2 = δc for all sufficiently small δc. The MPEC solution will be recovered
if we drive δc to zero. The values of the other parameters δ1, δ2 have no impact as
long as they remain positive; the corresponding constraints will remain inactive. Note
that this situation occurs precisely if the MPEC multiplier of the active constraint,
here x2 ≥ 0, is negative, that is, the gradient of the objective function points outside
of the positive orthant. If this situation is observed algorithmically, we will reduce δc
and keep δ1, δ2 positive. A similar argument can be made if the gradient points in
the interior of the positive orthant, in which case δ1 or δ2 need to be driven to zero
to recover the MPEC minimizer. The parameter δc, however, must remain positive
to maintain the strict interior of the feasible set.

The foregoing cases correspond to nondegenerate solutions; that is, there are no
biactive constraints. Biactivity occurs in the example if a, b < 0. In this case the
minimizer is the origin, and both MPEC multipliers are positive. Hence, we need to
drive δ1, δ2 to zero and keep δc positive to avoid a collapsing strictly feasible region.

To see how one can recover an MPEC minimizer that satisfies MPEC-WSCS
and -SSOSC, consider the example with a = 0 and b = 1. In this case (0, 1) is a
minimizer satisfying MPEC-WSCS and -SSOSC. To recover this minimizer from the
relaxed MPEC (3.4) we do not need to drive any of the three relaxation parameters to
zero. In particular, it is easy to see that (0, 1) is a minimizer to the relaxed problem
satisfying LICQ, SCS, and SOSC for any δ1, δ2, δc > 0.

Our goal in the remainder of this paper is to turn this intuition into an algorithm
and to analyze its convergence behavior for general MPECs.

3.3. The relaxed MPEC. In addition to introducing the relaxation parameter
vectors (δ1, δ2, δc), we introduce slack variables s ≡ (s0, s1, s2, sc) so that only equality
and nonnegativity constraints on s are present. The resulting relaxed MPEC is

(MPEC-δ) minimize
x,s

f(x)

subject to c(x) = 0 : y,

s0 − x0 = 0 : v0,

s1 − x1 = δ1 : v1,

s2 − x2 = δ2 : v2,

sc + X1x2 = δc : vc,

s ≥ 0,

where the dual variables y and v ≡ (v0, v1, v2, vc) are shown next to their correspond-
ing constraints. We note that the slack variable s0 is not strictly necessary—the
nonnegativity of x0 could be enforced directly. However, such a device may be useful
in practice because an initial value of x can be used without modification, and we
need to choose starting values only for s, y, and v. Moreover, this notation greatly
simplifies the following discussion.
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To formulate the stationarity conditions for the relaxed MPEC, we group the
set of equality constraints involving the slack variables s into a single expression by
defining

(3.5) h(x, s) = −

⎡
⎢⎢⎢⎢⎣
s0 − x0

s1 − x1

s2 − x2

sc + X1x2

⎤
⎥⎥⎥⎥⎦ and δ =

⎡
⎢⎢⎢⎢⎣

0

δ1

δ2

δc

⎤
⎥⎥⎥⎥⎦ .

The Jacobian of h with respect to the variables x is given by

(3.6) B(x) ≡ ∇xh(x, s)T =

⎡
⎢⎢⎢⎢⎣
I

I

I

−X2 −X1

⎤
⎥⎥⎥⎥⎦ .

The tuple (x∗, s∗, y∗, v∗) is a KKT point for (MPEC-δ) if it satisfies

∇xL(x, y) −B(x)Tv ≡ rd= 0,(3.7a)

min(s, v) ≡ rc= 0,(3.7b)

c(x) ≡ rf= 0,(3.7c)

h(x, s) + δ ≡ rδ = 0.(3.7d)

Define the vector w = (x, s, y, v) and the vector r(w; δ) = (rd, rc, rf , rδ) as a function
of w and δ. With this notation, w∗ is a KKT point for (MPEC-δ) if ‖r(w∗; δ)‖ = 0.
The Jacobian of (3.7) is given by

K(w) ≡

⎡
⎢⎢⎢⎢⎣
H(x) −A(x)T −B(x)T

V S

A(x)

B(x) −I

⎤
⎥⎥⎥⎥⎦ ,

where

H(x) ≡ ∇2
xxL(x, y) +

⎡
⎣0

Vc

Vc

⎤
⎦ .

3.4. Properties of the relaxed MPEC. Stationary points of (MPEC-δ) are
closely related to those of (MPEC) for certain values of the relaxation parameters.
The following theorem makes this relationship precise.

Theorem 3.1. Let (x∗, y∗, z∗) be a strongly stationary point of (MPEC), and let
the vector δ∗ satisfy

[δ∗i ]j = 0 if [z∗i ]j > 0,(3.8a)

[δ∗i ]j > 0 if [z∗i ]j ≤ 0,(3.8b)

[δ∗c ]j = 0 if [z∗1 ]j < 0 or [z∗2 ]j < 0,(3.8c)

[δ∗c ]j > 0 if [z∗1 ]j ≥ 0 and [z∗2 ]j ≥ 0(3.8d)
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for i = 1, 2 and j = 1, . . . , n. Then

(3.9) max(δ∗c , δ
∗
1) > 0 and max(δ∗c , δ

∗
2) > 0,

and the point (x∗, s∗, y∗, v∗), with

(s∗0, s
∗
1, s

∗
2) = (x∗

0, x
∗
1 + δ∗1 , x

∗
2 + δ∗2),(3.10a)

(v∗0 , v
∗
1 , v

∗
2) = (z∗0 , [z

∗
1 ]+, [z∗2 ]+),(3.10b)

s∗c = δ∗c ,(3.10c)

and

[v∗c ]j =

⎧⎪⎨
⎪⎩

[−z∗1 ]+j /[x
∗
2]j if [x∗

2]j > 0 (and [x∗
1]j = 0),

[−z∗2 ]+j /[x
∗
1]j if [x∗

1]j > 0 (and [x∗
2]j = 0),

0 if [x∗
1]j = [x∗

2]j = 0

(3.10d)

for j = 1, . . . , n, is a stationary point for (MPEC-δ∗). Moreover, if (x∗, y∗, z∗) satis-
fies MPEC- LICQ, -WSCS, or -SSOSC for (MPEC), then (x∗, s∗, y∗, v∗) satisfies the
LICQ, SCS, or SOSC, respectively, for (MPEC-δ∗).

Proof. The proof is divided into three parts. The first part demonstrates that
(x∗, s∗, y∗, v∗) is a stationary point for (MPEC-δ∗) and that SCS is satisfied. The
second and third parts prove that LICQ and SOSC hold for (MPEC-δ∗), respectively,
if MPEC-LICQ and MPEC-SOSC hold.

Part 1. Stationarity and SCS. We first need to show that (3.9) holds. For j =
1, . . . , n consider the following cases. If [z∗1 ]j , [z

∗
2 ]j ≤ 0, then by (3.8b) we have that

[δ∗1 ]j , [δ
∗
2 ]j > 0, and thus (3.9) holds. Note that the case [z∗1 ]j > 0 and [z∗2 ]j < 0 (or

[z∗1 ]j < 0 and [z∗2 ]j > 0) cannot take place because otherwise (2.1e)–(2.1f) imply that
[x∗

1]j , [x
∗
2]j = 0, and then (2.1g) requires [z∗1 ]j , [z

∗
2 ]j ≥ 0, which is a contradiction.

Finally, if [z∗1 ]j , [z
∗
2 ]j ≥ 0, then by (3.8d) we have that [δ∗c ]j > 0. Thus (3.9) holds, as

required.
Next we verify stationarity of (x∗, s∗, y∗, v∗) for (MPEC-δ∗). The point (x∗, y∗, z∗)

is strongly stationary for (MPEC), and so by Definition 2.1, it satisfies conditions (2.1).
Then from (3.5), (3.6), and (3.10), (x∗, y∗, s∗, v∗) satisfies (3.7a) and (3.7c)–(3.7d).

We now show that s∗ and v∗ satisfy (3.7b). First, note from (3.10) that s∗, v∗ ≥ 0
because x∗ ≥ 0 and δ∗c , δ

∗
1 , δ

∗
2 ≥ 0.

To see that s∗ and v∗ are componentwise strictly complementary if WSCS holds
for the (MPEC), recall that WSCS requires that x∗

0 and z∗0 are strictly complementary;
hence (3.10a) and (3.10b) imply that s∗0 and v∗0 are also strictly complementary. For
x∗

1 and x∗
2, consider the indices i = 1, 2. If [z∗i ]j = 0, then [v∗i ]j = 0 and [δ∗i ]j > 0.

From (3.10a) it follows that [s∗i ]j > 0, as required. If [z∗i ]j > 0, then (3.10b) implies
that [v∗i ]j > 0. Moreover, by (2.1e)–(2.1f), and (3.8a), [x∗

i ]j = [δ∗i ]j = 0. Hence
[s∗i ]j = 0, and [s∗i ]j and [v∗i ]j are strictly complementary, as required. If [z∗i ]j < 0,
then [v∗i ]j = 0, and by (3.10a) and (3.8b), [s∗i ]j > 0. Hence [s∗i ]j and [v∗i ]j are
again strictly complementary. It remains to verify that [s∗c ]j and [v∗c ]j are strictly
complementary. If [s∗c ]j = 0, then (3.10c) and (3.8c) imply that [z∗1 ]j < 0 or [z∗2 ]j < 0
and [v∗c ]j > 0 by (3.10d), as required. If [s∗c ]j > 0 then (3.10c) implies that [δ∗c ]j > 0,
and by (3.8d) we have that [z∗1 ]j ≥ 0 and [z∗2 ]j ≥ 0. Then by (3.10d) we know that
[v∗c ]j = 0.

Part 2. LICQ. Next we prove that (x∗, s∗, y∗, v∗) satisfies LICQ for (MPEC-δ∗) if
(x∗, y∗, z∗) satisfies MPEC-LICQ for (MPEC). Note that LICQ holds for (MPEC-δ∗)
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if and only if LICQ holds at x∗ for the following system of equalities and inequalities:

c(x) = 0,(3.11a)

x0 ≥ 0,(3.11b)

x1 ≥ −δ∗1 ,(3.11c)

x2 ≥ −δ∗2 ,(3.11d)

X1x2 ≤ δ∗c .(3.11e)

But MPEC-LICQ implies that the following system of equalities and inequalities
satisfies LICQ at x∗:

(3.12) c(x) = 0, x ≥ 0.

We now show that the gradients of the active constraints in (3.11) are either a subset
or a nonzero linear combination of the gradients of the active constraints in (3.12),
and that therefore they must be linearly independent at x∗. To do so, for j = 1, . . . , n,
we consider the two cases [δ∗c ]j > 0 and [δ∗c ]j = 0.

If [δ∗c ]j > 0, the feasibility of x∗ with respect to (MPEC) implies that the in-
equality [X∗

1x
∗
2]j ≤ [δ∗c ]j is not active. Moreover, because δ∗1 , δ

∗
2 ≥ 0 and x∗ is feasible

with respect to (MPEC), we have that if the constraint [x∗
1]j ≥ −δ∗1 or [x∗

2]j ≥ −δ∗2
is active, then the corresponding constraint [x∗

1]j ≥ 0 or [x∗
2]j ≥ 0 is active. Thus,

for the case [δ∗c ]j > 0, the set of constraints active in (3.11) is a subset of the set of
constraints active in (3.12).

Now consider the case [δ∗c ]j = 0. By (3.9) we have that [δ∗1 ]j , [δ
∗
2 ]j > 0, and

because x∗ is feasible for (MPEC), the jth component (3.11e) is active, but the jth
components of (3.11c)–(3.11d) are inactive. In addition, note that the gradient of
this constraint has all components equal to zero except ∂[X∗

1x
∗
2]j/∂[x1]j = [x∗

2]j and
∂[X∗

1x
∗
2]j/∂[x2]j = [x∗

1]j . Moreover, by (3.8c) we know that either [z∗1 ]j or [z∗2 ]j is
strictly negative, and thus by (2.1g) we have that [max(x∗

1, x
∗
2)]j > 0. Also, because

x∗ is feasible for (MPEC), [min(x∗
1, x

∗
2)]j = 0. Thus one, and only one, of [x∗

1]j
and [x∗

2]j is zero, and thus the gradient of the active constraint [x∗
1]j [x

∗
2]j ≤ [δ∗c ]j

is a nonzero linear combination of the gradient of whichever of the two constraints
[x∗

1]j ≥ 0 and [x∗
2]j ≥ 0 is active.

Thus, the gradients of the constraints active in system (3.11) are either a subset
or a nonzero linear combination of the constraints active in (3.12), and thus LICQ
holds for (MPEC-δ∗).

Part 3. SOSC. To complete the proof, we need to show that SSOSC at (x∗, y∗, z∗)
for (MPEC) implies SOSC at (x∗, s∗, y∗, v∗) for (MPEC-δ∗). Because the slack vari-
ables appear linearly in (MPEC-δ∗), we need only to show that (x∗, y∗, v∗) satisfies
SOSC for the equivalent problem without slack variables,

(3.13)

minimize
x,s

f(x)

subject to c(x) = 0,

x0 ≥ 0,

x1 ≥ −δ∗1 ,

x2 ≥ −δ∗2 ,

X1x2 ≤ δ∗c ,

and with solution (x∗, y∗, v∗). First, we show that the set of critical directions at
(x∗, y∗, v∗) for (3.13) is equal to F (see Definition 2.6). Consider the critical directions
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for the first two constraints of (3.13). Because the constraints c(x) = 0 and x0 ≥ 0
and their multipliers are the same for (MPEC) and (3.13), their contribution to the
definition of the set of critical directions is the same. In particular, we need to consider
critical directions such that A(x∗)p = 0, [p0]j ≥ 0 for all j such that [x∗

0]j = 0, and
[p0]j = 0 for all j such that [z∗0 ]j > 0. Next, consider the critical direction for the last
three constraints of (3.13), x1 ≥ −δ∗1 , x2 ≥ −δ∗2 and X1x2 ≤ δ∗c . Because we have
shown that SCS holds for (3.13) at (x∗, y∗, v∗), we need only to impose the condition
[pi]j = 0 for all j such that [v∗i ]j > 0 for i = 1, 2, and [pi]j = 0 for all i and j such that
[v∗c ]j > 0 and [x∗

i ]j = 0. But note that because of (3.10) and (3.8), this is equivalent
to imposing [pi]j = 0 for all j such that [x∗

i ]j = 0 and [z∗i ]j 
= 0 for i = 1, 2, which is
the definition of F .

But note that the Hessian of the Lagrangian for (3.13) is different from the Hes-
sian of the Lagrangian for (MPEC). The reason is that in (3.13) the complementarity
constraint X1x2 ≤ δ∗c is included in the Lagrangian, whereas we excluded this con-
straint from the definition of the Lagrangian for (MPEC). But it is easy to see that
this has no impact on the value of pT∇2

xxL(x∗, y∗)p > 0 for all p ∈ F . To see this,
note that the Hessian of [X1x2]j has only two nonzero elements:

(3.14) ∇2
[x1]j [x2]j

[X1x2]j =

[
1

1

]
.

If [v∗c ]j = 0, then the Hessian of the complementarity constraint [X1x2]j ≤ [δ∗c ]j is
multiplied by zero, and thus the Hessian of the Lagrangian for (MPEC-δ∗) is the
same as the Hessian of the Lagrangian for (MPEC). Now suppose [v∗c ]j 
= 0. Because
SCS holds for (3.13), we have that [v∗c ]j 
= 0 implies that the set of critical direc-
tions satisfies either [p1]j = 0 or [p2]j = 0. This, together with (3.14), implies that
pT∇2

xx([X∗
1x

∗
2]j)p = 0 for all p ∈ F . In other words, the second derivative of the

complementarity constraint over the axis [x∗
1]j = 0 or [x∗

2]j = 0 is zero. As a result, if
MPEC-SOSC holds, then SOSC must hold for (MPEC-δ∗) because all other terms of
the Hessians of the Lagrangians of both problems are the same and the sets of critical
directions of both problems are the same.

The corollary to Theorem 3.1 is much clearer, but it requires the additional con-
dition that (x∗, s∗, y∗, z∗) is feasible for (MPEC)—in other words, the partitions x∗

1

and x∗
2 are nonnegative and complementary.

Corollary 3.2. Suppose that δ∗ satisfies (3.9) and that (x∗, s∗, y∗, v∗) is a
solution of (MPEC-δ∗) such that min(x∗

1, x
∗
2) = 0. Then the point (x∗, y∗, z∗) is

strongly stationary for (MPEC), where

(3.15) z∗ = B(x∗)Tv∗.

Proof. Equation (3.15) is derived by comparing (2.1) with (3.7).

3.5. Relaxation parameter updates. In this section we show how to con-
struct a sequence of relaxation parameters δk such that limk→∞ δk = δ∗, where δ∗

satisfies (3.8)–(3.9). We are guided by Theorem 3.1 in developing such a parame-
ter update. Under certain conditions (discussed in section 3.6), we can recover the
solution of the original MPEC from the solution of (MPEC-δ∗).

Suppose that wk = (xk, sk, yk, vk) is an estimate of the solution of (MPEC-δk),
and let zk = B(xk)

Tvk be the corresponding MPEC multipliers given by (3.15). Given
an improved estimate wk+1, Algorithm 1 defines a set of rules for updating the re-
laxation parameter vector δk. The algorithm also updates a companion sequence
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Algorithm 1. Relaxation parameter update.

Input: δk, δ
∗
k, wk+1, zk+1

Set fixed parameters κ, τ ∈ (0, 1)

1 [Compute bounds for the KKT residual]
r∗k+1 ← ‖r(wk+1; δ

∗
k)‖1+τ

r∗k+1 ← ‖r(wk+1; δ
∗
k)‖1−τ

for i = 1, 2 and j = 1, . . . , n do
2 [Update bound-constraint relaxations]

if [zik+1]j > r∗k+1 then
[δik+1]j ← min(κ[δik]j , r

∗
k+1)

[δ∗ik+1]j ← 0

else
[δik+1]j ← [δik]j
[δ∗ik+1]j ← [δik]j

3 [Update complementarity-constraint relaxations]
if [z1k+1]j < −r∗k+1 or [z2k+1]j < −r∗k+1 then

[δck+1]j ← min(κ[δck]j , r
∗
k+1)

[δ∗ck+1]j ← 0

else
[δck+1]j ← [δck]j
[δ∗ck+1]j ← [δck]j

return δk+1, δ
∗
k+1

δ∗k ≡ (0, δ∗1k, δ
∗
2k, δ

∗
ck) that defines a nearby relaxed problem (MPEC-δ∗k). In the vicin-

ity of the minimizer, this nearby relaxed problem gives an estimate of the active
constraint set. Also, the residual of (MPEC-δ∗k) is a better optimality measure than
the residual of (MPEC-δk) because while all components of the relaxation parameter
vector δk are strictly positive, some of the components of δ∗k may be zero. The scalars
r∗k and r∗k are lower and upper bounds on the KKT residual of (MPEC-δ∗k); they pro-
vide a measure of nearness to zero of the MPEC multipliers and are used to predict
the sign of the optimal MPEC multipliers.

3.6. Active-set identification. Suppose that δ∗k is a set of relaxation param-
eters that satisfies (3.8) and that therefore defines a one-sided relaxation. Let w∗

k =
(x∗

k, s
∗
k, y

∗
k, v

∗
k) be the minimizer of the associated relaxed problem (MPEC-δ∗k) defined

via (3.10), and let wk be an estimate of w∗
k. If wk is close enough to w∗ and Algo-

rithm 1 is given an improved estimate wk+1, then it will return the same one-sided
relaxation parameter δ∗k+1 = δ∗k. Therefore, (MPEC-δ∗k) will remain fixed. Thus,
the update rules continue to update (and reduce) the same relaxation parameters at
every iteration—this property is used to guarantee that the feasible region remains
nonempty even in the limit. In some sense, it implies that the correct active set is
identified.

We make the following nondegeneracy assumptions about the MPEC minimizer
(x∗, y∗, z∗). These assumptions hold throughout the remainder of the paper.

Assumption 3.3. There exist strictly positive relaxation parameters δ such that
the second derivatives of f and c are Lipschitz continuous over the set

X1x2 ≤ δc, x1 ≥ −δ1, x2 ≥ −δ2.
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Assumption 3.4. The point (x∗, y∗, z∗) satisfies MPEC-LICQ for (MPEC).
Assumption 3.5. The point (x∗, y∗, z∗) satisfies MPEC-WSCS and -SSOSC for

(MPEC).
Theorem 3.6 proves that Algorithm 1 will leave the one-sided relaxation parameter

unchanged if wk+1 improves the estimate wk of w∗
k. Applied iteratively, the algorithm

continues to update the same relaxation parameters δik or δck.
Note from (3.10) that the influence of δ∗k on w∗

k = (x∗
k, s

∗
k, y

∗
k, v

∗
k) is relegated to

only s∗k. We may therefore write w∗
k ≡ (x∗, s∗k, y

∗, v∗). We assume that δ∗k satisfies
(3.8). This implies that δ∗k reveals the sign of the MPEC multipliers at the solution
w∗. We also assume that the (k+1)th iterate wk+1 is closer to the minimizer than the
kth iterate so that ‖wk+1 − w∗

k‖ < ‖wk − w∗
k‖. This assumption will hold whenever

we apply a linearly convergent algorithm to compute wk+1 starting from wk.
Theorem 3.6. Let (x∗, y∗, z∗) be a strongly stationary point of (MPEC) and

suppose that Assumptions 3.3–3.5 hold. Moreover, assume that δ∗k satisfies (3.8) and
that [δ∗k]j = [δk]j > 0 for all j such that [δ∗k]j 
= 0. Let w∗

k = (x∗, s∗k, y
∗, v∗) be the

solution of the corresponding relaxation (MPEC-δ∗k) given by (3.10), and assume that
‖wk+1 − w∗

k‖ < ‖wk − w∗
k‖. Then if wk is close enough to w∗, the parameter δ∗k+1

generated by Algorithm 1 satisfies δ∗k+1 = δ∗k.
Proof. We first show that r∗k+1 is bounded above and below by a finite multiple of

‖wk+1 − w∗
k‖1−τ . By definition of w∗

k and δ∗k, r(w
∗
k; δ

∗
k) = 0. Also, by the hypothesis

of this theorem, both wk and wk+1 are close to w∗. Moreover, Assumption 3.3 implies
that the KKT residual r(w; δ) is differentiable. This by Taylor’s theorem implies that

(3.16) r(wk+1; δ
∗
k) = K(w∗

k)(wk+1 − w∗
k) + O(‖wk+1 − w∗

k‖2),

where K(w∗
k) is the Jacobian of the KKT residual r(w; δ) with respect to w evaluated

at w∗
k. Note that this Jacobian does not depend on δ∗k. In addition, as a consequence

of Theorem 3.1, K(w∗
k) is nonsingular. This together with (3.16), imply that there

exist positive constants β2 > β1 such that for wk+1 in the vicinity of w∗
k

β1‖wk+1 − w∗
k‖ ≤ ‖r(wk+1; δ

∗
k)‖ ≤ β2‖wk+1 − w∗

k‖.

Then, by the definition of r∗k+1 (Step 1 of Algorithm 1) we have that

β3‖wk+1 − w∗
k‖1−τ ≤ r∗k+1 ≤ β4‖wk+1 − w∗

k‖1−τ ,(3.17)

where β3 = β1−τ
1 and β4 = β1−τ

2 .
Let ε ≡ 1

2 min(|[z∗]j | | for all j such that [z∗]j 
= 0). Then, condition (3.17) and
the assumptions that wk is close enough to w∗ and ‖wk+1 − w∗

k‖ < ‖wk − w∗
k‖ imply

that

(3.18) r∗k+1 < ε.

Moreover, because zk+1 = B(xk+1)
Tvk+1, z∗ = B(x∗)Tv∗, and B(x) is Lipschitz

continuous by Assumption 3.3, we have that for wk close enough to w∗ and ‖wk+1 −
w∗

k‖ < ‖wk − w∗
k‖ the following holds:

(3.19) ‖zk+1 − z∗‖ < ε.

Consider the indices i = 1, 2 and j = 1, . . . , n. Suppose that [z∗]j > 0. Then
(3.18) and (3.19) imply that

(3.20) [zik+1]j = [z∗]j + ([zik+1]j − [z∗]j) > [z∗]j − ε ≥ ε > r∗k+1.
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Suppose instead that [z∗]j < 0. Then (3.18) and (3.19) imply that

−r∗k+1 > −ε > [z∗]j + ε = [zik+1]j − ([zik+1]j − [z∗]j) + ε > [zik+1]j .

Finally, suppose that [z∗]j = 0. Then because τ > 0, we have that for wk close enough
to w∗ and ‖wk+1 − w∗

k‖ < ‖wk − w∗
k‖

(3.21) |[zik+1]j | = |[zik+1]j − [z∗]j | ≤ ‖wk+1 − w∗
k‖ ≤ β3‖wk+1 − w∗

k‖1−τ ≤ r∗k+1.

Because δk > 0, the updates in Algorithm 1 imply that δk+1 > 0, and together
with (3.20)–(3.21), we have that δ∗k+1 satisfies (3.8). This in turn implies that the
set of indices j for which [δ∗k+1]j 
= 0 coincides with the set of indices j for which
[δ∗k]j 
= 0. For this same set of indices, moreover, the parameter updates imply that
[δk+1]j = [δk]j . Then because [δ∗k]j = [δk]j for such j, the update rules imply that
δ∗k+1 = δ∗k, as required.

Note that δ∗k+1 = δ∗k implies that w∗
k+1 = w∗

k; that is, w∗
k is also a local minimizer

for the relaxed problem for the (k + 1)th iterate.

4. An interior-point algorithm. The discussion thus far has not made use of
a specific optimization algorithm. Theorem 3.6 makes use of an improved estimate of
(MPEC-δ∗k) but does not specify the manner in which it is computed. In this section
we show how to construct a primal-dual interior-point algorithm that at each iteration
will satisfy the conditions of Theorem 3.6. The parameter update rule in Algorithm 1
is invoked at each iteration of the interior method. The barrier parameter is updated
simultaneously. This iteration scheme is repeated until certain convergence criteria
are satisfied.

4.1. Algorithm summary. For the remainder of this section, we omit the de-
pendence of each variable on the iteration counter k when the meaning of a variable is
clear from its context. The search direction is computed by means of Newton’s method
on the KKT conditions of the barrier subproblem corresponding to (MPEC-δ). These
are given by (3.7), where (3.7b) is replaced by

(4.1) Sv − μe ≡ rμ = 0

and μ > 0 is the barrier parameter. An iteration of Newton’s method based on (3.7)
(where (4.1) replaces (3.7b)) computes a step direction by solving the system

(4.2) K(w)Δw = −r(w;μ, δ),

where Δw ≡ (Δx,Δs,Δy,Δv) and r(w;μ, δ) ≡ (rd, rμ, rf , rδ) is the KKT residual
of the barrier problem. (Note the identity r(w; 0, δ) ≡ r(w; δ).) The Jacobian K
is independent of the barrier and relaxation parameters—these appear only in the
right-hand side of (4.2). This is a useful property because it considerably simplifies
the convergence analysis in section 4.2.

To ensure that s and v remain strictly positive (as required by interior-point
methods), each computed Newton step Δw may need to be truncated. Let γ be a
steplength parameter such that 0 < γ < 1. At each iteration we choose a steplength
α so that

(4.3) α = min(αs, αv),

where

αd = min

(
1, γ min

[Δd]j<0
−[d]j/[Δd]j

)
, d = {s, v}.
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Algorithm 2. Interior-Point Relaxation for MPECs.

Input: x0, y0, z0

Output: x∗, y∗, z∗

[Initialize variables and parameters]
Choose starting vectors s0, v0 > 0. Set w0 = (x0, s0, y0, v0). Set the relaxation
and barrier parameters δ0, μ0 > 0. Set parameters 0 < κ, τ, γ̄ < 1. Set the
starting steplength parameter γ̄ ≤ γ0 < 1. Set the convergence tolerance ε > 0.

k ← 0
repeat

[Compute the Newton step]
Solve (4.2) for Δwk

1 [Truncate the Newton Step]
Determine the maximum steplength αk, given by (4.3);
wk+1 ← wk + αkΔwk

[Compute MPEC multipliers]
zk+1 ← B(xk+1)

Tvk+1

[Update relaxation parameters]
Compute δk+1, δ

∗
k+1 with Algorithm 1

2 [Update barrier and step parameters]
μk+1 = min(κμk, r

∗
k+1) [Ensures that limk→∞ μk = 0]

γk+1 = max(γ̄, 1 − μk+1) [Ensures that limk→∞ γk = 1]

k ← k + 1

until (4.4) holds;
x∗ ← xk; y

∗ ← yk; z
∗ ← zk

return x∗, y∗, z∗

Because our analysis focuses on the local convergence properties of the proposed
algorithm, the (k + 1)th iterate is computed as wk+1 = wk +αΔwk. (A globalization
scheme that can choose shorter steps is discussed in section 5.)

Algorithm 2 outlines the interior-point relaxation method. The method takes as
a starting point the triple (x0, y0, z0) as an estimate of a solution of the relaxed NLP
corresponding to (MPEC). The algorithm terminates when the optimality conditions
for (MPEC-δ∗k) are satisfied, that is, when

(4.4) ‖r(wk; δ
∗
k)‖ < ε

for some small and positive ε. Recall that w∗
k = (x∗

k, s
∗
k, y

∗
k, v

∗
k) is the solution to

the one-sided relaxation (MPEC-δ∗k); therefore, ‖r(w∗
k; δ

∗
k)‖ = 0. Note that we never

compute w∗
k—it is used only as an analytical device.

4.2. Superlinear convergence. In this section we analyze the local conver-
gence properties of the interior-point relaxation algorithm. The distinguishing feature
of the proposed algorithm is the relaxation parameters and their associated update
rules. If we were to hold the relaxation parameters constant, the relaxation method
would reduce to a standard interior-point algorithm applied to a fixed relaxed MPEC;
it would converge locally and superlinearly provided that the starting iterate is close
to a nondegenerate minimizer of (MPEC-δk) (and that standard assumptions held).
The main challenge is to show that the interior-point relaxation algorithm continues
to converge locally and superlinearly even when the relaxation parameters change at
each iteration. We use the shorthand notation rk ≡ r(wk;μk, δk) and r∗k ≡ r(wk; δ

∗
k).
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Theorem 4.1. Let (x∗, y∗, z∗) be a strongly stationary point of (MPEC) and
suppose that Assumptions 3.3–3.5 hold. Assume that δ∗k satisfies (3.8), and let w∗

k =
(x∗, s∗k, y

∗, v∗) be the solution of the corresponding relaxation (MPEC-δ∗k) given by
(3.10). Then there exists ε > 0 and β > 0 such that if Algorithm 2 is started with
iterates at k = 0 that satisfy

‖wk − w∗
k‖ < ε,(4.5)

‖δk − δ∗k‖ < β‖wk − w∗
k‖1+τ ,(4.6)

μk < β‖wk − w∗
k‖1+τ ,(4.7)

1 − γk < β‖wk − w∗
k‖1+τ ,(4.8)

and

(4.9) [δ∗k]j = [δk]j > 0 for all j such that [δ∗k]j 
= 0,

then the sequence {w∗
k} is constant over all k and {wk} converges Q-superlinearly to

w∗ ≡ w∗
k.

Proof. The proof has three parts. First, we show that there exists a constant
σ > 0 such that ‖wk+1−w∗

k‖ ≤ σ‖wk−w∗
k‖1+τ . Second, we show that δ∗k+1 = δ∗k, and

thus that w∗
k is also a minimizer to the relaxed MPEC corresponding to the (k+ 1)th

iterate. Finally, we show that the conditions of the theorem hold also for the (k+1)th
iterate. The main result therefore follows by induction.

Part 1. ‖wk+1 − w∗
k‖ ≤ σ‖wk − w∗

k‖1+τ . From Assumptions 3.3–3.5 and The-
orem 3.1 we know that K(wk) is nonsingular for all ε > 0 small enough, so that
‖K(wk)

−1‖ is bounded in the vicinity of w∗. Consider only such ε. Define the vec-
tor η∗k = (0, μke, 0, δ

∗
k − δk) with components partitioned as per (3.7). (Note that

rk = r∗k − η∗k.) Then

(4.10)

wk+1 − w∗
k = wk − w∗

k − αkK(wk)
−1rk

= (1 − αk)(wk − w∗
k) + αkK(wk)

−1(K(wk)(wk − w∗
k) − r∗k + η∗k)

= (1 − αk)(wk − w∗
k)

+ αkK(wk)
−1η∗k + αkK(wk)

−1(K(wk)(wk − w∗
k) − r∗k).

Each term on the right-hand side of (4.10) can be bounded as follows. Because
(x∗, y∗, z∗) is a strongly stationary point of (MPEC) satisfying assumptions 3.3–3.5,
Theorem 3.1 applies. Therefore, w∗ satisfies LICQ, SCS, and SOSC for (MPEC-δ∗).
Then by Lemma 5 of [24] we know that there exists a positive constant ε1 such that
|1 − αk| ≤ 1 − γk + ε1‖Δwk‖. Therefore

(4.11) ‖(1 − αk)(wk − w∗
k)‖ ≤

(
(1 − γk) + ε1‖Δwk‖)

)
‖wk − w∗

k‖.

We now further bound the right-hand side of (4.11). Because ‖K(wk)
−1‖ is bounded

for ε small enough, there exists a positive constant ε2 such that

(4.12) ‖Δwk‖ = ‖K(wk)
−1(−r∗k + η∗k)‖ ≤ ε2(‖r∗k‖ + ‖η∗k‖).

Assumption 3.3 implies that the KKT residual r(w;μ, δ), and thus, r(w; δ), is differ-
entiable. Hence there exists a positive constant ε3 such that

(4.13) ‖r∗k‖ = ‖r(wk; δ
∗
k) − r(w∗

k; δ
∗
k)‖ ≤ ε3‖wk − w∗

k‖.
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Moreover, (4.6) and (4.7) imply that there exists a positive constant ε4 such that

(4.14) ‖η∗k‖ ≤ ε4‖wk − w∗
k‖1+τ .

Then substituting (4.12), (4.13), (4.14), and condition (4.8), into (4.11) we have

(4.15) ‖(1 − αk)(wk − w∗
k)‖ ≤ (β + ε1ε2ε4)‖wk − w∗

k‖2+τ + ε1ε2ε3‖wk − w∗
k‖2.

From the boundedness of ‖K(wk)
−1‖ around w∗

k and (4.14), the second term in (4.10)
satisfies

‖αk K(wk)
−1η∗k‖ ≤ αk‖K(wk)

−1‖ ‖η∗k‖ ≤ ε5‖wk − w∗
k‖1+τ

for some positive constant ε5. Finally, the third term in (4.10) satisfies (using Taylor’s
theorem and again the fact that ‖K(wk)

−1‖ is bounded around w∗
k)

(4.16) ‖αk K(wk)
−1(K(wk)(wk − w∗

k) − r∗k)‖ ≤ ε6‖wk − w∗
k‖2

for some positive constant ε6. Hence, (4.10) and (4.15)–(4.16) yield

(4.17) ‖wk+1 − w∗
k‖ ≤ σ‖wk − w∗

k‖1+τ

for some positive constant σ, as required.
Part 2. δ∗k+1 = δ∗k. Note that by (4.17) we know that for ε small enough the

assumptions of Theorem 3.6 hold and therefore δ∗k+1 = δ∗k. As a result, w∗
k is also a

minimizer of (MPEC-δ∗k+1).
Part 3. The theorem hypotheses also hold for the (k + 1)th iterate. As δ∗k+1 = δ∗k,

then δ∗k+1 satisfies (3.8). Moreover, (4.17) implies for ε small enough that (4.5) holds
for wk+1. Because r(w;μ, δ) is differentiable, Theorem 3.1 implies that K(w), the
Jacobian of r(w;μ, δ) with respect to w, is bounded in the vicinity of w∗

k. Together
with the definition of r∗k+1, the fact that δ∗k+1 = δ∗k, Steps 2 and 3 of Algorithm 1, and
Step 2 of Algorithm 2, this implies that (4.6)–(4.9) hold for δk+1, μk+1, and γk+1.

The proof finishes noting that w∗
k+1 = w∗

k because δ∗k+1 = δ∗k, so that by induction,
w∗ = w∗

k for all iterations k + 1, k + 2, . . .. The superlinear convergence of wk to w∗

then follows by induction from (4.17).
Note that in addition to the assumptions made in Theorem 3.6, we assume that

the barrier and steplength parameters satisfy μk < β‖wk − w∗
k‖1+τ and 1 − γk <

β‖wk − w∗
k‖1+τ for some τ ∈ (0, 1) and β > 0. These are standard assumptions

used to prove superlinear convergence of interior methods. They imply the barrier
and steplength parameters are updated fast enough. In addition, we assume that
‖δk − δ∗k‖ < β‖wk − w∗

k‖1+τ . This assumption implies that the distance between δk
and δ∗k is small compared to the distance between the current iterate wk and the
minimizer w∗. Note that in Part 3 of the proof of Theorem 4.1, we show that this
assumption will hold when the relaxation parameter update rule in Algorithm 1 is
applied for two or more iterations. Finally, the technical Assumption 4.9 simplifies
the proof and that is also satisfied whenever Algorithm 1 is applied for two or more
consecutive iterations.

5. Implementation details. In this section we discuss two practical aspects
of our implementation. First, to globalize the interior-point method, we perform a
backtracking linesearch on an augmented Lagrangian merit function (although other
globalization schemes could be used). The theoretical properties of this merit function
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have been analyzed by Moguerza and Prieto [14]. We also modify the Jacobian K(w)
as in [23] to ensure a sufficient descent direction for the augmented Lagrangian merit
function.

Second, we make use of a safeguard to the relaxation parameter update that
prevents the algorithm from converging to stationary points of the relaxed MPEC
that are not feasible with respect to MPEC. To see how this may happen, again
consider the example MPEC (3.3). The relaxed MPEC (with slack variables) is given
by

(5.1)

minimize
x1,x2,s1,s2,sc∈R

1
2 (x1 − a1)

2 + 1
2 (x2 − a2)

2

subject to s1 − x1 = δ1,

s2 − x2 = δ2,

sc + X1x2 = δc,

s ≥ 0.

For a1 = a2 = 0.01, δc = 1, and δ1 = δ2 = 0, the point

(x1, x2, s1, s2, sc) = (0.01, 0.01, 0.01, 0.01, 0.9999)

with multipliers (v1, v2, vc) = (0, 0, 0) is clearly a stationary point of (5.1), but it is
not feasible for (3.3). However, note that a point (x0, x1, x2, s0, s1, s2, sc) feasible for
(MPEC-δ) is feasible for (MPEC) if and only if

(5.2) (s0, s1, s2, sc) = (x0, x1 + δ1, x2 + δ2, δc)

(cf. (3.10a)). To ensure that (5.2) always holds at the limit point, we propose a
modification of the bound-constraint relaxations in Steps 2 and 3 of Algorithm 1.
The proposed modification is the following:

[δik+1]j = min(κ[δik]j , r
∗
k+1) if [zik+1]j > r∗k+1,

[δik+1]j = min([δik]j , [sik]j) if [zik+1]j ≤ r∗k+1,

[δck+1]j = min(κ[δck]j , r
∗
k+1) if [z1k+1]j < −r∗k+1 or [z2k+1]j < −r∗k+1,

[δck+1]j = min([δck]j , [sck]j) if [z1k+1]j ≥ −r∗k+1 and [z2k+1]j ≥ −r∗k+1

for i = 1, 2 and j = 1, . . . , n.
Thus, the above parameter update prevents the algorithm from converging to

spurious stationary points for the relaxed MPEC that are not stationary for the
MPEC.

Finally, it is possible to show that the local convergence results of previous sections
still hold when using both the globalization strategy for the interior point method and
the safeguard of the relaxation parameter update. But to simplify the exposition,
we have decided to leave these two aspects out of the local convergence analysis of
previous sections.

6. Numerical results. We illustrate in this section the numerical performance
of the interior-point relaxation algorithm on the MacMPEC test problem set [11].
The results confirm our local convergence analysis and show that our implementation
performs well in practice.
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The interior-point relaxation algorithm has been implemented as a Matlab pro-
gram. Problems from the MacMPEC test suite (coded in AMPL [11]) are accessed
via a Matlab MEX interface. Because the algorithm has been implemented using
dense linear algebra, we apply the method to a subset of 87 small- to medium-size
problems from the MacMPEC test suite.

We stop the algorithm under three different circumstances: (i) if the iteration
limit of 150 is exceeded; (ii) if the current iterate is a stationary point of (MPEC-δ∗),
i.e., if ‖r(wk; 0, δ

∗
k)‖ < 10−6(1 + ‖∇f(xk)‖) (cf. (4.4)); or (iii) if the steplength is too

small. We use the following parameter values for the barrier and relaxation updates:
τ = 0.3 and κ = 0.9.

Table 6.1 gives information regarding the performance of our algorithm on each
test problem. The first column indicates the name of the problem, the second and
third columns indicate the number of iterations and function evaluations, the fourth
column shows the final objective function value, the fifth and sixth columns show the
norm of the multiplier vector vc and the norm of the KKT residual of the nearby
relaxed MPEC (MPEC-δ∗) at the solution, and the last two columns indicate the exit
status of the algorithm. The exit flags are described in Table 6.2. The quantities
(δ∗1 , δ

∗
2 , δ

∗
c ) are the final values of the relaxation parameters.

The results seem to confirm that the global convergence safeguards proposed in
section 5 are effective in practice. In particular, the algorithm converges to a strongly
stationary point of (MPEC) for most of the test problems in the collection, that
is, flag1 = 1 for most of the problems. Moreover, note that all stationary points of
(MPEC-δ∗) found by the algorithm are also strongly stationary for the original MPEC;
that is, flag1 is never equal to 2. Finally, some of the problems on which our algorithm
fails are ill-posed according to [18, 4, 3]. For instance, ex9.2.2, qpec2, ralph1, scholtes4,
and tap-15 do not have a strongly stationary point, the pack problems have an empty
strictly feasible region, ralphmod is unbounded, and design-cent-3 is infeasible.

Table 6.1

Performance of the interior-point relaxation algorithm on the selected MacMPEC test problems.

Problem iter nfe f ‖v∗c‖ ‖r‖ flag1 flag2
bar-truss-3 36 73 1.017e+04 4.521e+00 4.543e−04 1 1
bard1 13 27 1.700e+01 7.621e−01 4.170e−04 1 1
bard2 66 133 6.163e+03 1.036e+01 5.221e−05 1 1
bard3 16 33 -1.268e+01 3.625e−01 3.225e−06 1 1
bard1m 88 397 1.700e+01 1.504e−03 1.373e−04 1 0
bard2m 66 133 -6.598e+03 1.128e−04 5.444e−05 1 1
bard3m 16 33 -1.268e+01 1.350e+00 4.770e−06 1 1
bilevel1 16 33 5.000e+00 8.700e−02 1.382e−06 1 1
bilevel2 67 135 -6.600e+03 3.848e−01 3.174e−04 1 1
bilevel3 83 277 -8.636e+00 4.587e−03 8.352e−04 1 0
bilin 24 49 -1.215e−04 1.996e+00 1.513e−03 1 0
dempe 17 35 3.125e+01 5.002e+00 3.619e−06 1 1
design-cent-2 150 774 -3.182e−15 2.024e−05 3.749e+02 0 1
design-cent-3 150 2649 3.546e−02 1.930e+00 7.977e+00 0 1
design-cent-4 99 425 1.508e−18 3.616e−04 1.027e−08 1 1
ex9.1.1 19 39 -1.300e+01 1.087e+00 1.343e−03 1 0
ex9.1.2 14 29 -6.250e+00 1.902e+00 1.110e−03 1 0
ex9.1.3 39 80 -2.920e+01 5.357e+00 4.327e−03 1 1
ex9.1.4 33 80 -3.700e+01 1.999e+00 1.389e−07 1 1
ex9.1.5 11 23 -1.000e+00 3.674e+00 6.727e−06 1 1
ex9.1.6 22 47 -1.500e+01 1.000e+00 1.848e−05 1 0
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Table 6.1

Cont’d.

Problem iter nfe f ‖v∗c‖ ‖r‖ flag1 flag2
ex9.1.7 87 310 -2.600e+01 2.001e+00 1.497e−03 1 0
ex9.1.8 102 441 -3.250e+00 3.180e+00 1.694e−01 1 0
ex9.1.9 26 63 3.111e+00 2.678e+00 3.081e−03 1 1
ex9.1.10 102 441 -3.250e+00 3.180e+00 1.694e−01 1 0
ex9.2.1 19 39 1.700e+01 2.881e+00 7.365e−04 1 0
ex9.2.2 150 655 1.000e+02 7.374e+03 1.402e−02 0 1
ex9.2.3 16 33 5.000e+00 4.700e−09 2.093e−08 1 1
ex9.2.4 10 21 5.000e−01 1.000e+00 1.778e−08 1 1
ex9.2.5 13 27 9.000e+00 6.185e+00 1.646e−06 1 1
ex9.2.6 66 239 -1.000e+00 7.071e−01 1.981e−02 1 0
ex9.2.7 19 39 1.700e+01 2.881e+00 7.365e−04 1 0
ex9.2.8 12 25 1.500e+00 5.000e−01 1.080e−06 1 1
ex9.2.9 13 27 2.000e+00 1.987e+00 4.019e−08 1 1
flp2 22 49 1.076e−17 1.517e−05 3.595e−04 1 1
flp4-1 35 75 5.411e−07 1.315e−06 2.607e−06 1 1
flp4-2 41 89 7.376e−07 4.076e−06 8.233e−06 1 1
flp4-3 52 126 1.018e−06 1.913e−06 3.905e−06 1 1
flp4-4 56 117 2.456e−06 7.803e−07 8.825e−06 1 1
gauvin 11 23 2.000e+01 2.500e−01 8.152e−07 1 1
hakonsen 150 351 1.113e+01 4.898e−05 2.825e−01 0 1
hs044-i 83 279 3.765e+01 2.271e+00 1.344e−01 1 0
incid-set1-8 54 117 5.016e−06 1.722e−04 3.536e−06 1 1
incid-set1c-8 101 210 4.554e−06 9.816e−04 3.754e−06 1 1
incid-set2-8 149 302 8.929e+00 2.069e+03 2.363e+04 7 1
jr1 8 17 5.000e−01 5.779e−09 1.259e−08 1 1
jr2 8 17 5.000e−01 2.000e+00 2.282e−08 1 1
kth1 9 19 3.950e−07 7.046e−07 5.989e−07 1 1
kth2 8 17 1.432e−09 1.355e−07 2.180e−07 1 1
kth3 7 15 5.000e−01 1.000e+00 9.131e−07 1 1
liswet1-050 36 89 1.399e−02 2.552e−09 5.998e−09 1 1
nash1 26 53 1.339e−07 2.499e−04 3.930e−04 1 1
outrata31 88 184 3.208e+00 3.234e+01 3.653e−07 1 0
outrata32 86 177 3.449e+00 6.586e+01 4.908e−07 1 0
outrata33 83 174 4.604e+00 6.089e+02 2.808e−06 1 0
outrata34 107 218 6.593e+00 8.386e+00 1.549e−06 1 0
pack-comp1-8 97 818 6.240e−01 5.388e+01 5.923e+04 7 1
pack-comp1c-8 126 300 5.741e−01 1.308e+01 2.099e+04 7 0
pack-comp1p-8 135 347 -3.649e+04 3.230e+03 1.383e+05 7 1
pack-comp2-8 38 82 7.724e−01 2.677e+01 1.039e+04 7 1
pack-comp2c-8 150 309 6.537e−01 6.595e+00 2.979e+04 0 1
pack-rig1-8 150 1109 6.623e−01 6.294e+00 1.562e+03 0 1
pack-rig1c-8 61 174 6.013e−01 5.803e+00 4.770e+03 7 1
pack-rig1p-8 150 948 -4.048e+01 1.621e+01 4.220e+03 0 0
pack-rig2-8 150 307 7.804e−01 8.259e−09 9.463e−04 0 1
pack-rig2c-8 75 289 6.046e−01 5.751e+00 4.974e+03 7 0
pack-rig2p-8 147 403 -1.573e+02 1.093e+00 2.086e+02 7 1
portfl-i-1 28 59 2.096e−06 4.971e−04 5.158e−04 1 1
portfl-i-2 30 61 1.099e−06 8.256e−03 2.070e−03 1 1
portfl-i-3 31 64 1.743e−06 3.498e−02 1.864e−04 1 1
portfl-i-4 31 64 2.755e−06 1.418e−02 4.518e−04 1 1
portfl-i-6 28 58 2.394e−06 3.893e−02 4.654e−04 1 1
qpec-100-1 80 163 9.900e−02 1.762e+01 7.324e−06 1 1
qpec1 10 21 8.000e+01 3.044e−07 5.138e−07 1 1
qpec2 150 303 4.500e+01 9.669e+04 2.425e−02 0 1
ralph1 150 303 -1.563e−05 3.191e+04 1.885e−03 0 1
ralph2 15 31 -2.228e−07 2.001e+00 3.071e−07 1 1
ralphmod 75 151 -5.726e+02 8.219e+02 1.167e+02 7 0
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Table 6.1

Cont’d.

Problem iter nfe f ‖v∗c‖ ‖r‖ flag1 flag2
scholtes1 10 21 2.000e+00 1.008e−08 2.302e−08 1 1
scholtes2 21 43 1.500e+01 6.894e−06 2.881e−06 1 1
scholtes3 8 18 5.000e−01 1.000e+00 5.044e−07 1 1
scholtes4 150 301 -4.994e−05 3.994e+04 3.895e−03 0 1
scholtes5 8 17 1.000e+00 1.870e+00 1.277e−06 1 1
sl1 30 61 1.003e−04 3.337e−07 1.715e−05 1 1
stackelberg1 12 25 -3.267e+03 8.998e−01 5.536e−06 1 1
tap-09 106 320 1.546e+02 1.964e−01 8.807e−04 1 0
tap-15 136 300 3.131e+02 2.664e−01 3.389e−02 7 1

Table 6.2

Exit flags in Table 6.1. The second exit flag indicates when the final relaxation parameters
(δ∗c , δ

∗
1 , δ

∗
2) satisfy the complementarity condition given by (3.9).

flag1 Status
0 Terminated by iteration limit (150)
1 Found stationary point of (MPEC-δ∗) and

strongly stationary point of (MPEC)
2 Found stationary point of (MPEC-δ∗) but

not strongly stationary point of (MPEC)
7 Terminated because steplength too small

(αk < 10−12) or descent direction not found

flag2 Status
0 max(δ∗c , δ

∗
i ) = 0

1 max(δ∗c , δ
∗
i ) > 0

In addition, we have observed that the algorithm is particularly efficient on those
problems for which the iterates converge to a strongly stationary point that satisfies
the MPEC-WSCS and -SSOSC. For these problems, in particular, the final relaxation
parameter satisfy max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)
> 0 and the iterates converge at a superlinear

rate. On the other hand, for those problems for which the algorithm converges to a
strongly stationary point that does not satisfy the MPEC-WSCS and -SSOSC, there is
a zero or very small component of max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)
, and the iterates converge only

at a linear rate. In other words, when max
(
δ∗c ,min(δ∗1 , δ

∗
2)
)
> 0 (i.e., flag2 = 1), the

condition number of the KKT matrix remains bounded and the algorithm converges
superlinearly. On the other hand, when max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)

= 0 (i.e., flag2 = 0),
the condition number of the KKT matrix grows large, and the algorithm converges
only linearly.

This behavior can be observed in Figure 6.1, which depicts the evolution of ‖r∗k‖
and the minimum value of the vector max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)

for two problems of the
MacMPEC collection. Both vertical axes are in a logarithmic (base 10) scale. The
first subfigure shows the last eight iterates generated by the algorithm for problem
ex9.2.4 (which confirms max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)
> 0). The second subfigure shows the

last 11 iterates generated by the algorithm for problem ex9.2.7 (which confirms a
numerically zero component of max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)
.

Moreover, the numerical results confirm the relevance of our relaxing the MPEC-
SCS assumption in our analysis. In particular, there are eight problems (approxi-
mately 10% of the total) for which the MPEC-SCS does not hold at the minimizer
(although MPEC-WSCS and -SSOSC hold) and yet max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)
> 0 in the

limit. Likewise, we have confirmed that for all problems for which the minimum value
of the vector max

(
δ∗c ,min(δ∗1 , δ

∗
2)
)

is zero, the algorithm converges to points where
the MPEC-WSCS or -SSOSC do not hold.
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Fig. 6.1. Final iterations of two problems from the MacMPEC test suite. Each graph
shows the KKT residual ‖r∗k‖ (solid line and left axis) and the minimum value of the vector

max
(
δ∗c ,min(δ∗1 , δ

∗
2)

)
(dashed line and right axis) against the iteration count.
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SUM OF SQUARES APPROXIMATION OF POLYNOMIALS,
NONNEGATIVE ON A REAL ALGEBRAIC SET∗

JEAN B. LASSERRE†

Abstract. Wih every real polynomial f , we associate a family {fεr}ε,r of real polynomials, in
explicit form in terms of f and the parameters ε > 0, r ∈ N, and such that ‖f − fεr‖1 → 0 as ε → 0.

Let V ⊂ Rn be a real algebraic set described by finitely many polynomials equations gj(x) =
0, j ∈ J , and let f be a real polynomial, nonnegative on V . We show that for every ε > 0, there exist
nonnegative scalars {λj(ε)}j∈J such that, for all r sufficiently large,

fεr +
∑
j∈J

λj(ε) g
2
j is a sum of squares.

This representation is an obvious certificate of nonnegativity of fεr on V , and very specific in terms
of the gj that define the set V . In particular, it is valid with no assumption on V . In addition,
this representation is also useful from a computation point of view, as we can define semidefinite
programming relaxations to approximate the global minimum of f on a real algebraic set V , or a
semialgebraic set K, and again, with no assumption on V or K.

Key words. real algebraic geometry, positive polynomials, sum of squares, semidefinite pro-
gramming
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1. Introduction. Let V ⊂ Rn be the real algebraic set

V := {x ∈ Rn | gj(x) = 0, j = 1, . . . ,m}(1.1)

for some family of real polynomials {gj} ⊂ R[x](= R[x1, . . . , xn]).
The main motivation for this paper is to provide a characterization of polynomials

f ∈ R[x], nonnegative on V , in terms of a certificate of positivity. In addition, and
in view of the many potential applications, one would like to obtain a representation
that is also useful from a computational point of view.

In some particular cases, when V is compact, and viewing the equations gj(x) = 0
as two opposite inequations gj(x) ≥ 0 and gj(x) ≤ 0, one may obtain Schmüdgen’s
sum of squares (s.o.s.) representation [20] for f + ε (ε > 0), instead of f . The latter
representation may be even refined to become Putinar [16] and Jacobi and Prestel [6]
s.o.s. representation, that is, f + ε can be written

f + ε = f0 +

m∑
j=1

fj gj ,(1.2)

for some polynomials {fj} ⊂ R[x], with f0 a s.o.s. Hence, if f is nonnegative on
V , every approximation f + ε of f (with ε > 0) has the representation (1.2). The
interested reader is referred to Marshall [12], Prestel and Delzell [15], and Scheiderer
[18, 19] for a nice account of such results.
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Contribution. We prove the following result. Let ‖f‖1 =
∑

α |fα| whenever
x �→ f(x) =

∑
α fαx

α. Let f ∈ R[x] be nonnegative on V , as defined in (1.1), and let
F := {fεr}ε,r be the family of polynomials

fεr = f + ε

r∑
k=0

n∑
i=1

x2k
i

k!
, ε ≥ 0, r ∈ N.(1.3)

(So, for every r ∈ N, ‖f − fεr‖1 → 0 as ε ↓ 0.)
Then, for every ε > 0, there exist nonnegative scalars {λj(ε)}mj=1, such that for

all r sufficiently large (say, r ≥ r(ε)),

fεr = qε −
m∑
j=1

λj(ε) g
2
j ,(1.4)

for some s.o.s. polynomial qε ∈ R[x], that is, fεr +
∑m

j=1 λj(ε)g
2
j is s.o.s.

Thus, with no assumption on the set V , one obtains a representation of fεr (which
is positive on V as fεr > f for all ε > 0) in the simple and explicit form (1.4),
an obvious certificate of positivity of fεr on V . In particular, when V ≡ Rn, one
retrieves the result of [11], which states that every nonnegative real polynomial f can
be aproximated as closely as desired, by a family of s.o.s. polynomials {fεr(ε)}ε, with
fεr as in (1.3).

Notice that f + nε = fε0. So, on the one hand, the approximation fεr in (1.4)
is more complicated than f + ε in (1.2), valid for the compact case but on the other
hand, the coefficients of the gj in (1.4) are now scalars instead of s.o.s., and (1.4) is
valid for an arbitrary algebraic set V .

The case of a semialgebraic set K = {x ∈ Rn|gj(x) ≥ 0, j = 1, . . . ,m} reduces
to the case of an algebraic set V ∈ Rn+m by introducing m slack variables {zj} and
replacing gj(x) ≥ 0 with gj(x) − z2

j = 0 for all j = 1, . . . ,m. Let f ∈ R[x] be
nonnegative on K. Then, for every ε > 0, there exist nonnegative scalars {λj(ε)}mj=1

such that for all sufficiently large r,

f + ε

r∑
k=0

⎡
⎣ n∑

i=1

x2k
i

k!
+

m∑
j=1

z2k
j

k!

⎤
⎦ = qε −

m∑
j=1

λj(ε) (gj − z2
j )

2(1.5)

for some s.o.s. qε ∈ R[x, z]. Equivalently, everywhere on K, the polynomial

x �→ f(x) + ε

r∑
k=0

n∑
i=1

x2k
i

k!
+ ε

r∑
k=0

m∑
j=1

gj(x)k

k!

coincides with the polynomial x �→ qε(x1, . . . , xn,
√

g1(x), . . . ,
√
gm(x)), obviously

nonnegative. Indeed, if qε is a s.o.s. of polynomials in R[x, z], from (1.5), it is also
a polynomial in R[x, z2], and so, on K, x �→ qε(x1, . . . , xn,

√
g1(x), . . . ,

√
gm(x)) is a

nonnegative polynomial in R[x], as z2
j = gj(x) for all j = 1, . . . ,m.

The representation (1.4) is also useful for computational purposes. Indeed, using
(1.4), one can approximate the global minimum of f on V , by solving a sequence
of semidefinite programming (SDP) problems. The same applies to an arbitrary
semialgebraic set K ⊂ Rn, defined by m polynomials inequalities, as explained above.
Again, and in contrast to previous SDP-relaxation techniques as in, e.g., [8, 9, 10, 14,
21], no compacity assumption on V or K is required.
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In a sense, the family F = {fεr} ⊂ R[x] (with f0r ≡ f) is a set of regularizations
of f , because one may approximate f by members of F , and those members always
have nice representations when f is nonnegative on an algebraic set V (including the
case V ≡ Rn), whereas f itself might not have such a nice representation.

Methodology. To prove our main result, we proceed in three main steps.

1. We first define an infinite dimensional linear programming problem on an
appropriate space of measures, whose optimal value is the global minimum of f on
the set V .

2. We then prove a crucial result, namely, that there is no duality gap between
this linear programming problem and its dual. The approach is similar to but different
from that taken in [11] when V ≡ Rn. Indeed, the approach in [11] does not work when
V �≡ Rn. Here, we use the important fact that the polynomial θr is a moment function.
And so, if a set of probability measures Π satisfies supμ∈Π

∫
θrdμ < ∞, it is tight and

therefore, by Prohorov’s theorem, relatively compact. This latter intermediate result
is crucial for our purpose.

3. In the final step, we use our recent result [11], which states that if a polynomial
h ∈ R[x] is nonnegative on Rn, then h+ εθr (ε > 0) is a sum of squares, provided that
r is sufficiently large.

The paper in organized as follows. Notation and definitions are introduced in
section 2, and some preliminary results are stated in section 3, whereas our main
result is stated and discussed in section 4. For clarity of exposition, most proofs
are postponed to section 5, and some auxiliary results are stated in an appendix; in
particular, duality results for linear programming in infinite dimensional spaces are
briefly reviewed.

2. Notation and definitions. Let R+ ⊂ R denote the cone of nonnegative real
numbers. For a real symmetric matrix A, the notation A  0 (resp., A � 0) stands for
A positive semidefinite (resp., positive definite). The sup-norm supj |xj | of a vector
x ∈ Rn is denoted by ‖x‖∞. Let R[x] be the ring of real polynomials, and let

vr(x) := (1, x1, x2, . . . xn, x
2
1, x1x2, . . . , x1xn, x

2
2, x2x3, . . . , x

r
n)(2.1)

be the canonical basis for the R-vector space Ar of real polynomials of degree at most
r, and let s(r) be its dimension. Similarly, v∞(x) denotes the canonical basis of R[x]
as a R-vector space, denoted A. So a vector in A has always finitely many nonzero
coefficients.

Therefore, a polynomial p ∈ Ar is written

x �→ p(x) =
∑
α

pαx
α = 〈p, vr(x)〉, x ∈ Rn

(where xα = xα1
1 xα2

2 . . . xαn
n ) for some vector p = {pα} ∈ Rs(r), the vector of coeffi-

cients of p in the basis (2.1).

Extending p with zeros, we can also consider p as a vector indexed in the basis
v∞(x) (i.e., p ∈ A). If we equip A with the usual scalar product 〈., .〉 of vectors, then
for every p ∈ A,

p(x) =
∑
α∈Nn

pαx
α = 〈p, v∞(x)〉, x ∈ Rn.
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Given a sequence y = {yα} indexed in the basis v∞(x), let Ly : A → R be the
linear functional

p �→ Ly(p) :=
∑
α∈Nn

pαyα = 〈p,y〉.(2.2)

Given a sequence y = {yα} indexed in the basis v∞(x), the moment matrix
Mr(y) ∈ Rs(r)×s(r) with rows and columns indexed in the basis vr(x) in (2.1) satisfies

[Mr(y)(1, j) = yα and Mr(y)(i, 1) = yβ ] ⇒ Mr(y)(i, j) = yα+β .(2.3)

For instance, with n = 2,

M2(y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

⎤
⎥⎥⎥⎥⎥⎥⎦
.

A sequence y = {yα} has a representing (positive) measure μy if

yα =

∫
Rn

xα dμy ∀α ∈ Nn.(2.4)

In this case one also says that y is a moment sequence. In addition, if μy is unique,
then y is said to be a determinate moment sequence, and the representing measure
μy is said to be determinate (and indeterminate otherwise).

A very useful criterion for existence of a determinate representing measure is the
generalized (or multidimensional) Carleman’s condition (2.5) below, due to Nussbaum
[13]:

∞∑
k=1

Ly(x2k
i )−1/2k = +∞, i = 1, . . . , n.(2.5)

Indeed, let y = {yα} be a sequence indexed in the basis v∞(x). If (2.5) holds, then y
is a determinate moment sequence; see, e.g., Berg [3] and Berg [4, Theorem 5].

The matrix Mr(y) defines a bilinear form 〈., .〉y on Ar, by

〈q, p〉y := 〈q,Mr(y)p〉 = Ly(qp), q, p ∈ Ar,

and if y has a representing measure μy, then

Ly(q2) = 〈q,Mr(y)q〉 =

∫
Rn

q(x)2 μy(dx) ≥ 0 ∀ q ∈ Ar,(2.6)

so that Mr(y) is positive semidefinite, i.e., Mr(y)  0.

3. Preliminaries. Let V ⊂ Rn be the real algebraic set defined in (1.1), and let
BM be the closed ball

BM = {x ∈ Rn | ‖x‖∞ ≤ M}.(3.1)
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Proposition 3.1. Let f ∈ R[x] be such that −∞ < f∗ := infx∈V f(x). Then,
for every ε > 0, there is some Mε ∈ N such that

f∗
M := inf {f(x) | x ∈ BM ∩ V } < f∗ + ε ∀M ≥ Mε.

Equivalently, f∗
M ↓ f∗ as M → ∞.

Proof. Suppose it is false. That is, there is some ε0 > 0 and an infinite sequence
{Mk} ⊂ N, with Mk → ∞, such that f∗

Mk
≥ f∗ + ε0 for all k. But let x0 ∈ V be

such that f(x0) < f∗ + ε0. With any Mk ≥ ‖x0‖∞, one obtains the contradiction
f∗ + ε0 ≤ f∗

Mk
≤ f(x0) < f∗ + ε0.

For every r ∈ N, let θr ∈ R[x] be the polynomial

x �→ θr(x) :=

r∑
k=0

n∑
i=1

x2k
i

k!
, x ∈ Rn,(3.2)

and notice that n ≤ θr(x) ≤
∑n

i=1 ex
2
i =: θ∞(x) for all x ∈ Rn. Moreover, θr is a

moment function, as it satisfies

lim
M→∞

inf
x∈Bc

M

θr(x) = +∞,(3.3)

where Bc
M denotes the complement of BM in Rn; see section 6.2.

Next, with V as in (1.1) we introduce the following optimization problems:

P : f∗ := inf
x∈V

f(x),(3.4)

and for 0 < M ∈ N, r ∈ N ∪ {∞},

Pr
M :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

inf
μ

∫
f dμ

s.t.
∫
g2
j dμ ≤ 0, j = 1, . . . ,m,∫
θr dμ ≤ neM

2

,
μ ∈ P(Rn),

(3.5)

where P(Rn) is the space of probability measures on Rn (with B its associated Borel
σ-algebra). The respective optimal values of P and Pr

M are denoted inf P = f∗ and
inf Pr

M , or min P and minPr
M if the minimum is attained (in which case, the problem

is said to be solvable).
Proposition 3.2. Let f ∈ R[x], and let P and Pr

M be as in (3.4) and (3.5),
respectively. Assume that f∗ > −∞. Then, for every r ∈ N ∪ {∞}, inf Pr

M ↓ f∗

as M → ∞. If f has a global minimizer x∗ ∈ V , then minPr
M = f∗ whenever

M ≥ ‖x∗‖∞.
Proof. When M is sufficiently large, BM ∩ V �= ∅, and so Pr

M is consistent,
and inf Pr

M < ∞. Let μ ∈ P(Rn) be admissible for Pr
M . From

∫
g2
j dμ ≤ 0 for all

j = 1, . . . ,m, it follows that gj(x)2 = 0 for μ-almost all x ∈ Rn, j = 1, . . . ,m. That
is, for every j = 1, . . . ,m, there exists a set Aj ∈ B such that μ(Ac

j) = 0 and gj(x) = 0
for all x ∈ Aj . Take A = ∩jAj ∈ B so that μ(Ac) = 0, and for all x ∈ A, gj(x) = 0
for all j = 1, . . . ,m. Therefore, A ⊂ V , and as μ(Ac) = 0,∫

Rn

f dμ =

∫
A

f dμ ≥ f∗ because f ≥ f∗ on A ⊂ V ,

which proves inf Pr
M ≥ f∗.
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As V is closed and BM is closed and bounded, the set BM ∩ V is compact and
so, with f∗

M as in Proposition 3.1, there is some x̂ ∈ BM ∩ V such that f(x̂) = f∗
M .

In addition let μ ∈ P(Rn) be the Dirac probability measure at the point x̂. As
‖x̂‖∞ ≤ M , ∫

θr dμ = θr(x̂) ≤ neM
2

.

Moreover, as x̂ ∈ V , gj(x̂) = 0, for all j = 1, . . . ,m, and so∫
g2
j dμ = gj(x̂)2 = 0, j = 1, . . . ,m,

so that μ is an admissible solution of Pr
M with value

∫
f dμ = f(x̂) = f∗

M , which
proves that inf Pr

M ≤ f∗
M . This latter fact, combined with Proposition 3.1 and with

f∗ ≤ inf Pr
M , implies inf Pr

M ↓ f∗ as M → ∞, the desired result. The final statement
is immediate by taking as feasible solution for Pr

M , the Dirac probability measure at
the point x∗ ∈ BM ∩ V (with M ≥ ‖x∗‖∞). As its value is now f∗, it is also optimal,
and so, Pr

M is solvable with optimal value minPr
M = f∗.

Consider now the following optimization problem Qr
M , the dual problem of Pr

M ,
i.e.,

Qr
M :

max
λ,δ,γ

γ − nδeM
2

s.t. f + δθr +
∑m

j=1 λjg
2
j ≥ γ,

γ ∈ R, δ ∈ R+, λ ∈ Rm
+ ,

(3.6)

with optimal value denoted by supQr
M . Indeed, Qr

M is a dual of Pr
M because weak

duality holds. To see this, consider any two feasible solutions μ ∈ P(Rn) and (λ, δ, γ) ∈
Rm

+ × R+ × R, of Pr
M and Qr

M , respectively. Then, integrating both sides of the
inequality in Qr

M with respect to μ yields∫
fdμ + δ

∫
θr dμ +

m∑
j=1

λj

∫
g2
j dμ ≥ γ,

and so, using that μ is feasible for Pr
M ,∫

fdμ ≥ γ − δneM
2

.

Hence, the value of any feasible solution of Qr
M is always smaller than the value of

any feasible solution of Pr
M , i.e., weak duality holds.

In fact we can get the more important and crucial following result.
Theorem 3.3. Let M be large enough so that BM ∩ V �= ∅. Let f ∈ R[x], and

let r0 > max[deg f,deg gj ]. Then, for every r ≥ r0, Pr
M is solvable, and there is no

duality gap between Pr
M and its dual Qr

M . That is, supQr
M = minPr

M .
For a proof see section 5.1. We finally end up this section by restating a result

proved in [11], which, together with Theorem 3.3, will be crucial to prove our main
result.

Theorem 3.4 (see [11]). Let f ∈ R[x] be nonnegative. Then for every ε > 0,
there is some r(ε) ∈ N such that

fεr(ε) (= f + εθr(ε)) is a sum of squares,(3.7)

and so is fεr for all r ≥ r(ε).
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4. Main result. Recall that for given (ε, r) ∈ R×N, fεr = f+εθr, with θr ∈ R[x]
being the polynomial defined in (3.2). We now state our main result.

Theorem 4.1. Let V ⊂ Rn be as in (1.1), and let f ∈ R[x] be nonnegative on
V . Then for every ε > 0, there exists r(ε) ∈ N and nonnegative scalars {λj}mj=1 such
that for all r ≥ r(ε),

fεr = q −
m∑
j=1

λj g
2
j(4.1)

for some s.o.s. polynomial q ∈ R[x]. In addition, ‖f − fεr‖1 → 0, as ε ↓ 0.
For a proof see section 5.2.
Remark 4.2. (i) Observe that (4.1) is an obvious certificate of positivity of fεr on

the algebraic set V , because everywhere on V , fεr coincides with the s.o.s. polynomial
q. Therefore, when f is nonnegative on V , one obtains with no assumption on the
algebraic set V , a certificate of positivity for any approximation fεr of f (with r ≥
r(ε)), whereas f itself might not have such a representation. In other words, the
(ε, r)-perturbation fεr of f has a regularization effect on f as it permits to derive nice
representations.

(ii) From the proof of Theorem 4.1, instead of the representation (4.1), one may
also provide the alternative representation

fεr = q − λ

m∑
j=1

g2
j

for some s.o.s. polynomial q and some (single) nonnegative scalar λ (instead of m
nonnegative scalars in (4.1)).

4.1. The case of a semialgebraic set. We now consider the representation of
polynomials, nonnegative on a semialgebraic set K ⊂ Rn, defined as

K := {x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m}(4.2)

for some family {gj}mj=1 ⊂ R[x].
One may apply the machinery developed previously for algebraic sets, because

the semialgebraic set K may be viewed as the projection on Rn of an algebraic set in
Rn+m. Indeed, let V ⊂ Rn+m be the algebraic set defined as

V := {(x, z) ∈ Rn × Rm | gj(x) − z2
j = 0, j = 1, . . . ,m}.(4.3)

Then every x ∈ K is associated with the point (x,
√

g1(x), . . . ,
√
gm(x)) ∈ V .

Let R[z] := R[z1, . . . , zm], and R[x, z] := R[x1, . . . xn, z1, . . . , zm], and for every
r ∈ N, let ϕr ∈ R[z] be the polynomial

z �→ ϕr(z) =

r∑
k=0

m∑
j=1

z2k
j

k!
.(4.4)

We then get the following corollary.
Corollary 4.3. Let K be as in (4.2) and θr, ϕr be as in (3.2) and (4.4). Let

f ∈ R[x] be nonnegative on K. Then, for every ε > 0, there exist nonnegative scalars
{λj}mj=1 such that for all r sufficiently large,

f + εθr + εϕr = qε −
m∑
j=1

λj(gj − z2
j )

2(4.5)

for some s.o.s. polynomial qε ∈ R[x, z].
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Equivalently, everywhere on K, the polynomial

x �→ f(x) + ε
r∑

k=0

n∑
i=1

x2k
i

k!
+ ε

r∑
k=0

m∑
j=1

gj(x)k

k!
(4.6)

coincides with the nonnegative polynomial x �→ qε(x,
√
g1(x), . . . ,

√
gm(x)).

If qε is an s.o.s. of polynomials in R[x, z], from (4.5) qε is also a nonnegative
polynomial in R[x, z2], because the variables zj only appear through even powers.

Therefore, on K, x �→ qε(x,
√
g1(x), . . . ,

√
gm(x)) ∈ R[x] as z2

j = gj(x) for all j =
1, . . . ,m.

So, as for the case of an algebraic set V ⊂ Rn, (4.5) is an obvious certificate of
positivity on the semialgebraic set K for the polynomial fεr ∈ R[x, z]

fεr := f + εθr + εϕr,

and in addition, viewing f as an element of R[x, z], one has ‖f − fεr‖1 → 0 as ε ↓ 0.
Notice that no assumption on K or on the gj that define K is needed.

Now, assume that K is compact and the gj that define K satisfy Putinar’s con-
dition, i.e., (i) there exits some u ∈ R[x] such that u can be written u0 +

∑
j ujgj for

some s.o.s. polynomials {uj}mj=0, and (ii) the level set {x|u(x) ≥ 0} is compact.
If f is nonnegative on K, then f + εθr is strictly positive on K and therefore by

Putinar’s theorem [16]

f + εθr = q0 +

m∑
j=1

qjgj(4.7)

for some s.o.s. family {qj}mj=0. One may thus have either Putinar’s representation
(4.7) in Rn or (4.5) via a lifting in Rn+m.

One may relate (4.5) and (4.7) by

qε(x, z) = q1
ε (x) + q2

ε (x, z
2)

with

x �→ q1
ε (x) := q0(x) +

m∑
j=1

(
qj(x)gj(x) + λjgj(x)2

)

and

(x, z) �→ q2
ε (x, z

2) := εϕr(z) +

m∑
j=1

λjz
4
j − 2gj(x)z2

j .

4.2. Computational implications. The results of the previous section can be
applied to compute (or at least approximate) the global minimum of f on V . Indeed,
with ε > 0 fixed, and 2r ≥ max[deg f,deg g2

j ], consider the convex optimization
problem

Qεr

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

min
y

Ly(fεr),

s.t. Mr(y)  0,
Ly(g2

j ) ≤ 0, j = 1, . . . ,m,
y0 = 1,

(4.8)
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where θr is as in (3.2) and Ly and Mr(y) are the linear functional and the moment
matrix associated with a sequence y indexed in the basis (2.1); see (2.2) and (2.3).

Qεr is called an SDP problem, and its associated dual SDP problem reads

Q∗
εr

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

max
λ,γ,q

γ

s.t. fεr − γ = q −
m∑
j=1

λjg
2
j ,

λ ∈ Rm, λ ≥ 0,
q ∈ R[x], q s.o.s. of degree ≤ 2r.

(4.9)

Their optimal values are denoted inf Qεr and sup Q∗
εr, respectively (or min Qεr and

max Q∗
εr if the optimum is attained, in which case the problems are said to be solvable).

Both problems Qεr and its dual Q∗
εr are nice convex optimization problems that, in

principle, can be solved efficiently by standard software packages. For more details
on SDP theory, see [22].

That weak duality holds between Qεr and Q∗
εr is straightforward. Let y = {yα}

and (λ, γ, q) ∈ Rm
+ ×R×R[x] be feasible solutions of Qεr and Q∗

εr, respectively. Then,
by linearity of Ly,

Ly(fεr) − γ = Ly(fεr − γ)

= Ly

⎛
⎝q −

m∑
j=1

λjg
2
j

⎞
⎠ = Ly(q) −

m∑
j=1

λjLy(g2
j )

≥ Ly(q) [because Ly(g2
j ) ≤ 0∀ j = 1, . . . ,m]

≥ 0 [because q is s.o.s. and Mr(y)  0 ; see (2.6)].

Therefore, Ly(fεr) ≥ γ, the desired conclusion. Moreover, Qεr is an obvious relaxation
of the perturbed problem

Pεr : f∗
εr := min

x
{fεr | x ∈ V }.

Indeed, let x ∈ V and let y := v2r(x) (see (2.1)), i.e., y is the vector of moments
(up to order 2r) of the Dirac measure at x ∈ V . Then, y is feasible for Qεr because
y0 = 1, Mr(y)  0, and Ly(g2

j ) = gj(x)2 = 0, for all j = 1, . . . ,m. Similarly,
Ly(fεr) = fεr(x). Therefore, inf Qεr ≤ f∗

εr.
Theorem 4.4. Let V ⊂ Rn be as in (1.1) and θr as in (3.2). Assume that f has

a global minimizer x∗ ∈ V with f(x∗) = f∗. Let ε > 0 be fixed. Then

f∗ ≤ sup Q∗
εr ≤ inf Qεr ≤ f∗ + εθr(x

∗) ≤ f∗ + ε

n∑
i=1

e(x∗
i )2 ,(4.10)

provided that r is sufficiently large.
Proof. Observe that the polynomial f − f∗ is nonnegative on V . Therefore, by

Theorem 4.1, for every ε there exists r(ε) ∈ N and λ(ε) ∈ Rm
+ such that

f − f∗ + εθr +

m∑
j=1

λj(ε)g
2
j = qε

for some s.o.s. polynomial qε ∈ R[x]. But this shows that (λ(ε), f∗, qε) ∈ Rm
+ ×R×R[x]

is a feasible solution of Q∗
εr as soon as r ≥ r(ε), in which case sup Q∗

εr ≥ f∗. Moreover,
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we have seen that inf Qεr ≤ fεr(x) for any feasible solution x ∈ V . In particular,
inf Qεr ≤ f∗ + εθr(x

∗), from which (4.10) follows.
Theorem 4.4 has a nice feature. Suppose that one knows some bound ρ on the

norm ‖x∗‖∞ of a global minimizer of f on V . Then, one may fix a priori the error

bound η on | inf Qεr−f∗|. Indeed, let η be fixed, and fix ε > 0 such that ε ≤ η(neρ
2

)−1.
By Theorem 4.4, one has f∗ ≤ inf Qεr ≤ f∗ + η, provided that r is large enough.

The same approach works to approximate the global minimum of a polynomial
f on a semialgebraic set K, as defined in (4.2). In view of Corollary 4.3, and via
a lifting in Rn+m, one is reduced to the case of a real algebraic set V ⊂ Rn+m, so
that Theorem 4.4 still applies. It is important to emphasize that one requires no
assumption on K or on the gj that define K. This is to be compared with previous
SDP relaxation techniques developed in, e.g., [8, 9, 10, 14, 21], where the set K is
supposed to be compact, and with an additional assumption on the gj to ensure that
Putinar’s representation [16] holds.

5. Proofs.

5.1. Proof of Theorem 3.3. To prove the absence of a duality gap, we first
rewrite Pr

M (resp., Qr
M ) as a linear program in (standard) form

min
x

{〈x, c〉 | Gx = b, x ∈ C}, (resp., max
w

{〈w, b〉 | c−G∗w ∈ C∗})

on appropriate dual pairs of vector spaces, with associated convex cone C (and its
dual C∗), and associated linear map G (and its adjoint G∗). Then, we will prove that
G is continuous, and the set D := {(Gx, 〈x, c〉) |x ∈ C} is closed, in some appropriate
weak topology. This permits us to conclude by invoking standard results in infinite
dimensional linear programming, that one may find in, e.g., Anderson and Nash [1].
For a brief account see section 6.1, and for more details, see, e.g., Robertson and
Robertson [17] and Anderson and Nash [1].

Let θr be as in (3.2), and let M(Rn) be the R-vector space of finite signed Borel
measures μ on Rn, such that

∫
θr d|μ| < ∞ (where |μ| denotes the total variation of

μ). Similarly, let Hr be the R-vector space of continuous functions h : Rn → R, such
that supx∈Rn |h(x)|/θr(x) < ∞. With the bilinear form 〈., .〉 : M(Rn) ×Hr, defined
as

(μ, h) �→ 〈μ, h〉 =

∫
h dμ, (μ, h) ∈ M(Rn) ×Hr,

(M(Rn), Hr) forms a dual pair of vector spaces (see section 6.1). Introduce the dual
pair of vector spaces (X ,Y),

X := M(Rn) × Rm × R, Y := Hr × Rm × R,

and (Z,W)

Z := Rm × R × R, W := Rm × R × R.

Recall that 2r > deg g2
j for all j = 1, . . . ,m, and let G : X → Z be the linear map

(μ, u, v) �→ G(μ, u, v) :=

⎡
⎢⎢⎢⎢⎣

〈μ, g2
1〉 + u1

. . .
〈μ, g2

m〉 + um

〈μ, θr〉 + v
〈μ, 1〉

⎤
⎥⎥⎥⎥⎦
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with associated adjoint linear map G∗ : W → X ∗

(λ, δ, γ) �→ G∗(λ, δ, γ) :=

⎡
⎣

∑m
j=1 λjg

2
j + δθr + γ

λ
δ

⎤
⎦ .

Notice that G∗(W) ⊆ Y because 2r > deg g2
j for all j = 1, . . . ,m, and so g2

j ∈ Hr for
all j = 1, . . . ,m.

Next, let M(Rn)+ ⊂ M(Rn) be the convex cone of nonnegative finite Borel mea-
sures of M(Rn), so that the set C := M(Rn)+ × Rm

+ × R+ ⊂ X is a convex cone in
X . If Hr

+ denotes the cone of nonnegative functions of Hr, then

C∗ = Hr
+ × Rm

+ × R+ ⊂ Y

is the dual cone of C in Y.
As 2r > max[2degf,deg g2

j ] it follows that f ∈ Hr and g2
j ∈ Hr for all j =

1, . . . ,m. Then, by introducing slack variables u ∈ Rm
+ , v ∈ R+, rewrite the infinite

dimensional linear program Pr
M defined in (3.5), in equality form, that is,

Pr
M :

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

inf
μ,u,v

〈(μ, u, v), (f, 0, 0)〉

s.t. G(μ, u, v) =

⎡
⎣ 0

neM
2

1

⎤
⎦ ,

(μ, u, v) ∈ C.

(5.1)

The LP dual (Pr
M )∗ of Pr

M now reads

(Pr
M )∗ :

{
sup
λ,δ,γ

〈(λ, δ, γ), (0, neM
2

, 1)〉

s.t. (f, 0, 0) −G∗(λ, δ, γ) ∈ C∗.
(5.2)

Hence, every feasible solution (λ, δ, γ) of (Pr
M )∗ satisfies

f −
m∑
j=1

λj g
2
j − δ θr − γ ≥ 0, λ, δ ≤ 0.(5.3)

As λ, δ ≤ 0 in (5.2), one may see that the two formulations (5.2) and (3.6) are identical,
i.e., Qr

M = (Pr
M )∗.

As 2r > max[2degf,deg g2
j ], it follows that f −

∑m
j=1 λj g

2
j − δ θr − γ ∈ Hr,

for all (λ, δ, γ) ∈ W. As G∗(W) ⊂ Y, by Proposition 6.2, the linear map G is
weakly continuous (i.e., is continuous with respect to the weak topologies σ(X ,Y)
and σ(Z,W)). We next prove that the set D ⊂ Z × R, defined as

D := {(G(μ, u, v), 〈(μ, u, v), (f, 0, 0)〉) | (μ, u, v) ∈ C},(5.4)

is weakly closed.
For some directed set (A,≥), let {(μβ , uβ , vβ)}β∈A be a net in C, such that

(G(μβ , uβ , vβ), 〈(μβ , uβ , vβ), (f, 0, 0)〉) → ((a, b, c), d),

weakly, for some element ((a, b, c), d) ∈ Z × R. (In fact, as Z × R ≡ Rm+3 it suffices
to consider sequences instead of nets.) In particular,

μβ(Rn) → c; 〈μβ , θr〉 + vβ → b; 〈μβ , g
2
j 〉 + (uβ)j → aj , j = 1, . . . ,m,
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and 〈μβ , f〉 → d. As (μβ , uβ , vβ) ∈ C, and θr, g
2
j ≥ 0, it follows immediately that

a, b, c ≥ 0. We need to consider the two cases c = 0 and c > 0.
Case c = 0. From μβ(Rn) → c, it follows that μβ → μ := 0 in the total variation

norm. But in this case, observe that G(μ, a, b) = (a, b, c). It remains to prove that we
also have 〈μβ , f〉 → d = 0, in which case, (G(μ, a, b), 〈μ, f〉) = ((a, b, c), d), as desired.

Recall that r ≥ degf . Denote by {yα(β)}|α|≤2r the sequence of moments of the
measure μβ , i.e.,

yα(β) =

∫
xα dμβ , α ∈ Nn, |α| ≤ 2r.

In particular, y0(β) = μβ(Rn). From 〈μβ , θr〉 + vβ → b, there is some β0 ∈ A, such
that 〈μβ , θr〉 ≤ 2b for all β ≥ β0. But this implies that

y2k(i, β) :=

∫
x2k
i dμβ ≤ 2r!b, k ≤ r, i = 1, . . . , n.

By Lemma 6.6, it follows that y2α(β) ≤ 2br! for all α ∈ Nn with |α| ≤ r and |yα(β)| ≤√
2y0(β) br! for all |α| ≤ r. But then, as y0(β) = μβ(Rn) → c = 0, we thus obtain

yα(β) → 0 for all |α| ≤ r. Therefore,

〈μβ , f〉 =

∫
f dμβ =

∑
|α|≤r

fα

∫
xα dμβ =

∑
|α|≤r

fαyα(β) → 0,

the desired result.
Case c > 0. From μβ(Rn) → c and 〈μβ , θr〉 + vβ → b, there is some β0 ∈ A,

such that μβ(Rn) ≤ 2c and 〈μβ , θr〉 ≤ 2b for all β ≥ β0. But, as θr is a moment
function, this implies that the family Δ := {νβ := μβ/μβ(Rn)}β≥α0 is a tight family
of probability measures, and as Δ is a set of probability measures on a metric space,
by Prohorov’s theorem, Δ is relatively compact (see [7, Chap. 1] and section 6.2).
Therefore, there is some probability measure ν∗ ∈ M(Rn), and a sequence {nk} ⊂ Δ,
such that νnk

converges to ν∗ for the weak convergence of probability measures, i.e.,

〈νnk
, h〉 → 〈ν∗, h〉 ∀h ∈ Cb(Rn)

(where Cb(Rn) denotes the space of bounded continuous functions on Rn); see, e.g.,
Billingsley [5]. Hence, with μ∗ := c ν∗, we also conclude

〈μnk
, h〉 → 〈μ∗, h〉 ∀h ∈ Cb(Rn).(5.5)

Next, as 2r > max[2deg f,deg g2
j ], the functions f/θr−1 and g2

j /θr−1, j = 1, . . . ,m,
are all in Cb(Rn). Therefore, using Lemma 6.5, we obtain

〈νnk
, f〉 → 〈ν∗, f〉, and 〈νnk

, g2
j 〉 → 〈ν∗, g2

j 〉, j = 1, . . . ,m.

And, therefore,

〈μnk
, f〉 → 〈μ∗, f〉 = d, and 〈μnk

, g2
j 〉 → 〈μ∗, g2

j 〉, j = 1, . . . ,m.

Finally, from the weak convergence (5.5), and as θr is continuous and nonnegative,

〈μ∗, θr〉 ≤ lim inf
k→∞

〈μnk
, θr〉 ≤ b;

see, e.g., [7, Prop. 1.4.18].
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So, let v := b−〈μ∗, θr〉 ≥ 0 and uj := aj−〈μ∗, g2
j 〉 ≥ 0, j = 1, . . . ,m, and recalling

that c = μ∗(Rn), we conclude that G(μ∗, u, v) = (a, b, c) and 〈(μ∗, u, v), (f, 0, 0)〉 = d,
which proves that the set D in (5.4) is weakly closed.

Finally, by Proposition 3.2, Pr
M is consistent with finite value as soon as M is

large enough to ensure that BM ∩ V �= ∅. Therefore, one may invoke Theorem 6.4
and conclude that there is no duality gap between Pr

M and its dual Qr
M , the desired

result.

5.2. Proof of Theorem 4.1. It suffices to prove the result for the case where
infx∈V f(x) = f∗ > 0. Indeed, suppose that f∗ = 0. Then with ε > 0 fixed, arbitrary,

f∗ + nε > 0 and so suppose that (4.1) holds for f̂ := f + nε. There is some r(ε) ∈ N
such that for all r ≥ r(ε),

f̂ = f + nε + ε θr = qεr −
m∑
j=1

λjg
2
j

for some s.o.s. polynomial qεr and some nonnegative scalars {λj}. Equivalently,

f + 2ε θr = qεr + ε

r∑
k=1

n∑
j=1

x2k
j

k!
−

m∑
j=1

λjg
2
j = q̂εr −

m∑
j=1

λjg
2
j ,

where q̂εr is an s.o.s. polynomial. Equivalently, f2εr = q̂εr −
∑m

j=1 λjg
2
j , so that (4.1)

also holds for f . Therefore, from now on, we will assume that f∗ > 0.
So let ε > 0 (fixed) be such that f∗ − ε > 0, and let r ≥ r0 with r0 as in Theorem

3.3. Next, by Proposition 3.2, let M be such that f∗ ≤ inf Pr
M ≤ f∗ + ε. By Theorem

3.3, we then have supQr
M ≥ f∗. So, by considering a maximizing sequence of Qr

M ,
there is some (λ, δ, γ) ∈ Rm

+ × R+ × R, such that

0 < f∗ − ε < γ − nδeM
2 ≤ f∗ + ε; f + δθr +

m∑
j=1

λj g
2
j ≥ γ,(5.6)

and so,

f − (γ − nδeM
2

) +

m∑
j=1

λj g
2
j ≥ δ(neM

2 − θr).(5.7)

By Proposition 3.1, we may choose M such that there is some xM ∈ BM/2 ∩ V such
that f(xM ) ≤ f∗ + ε. Evaluating (5.7) at x = xM yields

2ε ≥ f(xM ) − (γ − nδeM
2

) ≥ δ(neM
2 − θr(xM )),(5.8)

and so, using ‖xM‖∞ ≤ M/2,

2ε ≥ δn(eM
2 − eM

2/4),(5.9)

which yields δ ≤ 2ε/n(eM
2 − eM

2/4). Therefore, given ε > 0, one may pick (λ, δ, γ) in
a maximizing sequence of Qr

M , in such a way that δ ≤ ε.
For such a choice of (λ, δ, γ), and in view of (5.6), we have

f + δθr +

m∑
j=1

λj g
2
j ≥ (γ − nδeM

2

) + nδeM
2 ≥ f∗ − ε + nδeM

2 ≥ 0,

so that the polynomial h := f + δθr +
∑m

j=1 λj g
2
j is nonnegative.
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Therefore, invoking Theorem 3.4 proved in Lasserre [11], there is some r(ε) ∈ N
such that for all s ≥ r(ε), the polynomial qε := h + εθs is an s.o.s. But then, take
s > max[r, r(ε)] and observe that

δθr + εθs = (δ + ε)θs − δ

s∑
k=r+1

n∑
j=1

x2
i

k!
,

and so

qε = h + εθs = f +

m∑
j=1

λjg
2
j + (δ + ε)θs − δ

s∑
k=r+1

n∑
i=1

x2
i

k!
,

or, equivalently,

f +

m∑
j=1

λj g
2
j + (δ + ε)θs = qε + δ

s∑
k=r+1

n∑
j=1

x2
i

k!
= q̂ε,

where q̂ε is an s.o.s. polynomial.
As δ was chosen to satisfy δ ≤ ε, we obtain

f +

m∑
j=1

λj g
2
j + 2εθs = q̂ε + (ε− δ)θs = ˆ̂qε,

where again, ˆ̂qε is an s.o.s. polynomial.

6. Appendix. In this section, we first briefly recall some basic results of linear
programming in infinite dimensional spaces and then present auxiliary results that
are used in some of the proofs in section 5.

6.1. Linear programming in infinite dimensional spaces.

6.1.1. Dual pairs. Let X ,Y be two arbitrary (real) vector spaces, and let 〈., .〉
be a bilinear form on X × Y, that is, a real-valued function on X × Y such that

• the map x �→ 〈x, y〉 is linear on X for every y ∈ Y,
• the map y �→ 〈x, y〉 is linear on Y for every x ∈ X .
Then the pair (X ,Y) is called a dual pair if the bilinear form separates points in

X and Y, that is,
• for each 0 �= x ∈ X , there is some y ∈ Y such that 〈x, y〉 �= 0, and
• for each 0 �= y ∈ Y, there is some x ∈ X such that 〈x, y〉 �= 0.
Given a dual pair (X ,Y), we denote by σ(X ,Y) the weak topology on X (also

referred to as the σ-topology on X ), namely, the coarsest—or weakest—topology on
X , under which all the elements of Y are continuous when regarded as linear forms
〈., y〉 on X . In addition, let X ∗ be the algebraic dual of X .

Equivalently, the base of neighborhoods of the origin of the σ-topology is the
family of all sets of the form

N(I, ε) := {x ∈ X | |〈x, y〉 ≤ ε ∀y ∈ I},

where ε > 0 and I is a finite subset of Y. (See, for instance, Robertson and Robertson
[17, p. 32].) In this case, if {xn} is a net or a sequence in X , then xn converges to x
in the weak topology σ(X ,Y) if

〈xn, y〉 → 〈x, y〉 ∀y ∈ Y.
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Definition 6.1. Let (X ,Y) and (Z,W) be two dual pairs of vector spaces, and
let G : X → Z be a linear map.

(a) G is said to be weakly continuous if it is continuous with respect to the weak
topologies σ(X ,Y) and σ(Z,W); that is, if {xn} is a net in X such that xn → x in
the weak topology σ(X ,Y), then Gxn → Gx in the weak topology σ(X ,Y), i.e.,

〈Gxn, v〉 → 〈Gx, v〉 ∀v ∈ W.

(b) The adjoint G∗ : W → X ∗ of G is defined by the relation

〈Gx, v〉 = 〈x,G∗v〉 ∀x ∈ X , v ∈ W.

The following proposition gives a well-known (easy to use) criterion for the map G
in Definition 6.1, to be weakly continuous.

Proposition 6.2. The linear map G is weakly continous if and only if its adjoint
G∗ maps W into Y, that is, G∗(W) ⊆ Y.

6.1.2. Positive and dual cones. Let (X ,Y) be a dual pair of vector spaces,
and C a convex cone in X , that is, x+ x′ and λx belong to C whenever x and x′ are
in C and λ > 0. Unless explicitly stated otherwise, we shall assume that C is not the
whole space, that is, C �= X , and that the origin (the zero vector in X ) is in C. In
this case, C defines a partial order ≥ in X , such that

x ≥ x′ ⇔ x− x′ ∈ C,

and C is referred to as a positive cone in X . The dual cone of C is the convex cone
C∗ in Y defined by

C∗ := {y ∈ Y | 〈x, y〉 ≥ 0 ∀x ∈ C}.

6.1.3. Infinite linear programming. An infinite linear program requires the
following components:

• two dual pairs of vector spaces (X ,Y);
• a weakly continuous linear map G : X → Z, with adjoint G∗ : W → Y;
• a positive cone C in X , with dual cone C∗ in Y; and
• vectors b ∈ Z and c ∈ Y.

Then the primal linear program is

P :
minimize 〈x, c〉
subject to: Gx = b, x ∈ C.

(6.1)

The corresponding dual linear program is

P∗ :
maximize 〈b, w〉
subject to: c−G∗w ∈ C∗, w ∈ W.

(6.2)

An element of x ∈ X is called feasible for P if it satisfies (6.1), and P is said to be
consistent, if it has a feasible solution. If P is consistent, then its value is defined as

inf P := inf {〈x, c〉 | x is feasible for P};

otherwise, inf P = +∞. The linear program P is solvable if there is some feasible
solution x∗ ∈ X that achieves the value inf P; then x∗ is an optimal solution of P, and
one then writes inf P = min P. The same definitions apply for the dual linear program
P∗.
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The next result can be proved as in elementary (finite-dimensional) linear pro-
gramming.

Proposition 6.3 (weak duality). If P and P∗ are both consistent, then their
values are finite and satisfy sup P∗ ≤ inf P.

There is no duality gap if sup P∗ = inf P, and strong duality holds if max P∗ =
min P, i.e., if there is no duality gap, and both P∗ and P are solvable.

Theorem 6.4. Let D be the set in Z × R, defined as

D := {(Gx, 〈x, c〉) | x ∈ C}.(6.3)

If P is consistent with finite value, and D is weakly closed (i.e., closed in the weak
topology σ(Z×R,W×R)), then P is solvable and there is no duality gap, i.e., sup P∗ =
min P. (See Anderson and Nash [1, Theorems 3.10 and 3.22].)

6.2. Auxiliary results. Let X be a metric space. A nonnegative function f :
X → R+ is said to be a moment if there is a sequence of compact sets Kn ↑ X as
n → ∞, such that

lim
n→∞

inf
x∈X\Kn

f(x) = +∞.

For instance, with X := Rn, the function x �→ f(x) = x′Qx for some positive definite
symmetric matrix Q ∈ Rn×n is a moment function; take, for instance, Km := {x ∈
Rn : x′Qx ≤ m} for all m = 1, 2, . . ..

Moment functions are very useful because they provide a sufficient criterion for
tightness of a set of probability measures. Indeed, let P(X) be the space of probability
measures on X, and let Π ⊂ P(X) be a given set of probability measures. If

sup
μ∈Π

∫
f dμ < ∞

for some moment function f , then Π is tight, and therefore, by Prohorov’s theorem,
Π is relatively compact for the topology of weak convergence of probability measures.
That is, for any sequence {μn} ⊂ Π, there exists a probability measure μ ∈ P(X),
and a subsequence {nk} such that

lim
k→∞

∫
h dμnk

=

∫
h dμ

for all bounded continuous functions h : X → R; see, e.g., Hernández-Lerma and
Lasserre [7, pp. 10–11].

Let B be the Borel sigma-algebra of Rn, Cb(Rn) be the space of bounded con-
tinuous functions on Rn, and let θr be as in (3.2). Let M(Rn) be the space of finite
signed Borel measures on Rn.

Lemma 6.5. Let r ≥ 1, and let {μj}j∈J ⊂ M(Rn) be a sequence of probability
measures such that

sup
j∈J

∫
θr dμj < ∞.(6.4)

Then there is a subsequence {jk} ⊂ J and a probability measure μ on Rn (not neces-
sarily in M) such that

lim
k→∞

∫
f dμjk =

∫
f dμ

for all continuous functions f : Rn → R, such that f/θr−1 ∈ Cb(Rn).
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Proof. θr is a moment function (see (3.3)), and so, (6.4) implies that the sequence
{μj} is tight. Hence, as Rn is a metric space, by Prohorov’s theorem [7, Theorem
1.4.12], there is a subsequence {jk} ⊂ J and a measure μ ∈ M(Rn) such that μjk ⇒ μ,
i.e., ∫

hμjk →
∫

h dμ,(6.5)

for all h ∈ Cb(Rn). Next, let νjk be the measure obtained from μjk by

νjk(B) :=

∫
B

θr−1 dμjk , B ∈ B.

Observe that from the definition of θr, the function θr/θr−1 is a moment function, for
every r ≥ 1. And one has

sup
k

∫
θr/θr−1 dνjk = sup

k

∫
θr dμjk < ∞

because of (6.4). Observe that νjk(Rn) ≤ ρ0 for some ρ0 and all k, and so we may
consider a subsequence of {jk} (still denoted {jk} for simplicy of notation) such that
νjk(Rn) → ρ (> 0) as k → ∞. With ν̂jk := νjk/νjk(Rn) for all k, it follows that
the sequence of probability measures {ν̂jk}k is tight, which implies that there is a
subsequence {jn} of {jk} and a measure ν̂ ∈ M(Rn) such that

as n → ∞,

∫
h dν̂jn →

∫
h dν̂ ∀h ∈ Cb(Rn).

Since νjk(Rn) → ρ as k → ∞, we immediately get∫
h dνjn =

∫
h (ρ + νjn(Rn) − ρ) dν̂jn →

∫
hρ dν̂ as n → ∞

for all h ∈ Cb(Rn). Equivalently, with ν := ρν̂,

as n → ∞,

∫
h dνjn →

∫
h dν ∀h ∈ Cb(Rn).(6.6)

But as h/θr−1 ∈ Cb(Rn) whenever h ∈ Cb(Rn), (6.6) yields∫
h/θr−1 dν = lim

n→∞

∫
h/θr−1 dνjn = lim

n→∞

∫
h dμjn =

∫
h dμ

for all h ∈ Cb(Rn).
As both μ and θ−1

r−1dν are finite measures, this implies that

μ(B) :=

∫
B

(1/θr−1) dν, B ∈ B.(6.7)

As the subsequence {jn} was arbitrary, it thus follows that the whole subsequence
{νjk} converges weakly to ν.

Next, let f : Rn → R be continuous and such that f/θr−1 ∈ Cb(Rn). As k → ∞,
from (6.6), ∫

(f/θr−1) dνjk →
∫

(f/θr−1) dν,
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and so ∫
f dμjk =

∫
(f/θr−1) θr−1 dμjk =

∫
(f/θr−1) dνjk

→
∫

(f/θr−1) dν =

∫
f dμ, [by (6.7)],

the desired result.
Lemma 6.6. Let μ be a measure on Rn (with μ(Rn) = y0) be such that

sup
i=1,...,n

sup
0≤k≤r

∫
x2k
i dμ ≤ S.(6.8)

Then,

sup
α∈Nn;|α|≤r

|
∫

xα dμ | ≤
√

y0S.(6.9)

Proof. Let y = {yα}|α|≤2r be the sequence of moments, up to order 2r, of the
measure μ, and let Mr(y) be the moment matrix defined in (2.3), associated with μ.

Then, (6.8) means that those diagonal elements of Mr(y), denoted y
(i)
2k in Lasserre

[11], are all bounded by S. Therefore, by Lemma 6.2 in [11], all diagonal elements of
Mr(y) are also bounded by S, i.e.,

y2α ≤ S ∀α ∈ Nn, |α| ≤ r,(6.10)

and so are all elements of Mr(y) (because Mr(y)  0). Next, consider the two
columns (and rows) 1 and j, associated with the monomials 1 and xα, respectively,
and with |α| ≤ r, that is, Mr(y)(1, 1) = y0 and Mr(y)(1, j) = yα. As Mr(y)  0, we
immediately have

Mr(y)(1, 1) ×Mr(y)(j, j) ≥ Mr(y)(1, j)Mr(y)(j, 1) = Mr(y)(1, j)2,

that is, y0y2α ≥ y2
α. Using that |α| ≤ r and (6.10), we obtain y0S ≥ y2

α for all
α, |α| ≤ r, the desired result (6.9).
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DISTANCE TO SOLVABILITY/UNSOLVABILITY IN LINEAR
OPTIMIZATION∗

M. J. CÁNOVAS† , M. A. LÓPEZ‡ , J. PARRA† , AND F. J. TOLEDO†

Abstract. In this paper we measure how much a linear optimization problem, in Rn, has to
be perturbed in order to lose either its solvability (i.e., the existence of optimal solutions) or its
unsolvability property. In other words, if we consider as ill-posed those problems in the boundary
of the set of solvable ones, then we can say that this paper deals with the associated distance to
ill-posedness. Our parameter space is the set of all the linear semi-infinite programming problems
with a fixed, but arbitrary, index set. In this framework, which includes as a particular case the
ordinary linear programming, we obtain a formula for the distance from a solvable problem to
unsolvability in terms of the nominal problem’s coefficients. Moreover, this formula also provides the
exact expression, or a lower bound, of the distance from an unsolvable problem to solvability. The
relationship between the solvability and the primal-dual consistency is analyzed in the semi-infinite
context, underlining the differences with the finite case.
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1. Introduction. Different concepts of distance to ill-posedness have recently
acquired remarkable prominence in different settings related to linear programming.
Besides providing quantitative measures of the stability of a problem, they are related
to several theoretical and numerical issues, namely, stability of the feasible set [3], [6],
[19]; measures of conditioning [10], [17], [20]; complexity analysis of certain algorithms
for computing solutions [9], [11]; size of the feasible set [3], [8]; metric regularity of
mappings [6], [7], [15]; etc.

An instance of a problem is ill-posed with respect to a certain property if arbitrar-
ily small perturbations of the data defining the problem instance can yield problem
instances with and without the property. In this way, the respective boundaries of
the sets of consistent problems (i.e., with nonempty solution set), bounded problems
(i.e., with finite optimal value), or solvable problems (i.e., having optimal solutions)
can be seen as examples of sets of ill-posed problems. The distance from a problem
to any of these boundaries is referred to as its distance to ill-posedness with respect
to the considered property.

The distance to ill-posedness with respect to consistency has been thoroughly
studied, for example, in the contexts of conic linear systems [16], [18], [19] and linear
semi-infinite inequality systems [3].

This paper is concerned with the distance to ill-posedness with respect to the
boundedness and solvability of linear optimization problems, in Rn, of the following
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form:

π : Inf c′x
s.t. a′tx ≥ bt, t ∈ T,

(1)

where c, x, at ∈ Rn, bt ∈ R, and y′ denotes the transpose of y ∈ Rn. The index set,
T , of the constraint system, σ = {a′tx ≥ bt , t ∈ T}, is arbitrary. The feasible set of
π is denoted by F , its optimal value by v, and its optimal set by F op, adopting the
convention v = +∞ when F = ∅.

When T is finite π is nothing else but an ordinary linear programming problem,
whereas π is a linear semi-infinite programming problem when T is infinite. In the
latter case the problem of determining the distance to the ill-posedness with respect
to the solvability is not reducible to the problem of determining the distance to the
ill-posedness with respect the consistency of the combined system of primal and dual
constraints [5], since the dual problem is infinite-dimensional and there might exist
a duality gap (see [12, Chap. 8]). Nevertheless, in section 6 the relationship between
solvability and primal-dual consistency is explored.

The parameter space of all the linear optimization problems π = (c, σ) in the
form (1), and whose constraint systems have the same index set T , is denoted by Π.
When different problems are considered in Π, they and their associated elements will
be distinguished by means of sub- or superscripts. Thus, if π1 also belongs to Π, we
write π1 = (c1, σ1) and σ1 := {(a1

t )
′x ≥ b1t , t ∈ T}, and its feasible set, optimal value,

and optimal set are accordingly denoted by F1, v1, and F op
1 , respectively.

Πc will denote the subset of Π formed by all the consistent problems, while Πi :=
Π\Πc represents the subset of all the inconsistent problems. Πb denotes the subset of
the bounded problems, and Πs the subset of the solvable ones, that is, those problems
with nonempty optimal set (F op �= ∅). Obviously Πs ⊂ Πb ⊂ Πc.

Associated with two arbitrary norms in Rn and Rn+1, both denoted by ‖·‖, the
extended distance δ : Π × Π → [0,+∞] given by

δ (π1, π) := max
{∥∥c1 − c

∥∥ , d (σ1, σ)
}
,(2)

where

d (σ1, σ) := sup
t∈T

∥∥∥∥
(
a1
t

b1t

)
−
(
at
bt

)∥∥∥∥ .
This extended distance endows Π with the topology of the uniform convergence of
the coefficients vectors (see [12, Chapter 10] for details). The space Π locally behaves
as a normed space.

Given π ∈ Π and Π̃ ⊂ Π, we will write, as usual,

δ(π, Π̃) := inf
{
δ (π, π̃) , π̃ ∈ Π̃

}
∈ [0,+∞].

If ∅ �= Π̃ and π /∈ Π̃, one has δ(π, Π̃) = δ(π, bd(Π̃)).
If X is a subset of any topological space, int(X), cl(X), and bd(X) denote the

interior set, the closure, and the boundary of X, respectively. By ext(X) we represent
the exterior of X, i.e., the complementary set of cl(X).

In [4, Thm. 1], it is proved that the set of ill-posed problems with respect to
solvability, bd (Πs), coincides with bd (Πb). Moreover, this set is characterized there
by means of some results which we gather, among other preliminaries, in section 2.
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In fact, in order to achieve our goal of finding an expression for the distance to ill-
posedness δ(π, bd(Πs)), we appeal to a collection of results about the stability and
well-posedness established in [2], [3], [4], [12], and [13]. In section 3 we provide (via
Theorems 1 and 2) an explicit formula (5) for the distance to unsolvability from a
solvable problem. Specifically, this formula consists of the minimum of two distances
in Rn and Rn+1, respectively, which depend only on the problem’s data. We point out
that the first of these distances turns out to be the distance to (primal) inconsistency
for the given problem, whereas the second one is, as we prove in Theorem 6, the dis-
tance to dual inconsistency. On the other hand, Theorems 3 and 4 establish that the
previous formula can be extended to certain unsolvable problems. Theorem 1 gathers
all the cases for which the formula holds. In the remaining cases we show that the
right-hand side of (5) still stands as a lower bound for the distance to ill-posedness,
and a general upper bound is also given (Theorem 5), again in terms of the prob-
lem’s data. Section 4 provides more precise upper bounds under certain additional
hypotheses. Section 5 is devoted to presenting some examples and counterexamples
which delimit and illustrate the main results of the paper. Specifically, Examples 5
and 6 show the difficulties in providing a formula of δ(π, bd(Πs)) when Theorem 1 does
not apply. Section 6 approaches the ill-posedness with respect to the dual consistency
and analyzes the relationship between the ill-posedness with respect to the solvability
and with respect to primal-dual consistency. This section, together with section 7,
integrates the contributions of the paper within the related literature on conditioning
in linear optimization, paying attention to the backgrounds in the finite case (with T
finite) traced from [5], [10], and [20]. We emphasize the differences between the finite
case and the general one (T arbitrary). These two last sections show how formula (5)
generalizes to our semi-infinite context the corresponding result for finite solvable lin-
ear programming problems. Moreover, (5) extends to a certain subset of unsolvable
problems, providing new results even for finite linear programming.

2. Preliminaries. This section presents the necessary notation and some basic
definitions, results, and tools used in this paper. Given ∅ �= X ⊂ Rk, conv(X) and
cone(X) denote the convex hull of X and the conical convex hull of X, respectively. It
is assumed that cone (X) always contains the zero-vector 0k, and thus cone(∅) = {0k}.
If Λ ⊂ R, we introduce the set ΛX := {λx : λ ∈ Λ and x ∈ X}.

If we consider any norm in Rk, ‖.‖, the corresponding open unit ball will be rep-
resented by B. Given a sequence {μr}, limr μr should be interpreted as limr→+∞ μr.

Associated with π = (c, σ), the following sets are relevant in our analysis:

A := conv ({at, t ∈ T}) , M := cone ({at, t ∈ T}) = R+A,

Z+ := conv ({at, t ∈ T ; c}) , Z− := conv ({at , t ∈ T ; −c}) ,

C := conv

({(
at
bt

)
, t ∈ T

})
, H := C + R+

{(
0n
−1

)}
,

where R+ := [0,+∞[ . The sets M and H are, respectively, called the first moment
cone and the hypographical set.

The existence of infinitely many coefficient vectors when T is infinite gives rise to
the following pathological subset of problems (see [3, sect. 3]):

Π∞ := {π ∈ Π | δ(π, bd(Πc)) = +∞} .
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The problems in Π∞ are characterized by the property that
(
0n

1

)
belongs to the

recession cone of cl(C); in other words,
(
0n

1

)
= limr μrz

r, with {zr}∞r=1 ⊂ C and
{μr} ↓ 0. Moreover, Π∞ ⊂ Πi.

The following proposition gathers different results which are applied throughout
the paper.

Proposition 1. Given π = (c, σ) ∈ Π, the following statements hold:
(i) [2, Lem. 4.1] If π ∈ int (Πc), then π ∈ int (Πs) if and only if c ∈ int (M).
(ii) [12, Thm. 8.1(iv)] If π ∈ Πb, then c ∈ cl (M).
(iii) [4, Lem. 1(iv)] If π ∈ Πc and c ∈ cl (M), then π ∈ cl (Πs).
(iv) [4, Lem. 1(i) and Prop. 5] If π ∈ bd (Πc) ∪ (Πi\Π∞), then 0n ∈ cl (A).
(v) [4, Lem. 1(ii)] If π ∈ bd (Πc) ∩ Πi, then 0n ∈ bd (A).
(vi) [12, Thm. 6.3] If π ∈ Πi and M = Rn, then π ∈ int (Πi).
Along the lines of [8] and [10] (which deal with conic linear systems), bd(Πc) is

considered as the set of ill-posed problems with respect to the consistency, and ac-
cording to [19], the distance to ill-posedness is δ(π, bd(Πc)). The following proposition
describes the position of π ∈ Π relative to bd (Πc) in terms of the relative position
between 0n+1 and the boundary of the hypographical set, bd (H).

Proposition 2 (see [3, Thms. 4, 5, and 6]). Let π ∈ Π�Π∞. Then, the following
statements hold:

(i) π ∈ int (Πi) ⇔ 0n+1 ∈ int (H);
(ii) π ∈ int (Πc) ⇔ 0n+1 ∈ ext(H);
(iii) π ∈ bd (Πc) ⇔ 0n+1 ∈ bd(H);
(iv) δ(π, bd(Πc)) = d (0n+1, bd (H)).
Observe that (iv) translates the problem of measuring the distance to ill-posedness

with respect to the consistency, posed in the infinite-dimensional space Π, into the
problem of calculating a distance in the (n + 1)-dimensional Euclidean space.

The following proposition describes the position of π ∈ int (Πc) relative to bd (Πs)
in terms of the relative position between 0n and the boundary of the set Z−.

Proposition 3 (see [4, Thm. 2]). Given π ∈ int (Πc), one has
(i) π ∈ int (Πs) ⇔ 0n ∈ int(Z−);
(ii) π ∈ bd (Πs) ⇔ 0n ∈ bd(Z−);
(iii) π ∈ ext (Πs) ⇔ 0n ∈ ext (Z−).
The next result characterizes those problems that, being ill-posed with respect to

the consistency, are also ill-posed with respect to the solvability.
Proposition 4 (see [4, Thm. 3]). Let π ∈ bd (Πc). Then π ∈ bd (Πs) if and only

if either π ∈ cl (bd (Πc) ∩ Πc) or 0n ∈ bd(Z+).
The following proposition explores the relationship between the condition π ∈

cl (bd (Πc) ∩ Πc) and the data-set C.
Proposition 5 (see [4, Thm. 4]). Let π ∈ bd (Πc). If π ∈ cl (bd (Πc) ∩ Πc), then

0n+1 ∈ bd (C). The converse statement holds when {bt , t ∈ T} is bounded.
The following proposition, which is a straightforward consequence of Propositions

3, 4, and 5, provides a complete characterization of the ill-posed problems whose
constraint systems have a bounded right-hand side.

Proposition 6 (see [4, Thm. 5]). Let π ∈ Π, and suppose that the set {bt , t ∈ T}
is bounded. Then, π ∈ bd (Πs) if and only if some of the following statements hold:

(i) 0n+1 ∈ ext (H) and 0n ∈ bd (Z−);
(ii) 0n+1 ∈ bd (H) ∩ bd (C);
(iii) 0n+1 ∈ bd (H) and 0n ∈ bd (Z+).
The following results admit straightforward proofs.
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Proposition 7. The sets M , A, Z+, and Z− satisfy the following relations:

c ∈ int (M) ⇔ 0n ∈ int
(
Z−) and −c ∈ int (M) ⇔ 0n ∈ int

(
Z+

)
.

In particular, if c = 0n, then Z+ = Z− and

0n ∈ int
(
Z−) ⇔ 0n ∈ int (A) ⇔ 0n ∈ int (M) ⇔ M = Rn.

Proposition 8. Let S �= ∅ be an arbitrary index set and let X := {xs , s ∈ S}
and Y := {ys , s ∈ S} be two subsets of Rk such that sups∈S ‖xs − ys‖ ≤ ε for certain
ε ≥ 0. Then one has the following:

(i) If ρcl (B) ⊂ cl (conv (X)) for some ρ ≥ ε, then

(ρ− ε) cl (B) ⊂ cl (conv (Y )) .

(ii) If ρcl (B) ∩ cl (conv (X)) = ∅ for some ρ ≥ ε, then

(ρ− ε) cl (B) ∩ cl (conv (Y )) = ∅.

Figure 1 summarizes the information we have already presented about the struc-
ture of Π\Π∞ in relation to the properties of consistency and solvability.

π∈int(Π ) 

0 ∈int(Z ) ∧
0 ∈ext(H) 

π∈bd(Π ) ∩∩∩∩ int(Π ) 0 ∈bd(Z ) ∧ 0 ∈ext(H)

0 ∈bd(H) ∧
0 ∈int(Z ) ∧

π∈ext(Π ∩bd(Π ))

π∈ext(Π ) ∩ bd(Π ) 

π∈Π   ∧
0 ∈bd(Z ) 

π∈ext(Π ) ∩ int(Π ) 

0 ∈ext(Z ) ∧
0 ∈ext(H) 

π∈int(Π ) 

0 ∈int(H) 

 0 ∈int(Z ) 

π∈bd(Π ) ∩∩∩∩ bd(Π ) 

∈

0 ∈bd(H) ∧ (0 ∈bd(Z ) ∨ π∈cl(Π ∩bd(Π ))) 

0 ∈bd(C)

0 ∈bd(Z ) ∨ π∈cl(Π ∩bd(ΠΠ ))

0 ∈bd(H)

0 ∈bd(Z )

0 ∈ext(C)

∈

Fig. 1. Structure of Π\Π∞.
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Throughout the paper we assume that the norm ‖·‖ considered in Rn+1 verifies∥∥∥∥
(
a

b

)∥∥∥∥ =

∥∥∥∥
(

a

−b

)∥∥∥∥ for all

(
a

b

)
∈ Rn+1.(3)

Observe that any p-norm, but not any norm (see [21, Thm. 15.2]), verifies this condi-
tion. In Rn the norm (also denoted by ‖·‖) given by

‖a‖ :=

∥∥∥∥
(
a

0

)∥∥∥∥ for all a ∈ Rn(4)

will be considered. Note that if the norm considered in Rn+1 is a p-norm, p ∈ [1,+∞],
the norm in Rn is also a p-norm (with the same p).

Remark 1. Property (3) implies that ‖
(
a
b1

)
‖ ≤ ‖

(
a
b2

)
‖ when |b1| ≤ |b2|. The proof

is a straightforward consequence of the fact that
(
a
b1

)
is a convex combination of

(
a
b2

)
and

(
a

−b2

)
.

3. Distance to solvability/unsolvability. In the present section we approach
the problem of determining the distance to ill-posedness, δ (π, bd (Πs)), for a given
problem π ∈ Π\Π∞. The case π ∈ Π∞ is obvious as far as Π∞ ⊂ Πi, and then
δ (π, bd (Πs)) ≥ δ (π, bd (Πc)) = +∞. We will analyze different cases obtaining either
an exact expression (see Theorem 1) or lower and upper bounds (see Theorem 5 and
the subsequent results) for this distance in terms of the problem’s data.

The following theorem is the main result in this paper and partially synthesizes
the statements of Theorems 2, 3, 4, and 5 in relation to the exact formula for the
distance to ill-posedness mentioned in the previous paragraph.

Theorem 1. Let π = (c, σ) ∈ Π\Π∞. Suppose that at least one of the following
conditions holds:

(i) π ∈ cl (Πs);
(ii) π ∈ ext (Πs) and d (0n+1, bd (H)) �= d (0n, bd (Z−));
(iii) d (0n+1, bd (H)) = d (0n, bd (Z−)) ≥ ‖c‖.

Then one has

δ (π, bd (Πs)) = min
{
d (0n+1, bd (H)) , d

(
0n, bd

(
Z−))} .(5)

Proof. (i) See Theorem 2.
(ii) π ∈ ext (Πs) implies either π ∈ int (Πc), in which case Theorem 3 applies,

or π ∈ Πi, and Theorem 4 applies, since otherwise one has π ∈ bd (Πc) ∩ Πc and
Proposition 4 yields a contradiction.

(iii) See Theorem 5.
Remark 2. Note that, by virtue of Proposition 2, one has d (0n+1, bd (H)) =

δ (π, bd (Πc)); that is, the distance to ill-posedness with respect to the solvability
depends on the distance to ill-posedness with respect to the consistency, as one would
expect.

Remark 3. Formula (5) for the distance to ill-posedness does not hold, in general,
in the remaining case corresponding to the problems π ∈ ext (Πs) such that

d (0n+1, bd (H)) = d
(
0n, bd

(
Z−)) < ‖c‖ ,

even in ordinary linear programming in R with “few” constraints, as we can see
in Examples 3, 4, and 5. Nevertheless, in this case one has, as a straightforward
consequence of Theorem 5, that

d (0n+1, bd (H)) ≤ δ (π, bd (Πs)) ≤ ‖c‖ .
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The next lemma will be used later on.
Lemma 1. Given π ∈ Π, one has the following:
(i) If 0n ∈ bd (A) and c ∈ cl (M), then 0n ∈ bd(Z+).
(ii) If π ∈ bd (Πc) and c ∈ cl (M), then π ∈ bd (Πs).
(iii) If 0n ∈ int (Z− ∩ Z+), then 0n ∈ int (A).
Proof. (i) Since 0n ∈ bd (A), we have 0n ∈ cl (Z+). If 0n ∈ int (Z+), then

−c ∈ int (M) (see Proposition 7) and, since c ∈ cl (M) by assumption, Theorem 6.1
in [21] ensures that 0n ∈ int (M) and, then, we get the contradiction 0n ∈ int (A)
(again by Proposition 7).

(ii) We distinguish two cases. If π ∈ Πc, one has π ∈ bd (Πs) by virtue of Proposi-
tion 4. If π ∈ Πi, then 0n ∈ bd (A) from Proposition 1(v); thus, the previous statement
implies 0n ∈ bd (Z+) and therefore π ∈ bd (Πs), again by virtue of Proposition 4.

(iii) Under this hypothesis we have, by Proposition 7, c ∈ int (M) and −c ∈
int (M); thus, by convexity of int (M), 0n ∈ int (M) and Proposition 7 again leads
us to 0n ∈ int (A).

The following theorem establishes that (5) is valid for a problem in the closure of
the set of solvable problems.

Theorem 2. Let π ∈ cl (Πs). Then (5) holds, i.e.,

δ (π, bd (Πs)) = min
{
d (0n+1, bd (H)) , d

(
0n, bd

(
Z−))} .

Proof. First let us consider the case π ∈ bd(Πs) and let us see that the right-
hand side in (5) is zero. Indeed, if π ∈ int(Πc), Proposition 3(ii) ensures that
d(0n, bd(Z

−)) = 0, and if π ∈ bd(Πc), Proposition 2(iii) guarantees that d(0n+1, bd(H))
= 0.

From now on we will suppose π ∈ int (Πs). In order to establish the ≤ inequality,
let us see that the following inequalities are simultaneously satisfied:

(a) δ (π, bd (Πs)) ≤ d (0n+1, bd (H)), and
(b) δ (π, bd (Πs)) ≤ d (0n, bd (Z−)).
Since π ∈ int (Πs), we have

δ (π, bd (Πs)) ≤ δ (π, bd (Πc)) = d (0n+1, bd (H))

and (a) holds. On the other hand, (b) is trivial if Z− = Rn. Otherwise, the distance
d (0n, bd (Z−)) will be attained at certain a ∈ bd (Z−). Consequently we have 0n ∈
bd (Z− − a).

If we consider the problem π0 := (c + a, σ0), where

σ0 :=
{
(at − a)

′
x ≥ bt, t ∈ T

}
,

then Z−
0 = Z−−a and Proposition 7 entails c + a /∈ int(M0) (with M0 = cone({at−a,

t ∈ T})). Now Proposition 1(i) ensures that π0 /∈ int (Πs). Therefore

δ (π, bd (Πs)) ≤ δ (π, π0) = ‖a‖ ,

which establishes (b).
Now let α := min {d (0n+1, bd (H)) , d (0n, bd (Z−))}, and take as before a point

a ∈ bd (Z−) at which the distance d (0n, bd (Z−)) is attained, supposing for the
moment that Z− �= Rn. From (a) and (b) we have δ (π, bd (Πs)) ≤ α (for all
π ∈ int (Πs)). To see that equality (5) holds, it is sufficient to prove that every
problem π1 := (c1, σ1) ∈ Π such that δ (π, π1) < α is still in int (Πs).
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Take π1 ∈ Π in the previous conditions. Since π ∈ int (Πc) and δ (π, π1) <
d (0n+1, bd (H)), we have π1 ∈ int (Πc) (Proposition 2). On the other hand, since
π ∈ int (Πs), one has c ∈ int (M) by virtue of Proposition 1(i), and then 0n ∈
int (Z−) (by Proposition 7). Indeed ‖a‖ cl (B) ⊂ cl (Z−) and α ≤ ‖a‖. Writing
δ (π, π1) = α − ε for some 0 < ε ≤ α, Proposition 8(i) entails ε cl (B) ⊂ cl

(
Z−

1

)
,

and then 0n ∈ int(cl(Z−
1 )) = int(Z−

1 ). So, taking into account that π1 ∈ int (Πc),
Proposition 3(i) ensures that π1 ∈ int (Πs).

Finally, in the case Z− = Rn one has α = d (0n+1, bd (H)), and then if δ (π, π1) <
α, one has π1 ∈ int (Πc) and, trivially, 0n ∈ int(Z−

1 ), because Z−
1 = Rn (by Proposi-

tion 8). Thus π1 ∈ int (Πs).
Examples 1 and 2 illustrate formula (5) for the problem π ∈ cl (Πs). In the

first example, one has δ (π, bd (Πs)) = d (0n, bd (Z−)) < d (0n+1, bd (H)), while in the
second example δ (π, bd (Πs)) = d (0n+1, bd (H)) < d (0n, bd (Z−)). In both cases, a
perturbation for obtaining a problem where the distance to ill-posedness is attained
will be indicated.

Now we approach the distance to ill-posedness for the problem π ∈ ext (Πs) ∩
int (Πc).

Theorem 3. Let π ∈ ext (Πs) ∩ int (Πc). Then
(i) d (0n, bd (Z−)) ≤ d (0n+1, bd (H));
(ii) δ (π, bd (Πs)) ≥ d (0n, bd (Z−));
(iii) if d (0n, bd (Z−)) < d (0n+1, bd (H)), one has

δ (π, bd (Πs)) = d
(
0n, bd

(
Z−)) .

Proof. (i) Since π ∈ ext (Πs) ∩ int (Πc), Proposition 3(iii) ensures that 0n ∈
ext (Z−). Take a ∈ bd (Z−) such that d (0n, bd (Z−)) = ‖a‖.

For every
(
a
b

)
∈ bd (H) we have a ∈ cl (A) ⊂ cl (Z−) and ‖

(
a
b

)
‖ ≥ ‖a‖ ≥ ‖a‖ (see

Remark 1). The arbitrariness of
(
a
b

)
entails d (0n+1, bd (H)) ≥ ‖a‖ as we aimed to

prove.
(ii) π ∈ ext (Πs) ∩ int (Πc) entails, by virtue of Propositions 2(ii) and 3(iii),

0n+1 ∈ ext(H) and 0n ∈ ext(Z−). Let π1 ∈ Π with δ(π1, π) < d(0n, bd(Z
−));

then Proposition 8(ii) and part (i) ensure that 0n ∈ ext(Z−
1 ) and 0n+1 ∈ ext (H1).

Now, again by Propositions 2(ii) and 3(iii), π1 ∈ ext (Πs) ∩ int (Πc) and therefore
δ (π, bd (Πs)) ≥ d (0n, bd (Z−)).

(iii) From (ii) we need only prove δ (π, bd (Πs)) ≤ d (0n, bd (Z−)). Take again
a ∈ bd (Z−) such that d (0n, bd (Z−)) = ‖a‖ and consider the same perturbation as in
the proof of Theorem 2; i.e., we consider the problem π0 = (c + a, σ0), where

σ0 :=
{
(at − a)

′
x ≥ bt, t ∈ T

}
.

On the one hand, we have 0n ∈ bd(Z−
0 ) = bd (Z− − a). On the other hand, since

π ∈ int (Πc), Proposition 2(ii) guarantees that 0n+1 ∈ ext (H), and the fact that
δ (π, π0) = ‖a‖ < d (0n+1, bd (H)) by the current assumption, together with Propo-
sition 8(ii), ensures that 0n+1 ∈ ext (H0). Again by virtue of Proposition 2(ii) one
has π0 ∈ int (Πc). Therefore π0 ∈ bd (Πs) by Proposition 3(ii) and, consequently,
δ (π, bd (Πs)) ≤ δ (π, π0) = ‖a‖.

Example 3 shows that formula (5) for the problem π ∈ ext (Πs) ∩ int (Πc) does
not hold in general when d (0n, bd (Z−)) = d (0n+1, bd (H)).

The next result is devoted to approaching the distance δ (π, bd (Πs)) for the prob-
lem π ∈ Πi\Π∞.
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Theorem 4. Let π ∈ Πi\Π∞. Then
(i) d (0n+1, bd (H)) ≤ d (0n, bd (Z−));
(ii) δ (π, bd (Πs)) ≥ d (0n+1, bd (H));
(iii) if d (0n+1, bd (H)) < d (0n, bd (Z−)), one has

δ (π, bd (Πs)) = d (0n+1, bd (H)) .

Proof. (i) If π ∈ Πi\Π∞, Proposition 1(iv) ensures that 0n ∈ cl (A) ⊂ cl (Z−).
Moreover, Proposition 2 implies 0n+1 ∈ cl (H). Thus,

d (0n+1, bd (H)) = d (0n+1, ext (H)) ≤ d (0n+1, ext (A× R))

= d (0n, ext (A)) ≤ d
(
0n, ext

(
Z−))

= d
(
0n, bd

(
Z−)) .

(ii) It is immediate as far as Πs ⊂ Πc, and then if π ∈ Πi\Π∞, one has, by virtue
of Proposition 2(iv),

δ (π, bd (Πs)) ≥ δ (π, bd (Πc)) = d (0n+1, bd (H)) .

(iii) From the previous statement it is sufficient to prove that

δ (π, bd (Πs)) ≤ d (0n+1, bd (H)) .

If H = Rn+1, the reader can easily prove that π ∈ Π∞, and thus we can take(
a
b

)
∈ bd (H) such that d (0n+1, bd (H)) = ‖

(
a
b

)
‖. Consider, then, the problem π1 :=

(c + a, σ1), where

σ1 :=
{
(at − a)

′
x ≥ bt − b; t ∈ T

}
.

Let us see that π1 ∈ bd (Πs). We have π1 ∈ bd (Πc) (see Proposition 2(iii)). We shall
distinguish two possibilities:

(a) In the case when π1 ∈ Πc, Proposition 4 ensures that π1 ∈ bd (Πs).
(b) If π1 ∈ Πi, by Proposition 1(v) 0n ∈ bd (A1) ⊂ cl(Z+

1 ).
Let us proceed by supposing that, in the latter case, 0n ∈ int(Z+

1 ). Since π ∈ Πi,
Proposition 1(iv) gives 0n ∈ cl (A) ⊂ cl (Z−) and, because of the current assumption

‖a‖ ≤
∥∥∥∥
(
a

b

)∥∥∥∥ < d
(
0n, bd

(
Z−)) ,

it must be the case that a ∈ int (Z−) and, then, 0n ∈ int
(
Z−

1

)
. Thus, from

Lemma 1(iii) we obtain 0n ∈ int (A1), which is a contradiction and makes us conclude
0n ∈ bd(Z+

1 ). Therefore π1 ∈ bd (Πs), again by virtue of Proposition 4. Thus, we have

δ (π, bd (Πs)) ≤ δ (π, π1) = max

{
‖a‖ ,

∥∥∥∥
(
a

b

)∥∥∥∥
}

=

∥∥∥∥
(
a

b

)∥∥∥∥ .
Example 4 shows that formula (5) for a problem π ∈ Πi\Π∞ does not hold in

general when d (0n+1, bd (H)) = d (0n, bd (Z−)).
Now we establish an upper bound for the distance to ill-posedness, which coincides

with it under certain conditions. We emphasize the fact that this bound works for
any π ∈ Π\Π∞.
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Proposition 9. Let π = (c, σ) ∈ Π\Π∞. Then

δ (π, bd (Πs)) ≤ max {d (0n+1, bd (H)) , ‖c‖} .

Proof. We know that H �= Rn+1 because π ∈ Π\Π∞. Let
(
a
b

)
∈ bd (H) be such

that d (0n+1, bd (H)) = ‖
(
a
b

)
‖. Consider the problem π2 := (0n, σ2), where

σ2 :=
{
(at − a)

′
x ≥ bt − b; t ∈ T

}
.

Let us see that π2 ∈ bd (Πs). We have that π2 ∈ bd (Πc) (see Proposition 2(iii)).
In the case that π2 ∈ Πc, Proposition 4 ensures that π2 ∈ bd(Πs). Assuming π2 ∈
Πi, Proposition 1(v) ensures 0n ∈ bd (A2) ⊂ cl(Z+

2 ). If 0n ∈ int(Z+
2 ), the second

statement in Proposition 7 entails 0n ∈ int (A2), which is a contradiction. Thus,
0n ∈ bd(Z+

2 ), and then π2 ∈ bd(Πs), again by Proposition 4. Thus we have

δ (π, bd (Πs)) ≤ δ (π, π2) = max {d (0n+1, bd (H)) , ‖c‖} .

The following result can be obtained as a straightforward consequence of the
previous statements and establishes bounds on the distance to ill-posedness.

Theorem 5. Let π = (c, σ) ∈ Π\Π∞. If we denote

α := min
{
d (0n+1, bd (H)) , d

(
0n, bd

(
Z−))} and

β := max {d (0n+1, bd (H)) , ‖c‖} ,

then we have

α ≤ δ (π, bd (Πs)) ≤ β.

Figure 2 synthesizes the main results about the distance to ill-posedness with
respect to the solvability provided in this paper. The reader should analyze the
information provided in this figure together with that given in Figure 1. We use the
same notation as in Theorem 5 for α and β.

4. Other upper bounds. The goal of the following result is to obtain, under
additional hypotheses, some refinements of the upper bound given in Proposition 9.

Proposition 10. Let π = (c, σ) ∈ ext (Πs). The following statements hold:
(i) If π ∈ cl (Πc), then

δ (π, bd (Πs)) ≤ d (c, bd (M)) ≤ ‖c‖ .

(ii) If π ∈ bd (Πc), then

δ (π, bd (Πs)) ≤ d (c, bd (−M)) ≤ d (c, bd (M)) .

(iii) If π ∈ bd (Πc) and there exists t0 ∈ T such that at0 = 0n, then

δ (π, bd (Πs)) ≤ d
(
0n, bd

(
Z+

))
≤ d (c, bd (−M)) .

Proof. (i) First observe that M �= Rn since, otherwise, either π ∈ cl(Πs) (when
π ∈ Πc and applying Proposition 1(iii)) or π ∈ int(Πi) (when π ∈ Πi and applying
Proposition 1(vi)).

Let a ∈ bd (M) such that d (c, bd (M)) = ‖c− a‖ and consider the problem π3 :=
(a, σ). We have π3 ∈ cl (Πc) and a ∈ bd (M3) = bd (M). If π3 ∈ Πc, Proposition 1(iii)
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Fig. 2. Distance to ill-posedness in Π\Π∞.

ensures that π3 ∈ cl (Πs). If π3 ∈ bd (Πc), then π3 ∈ bd (Πs) by Lemma 1(ii). In any
case, π3 ∈ cl (Πs), and then

δ (π, bd (Πs)) ≤ δ (π, π3) = ‖c− a‖ = d (c, bd (M)) .

Finally, and since M �= Rn, one has 0n ∈ bd (M), which implies

d (c, bd (M)) ≤ ‖c‖ .

(ii) Obviously we have again M �= Rn. Let d ∈ bd (−M) satisfying that d (c, bd (−M))
= ‖c− d‖ and consider the problem π4 := (d, σ). Obviously π4 ∈ bd (Πc) and we see
that π4 ∈ bd (Πs). In the case when π4 ∈ Πc, Proposition 4 ensures π4 ∈ bd (Πs). If
π4 ∈ Πi, from Proposition 1(v) one has 0n ∈ bd (A4) ⊂ cl(Z+

4 ).
If 0n ∈ int(Z+

4 ), then −d ∈ int (M4) = int (M) (see Proposition 7), i.e., d ∈
int (−M), which is a contradiction. Then 0n ∈ bd(Z+

4 ) and, again by Proposition 4,
π4 ∈ bd (Πs). So, in any case, π4 ∈ bd (Πs), and then

δ (π, bd (Πs)) ≤ δ (π, π4) = ‖c− d‖ = d (c, bd (−M)) .

Because of Proposition 1(iv) we have 0n ∈ cl (A) ⊂ cl (Z+), and 0n ∈ bd (Z+)
leads us to the contradiction π ∈ bd(Πs) (by Proposition 4). Hence we have that, under
the current hypothesis, 0n ∈ int (Z+) or, equivalently, −c ∈ int (M) ⇔ c ∈ int (−M).
Since M �= Rn, there will exist u �= 0n such that M and −M are, respectively,
contained in the half-spaces S+ := {x ∈ Rn | u′x ≤ 0} and S− := {x ∈ Rn | u′x ≥ 0}.
Therefore

d (c, bd (−M)) ≤ d (c, S+) ≤ d (c, bd (M)) .
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(iii) Remember that under the current hypotheses 0n ∈ int (Z+). Take a ∈
bd (Z+) such that d (0n, bd (Z+)) = ‖a‖. Since a ∈ bd (Z+), one has 0n ∈ bd(Z+ − a).

Consider the problem π5 := (c− a, σ5) where σ5 :=
{
(a5

t )
′x ≥ bt; t ∈ T

}
with

a5
t := at − a if t ∈ T\ {t0} and a5

t0 := at0 = 0n. From the definition of π5 one has,

obviously, 0n ∈ cl(Z+
5 ). If we had 0n ∈ int(Z+

5 ), then we would obtain the following
contradiction:

0n ∈ int (conv ({at − a , t ∈ T\ {t0} ; c− a})) ⊂ int
(
Z+ − a

)
.

Then 0n ∈ bd(Z+
5 ) and, in particular, 0n+1 /∈ int(H5) (otherwise 0n ∈ int(A5) ⊂

int(Z+
5 )). Thus, Proposition 2 yields π5 ∈ cl (Πc) and we have the following discus-

sion. If π5 ∈ bd (Πc), then Proposition 4 leads us to conclude that π5 ∈ bd (Πs). If
π5 ∈ int (Πc), since 0n ∈ A5 ⊂ cl(Z−

5 ), Proposition 3 entails π5 ∈ cl (Πs). In any case,
we have π5 ∈ cl (Πs), and then

δ (π, bd (Πs)) ≤ δ (π, π5) = ‖a‖ = d
(
0n, bd

(
Z+

))
.

Remember that under the current hypotheses we have −c ∈ int (M), i.e., 0n ∈
int (M + c), and the latter implies μ (M + c) ⊂ M + c for every 0 ≤ μ ≤ 1, due to
the convexity of M + c. Now we will prove that Z+ ⊂ M + c. In fact, if x ∈ Z+ there
exist a ∈ A and λ ≥ 0, μ ≥ 0, with λ + μ = 1, such that x = λa + μc. If μ > 0, we
can write

x = μ

(
λ

μ
a + c

)
∈ μ (M + c) ⊂ M + c,

and if μ = 0, we have x = a ∈ A ⊂ M ⊂ M + c, where the latter inclusion is due to
the fact that −c ∈ M . Thus, we have

d
(
0n, bd

(
Z+

))
≤ d (0n, bd (M + c)) = d (0n, bd (M) + c)

= d (−c, bd (M)) = d (c, bd (−M)) .

5. Examples and counterexamples. In this section we present different ex-
amples in order to show the usefulness of formula (5) for obtaining the distance to
ill-posedness for problems satisfying the hypothesis of Theorem 1. Moreover, some of
these examples show that this formula does not generally provide the desired distance
when the hypotheses of Theorem 1 are not fulfilled. Different situations illustrate that
certain redundant constraints may considerably affect the distance to ill-posedness,
even for ordinary linear programming problems with “few” constraints. In fact, we
provide two linear optimization problems in R2 (Examples 5 and 6) with the same
associated sets A, M , Z−, Z+, C, and H, and different distances to ill-posedness.
These examples show that the sets A, M , Z−, Z+, C, and H alone are not sufficient
to characterize the distance to ill-posedness in all cases. The norm considered (in Rn

and Rn+1) in all the examples is ‖·‖∞.
The following examples illustrate formula (5) of Theorem 2 for the problem π ∈

cl (Πs).
Example 1. Consider the linear optimization problem in R2,

π : Inf 1
2x2

s.t. −x1 + x2 ≥ 0,
x1 + x2 ≥ 0.
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One has

H = conv
{
(−1, 1, 0)

′
, (1, 1, 0)

′}
+ R+{(0, 0,−1)

′}

and

Z− = conv
{
(−1, 1)

′
, (1, 1)

′
, (0,−1/2)

′}
.

Since 03 ∈ ext (H), then π ∈ int (Πc) (Proposition 2(iii)) and then, since 02 ∈
int (Z−), one obtains π ∈ int (Πs) (Proposition 3(iii)). It is easy to check that

1

5
=

∥∥∥∥∥
( 1

5
−1
5

)∥∥∥∥∥
∞

= d
(
02, bd

(
Z−)) < d (03, bd (H)) = 1.

Then, δ (π, bd (Πs)) = d (02, bd (Z−)) = 1/5.
As in the proof of Theorem 2, a problem belonging to bd (Πs), where this distance

is attained, is given by

π0 : Inf
(
0 + 1

5

)
x1 +

(
1
2 − 1

5

)
x2

s.t.
(
−1 − 1

5

)
x1 +

(
1 + 1

5

)
x2 ≥ 0 − 0,(

1 − 1
5

)
x1 +

(
1 + 1

5

)
x2 ≥ 0 − 0.

We have 02 ∈ bd(Z−
0 ) and 03 ∈ ext (H0). Consequently π0 ∈ int (Πc) ∩ bd (Πs)

(Propositions 2(ii) and 3(ii)).
Example 2. Consider now the linear optimization problem in R2,

π : Inf 2x2

s.t. −x1 + x2 ≥ 0,
x1 + x2 ≥ 0,

1
4x2 ≥ 0.

Now we have

H = conv
{
(−1, 1, 0)

′
, (1, 1, 0)

′
, (0, 1/4, 0)

′}
+ R+{(0, 0,−1)

′}

and

Z− = conv
{
(−1, 1)

′
, (1, 1)

′
, (0, 1/4)

′
, (0,−2)

′}
.

As in the previous example one has π ∈ int (Πs). Again it is easy to check that

1

2
= d

(
02, bd

(
Z−)) > d (03, bd (H)) =

∥∥∥∥∥
(

0,
1

4
, 0

)′
∥∥∥∥∥
∞

=
1

4
,

and δ (π, bd (Πs)) = d (03, bd (H)) = 1/4.
Now, the problem π0 ∈ bd (Πs) where this distance is attained, is given by

π0 : Inf 2x2

s.t. (−1 − 0)x1 +
(
1 − 1

4

)
x2 ≥ 0 − 0,

(1 − 0)x1 +
(
1 − 1

4

)
x2 ≥ 0 − 0,

(0 − 0)x1 +
(

1
4 − 1

4

)
x2 ≥ 0 − 0.
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We have 03 ∈ bd (H0). In fact 03 ∈ bd (C0), and then we conclude that π0 ∈ bd (Πs)
(by virtue of Proposition 6(ii)).

Examples 3 and 4 (see also Example 5) show that formula (5) of Theorem 1 cannot
be extended to the case π ∈ ext (Πs) when d (0n, bd (Z−)) = d (0n+1, bd (H)) < ‖c‖,
not even in the context of ordinary linear programming in R. The characterization of
bd(Πs) given in Proposition 6 is used in the remaining examples.

Example 3. Consider now the ordinary linear programming problem in R,

π : Inf −10x
s.t. x ≥ 9, x ≥ 10, 4x ≥ 9, 4x ≥ 10.

One has that π ∈ int (Πc)∩ext (Πs) and d (0, bd (Z−)) = 1 = d (02, bd (H)). Moreover,
δ (π, bd (Πs)) = 4 > d (02, bd (H)), and this is attained in the problem

π1 : Inf −10x
s.t. −3x ≥ 9, −3x ≥ 10, 0x ≥ 9, 0x ≥ 10.

Indeed, if π2 ∈ Π is such that δ (π, π2) < 4, Proposition 8 guarantees that 0 ∈ int(Z+
2 )

and 02 ∈ ext (C2). The coefficients of the problem imply that 02 ∈ ext (H2) only if
H2 ⊂ ]0,+∞[ × R, in which case one also has 02 ∈ ext(Z−

2 ). So it is impossible to
have π2 ∈ bd (Πs) according to Proposition 6.

Observe that, in this case, the problems of bd (Πs) at which the distance δ (π, bd (Πs))
is attained verify the third condition in Proposition 6.

Example 4. Consider the linear programming problem in R,

π : Inf −3x
s.t. −x ≥ 5, 2x ≥ 5, −x ≥ 4, 2x ≥ 4.

One has that π ∈ int (Πi) and d (02, bd (H)) = d (0, bd (Z−)) = 1. It is easy to check
that

δ (π, bd (Πs)) = δ (π, π1) = 2 > d (02, bd (H)) ,

where

π1 : Inf −3x
s.t. −3x ≥ 5, 0x ≥ 5, −3x ≥ 4, 0x ≥ 4.

In the following examples, the considered problems have the same sets A, M ,
Z−, Z+, C, and H, but their distances to ill-posedness are different. Moreover, in the
second example the distance to ill-posedness obeys formula (5), although the problem
does not satisfy the hypotheses of Theorem 1.

Example 5. Consider the problem

π : Inf 6x1 − 3x2

s.t. 3x1 + x2 ≥ 10, t = 1,
3x1 + 3x2 ≥ 10, t = 2,

−2x1 + 3x2 ≥ 10, t = 3,
−2x1 + x2 ≥ 10, t = 4.

It is easy to check that π ∈ int (Πc)∩ext (Πs) and d (02, bd (Z−)) = 1 = d (03, bd (H)).
Now let us see that δ (π, bd (Πs)) > 1. The choice of bt = 10, t = 1, . . . , 4, allows us
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Fig. 3. Perturbation of π to obtain condition (iii) of Proposition 6.

to see that the nearest problem to π, π1 ∈ bd (Πs) does not verify the condition
03 ∈ bd (C1). Thus, we will look for a problem π1 = (c1, σ1), with σ1 = {(a1

t )
′x ≥

b1t , t = 1, . . . , 4}, as the one presented in Figure 3 below, where we illustrate graph-
ically the sets C and Z+, associated with π, as well as the ones associated with π1.
It can be proved that the minimum perturbation (in ‖·‖∞) for which c1 is a multiple

of a1
1 corresponds to the vectors c1 =

(
81/11
−18/11

)
and a1

1 =
(

18/11
−4/11

)
, both colinear with(

9
−2

)
. Now we modify a4 to get 03 ∈ bd (H1) and 02 ∈ bd(Z+

1 ), taking for exam-

ple a1
4 =

(−27/11
6/11

)
. The remaining coefficients stay unchanged. For simplicity, and

since b1t = bt = 10, for t = 1, . . . , 4, we represent the figures projected in the plane{
y ∈ R3 | y3 = 10

}
.

Next we will check that if π2 = (c2, σ2) ∈ Π verifies δ (π2, π) < δ (π1, π) = 15
11 ,

then π2 /∈ Πs. Indeed, in other case and appealing to Proposition 1(ii), we will obtain
c2 ∈ M2 (which is a closed cone because it is finitely generated). Moreover, one can
easily check that the following inequalities relative to σ2 = {(a2

t )
′x ≥ b2t , t = 1, . . . , 4}

hold: (
a2
1

)′ ( 9
−2

)
> 0,

(
a2
2

)′ ( 9
−2

)
> 0,

(
a2
3

)′ ( 9
−2

)
< 0,

(
a2
4

)′ ( 9
−2

)
< 0,(6) (

a2
1

)′ (2
9

)
> 0,

(
a2
2

)′ (2
9

)
> 0,

(
a2
3

)′ (2
9

)
> 0,(7) (

c2
)′ ( 9

−2

)
> 0,(8) (

c2
)′ (2

9

)
< 0.(9)

The condition c2 ∈ M2, together with (7) and (9), implies that (a2
4)

′(2
9

)
< 0; then

the vectors a2
1, a2

3, a2
4, and c2 are, respectively, in the interior of the first second,

third, and fourth quadrants determined by the (orthogonal) vectors
(

9
−2

)
and

(
2
9

)
,

from where one deduces that M2 = R2. That is, 02 ∈ int(conv({a2
t , t = 1, . . . , 4})),

and since b2t ≥ 10 − 15
11 > 0 for all t = 1, . . . , 4, we conclude that 03 ∈ int (H2), and

then π2 ∈ int (Πi) (Proposition 2(i)), in contradiction with the assumption π2 ∈ Πs.
Thus we conclude that δ (π, bd (Πs)) = δ (π, π1) = 15

11 .
Example 6. Consider the linear programming problem π in R2, obtained by

adding to the problem of the previous example the constraint 0x1 + x2 ≥ 10 (for
t = 5), whose coefficient vector is a convex combination of the vectors associated with
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Fig. 4. Perturbation of π to obtain condition (iii) of Proposition 6.

the first and fourth constraints (in particular, the new constraint is redundant). This
problem still verifies the conditions π ∈ int (Πc) ∩ ext (Πs) and d (02, bd (Z−)) = 1 =
d (03, bd (H)). However, now one has δ (π, bd (Πs)) = d (03, bd (H)), since d (03, bd (H))
is a lower bound for the distance from π to bd (Πs) (see Theorem 3) and the problem
π1, coming from replacing the last constraint of π by the new one “0x1 + 0x2 ≥ 10,”
verifies that π1 ∈ bd (Πs) (since 0n+1 ∈ bd(H1) and 0n ∈ bd(Z+

1 )) and δ (π, π1) = 1.
In Figure 4 we illustrate graphically these elements, projecting them on the plane
y3 = 10 (note that bt = 10, for all t = 1, . . . , 4).

6. A primal-dual approach to the distance to solvability/unsolvability.
Let us consider the dual of problem (1), which is given by

πd : Sup
∑
t∈T

λtbt

s.t.
∑
t∈T

λtat = c,

λ ∈ R(T )
+ ,

(10)

where R(T )
+ is the convex cone of all the functions λ : T → R+ taking positive values

only at finitely many points of T . When T is infinite, πd is also a linear semi-infinite
programming problem having, in this case a finite number of constraints but an infinite
number of variables. In this case, πd is called the dual of π in the sense of Haar. The
subset of Π formed by those problems whose dual is consistent will be denoted by Πd

c ;
in other words, Πd

c := {π ∈ Π | c ∈ M}.
In the finite case (T finite) it is well known from linear programming duality

that the problem π is solvable if and only if it is both primal and dual feasible; i.e.,
Πs = Πc ∩ Πd

c . Hence, for solvable instances the distance to unsolvability is given by

δ (π, bd (Πs)) = min
{
δ (π, bd (Πc)) , δ

(
π, bd

(
Πd

c

))}
.(11)

The finite case is actually a particular case of the conic linear context studied in [5],
[10], [16], [18], [19], and [20], among others. In section 7, which is specifically devoted
to the finite case, we show how some results of [10], [19], and [20] may be used to
derive, for π ∈ Πs, the expressions

δ (π, bd (Πc)) = d (0n+1, bd (H)) and δ
(
π, bd

(
Πd

c

))
= d

(
0n, bd

(
Z−)) .
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The first equality is a particular case of Proposition 2(iv), and the second is extended,
in Theorem 6, to the semi-infinite case and for problems without any consistency
requirements.

First of all, let us point out that when T is infinite, solvability may not be identified
with primal-dual feasibility. In fact, none of the inclusions Πs ⊃ Πc ∩ Πd

c and Πs ⊂
Πc∩Πd

c holds, as the following examples show. Despite this fact, Corollary 1 will show
that (11) remains valid for problems in cl (Πs) as well as for some subset of insolvable
problems.

Example 7. Πs � Πc ∩ Πd
c . Let us consider the linear semi-infinite programming

problem in R2,

π : Inf x1

s.t. t x1 +
1

t
x2 ≥ 2, t ∈ ]0,+∞[ ,

x1 ≥ 0.

One can easily check that F = {(x1, x2)
′ | x2 ≥ x−1

1 , x1 > 0} and then π is bounded
but not solvable. However, π ∈ Πc ∩ Πd

c .

Example 8. Πs � Πc ∩ Πd
c . Let us consider the problem in R2,

π : Inf x1

s.t. x1 + t x2 ≥ 0, t ∈ ]0,+∞[ .

The feasible set of π coincides with [0,+∞[
2

and then it is immediate that π ∈ Πs.

However, M = ]0,+∞[
2 ∪ {02} and then c = (1, 0)

′
/∈ M , i.e., π /∈ Πd

c .

The following theorem is a dual version of Proposition 2. It characterizes the ill-
posedness with respect to the dual consistency and provides the associated distance
to ill-posedness.

Theorem 6. Let π ∈ Π. The following statements hold:

(i) π ∈ int
(
Πd

c

)
if and only if 0n ∈ int (Z−);

(ii) π ∈ bd
(
Πd

c

)
if and only if 0n ∈ bd (Z−);

(iii) π ∈ ext
(
Πd

c

)
if and only if 0n ∈ ext (Z−);

(iv) δ
(
π, bd

(
Πd

c

))
= d (0n, bd (Z−)).

Proof. (i) Theorem 5 in [14] establishes that π ∈ int(Πd
c) if and only if c ∈ int (M),

which is equivalent to 0n ∈ int (Z−) (see Proposition 7).

(ii) Let us start with the “only if” part. Take π ∈ bd(Πd
c) and a sequence

{πr} ⊂ Πd
c converging to π. We have, on the one hand, cr ∈ Mr for each r ∈ N

and consequently 0n ∈ Z−
r . On the other hand, 0n /∈ int (Z−) because π ∈ bd

(
Πd

c

)
.

Assume by contradiction that 0n /∈ bd (Z−). Then 0n ∈ ext (Z−) and, since {πr}
converges to π, Proposition 8 ensures that 0n ∈ ext (Z−

r ) for r large enough, which
represents a contradiction. Therefore, 0n ∈ bd (Z−).

In order to prove the “if” condition, assume that 0n ∈ bd (Z−) and take a sequence
{ur} ⊂ Z− converging to 0n. We can write

ur =
∑
t∈T

λr
tat − μrc, r = 1, 2, . . . ,

for some sequences {λr} ⊂ R(T )
+ and {μr} ⊂ R+ verifying

∑
t∈T λr

t +μr = 1. For each
r ∈ N, define the problem πr := (cr, σr) by distinguishing two cases:
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(1) If μr = 0, let cr := c and

σr :=

{(
at − ur +

1

r
c

)′
x ≥ bt , t ∈ T

}
.

Note that in this case
∑

t∈T λr
t = 1 and

∑
t∈T λr

t (at − ur + 1
r c) = 1

r c, so cr = c ∈ Mr.

(2) If μr > 0, defining cr := c + ur and

σr :=
{
(at − ur)

′
x ≥ bt , t ∈ T

}
,

one has
∑

t∈T λr
t (at − ur) = μr (c + ur) and, again, cr ∈ Mr.

Thus, in any case, πr ∈ Πd
c and, since {πr} converges to π, then π ∈ cl(Πd

c).
Finally, under the current hypothesis, π /∈ int(Πd

c) and then π ∈ bd(Πd
c).

(iii) This is a straightforward consequence of (i) and (ii).

(iv) If π ∈ bd(Πd
c), the desired equality comes trivially from (ii). Assume that

π ∈ int(Πd
c), and let us see first the inequality “≥.” If π1 ∈ Π satisfies δ(π, π1) <

d(0n, bd(Z
−)), then Proposition 8 implies 0n ∈ int(Z−

1 ) and thus π1 ∈ int(Πd
c). In

order to establish the inequality “≤,” take u ∈ bd (Z−) such that d (0n, bd (Z−)) = ‖u‖
and define π1 := (c + u, σ−u), where σ−u :=

{
(at − u)

′
x ≥ bt , t ∈ T

}
. In such a way

Z−
1 = Z− − u, and then 0n ∈ bd(Z−

1 ), which entails π1 ∈ bd
(
Πd

c

)
. Thus,

δ
(
π, bd

(
Πd

c

))
≤ δ (π, π1) = ‖u‖ = d

(
0n, bd

(
Z−)) .

In the case π ∈ ext
(
Πd

c

)
one obtains the desired equality just by replacing int by

ext in the previous argument.

The following corollary comes directly from Theorem 1, Proposition 2, and state-
ment (iv) of Theorem 6.

Corollary 1. Let π = (c, σ) ∈ Π\Π∞. Suppose that at least one of the following
conditions holds:

(i) π ∈ cl (Πs);

(ii) π ∈ ext (Πs) and d (0n+1, bd (H)) �= d (0n, bd (Z−));

(iii) d (0n+1, bd (H)) = d (0n, bd (Z−)) ≥ ‖c‖.
Then one has

δ (π, bd (Πs)) = min
{
δ (π, bd (Πc)) , δ

(
π, bd

(
Πd

c

))}
.(12)

Bounds on δ (π, bd (Πs)) in terms of δ (π, bd (Πc)) and δ
(
π, bd

(
Πd

c

))
may be ob-

tained by reformulating Theorems 3 and 4. The results in these theorems also pro-
vide the inequalities δ

(
π, bd

(
Πd

c

))
≤ δ (π, bd (Πc)), for π ∈ ext (Πs) ∩ int (Πc), and

δ(π, bd(Πc)) ≤ δ(π, bd(Πd
c)), for π ∈ Πi\Π∞. See [5, section 2.4] for a counterpart in

the finite case.

The following proposition clarifies the relationship between Πs and Πc ∩ Πd
c in

our context. It shows that although both sets do not coincide, the ill-posedness with
respect to the solvability may be identified to the ill-posedness with respect to the
primal-dual consistency. We make use of the inclusion

Πc ∩ Πd
c ⊂ Πb,

which comes from the following standard argument on duality.



DISTANCE TO SOLVABILITY/UNSOLVABILITY 647

If π ∈ Πc ∩ Πd
c and we take any feasible point λ ∈ R(T )

+ of the dual problem, i.e.,∑
t∈T

λtat = c, we have

c′x =
∑
t∈T

λta
′
tx ≥

∑
t∈T

λtbt for all x ∈ F.(13)

Proposition 11. The following statements hold:
(i) int (Πs) = int

(
Πc ∩ Πd

c

)
;

(ii) bd (Πs) = bd
(
Πc ∩ Πd

c

)
;

(iii) ext (Πs) = ext
(
Πc ∩ Πd

c

)
.

Proof. We shall prove conditions (i) and (ii), and then (iii) follows. Condition (i)
is a consequence of Proposition 3 and Theorem 6, taking into account that int (Πc)∩
int

(
Πd

c

)
= int

(
Πc ∩ Πd

c

)
.

(ii) If π ∈ bd
(
Πc ∩ Πd

c

)
⊂ cl (Πb) = cl (Πs), where the last equality comes from

[4, Thm. 1], then it must be π ∈ bd (Πs), taking into account the previous condition.
Assume now that π ∈ bd (Πs) and take πr = (cr, σr) ∈ Πs with {πr} converging to π.
By Proposition 1(ii), cr ∈ cl (Mr) for each r. Then, for each r, there exists c̃r ∈ Mr

with ‖c̃r − cr‖ ≤ 1
r . Therefore the problem π̃r = (c̃r, σr) ∈ Πc ∩ Πd

c for all r. Since
{π̃r} converges to π, we have π ∈ cl(Πc∩Πd

c) and then, under the current hypothesis,
π ∈ bd(Πc ∩ Πd

c).
Remark 4. In general cl(Πc ∩ Πd

c) ⊂ cl(Πc) ∩ cl(Πd
c), but the opposite inclusion

does not hold, even in the finite case. Just consider the problem in R given by
π := Inf {−x | 0x ≥ 1, x ≥ 1}. Since d (02, bd (H)) = 0 = d (0, bd (Z−)), π ∈ Πi ∩
cl (Πc) ∩ cl

(
Πd

c

)
. However, π /∈ bd (Πs) (see Proposition 6), and then π /∈ cl (Πs).

7. The finite case. In the finite case (T finite), the distances to inconsistency
(primal and/or dual) are studied in [5], [10], [16], [18], [19], [20], etc. In particular
[10], following the steps of [20], deals with a conic linear system σ = (A, b),

σ : b−Ax ∈ CY ,
x ∈ CX ,

(14)

where CX ⊂ X and CY ⊂ Y are closed convex cones in X and Y , respectively. X
and Y are an n-dimensional and an m-dimensional normed space, respectively, and
the norms in both spaces are represented by ‖·‖. Here b ∈ Y and A : X −→ Y is a
linear operator, with norm ‖A‖ := sup {‖Ax‖ | ‖x‖ ≤ 1}. The parameter space of all
systems (14) is endowed with the product norm

‖σ‖ = ‖(A, b)‖ := max {‖A‖ , ‖b‖} .(15)

This model includes our primal constraint system if T is finite (particularly if
|T | = m) just by taking CX := Rn and CY := −Rm

+ . As a consequence of this fact,
finite-dimensional versions of our distances to inconsistency are obtained by applying
Theorems 1 and 2 in [10]. Unfortunately the tools developed in [10] and [20] do not
apply in our context, in which Y = RT is not a normed space when T is infinite and
arbitrary.

With respect to the aim of relating our results to [10, Thms. 1 and 2] and [20,
Thm. 3.5], and if we identify a ∈ Rn with the linear operator x �→ a′x, a suitable
norm to be used in Rn+1 would be∥∥∥∥

(
a

b

)∥∥∥∥ = max {‖a‖∗ , |b|} .(16)
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Observe that this norm satisfies conditions (3) and (4). Moreover, the norm ‖·‖
in X = Rn will be arbitrary, whereas in Y = Rm we shall use the norm ‖·‖∞.

Specifically, when T is finite, our system {a′tx ≥ bt , t ∈ T} can be rewritten in the
matrix form Ax ≥ b (where the tth row of the matrix A is a′t, and the tth component
of the vector b is bt). Then, and thanks to the fact that in Y we chose the infinite-norm
‖·‖∞,

‖σ‖ = max

{
max
‖x‖≤1

‖Ax‖ , ‖b‖
}

= max
t∈T

max {‖at‖∗ , |bt|} = max
t∈T

∥∥∥∥
(
at
bt

)∥∥∥∥ .
For system σ in (14), [10] presents different mathematical programs, each of whose

optimal values provides either the exact distance to inconsistency, denoted by ρ (σ),
or an approximation of ρ (σ) to within certain constants. In particular, if X = Rn

and Y = Rm, Theorem 2 in [10] establishes, when σ is consistent, that ρ (σ) coincides
with the optimal value of the program,

Infy,q,g max {‖A′y − q‖∗ , |b′y + g|}
s.t. y ∈ C∗

Y , ‖y‖∗ = 1, q ∈ C∗
X , g ≥ 0,

(17)

where A′ and b′ are the transposes of A and b, respectively.
In our framework CX := Rn, CY := −Rm

+ and, writing λ := −y, program (17) is
equivalent to

Infλ,g max
{∥∥∑

t∈T λtat
∥∥
∗ ,

∣∣∑
t∈T λtbt − g

∣∣}
s.t. λ ≥ 0m, ‖λ‖1 = 1, g ≥ 0.

By defining wn+1 :=
∑

t∈T λtbt − g, and according to (16), we get another equivalent
program:

Infλ

∥∥∥∥
(

w
wn+1

)∥∥∥∥
s.t. λ ≥ 0m, ‖λ‖1 = 1,

w =
∑

t∈T λtat, wn+1 ≤
∑

t∈T λtbt.

In this way we conclude that, for σ consistent, the distance to the primal inconsis-
tency ρ(σ) coincides with d(0n+1, H), where H is the hypographical set introduced in
section 2. Hence, we recover a partial result in Proposition 2(iv), limited to (primal)
consistent problems in the finite case.

On the other hand, the dual problem (10) may be rewritten in the finite case as

πd : Sup b′λ
s.t. A′λ = c,

λ ∈ Rm
+ .

Assuming that this dual problem is consistent (i.e., π ∈ Πd
c), the distance to dual

inconsistency δ(π, bd(Πd
c)) is, according to Theorem 3.5 in [20],

inf {‖q‖ | {q = A′λ− sc, λ ≥ 0m, s ≥ 0, ‖λ‖1 + |s| ≤ 1} is inconsistent}
= inf {‖q‖ | q /∈ conv ({at, t ∈ T ; −c, 0n})} = d

(
0n, bd

(
Z−)) ,
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where we have taken into account the fact that 0n ∈ Z− (due to the consistency of πd).
Hence, we also recover a partial result in Theorem 6(iv), limited to dual-consistent
problems in the finite case.

Finally, let us recall that the specification of inequality (i) in Theorems 3 and 4
for the finite case can be traced from section 2.4 in [5]. Concerning the distance from
unsolvable instances to solvability, statements (ii) and (iii) in Theorem 1 are new even
in the finite case.
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[3] M. J. Cánovas, M. A. López, J. Parra, and F. J. Toledo, Distance to ill-posedness and the
consistency value of linear semi-infinite inequality systems, Math. Program., 103A (2005),
pp. 95–126.
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PRECISION CONTROL FOR GENERALIZED PATTERN
SEARCH ALGORITHMS WITH ADAPTIVE PRECISION

FUNCTION EVALUATIONS∗

ELIJAH POLAK† AND MICHAEL WETTER‡

Abstract. In the literature on generalized pattern search algorithms, convergence to a stationary
point of a once continuously differentiable cost function is established under the assumption that the
cost function can be evaluated exactly. However, there is a large class of engineering problems
where the numerical evaluation of the cost function involves the solution of systems of differential
algebraic equations. Since the termination criteria of the numerical solvers often depend on the design
parameters, computer code for solving these systems usually defines a numerical approximation to
the cost function that is discontinuous with respect to the design parameters. Standard generalized
pattern search algorithms have been applied heuristically to such problems, but no convergence
properties have been stated.

In this paper we extend a class of generalized pattern search algorithms to include a subpro-
cedure that adaptively controls the precision of the approximating cost functions. The numerical
approximations to the cost function need not define a continuous function. Our algorithms can be
used for solving linearly constrained problems with cost functions that are at least locally Lipschitz
continuous.

Assuming that the cost function is smooth, we prove that our algorithms converge to a stationary
point. Under the weaker assumption that the cost function is only locally Lipschitz continuous, we
show that our algorithms converge to points at which the Clarke generalized directional derivatives
are nonnegative in predefined directions.

An important feature of our adaptive precision scheme is the use of coarse approximations in
the early iterations, with the approximation precision controlled by a test. We show by numerical
experiments that such an approach leads to substantial time savings in minimizing computationally
expensive functions.

Key words. algorithm implementation, approximations, generalized pattern search, Hooke–
Jeeves, Clarke’s generalized directional derivative, nonsmooth optimization
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1. Introduction. Generalized pattern search (GPS) algorithms are derivative
free methods for the minimization of smooth functions, possibly with linear inequal-
ity constraints. Examples of pattern search algorithms are the coordinate search
algorithm [22], the pattern search algorithm of Hooke and Jeeves [14], and the multi-
directional search algorithm of Dennis and Torczon [9]. What they all have in common
is that they define the construction of a mesh, which is then explored according to
some rule, and if no decrease in cost is obtained on mesh points around the current
iterate, then the mesh is refined and the process is repeated.
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In 1997, Torczon [26] was the first to show that all the existing pattern search
algorithms are specific implementations of an abstract pattern search scheme and to
establish that for unconstrained problems with smooth cost functions f : Rn → R,
the gradient of the cost function vanishes at accumulation points of sequences con-
structed by this scheme. Lewis and Torczon extended her theory to address bound
constrained problems [20] and problems with linear inequality constraints [21]. In
both cases, convergence to a feasible point x∗ satisfying 〈∇f(x∗), x − x∗〉 ≥ 0 for all
feasible x is proven under the condition that f(·) is once continuously differentiable.
Audet and Dennis [3] present a simpler abstraction of GPS algorithms, and, in addi-
tion to reestablishing the Torczon and the Lewis and Torczon results, they relax the
assumption that the cost function is smooth to that it is locally Lipschitz continuous.

In principle, a natural area for the application of GPS algorithms is engineering
optimization, where the cost functions are defined on the solution of complex systems
of equations including implicit equations, ordinary differential equations, and partial
differential equations. However, in such cases, obtaining an accurate approximation
to the cost function often takes many hours, and there is no straightforward way
of approximating gradients. Furthermore, it is not uncommon that the termination
criteria of the numerical solvers introduce discontinuities in the approximations to the
cost function. Hence, standard GPS algorithms can only be used heuristically in this
context.

In this paper we present a modified class of GPS algorithms which adjust the
precision of the cost function evaluations adaptively: low precision in the early itera-
tions, with precision progressively increasing as a solution is approached. The modified
GPS algorithms converge to stationary points of the cost function even though the
cost function is approximated by a family of discontinuous functions.

We assume that the cost function f(·) is at least locally Lipschitz continuous
and that it can be approximated by a family of functions, say {f∗(ε, ·)}ε∈R

q
+
, with

fixed q ∈ N, where ε ∈ Rq
+ denotes the tolerance settings of the PDE, ODE, and

algebraic equation solvers, and each f∗(ε, ·) may be discontinuous but converges to
f(·) uniformly on compact sets. A test in the algorithm determines when precision
must be increased. This test includes parameters that can be used to control the
speed with which precision is increased. We will show by numerical experiments that
this flexibility can be exploited to obtain a significant reduction in computation times,
as compared to using high precision throughout the computation.

Under the assumption that the cost function is continuously differentiable, all the
accumulation points constructed by our GPS algorithms are stationary, while under
the assumption that f(·) is only locally Lipschitz continuous, our algorithms converge
to points at which the Clarke generalized directional derivatives are nonnegative in
predefined directions. Thus, we regain the results of [3].

To prove that our GPS algorithms construct accumulation points at which Clarke’s
generalized directional derivatives are nonnegative in predefined directions, we made
the assumption that f(·) is Lipschitz continuous on Rn rather than only near the
accumulation points, even though local Lipschitz continuity suffices for proving The-
orem 5.5. The reason is that in setting up engineering optimization problems, it is
easier to construct f(·) to be Lipschitz continuous on Rn, rather than only near the
accumulation points, because they are unknown at the time the optimization problem
is set up. Furthermore, as shown in [3], strict differentiability, as defined in [8], near
an accumulation point x∗ suffices to prove that ∇f(x∗) = 0. But since the implicit
function theorem and standard theory of differential equations [23] state smoothness
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of solutions in terms of continuous differentiability rather than strict differentiability,
we assume in proving Theorem 5.6 that f(·) is continuously differentiable.

Contrary to the model management framework with generalized pattern search
algorithms [10, 27, 25, 4], we do not assume that function values of f(·) are avail-
able, and consequently we do not construct surrogate models of increasing accuracy
that are based on support points at which f(·) has been evaluated. Our algorithms
construct an infinite sequence of approximating cost functions {f∗(ε, ·)}ε∈R

q
+

so that

f∗(ε, ·) converges to f(·) fast enough near stationary points. However, since our GPS
algorithms include global search and local search stages, as is typical in GPS algo-
rithms, our GPS algorithms allow the use of surrogate models of f∗(ε, ·) to obtain
points for the global search.

In implicit filtering [16], Kelley accounts for the situation where f(·) is approx-
imated numerically using a computer program that contains adaptive solvers. In
implicit filtering, however, one does not adaptively control the error of the cost func-
tion evaluations, but rather assumes in proving convergence to a stationary point
of f(·) that the error of the approximating cost function decays faster to zero than
the step size used in the finite difference approximation of the gradient of the cost
function. Because in our convergence analysis we establish a lower bound for Clarke’s
generalized directional derivative, which we bound by a sequence of finite difference
approximations, we need to assume the same rate of error decay as is assumed in
implicit filtering. However, in contrast to implicit filtering, our algorithms adaptively
control the approximation error. This allows us to construct a simulation precision
control algorithm that causes the optimization to use computationally cheap coarse
precision approximations to the cost function in the early iterations, and progres-
sively use higher precision cost function evaluations as needed when the algorithm
approaches a stationary point.

2. Notation.

1. We denote by Z the set of integers, by Q the set of rational numbers, and
by N � {0, 1, . . . } the set of natural numbers. The set N+ is defined as
N+ � {1, 2, . . . }. Similarly, vectors in Rn with strictly positive elements are
denoted by Rn

+ � {x ∈ Rn | xi > 0, for all i ∈ {1, . . . , n} } and the set Q+ is

defined as Q+ � {q ∈ Q | q > 0}.
2. The inner product in Rn is denoted by 〈·, ·〉 and for x, y ∈ Rn it is defined by

〈x, y〉 �
∑n

i=1 x
i yi.

3. For ε ∈ Rq
+, by ε ≤ εS, we mean that 0 < εi ≤ εiS for all i = {1, . . . , q}.

4. If a subsequence {xi}i∈K ⊂ {xi}∞i=0 converges to some point x, we write
xi →K x.

5. Let W be a set containing a sequence {wi}ki=0. Then, we denote by wk the
sequence {wi}ki=0 and by Wk the set of all k + 1 element sequences in W.

6. We denote by {ei}ni=1 the unit vectors in Rn.
7. If X is a set, we denote by ∂X its boundary.
8. If S is a set, we denote by 2S the set of all nonempty subsets of S.
9. If H is a set, we denote by card(H) its cardinality.

10. If D ∈ Qn×q is a matrix, we will use the notation d ∈ D to denote the fact
that d ∈ Qn is a column vector of the matrix D.

11. For s ∈ R, we define 
s� � max{k ∈ Z | k ≤ s}.

3. Minimization problem. To best explain our precision control algorithm
without having to discuss technical details of constructing search directions that con-
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form, in the sense of [3], to the feasible set of design parameters, and to avoid having
to discuss the problem of degenerate search directions, we restrict our discussion to
box-constrained problems rather than to problems with general linear constraints.
The construction of search directions for linearly constrained problems is discussed
in [17, 3, 24].

We will consider box-constrained problems

min
x∈X

f(x),(1a)

X �
{
x ∈ Rn | li ≤ xi ≤ ui, i ∈ {1, . . . , n}

}
,(1b)

with −∞ ≤ li < ui ≤ ∞ for i ∈ {1, . . . , n}, where the cost function f : Rn → R is (at
least) Lipschitz continuous.

We assume that the function f(·) cannot be evaluated exactly, but that it can
be approximated by functions f∗ : Rq

+ × Rn → R, and that ε ∈ Rq
+ is a vector of

fixed dimension q ∈ N that contains the tolerance settings of the PDE, ODE, and
algebraic equation solvers. We will assume that f(·) and its approximating functions
{f∗(ε, ·)}ε∈R

q
+

have the following properties.

Assumption 3.1.

1. There exists an error bound function ϕ : Rq
+ → R+ such that for any compact

set S ⊂ X, there exists an εS ∈ Rq
+ and a scalar KS ∈ (0, ∞) such that for

all x ∈ S and for all ε ∈ Rq
+, with ε ≤ εS,

| f∗(ε, x) − f(x)| ≤ KS ϕ(ε).(2a)

Furthermore,

lim
‖ε‖→0

ϕ(ε) = 0.(2b)

2. The function f : Rn → R is at least locally Lipschitz continuous on X.

Remark 3.2. The functions {f∗(ε, ·)}ε∈R
q
+

may be discontinuous.

Examples of error bound functions ϕ(·) can be found in section 6 and in [24].

Next, we state an assumption on the level sets of the family of approximating
cost functions. To do so, we first define the notion of a level set.

Definition 3.3 (level set). Given a function f : Rn → R and an α ∈ R, we will
say that the set Lα(f) ⊂ Rn, defined as

Lα(f) � {x ∈ Rn | f(x) ≤ α},(3)

is a level set of f(·), parametrized by α.

Assumption 3.4 (compactness of level sets). Let {f∗(ε, ·)}ε∈R
q
+

be as in Assump-

tion 3.1 and let X ⊂ Rn be the constraint set. Let x0 ∈ X be the initial iterate and
ε0 ∈ Rq

+ be the initial solver tolerance. Then, we assume that there exists a compact
set C ⊂ Rn such that for all ε ∈ Rq

+, with ε ≤ ε0,

Lf∗(ε0,x0)

(
f∗(ε, ·)

)
∩ X ⊂ C.(4)

4. Precision control for generalized pattern search algorithms.
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4.1. Characterization of generalized pattern search algorithms. There
exist different geometrical characterizations for pattern search algorithms, and a gen-
eral framework is presented in the review [17]. To focus on the explanation of our
precision control algorithms without having to repeat the excellent discussions in [17],
we will use a simple implementation of pattern search algorithms to explain our pre-
cision control algorithms. In particular, we will assume that the search directions are
the columns of the matrix

D � [−e1, +e1, . . . ,−en, +en] ∈ Zn×2n,(5)

which suffices for box-constrained problems. Furthermore, we assume that the se-
quence of mesh size parameters, which parameterize the minimum distance between
iterates, is constructed as follows.

Assumption 4.1 (kth mesh size parameter). Let r, s0, k ∈ N, with r > 1, and
{ti}k−1

i=0 ⊂ N. We assume that the sequence of mesh size parameters {Δk}∞k=0 satisfies

Δk � 1

rsk
,(6a)

where for k > 0

sk � s0 +

k−1∑
i=0

ti.(6b)

With this construction, all iterates lie on nested rational meshes of the form

Mk � {x0 + Δk Dm | m ∈ N2n}.(7)

We will now characterize the set-valued maps that determine the mesh points for
the “global” and “local” searches.

Definition 4.2. Let Xk ⊂ Rn and Δk ⊂ Q+ be the sets of all sequences
containing k + 1 elements, let Mk be the current mesh as defined in (7), and let
εk ∈ Rq

+ be the solver tolerance.
1. We define the global search set map to be any set-valued map

γk : Xk × Δk × Rq
+ →

(
2Mk ∩ X

)
∪ ∅(8a)

whose image γk(xk,Δk, εk) contains only a finite number of mesh points.
2. We will call Gk � γk(xk,Δk, εk) the global search set.
3. We define the directions for the local search as D � [−e1, +e1, . . . ,−en, +en].
4. We will call

Lk �
{
xk ± Δk ei | i ∈ {1, . . . , n}

}
∩ X(8b)

the local search set.
Remark 4.3.

1. As we shall see, the global search affects only the efficiency of the algorithm
but not its convergence properties. Any heuristic procedure that leads to a
finite number of function evaluations can be used for γk(·, ·, ·). Thus, the
elements in Gk can be determined using a search procedure on surrogate cost
functions, as in [10, 27, 25, 4], if the search procedure is a finite process.

2. The empty set is included in the range of γk(·, ·, ·) to allow omitting the global
search.
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4.2. Adaptive precision GPS algorithm models. We will now present our
GPS algorithm models with adaptive precision cost function evaluations. We will first
present an algorithm that simultaneously decreases Δk and εk.

Algorithm 4.4 (GPS algorithm model with simultaneous decrease of εk and Δk).

Data: Sufficient decrease parameter ζ ≥ 0;
Initial iterate x0 ∈ X;
Mesh size divider r ∈ N, with r > 1;
Initial mesh size exponent s0 ∈ N.

Maps: Global search set map γk : Xk × Δk × Rq
+ →

(
2Mk ∩ X

)
∪ ∅;

ϕ : Rq
+ → R+ as in Assumption 3.1;

Function ρ : R+ → Rq
+ (to assign εk), such that the composition

ϕ ◦ ρ : R+ → R+ is strictly monotone increasing and satisfies
ϕ(ρ(Δ))/Δ → 0, as Δ → 0.

Step 0: Initialize k = 0, Δ0 = 1/rs0 , and ε0 = ρ(1).
Step 1: Global Search

Construct the global search set Gk = γk(xk,Δk, εk).
If f∗(εk, x

′) − f∗(εk, xk) < −ζ ϕ(εk) for any x′ ∈ Gk, go to Step 3;
else, go to Step 2.

Step 2: Local Search
Evaluate f∗(εk, ·) for any x′ ∈ Lk until some x′ ∈ Lk

satisfying f∗(εk, x
′) − f∗(εk, xk) < −ζ ϕ(εk) is obtained, or until all points

in Lk are evaluated.
Step 3: Parameter Update

If there exists an x′ ∈ Gk ∪ Lk satisfying f∗(εk, x
′) − f∗(εk, xk) < −ζ ϕ(εk),

set xk+1 = x′, sk+1 = sk, Δk+1 = Δk, and εk+1 = εk;
else, set xk+1 = xk, sk+1 = sk + tk, with tk ∈ N+ arbitrary,
Δk+1 = 1/rsk+1 , and εk+1 = ρ(Δk+1/Δ0).

Step 4: Replace k by k + 1, and go to Step 1.

Remark 4.5.

1. We allow setting ζ = 0 to obtain a GPS algorithm without imposing a suffi-
cient decrease condition. In proving that limk→∞ Δk = 0, we will make use
of the fact that the iterates xk are contained in a compact set and lie on
a rational lattice in which the spacing of the elements depends on Δk, and
hence simple decrease suffices to accept an iterate [17].

2. To ensure that ε0 does not depend on the scaling of Δ0, we normalize the
argument of ρ(·).

3. In Step 2, once a (sufficient) decrease in cost is obtained, one can proceed
to Step 3. But note that one is allowed to evaluate the approximating cost
function at more points in Lk in an attempt to obtain a larger decrease in cost.
However, one is allowed to proceed to Step 3 only after either a (sufficient)
decrease in cost has been obtained or after all points in Lk were tested.

4. In Step 3, one is not restricted to accept the point x′ ∈ Gk ∪ Lk that gives
lowest cost. But the mesh size parameter Δk is reduced only if there exists
no x′ ∈ Gk ∪ Lk satisfying f∗(εk, x

′) − f∗(εk, xk) < −ζ ϕ(εk).
5. To simplify the explanation of our precision control algorithms, we do not

increase the mesh size parameter if the cost has been reduced. However, our
global search allows searching on a coarser mesh M̂ ⊂ Mk, and hence our
algorithm can easily be extended to include a rule for increasing Δk for a
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finite number of iterations (see [24]).
6. Audet and Dennis [3] update the mesh size parameter using the formula

Δk+1 = τwk Δk, where τ > 1 is a rational number that remains constant over
all iterations, and where wk ∈ [w−, w+] ⊂ Z for some constants w−, w+ ∈ Z,
with w− ≤ −1 and 0 ≤ w+. In the notation of Audet and Dennis, our
algorithm sets τ = r ∈ N+, r > 1 and wk ≤ 0, wk ∈ Z. Our GPS algorithms
do not require tk ∈ N+ to be bounded from above (i.e., in the notation of
Audet and Dennis [3], wk need not be bounded from below by w−). However,
it is obvious that from a computational point of view, a small tk should be
selected to avoid too fine a mesh in early iterations. We prefer presenting
our GPS algorithms with our construction of mesh size dividers because it
leads to simpler convergence proofs that better highlight our precision control
scheme.

In [24], we use the GPS Algorithm model 4.4 with ζ = 0 to extend the Hooke–
Jeeves algorithm for use with adaptive precision cost function evaluations.

We will now present a modification of the GPS Algorithm model 4.4 in which we
decrease Δk only after ϕ(εk) has been sufficiently decreased.

Algorithm 4.6 (GPS algorithm model).

Data: Parameters α ∈ (0, 1) and ζ ≥ 0;
Initial iterate x0 ∈ X;
Mesh size divider r ∈ N, with r > 1;
Initial mesh size exponent s0 ∈ N.

Maps: Global search set map γk : Xk × Δk × Rq
+ →

(
2Mk ∩ X

)
∪ ∅;

ϕ : Rq
+ → R+ as in Assumption 3.1;

ρ : N → Rq
+ (to assign εk) such that the

composition ϕ ◦ ρ : N → R+ is strictly monotone decreasing and
satisfies ϕ(ρ(N)) → 0, as N → ∞.

Step 0: Initialize k = 0, Δ0 = 1/rs0 , N = 1, and ε0 = ρ(1).
Step 1: Global Search

Construct the global search set Gk = γk(xk,Δk, εk).
If f∗(εk, x

′) − f∗(εk, xk) < −ζ ϕ(εk) for any x′ ∈ Gk, go to Step 3;
else, go to Step 2.

Step 2: Local Search
Evaluate f∗(εk, ·) for any x′ ∈ Lk until some x′ ∈ Lk

satisfying f∗(εk, x
′) − f∗(εk, xk) < −ζ ϕ(εk) is obtained, or until all points

in Lk are evaluated.
Step 3: Parameter Update

If there exists an x′ ∈ Gk ∪ Lk satisfying f∗(εk, x
′) − f∗(εk, xk) < −ζ ϕ(εk),

set xk+1 = x′, sk+1 = sk, Δk+1 = Δk, and εk+1 = εk, do not change
N , and go to Step 4;

else,
replace N by N + 1 and set εk+1 = ρ(N).
If ϕ(εk+1)

α/Δk < Δk,
set sk+1 = sk + tk, with tk ∈ N+ large enough
such that ϕ(εk+1)

α/Δk+1 ≥ Δk+1 (with Δk+1 = 1/rsk+1),
and set Δk+1 = 1/rsk+1 ;

else,
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set sk+1 = sk and Δk+1 = Δk.
Set xk+1 = xk, and go to Step 4.

Step 4: Replace k by k + 1, and go to Step 1.

Remark 4.7.

1. In Step 3, the mesh refinement is well defined because there always exists a
tk ∈ N+ for which ϕ(εk+1)

α ≥ Δ2
k+1, namely any tk ∈ N+ that satisfies

tk ≥ 2 log Δk − α logϕ(εk+1)

2 log r
.(9)

2. In Step 3, the test ϕ(εk+1)
α/Δk < Δk, with α ∈ (0, 1), ensures that ϕ(εk)/Δk →

0, as Δk → 0, which is essential for proving convergence.
3. The algorithm parameter α can be used to control how fast Δk is decreased.

The smaller α ∈ (0, 1), the later Δk is decreased.

5. Convergence analysis.

5.1. Unconstrained minimization. We will now establish the convergence
properties of the GPS Algorithm models 4.4 and 4.6 on unconstrained minimization
problems, i.e., for X = Rn.

The following obvious result will be used to show that Δk → 0 as k → ∞.
Proposition 5.1. Any bounded subset of a mesh Mk contains only a finite

number of mesh points.
Proposition 5.2. Suppose that Assumption 3.4 is satisfied and let {Δk}∞k=0 ⊂

Q+ be the sequence of mesh size parameters constructed by GPS Algorithm model 4.4
or 4.6. Then, limk→∞ Δk = 0.

Proof. We first prove the proposition for the GPS Algorithm model 4.4. By (6a),
Δk = 1/rsk , where r ∈ N with r > 1 and sk ⊂ N is a nondecreasing sequence. For the
sake of contradiction, suppose that there exists a Δk∗ ∈ Q+ such that Δk ≥ Δk∗ for
all k ∈ N. Then there exists a corresponding sk∗ = maxk∈N sk, and the finest possible
mesh is Mk∗ � {x0 + (1/rsk∗ )Dm |m ∈ N 2n}.

Next, since by Assumption 3.4 there exists a compact set C, such that
Lf∗(ε0,x0)

(
f∗(ε, ·)

)
⊂ C for all ε ∈ Rq

+, with ε ≤ ε0 = ρ(1), it follows from Proposi-

tion 5.1 that Mk∗ ∩ Lf∗(ε0,x0)

(
f∗(εk, ·)

)
contains only a finite number of mesh points

for any εk ∈ Rq
+, with εk ≤ ρ(1). Thus, at least one point in Mk∗ must belong

to the sequence {xk}∞k=0 infinitely many times. Furthermore, because {sk}∞k=0 ⊂ N
is nondecreasing with sk∗ being its maximal element, it follows that εk = εk∗ =
ρ(Δk∗/Δ0) for all iterations k ≥ k∗. Hence the sequence {f∗(εk, xk)}∞k=k∗ cannot
satisfy f∗(εk, xk+1) − f∗(εk, xk) < −ζ ϕ(εk) for all k ≥ k∗, which contradicts the
constructions in Algorithm 4.4.

We now prove the proposition for the GPS Algorithm model 4.6. Suppose
limk→∞ Δk �= 0. Then, there exists only a finite number of iterations in which
there exists no x′ ∈ Gk ∪ Lk that satisfies f∗(εk, x

′) − f∗(εk, xk) < −ζ ϕ(εk), be-
cause otherwise N is replaced by N + 1 an infinite number of times in Step 3, from
which follows that ϕ(ρ(N))α → 0, as N → ∞, and hence Δk → 0, as k → ∞.
Thus, there exists an N∗ ∈ N and a corresponding k∗ ∈ N such that N ≤ N∗,
Δk = Δk∗ , and εk = εk∗ = ρ(N∗) for all k ≥ k∗, and the finest possible mesh is
Mk∗ �

{
x0 + Δk∗ Dm | m ∈ N2n

}
.

By Assumption 3.4, there exists a compact set C, such that Lf∗(ε0,x0)

(
f∗(ε, ·)

)
⊂

C, for all ε ∈ Rq
+, with ε ≤ ε0 = ρ(1). Hence, it follows from Proposition 5.1 that
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Mk∗ ∩Lf∗(ε0,x0)

(
f∗(εk, ·)

)
contains only a finite number of mesh points for all εk ≤ ε0.

Thus, at least one point in Mk∗ must belong to the sequence {xk}∞k=0 infinitely many
times. Hence, the sequence {f∗(εk, xk)}∞k=k∗ cannot satisfy f∗(εk, xk+1)−f∗(εk, xk) <
−ζ ϕ(εk) for all k ≥ k∗, which contradicts the constructions in Algorithm 4.6.

Having shown that limk→∞ Δk = 0, we can use the notion of a refining subse-
quence as introduced by Audet and Dennis [3].

Definition 5.3 (refining subsequence). Consider a sequence {xk}∞k=0 constructed
by GPS Algorithm model 4.4 or 4.6. We will say that the subsequence {xk}k∈K is the
refining subsequence, if Δk+1 < Δk for all k ∈ K, and Δk+1 = Δk for all k /∈ K.

When the cost function f(·) is only locally Lipschitz continuous, we, as well as
Audet and Dennis [3], only get a weak characterization of limit points of the refining
subsequence, as we will now see.

We recall the definition of Clarke’s generalized directional derivative [8].
Definition 5.4 (Clarke’s generalized directional derivative). Let f : Rn → R

be locally Lipschitz continuous at the point x∗ ∈ Rn. Then, Clarke’s generalized
directional derivative of f(·) at x∗ in the direction h ∈ Rn is defined by

f◦(x∗; h) � lim sup
x→x∗

t↓0

f(x + t h) − f(x)

t
.(10)

Theorem 5.5. Suppose that Assumptions 3.1 and 3.4 are satisfied, let D be as in
Definition 4.2, and let x∗ ∈ Rn be an accumulation point of the refining subsequence
{xk}k∈K constructed by GPS Algorithm model 4.4 or 4.6. Then, for all d ∈ D,

f◦(x∗; d) ≥ 0.(11)

Proof. The proof is identical for both algorithms. Let {xk}k∈K be the refining
subsequence and, without loss of generality, suppose that xk →K x∗. By Assump-
tion 3.4, there exists a compact set C such that Lf∗(ε0,x0)

(
f∗(ε, ·)

)
⊂ C for all ε ∈ Rq

+,
with ε ≤ ε0 = ρ(1). Therefore, by Assumption 3.1, there exists an εL ∈ Rq

+ and a
scalar KL ∈ (0, ∞) such that, for all x ∈ C and for all ε ∈ Rq

+, with ε ≤ εL, we have
|f∗(ε, x)−f(x)| ≤ KL ϕ(ε). Because f(·) is locally Lipschitz continuous, its directional
derivative f◦(·; ·) exists. The precision control schemes of Algorithms 4.4 and 4.6 both
imply that εk →K 0, and furthermore that f∗(εk, xk + Δk d) − f∗(εk, xk) ≥ −ζ ϕ(εk)
for all d ∈ D and for all k ∈ K. Hence, for any d ∈ D,

f◦(x∗; d) � lim sup
x→x∗

t↓0

f(x + t d) − f(x)

t

≥ lim sup
k∈K

f(xk + Δk d) − f(xk)

Δk

≥ lim sup
k∈K

f∗(εk, xk + Δk d) − f∗(εk, xk) − 2KL ϕ(εk)

Δk

≥ lim sup
k∈K

f∗(εk, xk + Δk d) − f∗(εk, xk)

Δk
− lim sup

k∈K
2KL

ϕ(εk)

Δk

≥ − lim sup
k∈K

ζ
ϕ(εk)

Δk
− lim sup

k∈K
2KL

ϕ(εk)

Δk
.(12)

The second line follows from the first because the choice of x and t is restricted to
{xk}k∈K and {Δk}k∈K. Since by Proposition 5.2 Δk →K 0, it follows from the
constructions in GPS Algorithm models 4.4 and 4.6 that ϕ(εk)/Δk →K 0.
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We now state that pattern search algorithms with adaptive precision cost function
evaluations converge to stationary points.

Theorem 5.6 (convergence to a stationary point). Suppose that Assumptions 3.1
and 3.4 are satisfied and, in addition, that f(·) is once continuously differentiable. Let
x∗ ∈ Rn be an accumulation point of the refining subsequence {xk}k∈K, constructed
by GPS Algorithm model 4.4 or 4.6. Then,

∇f(x∗) = 0.(13)

Proof. Because f(·) is once continuously differentiable, we have f◦(x∗; h) =
df(x∗;h) = 〈∇f(x∗), h〉 for all h ∈ Rn. It follows from Theorem 5.5 that 0 ≤
〈∇f(x∗), d〉 for all d ∈ D, with D as in Definition 4.2. We can express any h ∈ Rn as

h =

2n∑
i=1

αi di, di ∈ D, αi ≥ 0 ∀ i ∈ {1, . . . , 2n}.(14a)

Hence, 0 ≤ 〈∇f(x∗), h〉. Similarly, we can express the vector −h, as follows:

−h =

2n∑
i=1

βi di, di ∈ D, βi ≥ 0 ∀ i ∈ {1, . . . , 2n}.(14b)

Hence, 0 ≥ 〈∇f(x∗), h〉, which implies that 0 = 〈∇f(x∗), h〉 and, since h is arbitrary,
that ∇f(x∗) = 0.

5.2. Constrained minimization. We will now extend our convergence proofs
to the box-constrained problem (1). First, we introduce the notion of a tangent cone
and a normal cone, which are defined as follows.

Definition 5.7 (tangent and normal cone).
1. Let X ⊂ Rn be defined as in (1b). Then, we define the tangent cone to X at

a point x∗ ∈ X by

TX(x∗) � {μ (x− x∗) | μ ≥ 0, x ∈ X}.(15a)

2. Let TX(x∗) be as above. Then, we define the normal cone to X at x∗ ∈ X by

NX(x∗) � {v ∈ Rn | ∀ t ∈ TX(x∗), 〈v, t〉 ≤ 0}.(15b)

Next, for x∗ ∈ X we define the subset of column vectors of the search direc-
tion matrix D � [−e1, +e1, . . . ,−en, +en] that is required to generate the tangent
cone TX(x∗). This will facilitate the extension of Theorem 5.5 to box-constrained
problems.

Definition 5.8. Let X ⊂ Rn be as in (1b) and let TX(·) be as in Defi-
nition 5.7. For x∗ ∈ X, we define H(x∗) ⊂ {−e1,+e1, . . . ,−en,+en} such that

TX(x∗) = {
∑cardH(x∗)

i=1 αi hi | hi ∈ H(x∗), αi ≥ 0, i ∈ {1, . . . , cardH(x∗)}}.
Theorem 5.9. Suppose that Assumptions 3.1 and 3.4 are satisfied. Let x∗ ∈ X

be an accumulation point of the refining subsequence {xk}k∈K constructed by GPS
Algorithm model 4.4 or 4.6 in solving problem (1) and let H(x∗) be as defined in
Definition 5.8. Then,

f◦(x∗; d) ≥ 0 ∀ d ∈ H(x∗).(16)
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Proof. If x∗ is in the interior of X, then the result reduces to Theorem 5.5.

Hence, suppose that x∗ ∈ ∂X and let H(x∗) be as in Definition 5.8. Because
x∗ is an accumulation point of {xk}k∈K, there exists an infinite subset K′ ⊂ K,
such that xk →K′

x∗, and {xk + Δk d}k∈K′, d∈H(x∗) ⊂ X. The precision control

schemes of Algorithms 4.4 and 4.6 both imply that εk →K′
0, and furthermore that

f∗(εk, xk + Δk d) − f∗(εk, xk) ≥ −ζ ϕ(εk) for all d ∈ H(x∗) and for all k ∈ K′. Thus,
for any d ∈ H(x∗), (12) still holds, from which we conclude that (16) holds.

We can now state that the GPS Algorithm models 4.4 and 4.6 generate sequences
of iterates which contain accumulation points that are feasible stationary points of
problem (1).

Theorem 5.10 (convergence to a feasible stationary point). Suppose that As-
sumptions 3.1 and 3.4 are satisfied and, in addition, that f(·) is once continuously dif-
ferentiable. Let x∗ ∈ X be an accumulation point of the refining subsequence {xk}k∈K

constructed by GPS Algorithm model 4.4 or 4.6 in solving problem (1) and let H(x∗)
be as defined in Definition 5.8. Then,

〈∇f(x∗), t〉 ≥ 0 ∀ t ∈ TX(x∗),(17a)

and

−∇f(x∗) ∈ NX(x∗).(17b)

Proof. Because f(·) is once continuously differentiable, it follows that f◦(x∗;h) =
〈∇f(x∗), h〉 for all h ∈ Rn. Because 〈∇f(x∗), ·〉 is linear and because every t ∈
TX(x∗) can be expressed as a nonnegative linear combination of elements in H(x∗),
we conclude in view of (16) that (17a) and (17b) hold.

6. Numerical experiments. In all numerical experiments, in the GPS Algo-
rithm models 4.4 and 4.6 we set the mesh size divider r = 2 and the initial mesh size
exponent s0 = 0. If no (sufficient) decrease in cost has been obtained, then we divide
the mesh size parameter Δk by a factor of two. Hence, if K denotes the set that
contains the iteration indices of the refining subsequence, as defined in Definition 5.3,
then in GPS Algorithm models 4.4 and 4.6 tk = 1 for k ∈ K and tk = 0 for k �∈ K.

All optimization runs were carried out using a 2.2 GHz AMD processor running
Linux with the 2.4.18 − 3 kernel.

6.1. Optimization problem with cost function defined on the solutions
of a DAE system. In this numerical experiment, we minimize the annual energy
consumption for lighting, cooling, and heating of an office building in Houston, TX. We
simulated three characteristic rooms that are representative of the energy consumption
of a large office building. The components of the design parameter x ∈ Rn are the
window sizes for the south and north facing windows, the depth of an overhang placed
above the south facing window, and two control setpoints that activate shading devices
outside the north and south facing windows, hence n = 5.

6.1.1. Exact cost function. The cost function is once continuously differen-
tiable and defined as

f(x) � F
(
z(x, 1)

)
,(18)
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where z(x, 1) is the solution of a semiexplicit nonlinear DAE system with index one [5]
of the form

dz(x, t)

dt
= h

(
x, z(x, t), μ

)
, t ∈ [0, 1],(19a)

z(x, 0) = z0(x),(19b)

γ
(
x, z(x, t), μ

)
= 0,(19c)

where h : Rn × Rm × Rl → Rm, z0 : Rn → Rm, and γ : Rn × Rm × Rl → Rl are
once Lipschitz continuously differentiable in all arguments. For all x ∈ Rn and for
all z(·, ·) ∈ Rm, (19c) has a unique solution μ∗(x, z) ∈ Rl and the matrix with par-
tial derivatives ∂γ(x, z(x, t), μ∗(x, z))/∂μ ∈ Rl×l is nonsingular. Thus, by using the
implicit function theorem and standard theory of ODEs [23] one can show that there
exists a unique once continuously differentiable function z(·, 1) and hence f(·) is once
continuously differentiable. In this experiment, m = 104 and l = 4, and we defined
the function F (·) in (18) as

F
(
z(x, 1)

)
� z1(x, 1)

ηh
+

z2(x, 1)

ηc
+ 3 z3(x, 1),(20)

where z1(x, 1) and z2(x, 1) are the annual heating and cooling loads of the rooms,
z3(x, 1) is the electricity consumption for lighting the rooms, and ηh = 0.44 and
ηc = 0.77 are plant efficiencies that relate the annual room load to the primary energy
consumption for heating and cooling generation, including electricity consumption for
fans and pumps [15]. The electricity consumption is multiplied by a factor of three
to convert site electricity to source fuel energy consumption.

6.1.2. Approximating cost functions. To compute approximations to the
cost function f(·), we had to write a thermal building and daylighting simulation
program, called BuildOpt [29, 30], because existing thermal building and daylighting
simulation programs are built on models that do not satisfy the smoothness assump-
tions required to prove existence, uniqueness, and differentiability of z(·, 1).

BuildOpt is a complex program that consists of two parts. The first part, which
we will call the simulation model generator, parses a text input file with the detailed
description of the building geometry, the building materials, and the expected occu-
pancy behavior—which, for our problem, was 1, 700 lines long—and then generates
a simulation model for the particular building, i.e., the functions h(·, ·, ·), z0(·), and
γ(·, ·, ·) of the DAE system (19). These functions are representations of various de-
tailed models for the heat and daylighting transfer processes and for the building
control systems. For example, the heat conduction in walls and ceilings are modeled
using the Galerkin finite element method [11], and the transmittances of solar radi-
ation and daylight through the windows are modeled using state-of-the-art optical
calculations similar to those in commercial programs [12, 34]. There is also a detailed
daylighting model that computes the available daylight at various locations in the
building for different building and window configurations, and there are models for
various control systems, such as the room lighting system and the heating and cooling
system. The second part of BuildOpt, to which our simulation model generator was
linked, is the commercial solver DASPK [6, 7].

The total size of BuildOpt is 38, 000 lines of C/C++ and Fortran code, of which
30, 000 lines (1.2 MB) of C/C++ code represent the simulation model generator and
8, 000 lines (0.3 MB) of Fortran code represent the commercial solver DASPK.
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Table 1

Normalized computation times required to solve the building energy optimization problem with
Algorithm 4.6. For each α, the last column shows the smallest Δk used in the search.

ζ = 0 ζ = 10−8 ζ = 10−6 ζ = 10−4 ζ = 10−2 Δk∗

α = 1/7 0.27 0.27 0.27 0.28 0.55 1/2
α = 1/6 0.33 0.33 0.33 0.31 0.61 1/4
α = 1/4 0.35 0.35 0.35 0.31 0.74 1/4
α = 1/3 0.55 0.55 0.55 0.60 1.21 1/8

We constructed the models in such a way that the functions h(·, ·, ·), z0(·), and
γ(·, ·, ·) are once Lipschitz continuously differentiable in all arguments, which has not
been done before for thermal building and daylighting simulation programs. This
required various smoothing techniques to replace conditional statements, which were
in fact required to achieve convergence of the DASPK solver when the solver tolerance
was tight.

In [31], BuildOpt was validated using the ANSI/ASHRAE Standard test proce-
dure 140-2001 [2] for the thermal models and benchmark tests [18, 13] produced in the
Task 21 of the International Energy Agency (IEA) Solar Heating & Cooling Program
for the daylighting models. The validation results of BuildOpt show good agreement
with the results of the other validated programs.

The computation time for one cost function evaluation was 24 sec for a solver
tolerance of ε = 10−1, 2 min 22 sec for ε = 10−2, 5 min 42 sec for ε = 10−3, 16 min 30 sec
for ε = 10−4, and 33 min 23 sec for ε = 10−5.

6.1.3. Optimization algorithm. We solved the optimization problem with
adaptive precision cost function evaluations using the Hooke–Jeeves algorithm of the
GenOpt(R) 2.0.0 optimization program [28] with the precision controlled as in GPS
Algorithm model 4.6. For comparison, we also solved the problem using the Hooke–
Jeeves optimization algorithm with fixed precision cost function evaluations and ζ = 0.
In the optimization with fixed precision cost function evaluations, we set εk = 10−5

for all k ∈ N and we allowed the mesh size to be decreased four times before the
optimization stopped.

6.1.4. Precision control. Present day DAE solvers, such as DASPK, typically
control the local error at each time step and do not even attempt to control the
global error directly. We assumed that the global error of the approximate solutions
z∗(ε, x, 1) is one order of magnitude greater than the local error. Hence, we set
ϕ(ε) = 10 ε. (Alternatively, we could have absorbed the factor 10 in the constant KS

in (2a).)
We defined ρ : N → R+ as ρ(N) = 10−N and increased precision four times.

Thus, εk = ρ(1) = 10−1 for the first iterations, and εk = ρ(5) = 10−5 for the last
iterations, which is equal to the precision used in the optimization with fixed precision
cost function evaluations.

6.1.5. Numerical results. In Table 1, we show the values that we selected
for the algorithm parameters α ∈ (0, 1) and ζ ≥ 0, the corresponding normalized
computation times, and in the last column the smallest mesh size parameter Δk∗ .
A computation time of 1 corresponds to 5.5 days of computing, which was the time
required to solve the optimization problem with the Hooke–Jeeves algorithm with
fixed precision cost function evaluations and ζ = 0.

Note that in Algorithm 4.6, the parameter α ∈ (0, 1) is only used to adjust the
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mesh size parameter Δk so that ϕ(εk)
α ≥ Δ2

k. Since ϕ(·) depends only on N , it is
possible to compute for each N ∈ N the corresponding mesh size parameter. Such
a computation shows that the sequence of mesh size parameters Δk, and hence the
sequence of iterates xk, are identical for all α ≤ 1/7, with α > 0, and fixed ζ. Thus,
a further reduction of α does not reduce the computation time.

For α ≤ 1/4, with ζ ∈ {0, 10−8, 10−6, 10−4}, our precision control algorithm
reduces the computation time by a factor of three to four. For α = 1/7 and ζ ≤ 10−4,
our precision control subprocedure reduced the computation time from about five days
to one day, making the optimization fast enough to be applicable in building design
processes. For our optimization problem, α = 1/3 and ζ ≥ 10−2 turn out to be too
big, and imposing a sufficient decrease condition by setting ζ > 0 does not reduce the
computation time. All optimization runs converged to x∗ = (1, 1, 1, 0.19, 0.048)T

and reduced the energy consumption for lighting, cooling, and heating by 4.6 % or
9.4 kWh/(m2 a).1 The 4.6 % reduction is small but not representative for average sav-
ings, because in the literature [1, 32, 33] savings of 5% to 30% in energy consumption
for lighting, cooling, and heating due to optimized building design have been reported.
A reduction of 15%, which is more representative for average savings than the 4.6%
that we achieved in our experiment, would correspond to a reduction in energy con-
sumption for lighting, cooling, and heating of 30 kWh/(m2 a). For an average current
energy cost of $0.10 per kWh, this corresponds to annual savings of $3 per square
meter floor area, or to annual savings of $30, 000 for a large, 10, 000 m2 office building.
As large buildings are often designed using energy simulations, and hence a computer
simulation model exists for those buildings, the additional effort to do an optimization
is only a few man hours. Thus, the return-of-investment is achieved within the first
year of the building operation time.

We will now describe how the optimization runs with fixed and adaptive pre-
cision cost function evaluations, with ζ = 10−4 and α = 1/6, converged to a min-
imum. Let the normalized distance of the kth iterate xk ∈ Rn to the minimizer
x∗ ∈ arg minx∈X f(x), produced by the optimization algorithm, be defined as

d(xk) � ‖xk − x∗‖
‖x0 − x∗‖ ,(21)

where x0 ∈ Rn is the initial iterate. Figure 1 shows the cost function value and the
distance to the minimizer as a function of the computation time. Below the axis
we show when precision was increased. The different precision values are indicated
by εm, m ∈ {0, 1, 2, 3, 4}, where εm = 10−(m+1). The abscissa in Figure 1 shows
the normalized CPU time rather than the number of cost function evaluations, be-
cause evaluating f∗(10−1, ·) was eighty times faster than evaluating f∗(10−5, ·) in
our experiments (see also [29, 30]). In the left graph, we can see that even for such
coarse a precision as ε = 10−1, the approximating cost function f∗(10−1, ·) allowed a
substantial decrease in cost during the first 0.2% of the computation time.

6.2. Optimization problem with cost function defined on the solutions
of a nonlinear system of equations. We will now present the computational
performance of our precision control algorithms in minimizing a cost function that
is defined on the approximate solutions of a nonlinear system of equations with 373
unknowns.

1The unit kWh/(m2 a) is kilowatt hours per square meter floor area per year.
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Fig. 1. Normalized cost function value (left graph) and distance to the minimizer (right graph)
as a function of the normalized CPU time in logarithmic scale. Below the graphs we show the
intervals for which the precision parameter ε has been kept constant. For the adaptive precision
optimization, we used ζ = 10−4 and α = 1/6. For better display of the early iterations, the time
axis is in logarithmic scale.

The objective is to fit four parameters of a detailed air-to-water cooling coil com-
puter simulation model in such a way that the difference between simulated and
measured coil air outlet temperature is minimized for a prescribed number of mea-
surement points. The measurement data are the air and water inlet temperature, the
air humidity ratio, the air and water mass flow, and the valve position of the throttle
valve in the water circuit. There are 401 measurement data, equally spaced in time.

The simulation model [35] consists of a coupled system of nonlinear equations
that is solved for 373 variables using Newton iterations. The model is static and
was simulated in SPARK 1.0.3 [19]. For the range of measurement data, all model
equations are once continuously differentiable, and the Jacobian matrix is nonsingular
in a neighborhood of the solution. Therefore, it follows from the implicit function
theorem [23] that the exact solution, and hence the cost function, is once continuously
differentiable.

The design parameters are the air and water side heat transfer coefficients and
two parameters that define the valve characteristics. We controlled two precision
parameters: the precision parameter for the Newton solver and the number of data
points that were used in the data fit.

6.2.1. Exact cost function. We defined the exact cost function as follows. Let
τ � [0, 1] denote the normalized time interval over which the measurement took
place. Let Tm : [0, 1] → R be the linear interpolation of the measured coil air outlet
temperatures. For x ∈ Rn and t ∈ τ , let Ts(x, t) ∈ R denote the exact solution of the
system of equations that defines the coil air outlet temperature, obtained by using
linearly interpolated measurement data. Then, for

e(x, t) � (Tm(t) − Ts(x, t))
2,(22)
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we defined the exact cost function

f(x) �
∫ 1

0

e(x, t) dt.(23)

6.2.2. Approximating cost functions. The integral (23) cannot be evaluated
because Ts(x, t) can only be numerically approximated by an approximate solution
T ∗
s (ε1, x, t) ∈ R with precision parameter ε1 ∈ R+, and the integral can only be

approximated by a quadrature formula. Thus, in computing the approximating cost
functions, we have two sets of approximations.

We approximated f(·) as follows. For some ε0 ∈ R2
+, with ε20 ≤ 1/2, let ε1 ∈ (0, ε10]

denote the precision parameter of the Newton solver, and let ε2 ∈ (0, ε20] denote the
time interval for the quadrature formula. For t ∈ τ , we approximated (22) by

e∗(ε1, x, t) � (Tm(t) − T ∗
s (ε1, x, t))2,(24a)

using Newton iterations. The Newton solver in the SPARK program is set up in such
a way that for any compact set S ⊂ X, there exists an εS ∈ R+ and a K ′

S ∈ (0, ∞)
such that for all x ∈ S, for all t ∈ [0, 1], and for all ε ∈ R+, with ε ≤ εS,

|e∗(ε, x, t) − e(x, t)| ≤ K ′
S ε.(24b)

We approximated the integral (23) by

f∗(ε, x) �
N(ε2)−1∑

i=0

e∗(ε1, x, i/N(ε2)) + e∗(ε1, x, (i + 1)/N(ε2))

2N(ε2)
,(25)

where N(ε2) � 
1/ε2�.
It can be shown that for any compact set S ⊂ Rn, there exist a KS ∈ (0,∞) and

an εS ∈ R2
+ such that

|f∗(ε, x) − f(x)| ≤ KS ‖ε‖,(26)

for all x ∈ S and for all ε ∈ R2
+, with ε ≤ εS. Therefore, ϕ(·) in Assumption 3.1 is

ϕ(ε) = ‖ε‖.

6.2.3. Optimization algorithm. Numerical experiments showed that f(·) has
several local minima, and some local minima have a cost function value that is three
times larger than the best found solution. Therefore, we used the multistart Hooke–
Jeeves optimization algorithm from the GenOpt(R) 2.0.0 optimization program [28]
with four randomly selected initial iterates. We controlled the precision of the ap-
proximating cost functions using the precision control algorithm from GPS Algorithm
model 4.4. For comparison, we also solved the problem with the multistart Hooke–
Jeeves algorithm with fixed precision εk = (10−10, 1/400)T for all k ∈ N, with ζ = 0
and three step reductions.

6.2.4. Precision control. To control εk ∈ R2
+, with εk ≤ ε0, as a function of

the mesh size factor Δk ∈ Q+, we defined ρ : R+ → R2
+ as

ρi(Δ) � εimin

(
Δ

Δmin

)αi

, αi > 1, i ∈ {1, 2},(27)
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Table 2

Initial precisions ε0 used for approximating the cost functions, corresponding α, normalized
computation time, and best obtained local minima for all optimizations.

ε10 ε20 α1 α2 CPU time f∗(ε, x∗)

10−10 1/400 0 0 1 0.0236
10−1 0.025 9.97 1.11 0.13 0.0242
10−1 0.05 9.97 1.44 0.15 0.0225
10−1 0.1 9.97 1.77 0.72 0.0216
10−1 0.5 9.97 2.55 0.34 0.0217
10−1 1 9.97 2.88 0.51 0.0221
10−2 0.025 8.86 1.11 0.12 0.0242
10−2 0.05 8.86 1.44 0.15 0.0225
10−2 0.1 8.86 1.77 0.69 0.0216
10−2 0.5 8.86 2.55 0.18 0.0217
10−2 1 8.86 2.88 0.54 0.0221
10−3 0.025 7.75 1.11 0.13 0.0242
10−3 0.05 7.75 1.44 0.15 0.0225
10−3 0.1 7.75 1.77 0.69 0.0216
10−3 0.5 7.75 2.55 0.18 0.0217
10−3 1 7.75 2.88 0.53 0.0221
average for adaptive precision 0.35

where Δmin � mink∈N{Δk} = 1/8 is the smallest mesh size parameter, and εmin =
(10−10, 1/400)T is the precision parameter for the last iterations. Since αi > 1 for
i ∈ {1, 2}, we have ϕ(ρ(Δ))/Δ → 0, as Δ → 0.

To determine α > 1, we selected different initial precisions ε0 ∈ R2
+ and then

computed α by solving (27) with Δ = Δ0 = 1 and ρi(1) = εi0 for i ∈ {1, 2}. In
particular, we set

αi =
log

(
εi0/ε

i
min

)
log (Δ0/Δmin)

=
log

(
εi0/ε

i
min

)
log 8

, i ∈ {1, 2}.(28)

Thus, for αi > 1, we need εi0 > 8 εimin for i ∈ {1, 2}.
6.2.5. Numerical results. Table 2 shows the different settings for ε0, the cor-

responding α, the normalized computation time, and the cost function values for the
best obtained local minima. A normalized computation time of one corresponds to 45
minutes of computation time, which was the time required to solve the optimization
problem with fixed precision cost function evaluations.

All optimization runs obtained a similar reduction in cost. On average, our pre-
cision control scheme reduced the computation time by a factor of three.

We will now describe how the optimizations with fixed and adaptive precision cost
function evaluations, with ζ = 0 and α = (9.97, 1.11)T , converged to a local minimum.
Let the normalized distance to the best local minimizer of the optimization that used
fixed precision cost function evaluations be defined as in (21). Figure 2 shows, for
the optimizations with adaptive and fixed precision cost function evaluations, the
cost function value and the normalized distance to the minimizer as a function of
the computation time. For the initial iterate and the precision control parameter α
used in the optimizations shown in Figure 2, both algorithms converged to the same
local minimum. Below the axis we show when precision was increased (the different
precisions are indicated by εm, m ∈ {0, 1, 2, 3}). For this example, the precision
control algorithm set ε0 = (10−1, 0.025)T , ε1 = (10−4, 0.012)T , ε2 = (10−7, 0.0054)T ,
and ε3 = (10−10, 0.0025)T . After 3% of the computation time that was required to
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Fig. 2. Cost function value (left graph) and distance to the minimizer (right graph) as a
function of the normalized computation time in logarithmic scale. Below the graphs we show the
intervals for which the precision parameter ε has been kept constant. For the adaptive precision
optimization, we used ζ = 0 and α = (9.97, 1.11)T . For better display of the early iterations, the
time axis is in logarithmic scale.

solve the fixed precision optimization problem, the cost function values and the iterates
of the adaptive precision optimization problem were already close to the minimum.

7. Conclusion. We have extended the family of GPS algorithms to a form that
converges to a stationary point of a smooth cost function that cannot be evaluated
exactly, but that can be approximated by a family of possibly discontinuous functions
{f∗(ε, ·)}ε∈R

q
+
. An important feature of our algorithms is that they use low-cost,

coarse precision approximations to the cost function when far from a solution, with
the precision progressively increased as a solution is approached. We have shown by
numerical experiments that our precision control algorithms lead to considerable time
savings over using high precision approximations to the cost function in all iterations.
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STOCHASTIC MATHEMATICAL PROGRAMS WITH

COMPLEMENTARITY CONSTRAINTS∗
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Abstract. In this paper, we consider a class of stochastic mathematical programs in which the
complementarity constraints are subject to random factors and the objective function is the mathe-
matical expectation of a smooth function which depends on both upper and lower level variables and
random factors. We investigate the existence, uniqueness, and differentiability of the lower level equi-
librium defined by the complementarity constraints using a nonsmooth version of implicit function
theorem. We also study the differentiability and convexity of the objective function which implicitly
depends upon the lower level equilibrium. We propose numerical methods to deal with difficulties due
to the continuous distribution of the random variables and intrinsic nonsmoothness of lower level
equilibrium solutions due to the complementarity constraints in order that the treated programs
can be readily solved by available numerical methods for deterministic mathematical programs with
complementarity constraints.
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equilibrium, discretization, implicit smoothing
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1. Introduction. Mathematical programs with equilibrium constraints (MPEC)
are a class of optimization problems with two sets of variables: upper level variables
and lower level variables and an equilibrium constraint defined by a parametric vari-
ational inequality or a complementarity system with lower variables being its prime
variables and upper level variables being its parameters.

Over the past few years, MPEC has developed as a new area in optimization; see
[23, 25] for an overview. One of the driving forces of the rapid development is that
MPEC has found useful applications in many areas such as economics, management,
and engineering. A particularly interesting example for MPEC is a Stackelberg–Nash
leader-follower model for competition in an oligopoly market where a number of firms
compete to supply homogeneous goods into a market in a noncooperative manner
[24, 32]. Suppose that a distinct strategic firm (called leader), may anticipate the
reaction of the remaining nonstrategic firms (called followers) to his decision and
use this knowledge to select his optimal supply by minimizing the objective function.
The followers’ reaction to the leader’s decision can be described by a Nash equilibrium
which can be mathematically formulated as a variational inequality (VI). In structural
optimization, the objective is often to optimize the performance of a structure, or
its construction cost or weight by selecting design parameters, such as the shape
of structure, or the choice of material under the constraints of the behavior of the
structure, where the values of the state variables such as displacements, stresses, and
contact forces are described by an equilibrium of minimal energy. The problem can
be modeled as MPEC similarly [23, 25].

∗Received by the editors May 18, 2004; accepted for publication (in revised form) June 2, 2005;
published electronically January 6, 2006. This research is supported by the United Kingdom Engi-
neering and Physical Sciences Research Council grant GR/S90850/01.

http://www.siam.org/journals/siopt/16-3/60854.html
†School of Mathematics, University of Southampton, Southampton SO17 1BJ, UK (h.xu@maths.

soton.ac.uk).

670



STOCHASTIC MPECs 671

In MPEC models, the underlying data are deterministic. However, in some im-
portant practical instances, there may be some stochastic (uncertain) factors involved
in MPEC models. For instance, in a Stackelberg leader-follower equilibrium model,
the leader’s decision may be subject to some uncertainty in market demand. This is
particularly so when the decision is made now for future output. Ignoring such an
uncertainty may result in a decision being made on the basis of a particular market
realization which occurs at a very low probability. De Wolf and Smeers [4] first con-
sidered this kind of stochastic leader-follower problem and applied it to model the
European gas market. Xu [36] considered a more general model and investigated it
with an MPEC approach.

In mechanical optimization, a structural equilibrium may be subject to the ran-
dom properties of materials and randomly varying conditions such as weather and
external forces [2]. The distribution of these random factors may be obtained from
experience or through observation. It might be undesirable to base the optimal choice
of design parameters on the expected values of the random data.

Patriksson and Wynter [26] first considered a general class of stochastic mathe-
matical programs with equilibrium constraints (SMPEC) as follows:

SMPEC
min E(x) := E[f(x, y(x, ξ(ω)))]
s.t. x ∈ X ,

where ξ : Ω → Rl denotes a vector of random variables defined on a sample space Ω,
y(x, ξ(ω)) denotes a measurable selection from S(x, ξ(ω)), the set of solutions for the
lower level VI problem parameterized by the upper level variable x and random vector
ξ(ω); E denotes the expected value. They investigated the existence of an optimal
solution and the directional differentiability of the objective function.

In this paper we consider a less complicated SMPEC model as follows:

SMPCC
min E [f(x, y, ξ(ω))]
s.t. x ∈ X ,

0 ≤ y ⊥ F (x, y, ξ(ω)) ≥ 0,
(1)

where, by a slight abuse of notation, f : Rm × Rn × Rl → R denotes a continuously
differentiable function, F : Rm×Rn

+ ×Rl → Rm denotes a continuously differentiable
vector valued function, ξ : Ω → Rl denotes a vector of random variables defined on
sample space Ω, E denotes the expected value, and X denotes a closed subset of Rm.

In this model, we implicitly assume that the lower level vector of variables y
uniquely solves a stochastic complementarity problem for every x and the realization
of ξ(ω). The uniqueness can be guaranteed by the uniform strong monotonicity of
F in y. Therefore in this model y is essentially a function of x and ξ(ω), not an
independent decision vector. This is significantly different from an SMPEC model
recently considered by Shapiro [31] where y is regarded as a second decision vector.
The optimal upper level variable x is chosen to minimize the expected value of the
objective function since the random factors are not realized at the time a decision
is made. Model (1) is first investigated by Lin, Chen, and Fukushima [20] with a
focus on the case when ξ(ω) is a random variable with a finite discrete distribution.
It is shown that such a program can be transformed into a standard deterministic
MPCC. Subsequently, a smoothing method is proposed for solving the transferred
program. Lin, Chen, and Fukushima [20] also considered a variation of the model
where the complementarity constraint may not necessarily have a solution for every
realization of ξ(ω) and, consequently, a recourse is considered. In a revised version of
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the paper [21] (with a different title), Lin, Chen, and Fukushima proposed a Monte
Carlo method for solving this type of recourse SMPEC model. The work is extended
by Lin and Fukushima [22].

In this paper, we focus on the case when ξ(ω) is a vector of random variables with
a known continuous distribution. We find that the case is more challenging in that
the resulting SMPCC is no longer equivalent to a standard deterministic MPCC. To
be more specific, let ρ(t) denote the joint density function of ξ(ω) and T denote the
support set of ρ(t). Then (1) can be rewritten as

min E(x) :=
∫
T f(x, y, t)ρ(t)dt

s.t. x ∈ X ,
0 ≤ y ⊥ F (x, y, t) ≥ 0, t ∈ T .

(2)

Note that here t is a vector when l > 1 and hence the integration is multiple in general.
As a result of this reformulation, we have transformed the stochastic program (1) into
a deterministic program. Of course, there is a fundamental difference between a
standard deterministic mathematical program with complementarity constraints and
(2) since here the complementarity constraint contains a vector of parameters t and
the objective function involves an integration with respect to t.

We need to investigate the properties of lower level equilibrium solution y(x, t)
defined by the complementarity problem in the constraint of (2) before proposing nu-
merical methods to solve the problem. By using a nonlinear complementarity problem
(NCP) function, we reformulate the complementarity constraint as an underdeter-
mined system of nonsmooth equations and then investigate the dependence of the
lower level prime variable y on the upper level vector of variables x and parametric
vector t using a nonsmooth version of the implicit function theorem. We discuss Lip-
schitz continuity, and piecewise smoothness of y(x, t) on space X ×T . The discussion
is extended to upper level expected value function E(x).

With the nice properties of lower level equilibrium solution and upper level objec-
tive function, we propose some numerical methods for solving (2). The methods are
focused on addressing two fundamental issues in the problem. One is that since T is
a set of positive Lebesgue measures, y(x, t) is an infinite dimensional variable. This is
significantly different from the case when T is a finite set and (2) can be easily refor-
mulated as a standard deterministic mathematical program with a complementarity
constraint. We deal with this issue by discretizing the support set T and replacing
the integration in the objective function with a numerical integration. This kind of
deterministic discretization approach is not necessarily efficient when l > 1 and/or T
is large, but it is rather stable and suitable for l = 1 and/or a small T . The other
issue is the nonsmoothness in the constraint caused by the complementarity structure.
This is similar to the deterministic MPCC case. We deal with this problem with a
popular implicit NCP smoothing method as in the deterministic MPEC case.

During the revision of this paper, a new work on SMPEC by Shaprio has come up.
In [31], Shapiro considered a slightly different model from (1) by choosing y(x, ξ(ω))
in such a way that f(x, y, ξ(ω)) is minimized for given x and ξ(ω), and in doing so
he described his model as a two stage stochastic decision making problem. Moreover,
he proposed a sample average approximation method to solve the problem and pre-
sented a probabilistic estimate of sample size for an ε-global optimizer of the original
SMPEC to be a δ-optimizer of a sample average approximation program. The sample
average approximation approach provides an effective alternative to the deterministic
discretization approach that we will discuss in this paper in either case when: (a)
l ≥ 2, (b) the support set T is large, (c) the distribution of ξ(ω) is unknown.
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The rest of this paper is organized as follows. In section 2, we investigate proper-
ties of lower level equilibrium solution using a nonsmooth version of implicit function
theorem under the assumption that F (x, y, t) is uniformly strongly monotone with
respect to y. We show global Lipschitzness and piecewise smoothness for the lower
level equilibrium solution y(x, t). We then move on to discuss properties of upper
level expected value function E(x) and show that E(x) is differentiable under some
moderate conditions. We also use a stochastic Stackelberg–Nash–Cournot equilib-
rium problem as an example to discuss the differentiability and convexity of E(x).
In section 3, we propose a deterministic discretization approach to approximating (2)
and obtain an error bound for an approximate global minimum. Note that our dis-
cussion is based on the case when ξ(ω) is a random variable (l = 1), but the results
can be easily extended to l > 1 case. In section 4, we discuss an implicit smoothing
approach for solving (2) and obtain error bounds for a global optimal solution of the
smoothed program. Finally, in section 5, we investigate the limiting behavior of the
Clarke stationary points of both discretized and smoothed programs.

2. Reformulation and characterization. It is well known that a complemen-
tarity problem can be transformed into a system of nonsmooth equations and conse-
quently a deterministic mathematical program with complementarity constraint can
be transformed into a program with nonsmooth equality constraints. In this section,
we will use the same idea to deal with the complementarity constraints in SMPCC.

2.1. Reformulation of the complementarity constraints. Let φ : R2 → R
be an NCP function [35], that is, it satisfies at least the following two properties:

φ(a, b) = 0 ⇐⇒ a, b ≥ 0 and ab = 0.

Then the complementarity constraints in (2) can be reformulated as

Φ(x, y, t) :=

⎛
⎜⎝

φ(y1, F1(x, y, t))
...

φ(yn, Fn(x, y, t))

⎞
⎟⎠ = 0.(3)

The reformulation is well known; see for instance [18, 16]. There are many NCP
functions available in literature; see [35] for a review. Here we only consider the most
popular two NCP functions.

One is the “min” function which is defined as

φ(a, b) = min(a, b).

The function is globally Lipschitz continuous and is continuously differentiable every-
where except at the line a = b.

The other is the Fischer–Burmeister function [9] which is defined as

φ(a, b) = a + b−
√
a2 + b2.

The function is also globally Lipschitz continuous and is continuously differentiable
everywhere except at (0, 0).

With an NCP function, program (2) can be reformulated as

min
∫
T f(x, y, t)ρ(t)dt

s.t. x ∈ X ,
Φ(x, y, t) = 0.

(4)
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Unfortunately, due to the presence of the integral with respect to t in the objective
function, there is no available algorithm that can be directly applied to solve program
(4). Our purpose here is to properly treat (4) so that it can be solved by existing
algorithms for deterministic MPCC. From here on, we will focus on (4) rather than
(2).

2.2. Properties of lower level equilibrium. For given x and t, the lower
level equilibrium y is defined as a solution of (3). We are interested in the existence,
uniqueness of such a solution and its dependence on x and t. For this purpose, we
need to make some basic preparations.

Let F : Rm×Rn
+ ×Rl → Rn. F (x, y, t) is said to be uniformly strongly monotone

with respect to y if there exists a constant α > 0 such that

(F (x, y′, t) − F (x, y′′, t))T (y′ − y′′) ≥ α‖y′ − y′′‖2∀y′, y′′ ∈ Rn
+, x ∈ X , t ∈ T .(5)

Here and later the superscript T denotes the transpose of a vector and matrix.
Let H : Rj → Rl be a locally Lipschitz continuous function. The Clarke general-

ized Jacobian [3] of H at x ∈ Rj is defined as

∂H(x) := conv

{
lim

y∈DH
y→x

∇H(y)

}
,

where DH denotes the set of points near x at which H is Frechét differentiable, ∇H(y)
denotes the usual Jacobian of H which is a l × j matrix, “conv” denotes the convex
hull of a set. When l = 1 or j = 1, ∂H reduces to the Clarke subdifferential.

Let Da = diag(da1 , . . . , d
a
n) ∈ Rn×n denote the diagonal matrix with the (i, i)th

entry being dai , for i = 1, . . . , n. Let Db = diag(db1, . . . , d
b
n) ∈ Rn×n denote the

diagonal matrix with the (i, i)th entry being dbi , for i = 1, . . . , n. Let I denote the
identity matrix in Rn×n. The function Φ defined by (3) is locally Lipschitz continuous
and the Clarke generalized Jacobian of Φ with respect to y can be expressed as

∂yΦ(x, y, t) =

{
(Da, Db)

(
I

∇yF (x, y, t)

)
: (dai , d

b
i ) ∈ ∂φ(yi, Fi(x, y, t)), i = 1, . . . , n

}
.

(6)

Moreover,

∂yΦ(x, y, t) ⊂ ∂yΦ1(x, y, t) × · · · × ∂yΦn(x, y, t),

where

∂yΦi(x, y, t) = {dai ei + dbi∇yF (x, y, t) : (dai , d
b
i ) ∈ ∂φ(yi, Fi(x, y, t))}, i = 1, . . . , n.

The following proposition shows that under some proper conditions, the Clarke
generalized Jacobian ∂yΦ(x, y, t) is uniformly nonsingular.

Proposition 2.1. Suppose that F (x, y, t) is uniformly strongly monotone with
respect to y, and φ(a, b) is either the min-function or the Fischer–Burmeister function.
Then there exists a constant C > 0 such that for all x ∈ X , y ≥ 0 and t ∈ T

‖(Da + Db∇yF (x, y, t))−1‖ ≤ C ∀(dai , d
b
i ) ∈ ∂φ(yi, Fi(x, y, t)), i = 1, . . . , n.

Here and later on ‖ · ‖ denotes the 2-norm of a matrix and a vector.
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We will not provide a proof since the result follows straightforwardly from [17,
Proposition 3.2] where a similar conclusion is proved with φ being the Fischer–
Burmeister function and F a P-function (of y). The case when φ is a min-function
can be dealt with similarly.

Since y is implicitly dependent of x and t through the nonsmooth system of
equations (3), the classical implicit function theorem cannot be used to study (3). We
need the following generalized implicit function theorem which is established in [36]
and is essentially due to Theorem 7.1.1 and the subsequent corollary of [3].

Lemma 2.2 [36, Lemma 3.2]. Consider an underdetermined system of nonsmooth
equations

H(y, z) = 0,

where H : Rm × Rn → Rm is locally Lipschitz. Let (ȳ, z̄) ∈ Rm × Rn be such that
H(ȳ, z̄) = 0. Suppose that ∂yH(ȳ, z̄) is nonsingular. Then

(i) there exist neighborhoods Z of z̄, Y of ȳ, and a locally Lipschitz function
y : Z → Y such that y(z̄) = ȳ and, for every z ∈ Z, y = y(z) is the unique
solution of the problem H(y, z) = 0, y ∈ Y ;

(ii) for z ∈ Z,

∂y(z) ⊂ {−R−1U : (R,U) ∈ ∂H(y(z), z), R ∈ Rm×m, U ∈ Rm×n}.(7)

With Proposition 2.1 and Lemma 2.2, we are ready to give our main results on
the lower level equilibrium solution.

Theorem 2.3. Let Φ(x, y, t) be defined as in (3). Suppose that F is uniformly
strongly monotone in y and uniformly locally Lipschitz continuous in x. Then

(i) there exists a unique locally Lipschitz continuous function y(x, t) such that

Φ(x, y(x, t), t) = 0(8)

for every x ∈ X and t ∈ T ;
(ii) for every t ∈ T , y(·, t) is piecewise smooth in X ; moreover, if T is a set of

positive Lebesgue measure, then y(·, ·) is piecewise smooth in X × T , and for
fixed x, y(x, ·) is piecewise smooth in T ;

(iii) the Clarke generalized Jacobian of y(x, t) with respect to x can be estimated
as follows:

∂xy(x, t) ⊂ {−R−1U : (U,R, V ) ∈ ∂Φ(x, y(x, t), t), U ∈ Rn×m, R ∈ Rn×n,

V ∈ Rn×l}
⊂ {−R−1U : (U,R, V ) ∈ ∂CΦ(x, y(x, t), t), U ∈ Rn×m, R ∈ Rn×n,

V ∈ Rn×l},

where ∂CΦ = ∂Φ1 × · · · × ∂Φn; moreover, if F is uniformly globally Lipschitz
continuous in x, then y(x, t) is also uniformly globally Lipschitz continuous
in x;

(iv) the Clarke generalized Jacobian of y(x, t) with respect to t can be estimated
as follows:

∂ty(x, t) ⊂ {−R−1V : (U,R, V ) ∈ ∂Φ(x, y(x, t), t), U ∈ Rn×m, R ∈ Rn×n,

V ∈ Rn×l}
⊂ {−R−1V : (U,R, V ) ∈ ∂CΦ(x, y(x, t), t), U ∈ Rn×m, R ∈ Rn×n,

V ∈ Rn×l};
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if F is uniformly globally Lipschitz continuous in t, then y(x, t) is also uni-
formly globally Lipschitz continuous in t.

The results are expected. In particular, similar results to parts (i) and (ii) are
established by Facchinei and Pang in the context of sensitivity and stability analysis
in [7]. For completeness, we attach a proof which utilizes the nonsmooth implicit
function theorem in the appendix.

In practice, y(x, t) represents an equilibrium at scenario t of the uncertainty. The
piecewise smoothness of a component yi(x, t) at a point (x, t) implies that the value
of ith lower level decision variable at the equilibrium may change at different rates
at the point. In what follows, we investigate the piecewise structure of y(x, t) and its
differentiability.

Let

D = {(x, t) : x ∈ X , t ∈ T , yi(x, t) + Fi(x, y(x, t), t) > 0, i = 1, . . . , n}.

Obviously y(x, t) is continuously differentiable on D, and

∇xy(x, t) = −∇yΦ(x, y(x, t), t)−1∇xΦ(x, y(x, t), t)

and

∇ty(x, t) = −∇yΦ(x, y(x, t), t)−1∇tΦ(x, y(x, t), t) ∀x ∈ D.

In general the structure of set D is complex even when x is a single variable.

2.3. Properties of the objective function. Let y(x, t) be the solution of (3).
We consider the objective function of the SMPCC

E(x) :=

∫
T
f(x, y(x, t), t)ρ(t)dt.

For simplicity of discussion, we make a blanket assumption that E(·) takes finite
value on X . We also assume throughout this subsection that T is a set of positive
Lebesgue measure. We are interested in the properties of E(x) such as Lipschitz
continuity, differentiability, and convexity which are related to the development of
numerical methods and the uniqueness of optimal solution. Note that in the general
context of SMPEC, Patriksson and Wynter [26] investigated Lipschitz continuity and
directional differentiability of the objective function. Our approach and results here
are more specifically utilizing Clarke subdifferential.

Theorem 2.4. Let Φ(x, y, t) be defined as in (3). Suppose that F is uniformly
strongly monotone in y and uniformly globally Lipschitz continuous in x. Suppose
also that f is globally Lipschitz continuous with respect to (x, y), that is, for every
t ∈ T , there exists L(t) > 0 such that

|f(x′, y′, t)− f(x′′, y′′, t)| ≤ L(t)(‖x′ − x′′‖+ ‖y′ − y′′‖) ∀x′, x′′ ∈ X , and y′, y′′ ∈ Rn
+.

Suppose also that ∫
T
L(t)ρ(t)dt < ∞.(9)

Then E(x) is globally Lipschitz continuous and piecewise smooth. Moreover,

∂E(x) ⊂
∫
T

[∇xf(x, y(x, t), t) + ∇yf(x, y(x, t), t)∂xy(x, t)]ρ(t)dt.(10)
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Proof. Let x′, x′′ ∈ X . Then

|E(x′) − E(x′′)| ≤
∫
T
|f(x′, y(x′, t), t) − f(x′′, y(x′′, t), t)|ρ(t)dt

≤
∫
T
L(t)(‖x′ − x′′‖ + ‖y(x′, t) − y(x′′, t)‖)ρ(t)dt.

By Part (iii) of Theorem 2.3, y(x, t) is uniformly Lipschitz in x. Thus, there exists a
constant C > 0 such that

‖y(x′, t) − y(x′′, t)‖ ≤ C‖x′ − x′′‖.

Consequently,

|E(x′) − E(x′′)| ≤
[
(1 + C)

∫
T
L(t)ρ(t)dt

]
‖x′ − x′′‖.

The global Lipschitz continuity of E(x) follows from this and (9). Given the Lipschitz
continuity, we can obtain (10) by applying [3, Theorem 2.7.2] to E(x). The piecewise
smoothness of E(x) is obvious given the piecewise smoothness of y(x, t) and the
smoothness of f(x, y, t).

The above theorem shows the global Lipschitzness and subdifferentiability of
E(x). In what follows we investigate its differentiability. Let y(x, t) be the solution
of (3). For x ∈ X , let

Ti(x) := {t ∈ T : yi(x, t) ≥ 0, Fi(x, y(x, t), t) ≥ 0, yi(x, t) + Fi(x, y(x, t), t) = 0}
(11)

for i = 1, . . . , n. This is a set of points in T where the ith complementarity constraint
degenerates for fixed x.

Lemma 2.5. Ti(x) is Lebesgue measurable.
Proof. By Theorem 2.3, for each fixed x, yi(x, ·) is continuous. Thus Ti(x) is

Lebesgue measurable.
In general, the Lebesgue measure of Ti(x) in space T may not be zero.
Assumption 2.6. For i = 1, . . . , n, the Lebesgue measure of Ti(x) relative to

that of T is zero.
In subsection 2.4, we will show that Assumption 2.6 holds in a practical instance.
Proposition 2.7. Suppose that for any x, t at which y(·, t) is continuously dif-

ferentiable at x, the following holds:

y(x′, t) − y(x, t) −∇xy(x, t)(x
′ − x) = o(‖x− x′‖).(12)

Under Assumption 2.6,
(i) E(x) is differentiable and

∇E(x) =

∫
T \T (x)

[∇xf(x, y(x, t), t) + ∇yf(x, y(x, t), t)∇xy(x, t)]ρ(t)dt,(13)

where

T (x) =

n⋃
i=1

Ti(x);



678 HUIFU XU

(ii) if, in addition, ∇f is uniformly Lipschitz continuous in x and y, then E(·) is
continuously differentiable on X .

See a proof in the appendix.
The proposition above shows that the only possibility that E(·) is not differen-

tiable at x is when the Lebesgue measure of T (x) is not zero.
Finally, we discuss the convexity of E(x). We assume that for every t ∈ T ,

f(x, y, t) is convex in x, y. Since the density function ρ(t) is nonnegative, the integral
of f with respect t gives a convex function of x, y. Unfortunately, these conditions are
not adequate to ensure the convexity of E(x) because E(x) involves the integration
of the y(x, t). It is obvious that if each component function yi(x, t) is convex in x for
every t ∈ T , then E(x) is convex. So a sufficient condition to ensure the convexity of
E(x) is when yi(x, t) becomes convex in x.

In general, yi(·, t) is not necessarily convex. However, under some particular
circumstances, we may obtain the convexity of yi(·, t). We will discuss all these
through an example in the next subsection.

2.4. An example. Consider a stochastic Stackelberg–Nash–Cournot equilib-
rium problem in an oligopoly market where n + 1 firms compete to supply homo-
geneous goods into a market in a noncooperative manner. A strategic firm, called the
leader, needs to make a decision for its future output now. Assume that the leader
has perfect knowledge of how other firms, called followers, react to his output and the
future market distribution. Then the leader’s decision problem can be formulated as

max
x≥0

E

[
xp

(
x +

n∑
i=1

yi(x, ξ(ω)), ξ(ω)

)]
− c0(x),(14)

where

yi(x, ξ(ω)) ∈ arg max
yi≥0

(
yip

(
x + yi +

n∑
k=1,k �=i

yk(x, ξ(ω)), ξ(ω)

)
− ci(yi)

)
, i = 1, . . . , n.

(15)

Here x denotes the leader’s decision variable, yi denotes the ith follower’s decision
variable, and p(q, ξ(ω)) denotes the inverse market demand function which is subject
to a random shock ξ(ω), that is, if the total supply to the market by all firms is q, then
market price at scenario ξ(ω) is p(q, ξ(ω)); c0(q) denotes the leader’s cost function and
ci(q), i = 1, . . . , n, denotes follower i’s cost function. We assume that both demand
function p(·, ·) and cost functions ci(q), i = 0, . . . , n, are sufficiently smooth.

In this problem, the followers are assumed to play a Nash–Cournot game after
the leader’s output is known and the market demand is realized and the leader needs
to make a decision to maximize its expected profit before the realization of market
demand. The problem was initially considered by De Wolf and Smeers [4] in the study
of competition in the European gas market where the random variable ξ(ω) has only
a finite discrete distribution. Recently Xu [36] extended the model to the case when
the random variable ξ(ω) has a continuous distribution and reformulated (16) as a
stochastic mathematical program with complementarity constraints. Assuming the
leader knows the distribution of ξ(ω), Xu further reformulated the program as follows:

max E(x) :=
∫ u

0

[
xp

(
x + eT y(x, t), t

)]
ρ(t)dt− c0(x)

s.t. x ≥ 0,
y(x, t) solves 0 ≤ y ⊥ F (x, y, t) ≥ 0, t ∈ [0, u],

(16)
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where

Fi(x, y, t) = −p(x + yT e, t) − p′x(x + yT e, t)yi + c′i(yi), i = 1, . . . , n,

e = (1, . . . , 1)T , and ρ is the density function of the random variable ξ(ω) with an
interval support set [0, u]. Note that here and later on we use a′(x) rather than ∇a(x)
to denote the derivative of a real-valued function a(x) with a single variable.

Obviously program (16) is an example of program (2). In what follows, we will
investigate the differentiability and convexity of E(x). For simplicity of discussion,
we assume that the demand function is linear, that is,

p(q, t) = α− βq + γt, for t ∈ [0, u],

where α, β, γ > 0.
Proposition 2.8. E(x) is differentiable for x > 0.
Proof. We use Proposition 2.7 to prove the result. Since p(q, t) = α− βq + γt,

Fi(x, y, t) = −α + β(x + yT e) − γt + βyi + c′i(yi),

and

dFi(x, y, t)

dyj
=

{
2β + c′′i (yi), j = i,
β, j �= i.

Since β > 0 and c′′i (q) ≥ 0, it is easy to verify that ∇yF (x, y, t) is uniformly positive
definite. Therefore by Theorem 2.3, the complementarity problem

0 ≤ y ⊥ F (x, y, t) ≥ 0

has a unique solution y(x, t) for every x ≥ 0 and t ∈ [0, u]. Note that y(x, t) is follow-
ers’ Nash–Cournot equilibrium at demand scenario p(·, t). At the Nash equilibrium,
the aggregate supply by followers is y(x, t)T e. By Theorem 2.3, y(x, t)T e is a piecewise
smooth function of x and t. Moreover, by [36, Proposition 3.4]

∂xy(x, t)e ∈ (−1, 0) ∀t ∈ [0, u].(17)

In what follows, we investigate the monotonicity of yi(·, t), i = 1, . . . , n, for fixed
t ∈ [0, u]. By the complementarity condition, we have

min
(
yi(x, t),−α + β

(
x + y(x, t)T e

)
− γt + βyi(x, t) + c′i(yi(x, t))

)
= 0, for i = 1, . . . , n.

If yi(x, t) > 0, then

−α + β(x + y(x, t)T e) − γt + βyi(x, t) + c′i(yi(x, t)) = 0.(18)

Consequently, we have

∂xyi(x, t) ⊂ −(β + c′′i (yi(x, t)))
−1β(1 + ∂xy(x, t)e).

Since β > 0, c′′i (yi(x, t)) ≥ 0, by (17), the relation above implies that every element
of ∂xyi(x, t) is negative. This shows yi(·, t) is strictly decreasing at a point x where
yi(x, t) > 0. Furthermore, from this and the continuity of yi(·, t), we can easily show
that if there exists xi(t) at which yi(xi(t), t) = 0, then yi(x, t) = 0 for all x > xi(t).
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Let xi(t) denote the smallest x at which yi(x, t) = 0 (being +∞ if it does not
exist). Then yi(·, t) is strictly decreasing on [0, xi(t)] and yi(x, t) = 0 for x ≥ xi(t).
The economic interpretation of xi(t) is that in certain demand scenarios, when the
leader’s supply reaches xi(t), follower i drops out of the market since it is no longer
making a profit.

We now verify (12) for y(x, t). We consider yi(x, t). Obviously, (12) is satisfied
for x > xi(t). Let x ∈ (0, xi(t)) and suppose that y(·, t) is differentiable at x. Then
by differentiating both sides of (18) with respect to x, we obtain

(yi)
′
x(x, t) = −(2β + c′′i (yi(x, t)))

−1β

⎛
⎜⎝1 +

∑
j±1
yj>0

(yj)
′
xe

⎞
⎟⎠ .

Since ci(·) is assumed to be sufficiently smooth, we can show from the relation above
that yi(x, t) is also twice continuously differentiable. This shows that y(·, t) is twice
continuously differentiable at the considered point; consequently, (12) holds.

Now we prove that Assumption 2.6 holds. First let t ∈ [0, u] be fixed. For
x > xi(t), we have yi(x, t) = 0. Thus

∂xFi(x, y(x, t), t) = β (1 + ∂xy(x, t)e) .

By (17), every element of ∂xFi(x, y(x, t), t) is positive. This shows that Fi(x, y(x, t), t) >
0 for x > xi(t). Therefore xi(t) is the only point satisfying the following:

yi(x, t) + Fi(x, y(x, t), t) = 0.(19)

This shows that for each t there exist at most n degenerate points.
In what follows, we investigate the behavior of xi(t) as t varies. For this purpose,

we need to consider (yi)
′
t(x, t). Consider

yi(x, t) − α + β(x + y(x, t)T e) − γt + βyi(x, t) + c′i(yi(x, t)) = 0.(20)

By differentiating both sides with respect to t, we obtain that

∂tyi(x, t)(1 + c′′i (yi(x, t)) + β) = −β∂ty(x, t)e + γ.(21)

Since by part (iii) of [36, Proposition 3.4],

∂ty(x, t)e ⊂
(

0,
γ

β

]
,

and c′′i (yi(x, t)) ≥ 0, we know from (21) that yi(x, ·) is strictly increasing at a consid-
ered t where yi(x, t) = xi(t). This shows that xi(t) is strictly increasing as t increases,
which means for any x, there exists at most one t ∈ [0, u] such that xi(t) = x. This
show that Ti(x) defined by (11) contains at most n points. Hence Assumption 2.6
holds. By Proposition 2.7, E(x) is differentiable.

Note that this result significantly strengthens the previous result on lower level
equilibrium y(x, t) in [36].

We now investigate the concavity of E(x). For this purpose, we look at the
convexity of yi(·, t). Suppose that yi(·, t), i = 1, . . . , n, is differentiable at x where
yi(x, t) > 0. Differentiating (20) with respect to x (ignoring the first term yi(x, t)),
we obtain

(β + c′′i (yi(x, t))(yi)
′
x(x, t) = −β(1 + y′xe).(22)

Since yi(·, t) is strictly decreasing on (0, xi(t)), for each i and fixed t, there exists
at most one point at which (19) is satisfied. Let xi(t) denote such a point (being +∞
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if it does not exist). We are interested in the details of the structure of yi(·, t). For
simplicity of discussion, we further assume that the marginal cost of follower i, ci, is
affine. Then Fi(x, y, t) is affine in x and y, and yi(x, t) is piecewise affine.

Let

X (t) = {xi(t), i = 1, . . . , n}.

For x ∈ X\X (t), the strict complementarity is satisfied for each i, i = 1, . . . , n, which
means yi(·, t), i = 1, . . . , n, is continuously differentiable at x. Therefore the only
possibility that yi(·, t) becomes nonsmooth (where it switches from one smooth piece
to another) is at xj(t) ∈ X (t), where xj(t) < xi(t). From (22) we see that

lim
x↑xj(t)

(yi)
′
x(x, t) > lim

x↓xj(t)
(yi)

′
x(x, t),(23)

which shows that yi(·, t) is not differentiable at xj(t). Moreover, (23) indicates a
decrease of the derivative of yi(·, t) at the point xj(t). The market interpretation
is that at the point where follower j drops out of the market, the unit increase on
the leader’s supply will more significantly reduce the remaining follower’s optimal
supply. Obviously, (23) indicates the local concavity of yi(·, t) at point xj(t). We can
summarize the main properties of yi(x, t) as follows:

• yi(x, t) is continuous and piecewise affine;
• for x < xi(t), yi(·, t) is concave, and at xi(t), yi(·, t) is locally convex;
• if the followers are identical, then yi(·, t) is convex;
• if X(t) = {+∞}, that is, no follower drops out as the leader increases supply

up to its capacity, then yi(·, t) is convex;
• yi(x, t) is not differentiable at xj(t) < xi(t), j = 1, . . . , n and xi(t), but it is

differentiable elsewhere.
Note that, at this stage we are not ready to assert whether or not E(x) is concave.

Observe first that E(x) is a function of Q(x, t), where Q(x, t) =
∑n

i=1 yi(x, t). If we
can show that Q(x, t) is convex, then it is not difficult to see that E(x) is concave
under usual assumptions [36]. For this purpose we look at the convexity of Q(·, t).
Let I(x, t) = {i : yi(x, t) > 0}. Since c′′i = 0, we have from (22) that

Q′
x(x, t) = − |I(x, t)|

1 + |I(x, t)| ,

where |I(x, t)| denotes the cardinality of set |I(x, t)|. Obviously, as the value of x
changes from xi(t)−δ to xi(t)+δ, where δ is sufficiently small, |I(x, t)| decreases and
Q′

x(·, t) increases. This shows the convexity of Q(·, t). Note that Sherali [33] obtained
a similar conclusion in a deterministic Stackelberg model. Based on the discussion
above, we have the following.

Proposition 2.9. If p(q, t) is affine and ci(q), i = 1, . . . , n, is also affine, then
E(x) is concave for x ≥ 0.

3. Discretization methods. In this section, we discuss numerical methods for
solving programs (2) through (4). The main obstacle that prevents direct application
of many recently developed numerical methods for deterministic MPEC to (2) is the
presence of an integral in the objective function which requires lower level variables to
be solved from constraint before the objective function can be evaluated. In general, it
is difficult to obtain an explicit expression of y(x, t) even when F is an affine function.
Our idea here is to discretize the integral and replace it with a numerical integration.
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The resulting discretized program can then be solved by available numerical methods
for deterministic MPECs.

To simplify the discussion, we focus on the case when ξ(ω) is a random variable.
It is not difficult to see that the methods and results established in this section can
be easily extended to the case when ξ(ω) consists of several random variables.

First, we deal with possible unboundedness of the support set T . The following
result is a special case of Berge’s well-known stability theorem and is needed in several
places in later discussion.

Lemma 3.1. Consider a general constrained minimization problem

min p(x)
s.t. x ∈ C,

where p : Rn → R is continuous and C is a subset of Rn, and a perturbed program

min p̃(x)
s.t. x ∈ C,

where p̃ : Rn → R is continuous and

|p̃(x) − p(x)| ≤ δ ∀x ∈ C.

Suppose that x∗ is a global minimizer of p(x) over C, and x̃∗ is a global minimizer of
p̃(x) over C. Then

|p(x∗) − p̃(x̃∗)| ≤ δ.

Proposition 3.2. Suppose that the support set T is unbounded. Let

TN := {t ∈ T : ‖t‖∞ ≤ N},

where N is a positive number and ‖ · ‖∞ denotes the infinity norm. Let xN be a global
minimizer of the following program:

min EN (x) :=
∫
TN

f(x, y, t)ρ(t)dt

s.t. x ∈ X ,
Φ(x, y, t) = 0.

(24)

Then for every δ > 0, there exists N0 > 0 such that for all N > N0,

|E(x) − EN (x)| ≤ δ ∀x ∈ X ,

and

|E(x∗) − EN (xN )| ≤ δ,

where x∗ denotes a global minimizer of program (4).
Proof. The first inequality is obvious. The second inequality follows from the first

one and Lemma 3.1.
The proposition shows that we can approximate program (4) with (24). To sim-

plify the discussion, we assume, from here on, that the support set T is bounded.
Since ξ(ω) is a random variable, T is a bounded interval. We normalize it to [0, u].
Let TK denote a set of grid points of T where

TK =
{
t : t0 = 0, tl = tl−1 +

u

K
, for l = 1, . . . ,K

}
.



STOCHASTIC MPECs 683

Note that we can discretize the program (2) directly by considering

min EK(x) :=
u

K

K∑
l=1

f(x, y(x, tl), tl)ρ(tl)

s.t. x ∈ X ,
y(x, tl) solves 0 ≤ y ⊥ F (x, y, tl) ≥ 0, l = 1, . . . ,K.

(25)

Proposition 3.3. Let EK(x) be defined as in (25). Suppose that f(x, y(x, t), t)
is uniformly locally Lipschitz with respect to t, that is, for every t ∈ T , there exists a
constant A(t) > 0 such that

|f(x, y(x, t′′), t′′) − f(x, y(x, t′), t′)| ≤ A(t)|t′′ − t′|(26)

for t′, t′′ near t, where A : T → R+ is continuous and∫ u

0

A(t)ρ(t)dt < ∞.(27)

Suppose also that the density function ρ(t) is differentiable on T and∫ u

0

|f(x, y(x, t), t)ρ′(t)|dt < ∞.(28)

Then
(i) there exists a constant C̃ such that

|EK(x) − E(x)| ≤ C̃u

K
∀x ∈ X ;(29)

(ii)

|EK(xK) − E(x∗)| ≤ C̃u

K
,

where xK denotes a global minimizer of EK(·) and x∗ denotes a global mini-
mizer of E(·).

Proof. Part (i). Let

Δl(x, t) := f(x, y(x, tl), tl)ρ(tl) − f(x, y(x, t), t)ρ(t), for t ∈ (tl−1, tl).

By definition,

EK(x) − E(x) =
u

K

K∑
l=1

∫ tl

tl−1

Δl(x, t)dt.

Since

|Δl(x, t)| ≤
u

K

(
ρ(tl) sup

t∈[tl−1,tl]

A(t) + |f(x, y(x, t), t)| sup
t∈[tl−1,tl]

|ρ′(t)|
)
, for t ∈ (tl−1, tl),

by (27) and (28), there exists a constant δ > 0 such that for K sufficiently large

|EK(x) − E(x)| ≤ u

K

K∑
l=1

∫ tl

tl−1

(
ρ(tl) sup

t∈[tl−1,tl]

A(t) + |f(x, y(x, t), t)| sup
t∈[tl−1,tl]

|ρ′(t)|
)
dt

≤
(∫ u

0

A(t)ρ(t)dt +

∫ u

0

|f(x, y(x, t), t)||ρ′(t)|dt + δ

)
u

K
.
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The conclusion follows by letting C̃ =
(∫ u

0
A(t)ρ(t)dt +

∫ u

0
|f(x, y(x, t), t)||ρ′(t)|dt + δ

)
.

Part (ii) follows from Part (i) and Lemma 3.1.
Remark 1. We make a few comments on the assumptions made in Proposition

3.3. First, the condition on the continuous differentiability of ρ(t) can be relaxed to
piecewise smoothness. Second, (26) and (27) holds under the following conditions:

(a) f(x, y, t) is globally Lipschitz continuous in x and y and (9) holds,
(b) f(x, y, t) is uniformly locally Lipschitz continuous in t with rank A1(t) where∫ u

0
A1(t)ρ(t) < ∞,

(c) F is uniformly monotone in y and it is uniformly globally Lipschitz continuous
in t.

Note that both (a) and (c) are assumed in Theorem 2.4.
The advantage of (25) is that we can rewrite it as

min EK(x) :=
u

K

K∑
l=1

f(x, yl, tl)ρ(tl)

s.t. x ∈ X ,
0 ≤ yl ⊥ F (x, yl, tl) ≥ 0, l = 1, . . . ,K,

(30)

where we can treat x and y1, . . . , yK equally in the sense that there is no need
to solve yl from constraints in advance. Note that (30) may be viewed as a dis-
crete stochastic mathematical program with complementarity constraints if we re-
gard ρ(tl), l = 1, . . . ,K as probability distribution. See [26, 20] for some research on
discrete stochastic mathematical program with complementarity constraints.

It is easy to see that (30) is a deterministic mathematical program with comple-
mentarity constraint, therefore a number of numerical methods proposed in [10, 11,
6, 12, 13, 15, 16, 19, 34] can be applied to this program.

The disadvantage is that to obtain a better approximation, K may be large and,
consequently, a large number of variables are introduced in (30). The discretized
scheme is useful only when the support set of the density function is small and/or the
random variable is relatively evenly distributed over the support set.

An alternative approach to solving (2) is the sample average approximation (SAA)
method. SAA is well known in stochastic programming and is effective when a problem
involves several random variables. The basic idea is to generate a sample ξ1, . . . , ξN

with independent identical distribution as ξ and to solve the following SAA program:

min
x∈X

1
N

∑N
i=1

[
f(x, yi, ξi)

]
s.t. 0 ≤ yi ⊥ F (x, yi, ξi) ≥ 0, i = 1, . . . , N,

(31)

to obtain an approximate solution of the original problem (1). In comparison with
(30), the SAA scheme generates less evenly spread grid points which usually concen-
trate in areas where the density function take relatively larger values; see [31] for
details.

4. An implicit smoothing method. In this section, we deal with the non-
smoothness of lower equilibrium solution y(x, t). It is well known that such non-
smoothness arises from the nature of complementarity. The issue has been extensively
discussed in deterministic MPCC and many methods have been proposed to deal with
it. It is beyond the scope of this paper to give a comprehensive review on this topic.
Here we just mention two types of methods.
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One is called the smoothing NCP function method. The idea of this kind of
method is to find a smooth approximation of an NCP function and replace the NCP
reformulation with such a smoothed approximate NCP reformulation; see recent work
in [6, 16] and references therein.

The other kind of method is called the regularization method which reformulates
complementarity constraints as a system of inequalities. Such a system is often ill-
posed because some constraint qualifications may not hold at any feasible point. A
small perturbation at the right-hand side of the system may effectively overcome this
problem; see [34] for details.

Both methods will generate a smooth approximation of the solution of a comple-
mentarity problem. Here we will use the smoothing NCP function methods.

Recall that the smoothing of an NCP function φ(a, b) is a function ψ(a, b, c)
satisfying the following:

(A1) ψ(a, b, 0) = φ(a, b);
(A2) ψ(a, b, c) is Lipschitz continuous and is continuously differentiable everywhere

except at c = 0;
(A3) (Strong Jacobian Consistency [1]) for (a, b) ∈ R2,

∂a,bψ(a, b, 0) = ∂φ(a, b).

A smoothing function of min(a, b) is

ψ(a, b, c) = −1

2

(√
(a− b)2 + c2 − (a + b)

)
and a smoothing function of the Fischer–Burmeister function is

ψ(a, b, c) = a + b−
√
a2 + b2 + c2;

see, for instance, [18].

Let H : Rn → Rm be a locally Lipschitz function. The ε-generalized Jacobian is
defined as

∂εH(x) = conv
⋃

y∈B(x,ε)

∂H(y),

where B(x, ε) denotes the unit ball in Rn centered at x with radius ε. The notion was
introduced in [37] as a generalization of ε-subdifferential [30] for the purpose of the
approximation of the Clarke generalized Jacobian in solving nonsmooth equations.

Lemma 4.1. Let ψ(a, b, c) be a smoothing of an NCP function φ(a, b) satisfying
properties A1–A3. Then there exists continuous function ε : R+ → R+ such that a

∇a,bψ(a, b, c) ∈ ∂ε(c)φ(a, b)(32)

for c close to 0, where

lim
c→0

ε(c) = 0.

Proof. The conclusion follows from the upper semicontinuity of the Clarke gen-
eralized Jacobian and the strong Jacobian consistency of ψ.
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Let ψ be either the smoothing of the min-function or the smoothing of the Fischer–
Burmeister function. Let

Ψ(x, y, t, μ) :=

⎛
⎜⎝

ψ(y1, F1(x, y, t), μ)
...

ψ(yn, Fn(x, y, t), μ)

⎞
⎟⎠ .(33)

Then

Ψ(x, y, t, 0) =

⎛
⎜⎝

ψ(y1, F1(x, y, t), 0)
...

ψ(yn, Fn(x, y, t), 0)

⎞
⎟⎠ =

⎛
⎜⎝

φ(y1, F1(x, y, t))
...

φ(yn, Fn(x, y, t))

⎞
⎟⎠ .

We consider the following program which is a smoothing of (4):

min
∫
T f(x, y, t)ρ(t)dt

s.t. x ∈ X ,
Ψ(x, y, t, μ) = 0.

(34)

We regard the approach as implicit smoothing in the sense that by replacing Φ with
Ψ, we achieve the smoothing of the implicit function y(x, t). Note that Lin, Chen,
and Fukushima [20] considered a similar approach for a class of discrete stochastic
mathematical programs with complementarity constraint. Here we rely more heavily
on the implicit function approach in dealing with (34).

Recall that a vector-valued function g : Rn → Rm is called calm at point x̄ if
there exists a κ > 0 such that

‖g(x) − g(x̄)‖ ≤ κ‖x− x̄‖

for all x near x̄; see page 351 in [28].
Proposition 4.2. Suppose that T is a set of positive Lebesgue measures. Suppose

also that F is uniformly strongly monotone with respect to y and it is uniformly locally
Lipschitz continuous with respect to x. Suppose that φ is either min-function or the
Fischer–Burmeister function. Then

(i) ∂yΨ(x, y, t, μ) is uniformly nonsingular and there exists μ0 > 0 such that the
system of equations

Ψ(x, y, t, μ) = 0

defines a unique implicit function ỹ(x, t, μ) which satisfies

Ψ(x, ỹ(x, t, μ), t, μ) = 0, for x ∈ X , t ∈ T , |μ| ∈ (0, μ0];

(ii) ỹ(x, t, μ) is continuously differentiable with respect to (x, t, μ) on X × T ×
[−μ0, μ0]\{0}; it is locally Lipschitz continuous with respect to x and t if F
is so;

(iii) ỹ(x, t, μ) is uniformly calm in μ at 0, that is, there exists Ĉ > 0 such that

‖ỹ(x, t, μ) − ỹ(x, t, 0)‖ ≤ Ĉ|μ|, for |μ| ∈ [0, μ0];(35)

(iv) there exists a real valued function ε : R+ → R+ such that

∇xỹ(x, t, μ) ∈ ∂ε(μ)
x y(x, t), |μ| ∈ [0, μ0],(36)

where limμ→0 ε(μ) = 0.
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From part (iv), we see that any accumulation matrix of ∇xỹ(x, t, μ) as μ → 0 is
contained in the Clarke generalized Jacobian ∂y(x, t).

Proof of Proposition 4.2. Part (i). The uniform nonsigularity of ∂yΨ(x, y, t, μ)
follows essentially from [17, Proposition 3.2]. The existence and uniqueness of ỹ(x, t, μ)
for some μ0 > 0 follows from part (i) of Theorem 2.3.

Part (ii). The continuous differentiability of ỹ(x, t, μ) follows from Part (i) and
the classical implicit function theorem. We can prove the local Lipschitz continuity
by applying Lemma 2.2.

Since ∂yΨ(x, y, t, μ) is uniformly nonsingular, ∂(x,t,μ)Ψ(x, y, t, μ) is bounded in a
closed neighborhood of (x, t, μ) ∈ X × T × [−μ0, μ0]\{0}. It is evident by part (ii)
Lemma 2.2 that ∂ỹ(x, t, μ) is bounded, hence ỹ(x, t, μ) is locally Lipschitz continuous.

Part (iii). Since ∇ỹ(x, t, μ) is continuous for μ �= 0,

ỹ(x, t, μ) − ỹ(x, t, 0) =

∫ 1

0

ỹ′μ(x, t, μν)μdν.

Thus

‖ỹ(x, t, μ) − ỹ(x, t, 0)‖ ≤ |μ|
∫ 1

0

‖ỹ′μ(x, t, μν)‖dν

= |μ|
∫ 1

0

‖∇yΨ(x, ỹ(x, t, μ), t, μν)−1Ψ′
μ(x, ỹ(x, t, μν), t, μ)‖dν

≤ Ĉ|μ|,

where Ĉ is a constant.
Part (iv). By definition,

Ψ(x, ỹ(x, t, μ), t, μ) = 0.

By the classical implicit function theorem,

∇xỹ(x, t, μ) = −∇yΨ(x, ỹ(x, t, μ), t, μ)−1∇xΨ(x, ỹ(x, t, μ), t, μ).

Consider ∇Ψ(x, ỹ(x, t, μ), t, μ). Since ỹ(x, t, ·) is uniformly calm at μ = 0 as we proved
in part (iii), by Lemma 4.1, we know that there exists ε1(μ) > 0 such that

∇Ψ(x, ỹ(x, t, μ), t, μ) ∈ ∂ε1(μ)Ψ(x, y, t).

By the definition of ε-generalized Jacobian and part (ii) of Lemma 2.2, there exists
ε : R → R+, ε(μ) → 0 as μ → 0, such that (36) holds. This completes the proof.

Corollary 4.3. Suppose that T is a set of positive Lebesgue measure. Suppose
also that F is uniformly strongly monotone with respect to y and is uniformly Lipschitz
continuous with respect to x. Let

Ẽ(x, μ) =

∫
T
f(x, ỹ(x, t, μ), t)ρ(t)dt.(37)

Then there exists μ0 > 0 such that
(i) Ẽ(x, μ) is uniformly calm with respect to μ at 0, that is, there exists Ĉ > 0

such that

‖Ẽ(x, μ) − E(x)‖ ≤ Ĉ|μ|, for |μ| ∈ [0, μ0];(38)
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(ii) there exists a real valued function ε : R → R+ such that

∇xẼ(x, μ) ∈ ∂ε(μ)E(x), |μ| ∈ [0, μ0],(39)

where limμ→0 ε(μ) = 0.
Proof. Part (i). By the assumption on f and part (iii) of Proposition 4.2,

|f(x, ỹ(x, t, μ), t) − f(x, ỹ(x, t, 0), t)| ≤ L(t)‖ỹ(x, t, μ) − ỹ(x, t, 0)‖
≤ ĈL(t)|μ|.

Hence

|Ẽ(x, μ) − E(x)| ≤ Ĉ|μ|
∫
T
L(t)ρ(t)dt.

Part (ii) follows from Part (iv) of Proposition 4.2.
Corollary 4.3 shows that Ẽ(x, μ) approximates E(x) uniformly. It also implies

that any accumulation vector of ∇xẼ(x, μ) as μ → 0 is an element of ∂E(x). Therefore
∇xẼ(x, μ) can be used to calculate an element of the Clarke subdifferential of E(x).

Theorem 4.4. Let {μk} be a strictly decreasing sequence such that μk ↓ 0 as k →
∞. Let {(xk, ỹ(xk, ·, μk))} be a sequence of solutions of (34). Under the conditions of
Proposition 4.2,

(i) any accumulation point of {(xk, ỹ(xk, ·, μk))} is a solution of (4);
(ii) there exists a constant C > 0 such that

|Ẽ(xk, μk) − E∗| ≤ Cμk,

where E∗ denotes the minimum of (2);
(iii) if x is an accumulation point of {xk} and M is an accumulation matrix

of {∇xỹ(xk, t, μk)} and ξ is an accumulation vector of {∇xẼ(xk, uk)}, then
M ∈ ∂xy(x, t) and ξ ∈ ∂E(x).

Proof. Parts (i) and (ii) follow from part (i) of Corollary 4.3 and Lemma 3.1.
Part (iii) follows from part (iv) of Proposition 4.2 and part (ii) of Corollary 4.3.

Theorem 4.4 ensures a smooth approximation of (2) by (34). There exist at least
two ways to solve the latter. One is to consider

min Ẽ(x, μ)
s.t. x ∈ X(40)

and solve it with a smooth nonlinear programming method which depends only on
the function and gradient values of Ẽ(x, μ). In this way, we only treat x as a variable.
The other is to discretize the smoothed program (34). In what follows, we consider
the latter.

We consider the discretized smoothed program

min ẼK(x, μ) :=
u

K

K∑
l=0

f(x, ỹ(x, tl, μ), tl)ρ(tl)

s.t. x ∈ X ,
ỹ(x, tl, μ) solves Ψ(x, y, tl, μ) = 0, l = 1, . . . ,K.

(41)

Proposition 4.5. Let ẼK(x, μ) be defined as in (41). Suppose that f(x, ỹ(x, t, μ), t)
is uniformly locally Lipschitz with respect to t, that is, for every t ∈ T , there exists a
positive constant Ã(t) (depends on t) such that

|f(x, ỹ(x, t′′, μ), t′′) − f(x, ỹ(x, t′, μ), t′)| ≤ Ã(t)|t′′ − t′|(42)
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for all t′, t′′ near t, where Ã : T → R+ is continuous. Moreover, there exists μ0 > 0,
such that for μ ∈ [0, μ0], ∫ u

0

Ã(t)ρ(t)dt < ∞.(43)

Suppose also that the density function ρ(t) is differentiable on T and∫ u

0

|f(x, ỹ(x, t, μ), t)ρ′(t)|dt < ∞,(44)

where ρ′(t) denotes the derivative of ρ(t). Then
(i) there exists a constant C̃ such that

|ẼK(x, μ) − Ẽ(x, μ)| ≤ C̃u

K
∀x ∈ X ;(45)

(ii)

|ẼK(xμ
K , μ) − Ẽ(xμ, μ)| ≤ C̃u

K
,(46)

where xμ
K denotes a global minimizer of ẼK(x, μ) and xμ denotes a global

minimizer of Ẽ(x, μ).
We omit the proof as it is similar to that of Proposition 3.3.
It might be helpful to make a few comments about conditions (42)–(44). It is

not difficult to verify that (42)–(44) hold under the conditions (a)–(c) in Remark
1 and (28). Indeed, under the condition (c), both ‖∇yΨ(x, ỹ(x, t, μ), t, μ)−1‖ and
‖∇tΨ(x, ỹ(x, t, μ), t, μ)‖ are uniformly bounded for μ sufficiently small. Since

∇tỹ(x, t, μ) = −∇yΨ(x, ỹ(x, t, μ), t, μ)−1∇tΨ(x, ỹ(x, t, μ), t, μ),

then ∇tỹ(x, t, μ) is uniformly bounded which implies that ỹ(x, ·, μ) is uniformly glob-
ally Lipschitz continuous in set T . Combining this with conditions (a) and (c) in the
remark, we can prove (42) and (43). Finally, (44) follows the uniform calmness of
ỹ(x, t, ·) at μ = 0 and (28).

Based on Proposition 4.5, we can solve the smoothed program (34) by solving
the discretized program (41). Since the latter is a typical deterministic smooth math-
ematical program with complementarity constraint, it can be solved by a number
of existing algorithms such as those proposed by Jiang and Ralph [16]. Note that
if we choose μ to be a proportion of T/K, we can easily obtain an estimation of
|ẼK(xμ

K , μ) − E∗| using Theorem 4.4 and Proposition 4.5.
Note also that in order to reduce the error bound in (46), we need to increase the

number of grid points K, which means increasing the number of lower level variables
and equality constraints in (41). This may increase problem size and reduce the
computational efficiency. In contrast, the first way may avoid the increase of problem
size although it also requires discretization of T to compute numerically the function
and gradient values of Ẽ(x, μ).

5. Optimality conditions. In the preceding sections, we outlined three ways
to solve (2): (a) solving discretized program (25) and increase K if necessary; (b)
solving smoothed program (40); (c) solving smoothed discretized program (41). The
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error bounds obtained in Proposition 3.3, Theorem 4.4, and Proposition 4.5 are based
on global minimizers of the relevant programs although these results would also apply
to local minimizers after localizing the set C in Lemma 3.1. In practice, finding a
global minimizer might be difficult and in some cases we might just find a stationary
point. Consequently, we want to know whether or not an accumulation point of the
sequence of stationary points is a stationary point of program (4). For this purpose, we
need to investigate the optimality conditions of program (4), the discretized program
(25), the smoothed program (40), and smoothed discretized program (41) and their
relationship.

Program (4). The generalized Karush–Kuhn–Tucker (KKT) condition [14] of
the program (4) is

0 ∈
∫
T

[∇xf(x, y(x, t), t)T + ∂xy(x, t)
T∇yf(x, y(x, t), t)T ]ρ(t)dt + NX (x),(47)

where NX (x) denotes the normal cone of X at x, that is,

NX (x) = {d : dT (x′ − x) ≤ 0 ∀x′ ∈ X}.

A point x∗ satisfying the KKT condition is known as a Clarke stationary point. Using
the estimation of ∂xy(x, t) in Part (iii) of Theorem 2.3, we obtain

0 ∈
∫
T

[∇xf(x, y(x, t), t)T + �Φ(x, t)T∇yf(x, y(x, t), t)T ]ρ(t)dt + NX (x)(48)

where

�Φ(x, t) = {−R−1U : (U,R, V ) ∈ ∂Φ(x, y(x, t), t), U ∈ Rn×m, R ∈ Rn×n, V ∈ Rn×l}.

Discretized program. Consider the discretized program (30) which is equiva-
lent to

min EK(x) :=
u

K

K∑
l=1

f(x, yl, tl)ρ(tl)

s.t. x ∈ X ,
Φ(x, yl, tl) = 0, l = 1, . . . ,K.

(49)

Note that (49) can be viewed as a discretized program of (4). The generalized KKT
condition of (49) is

⎧⎪⎪⎨
⎪⎪⎩

0 ∈ u

K

K∑
l=1

∇xf(x, yl, tl)
T ρ(tl) +

K∑
l=1

∂xΦ(x, yl, tl)
Tλl + NX (x),

0 ∈ u

K
∇yl

f(x, yl, tl)
T ρ(tl) + ∂yl

Φ(x, yl, tl)
Tλl, l = 1, . . . ,K,

which can be equivalently written as

0 ∈ u

K

K∑
l=1

[
∇xf(x, yl, tl)

T − ∂xΦ(x, yl, tl)∂yl
Φ(x, yl, tl)

−T∇yl
f(x, yl, tl)

T
]
ρ(tl) + NX (x).
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Solving yl, l = 1, . . . ,K, from Φ(x, yl, tl) = 0 and writing ∂yl
Φ(x, yl, tl) and ∇yl

f(x, yl, tl)
as ∂yΦ(x, y(x, tl), tl) and ∇yf(x, y(x, tl), tl), we can rewrite the KKT condition as

0 ∈ u

K

K∑
l=1

[∇xf(x, y(x, tl), tl)
T

−∂xΦ(x, y(x, tl), tl)
T∂yΦ(x, y(x, tl), tl)

−T∇yf(x, y(x, tl), tl)
T ]ρ(tl) + NX (x).

(50)

Naturally, we would like to link (50) to the following condition:

0 ∈
∫ u

0

[∇xf(x, y(x, t), t)T

−∂xΦ(x, y(x, t), t)T∂yΦ(x, y(x, t), t)−T∇yf(x, y(x, t), t)T ]ρ(t)dt + NX (x)(51)

and view (51) as a limit of (50). It is not difficult to prove that when T (x) is a finite
set and∫ u

0

∣∣d(∇xΦ(x, y(x, t), t)T∇yΦ(x, y(x, t), t)−T∇yf(x, y(x, t), t)T ]ρ(t)/dt
∣∣ dt < ∞,

any accumulation point of sequence {xK}, where xK satisfies (50), is a KKT point sat-
isfying (51). It seems, however, difficult to extend the conclusion to the general case.
Observe also that the KKT condition (48) is sharper than that of (51), which means
even if an accumulation point of sequence {xK} satisfies (51), it is not necessarily a
KKT point of (48).

Smoothed program. Consider the smoothed program (40). Let xμ be a KKT
point of the program. We are interested in the convergence of sequence {xμ} as μ → 0.

Proposition 5.1. Suppose that xμ is a KKT point of (34) and x∗ is an accu-
mulation point of sequence {xμ} as μ → 0. Then x∗ is a KKT point of (4).

Proof. By definition

0 ∈ ∇xẼ(xμ, μ)T + NX (xμ).

By upper semicontinuity of the normal cone,

lim
μ→0

NX (xμ) ⊂ NX (x∗),

where lim denotes the outer limit.
Note that if we treat μ as a variable, then Ẽ(·, ·) is continuously differentiable at

any point (x, μ), where μ > 0 and is locally Lipschitz continuous near point (x, 0).

For a set valued mapping A : Rm × R → 2R
(m+1)×m

, we use ΠxA(x, ε) to denote the
set of all m × m matrices U such that, for some vector V ∈ Rm, the (m + 1) × m
matrix [UT , V ]T belongs to A(x, ε). Using this notation, we have

∇xẼ(xμ, μ) = Πx∇Ẽ(xμ, μ).

By the definition of the Clarke generalized Jacobian

lim
μ→0

∇Ẽ(xμ, μ) ⊂ ∂Ẽ(x∗, 0).
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Hence

lim
μ→0

∇xẼ(xμ, μ) = lim
μ→0

Πx∇Ẽ(xμ, μ) ⊂ Πx∂Ẽ(x∗, 0) = ∂Ẽ(x∗).

The last equality is due to the Jacobian consistency. This shows

0 ∈ ∂E(x∗)T + NX (x∗).

The proof is complete.
Discretized smoothed program. Finally, we consider the discretized smoothed

program (41) with X ⊂ Rn

min EK(x, μ) :=
u

K

K∑
l=0

f(x, yl, tl)ρ(tl)

s.t. x ∈ X ,
Ψ(x, yl, tl, μ) = 0, l = 1, . . . ,K.

(52)

The KKT condition of this program is⎧⎪⎪⎨
⎪⎪⎩

0 ∈ u

K

K∑
l=1

∇xf(x, yl, tl)
T ρ(tl) +

K∑
l=1

∇xΦ(x, yl, tl, μ)Tλl + NX (x),

0 =
u

K
∇yl

f(x, yl, tl)
T ρ(tl) + ∇yl

Φ(x, yl, tl, μ)Tλl, l = 1, . . . ,K,

(53)

equivalently,

0 ∈ u

K

K∑
l=1

[
∇xf(x, yl, tl)

T −∇xΦ(x, yl, tl, μ)T∇yl
Φ(x, yl, tl, μ)−T∇yl

f(x, yl, tl, μ)T
]

ρ(tl) + NX (x)

Since yl can be solved from Φ(x, yl, tl, μ) = 0, we can express yl as ỹ(x, tl, μ). Thus
we have

0 ∈ u

K

K∑
l=1

[∇xf(x, ỹ(x, tl, μ), tl)
T

−∇xΦ(x, ỹ(x, tl, μ), tl, μ)T∇yΦ(x, ỹ(x, tl, μ), tl, μ)−T∇yf(x, ỹ(x, tl, μ), tl, μ)T ]ρ(tl)

+NX (x).

Driving K to ∞, we obtain

0 ∈
∫ u

0

[∇xf(x, ỹ(x, t, μ), t)T

−∇xΦ(x, ỹ(x, t, μ), t, μ)T∇yΦ(x, ỹ(x, t, μ), t, μ)−T∇yf(x, ỹ(x, t, μ), t, μ)T ]ρ(t)dt

+NX (x).

Driving μ to 0 and considering the strong Jacobian consistency of ψ, we obtain

0 ∈
∫ u

0

[
∇xf(x, y(x, t), t)T + �Φ(x, y(x, t), t)T∇yf(x, y(x, t), t)T

]
ρ(t)dt + NX (x).

From the discussion above, we can conclude that, from a KKT perspective, nu-
merical methods based on the smoothed program (40) and the discretized smoothed
program (41) may be more preferable.
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Appendix.
Proof of Theorem 2.3. Part (i). Since F is uniformly strongly monotone in y,

it is well known that the complementarity problem in (2) has a unique solution for all
t ∈ T and x ∈ X ; see, for instance, [8, Corollary 3.2]. Thus, (3) has a unique solution
for each x ∈ X and t ∈ [0, T ]. Here we use Lemma 2.2. Under the assumption on
F , the Clarke generalized Jacobian ∂yΦ(x, y, t) is uniformly nonsingular. By Lemma
2.2, for (x̄, ȳ, ū) ∈ X × Rn

+ × T , there exists a Lipschitz continuous function y(x, t)
such that y(x̄, t̄) = ȳ, and (8) holds for (x, t) in a neighborhood of (x̄, t̄). The uniform
monotonicity of F with respect to y allows the implicit function to be extended to
the whole area X × T .

Part (ii). Since Φ is piecewise smooth, by [29, Lemma 4.11], the implicit function
y(x, t) which is defined in part (ii) is piecewise smooth with respect to either x for
fixed t or t for fixed x or both.

Part (iii). By part (ii) of Lemma 2.2,

∂xy(x, t) ⊂ {−R−1U : (U,R, V ) ∈ ∂Φ(x, y(x, t), t), U ∈ Rn×m, R ∈ Rn×n, V ∈ Rn×l}.
This shows the first differential inclusion. The second inclusion is well known; see,
for example, [3]. To show the uniform boundedness of ∂xy(x, t), we use the first
differential inclusion. Thus it suffices to show the uniform boundedness of R−1 and
U . Since F is uniformly strongly monotone, by Proposition 2.1, R−1 is uniformly
bounded, and since F is uniformly Lipschitz continuous in x, U is uniformly bounded.
The uniform global Lipschitz continuity of y(x, t) in x follows subsequently.

Part (iv). We can show the differential inclusions as in Part (iii) by using Part (ii)
of Lemma 2.2 with respect to y and t. To show the uniform boundedness of ∂ty(x, t),
it suffices to show the uniform boundedness of R−1 and V . Since F is uniformly
strongly monotone, by Proposition 2.1, R−1 is uniformly bounded, and since F is
uniformly Lipschitz continuous in t, V is uniformly bounded. The uniform global
Lipschitz continuity of y(x, t) in t follows subsequently.

Proof of Proposition 2.7. By Lemma 2.5, T (x) is Lebesgue measurable, and
by Assumption 2.6, the Lebesgue measure of T (x) is zero.

Let x′ ∈ X be any point close to x, let

ξT =

∫
T \T (x)

[∇xf(x, y(x, t), t) + ∇yf(x, y(x, t), t)∇xy(x, t)]ρ(t)dt.

Let

R(x′, x) = (E(x′) − E(x) − ξT (x′ − x))/‖x′ − x‖.
Then

R(x′, x) = R1(x
′, x) + R2(x

′, x) + R3(x
′, x),

where

R1(x
′, x)

=

∫
T \T (x)

[
f(x′, y(x′, t), t) − f(x, y(x′, t), t) −∇xf(x, y(x, t), t)(x′ − x)

‖x′ − x‖

]
ρ(t)dt

and

R2(x
′, x)

=

∫
T \T (x)

[
f(x, y(x′, t), t) − f(x, y(x, t), t) −∇yf(x, y(x, t), t)∇xy(x, t)(x

′ − x)

‖x′ − x‖

]
ρ(t)dt
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and

R3(x
′, x) =

∫
T (x)

[
f(x′, y(x′, t), t) − f(x, y(x, t), t)

‖x′ − x‖

]
ρ(t)dt.

Since f is continuously differentiable in x, it is obvious that R1(x
′, x) → 0 as x′ → x.

We now estimate R3.

|R3(x
′, x)| ≤

∫
T (x)

|f(x′, y(x′, t), t) − f(x, y(x, t), t)|
‖x′ − x‖ ρ(t)dt

≤
∫
T (x)

L(t)(‖x′ − x‖ + ‖y(x′, t) − y(x, t)‖)
‖x′ − x‖ ρ(t)dt

≤ (1 + C)

∫
T (x)

L(t)ρ(t)dt

= 0.

The last equality is due to the fact that the Lebseque measure of T (x) is zero.
Finally, we estimate R2(x

′, x). By (12) and twice continuous differentiability of
f , we have

f(x, y(x′, t), t) − f(x, y(x, t), t) −∇yf(x, y(x, t), t)∇xy(x, t)(x
′ − x) = o(‖x′ − x‖)

which implies

R2(x
′, x) → 0, as x′ → x.

This shows

R(x′, x) → 0, as x′ → x,

and hence (13).
Now we show the continuity of ∇E(·),

∇xE(x′) −∇xE(x) =

∫
T \T (x′)

[∇xf(x′, y(x′, t), t) + ∇yf(x′, y(x′, t), t)∇xy(x
′, t)]ρ(t)dt

−
∫
T \T (x)

[∇xf(x, y(x, t), t) + ∇yf(x, y(x, t), t)∇xy(x, t)]ρ(t)dt

=

∫
T \T (x′)∪T (x)

[∇xf(x′, y(x′, t), t) + ∇yf(x′, y(x′, t), t)∇xy(x
′, t)

−∇xf(x, y(x, t), t) + ∇yf(x, y(x, t), t)∇xy(x, t)]ρ(t)dt

+

∫
T (x)\T (x′)∩T (x)

[∇xf(x′, y(x′, t), t)

+∇yf(x′, y(x′, t), t)∇xy(x
′, t)]ρ(t)dt

−
∫
T (x′)\T (x′)∩T (x)

[∇xf(x, y(x, t), t)

+∇yf(x, y(x, t), t)∇xy(x, t)]ρ(t)dt

We show that the three terms at the right-hand side of the last equality tends to zero as
x′ → x. Since T (x′) → T (x) as x′ → x, the Lebesgue measure of T \T (x′)∪T (x) tends
to that of T . Moreover, ∇f is uniformly continuous in x, y by assumption, y(x′, t)
uniformly approximates y(x, t) by part (iv) of Theorem 2.3, and ∇y(x′, t) uniformly
approximates ∇y(x, t) by (12). This shows the first term tends to zero. The proofs
for the second and third terms are similar. This completes the proof.
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Abstract. Interior gradient (subgradient) and proximal methods for convex constrained min-
imization have been much studied, in particular for optimization problems over the nonnegative
octant. These methods are using non-Euclidean projections and proximal distance functions to ex-
ploit the geometry of the constraints. In this paper, we identify a simple mechanism that allows
us to derive global convergence results of the produced iterates as well as improved global rates of
convergence estimates for a wide class of such methods, and with more general convex constraints.
Our results are illustrated with many applications and examples, including some new explicit and
simple algorithms for conic optimization problems. In particular, we derive a class of interior gradient
algorithms which exhibits an O(k−2) global convergence rate estimate.

Key words. convex optimization, interior gradient/subgradient algorithms, proximal distances,
conic optimization, convergence and efficiency

AMS subject classifications. 90C25, 90C30, 90C22

DOI. 10.1137/S1052623403427823

1. Introduction. Consider the following convex minimization problem:

(P) f∗ = inf{f(x) | x ∈ C},

where C denotes the closure of C, a nonempty convex open set in Rn and f : Rn →
R ∪ {+∞} is a proper, lower semicontinuous (lsc) convex function. In this paper we
study two closely related iterative schemes for solving (P). The first one is proximal
based. Given some proximity measure d, it consists of generating a sequence {xk} via
the iteration

xk ∈ argmin{λkf(x) + d(x, xk−1) | x ∈ C}, k = 1, 2, . . . (λk > 0).(1.1)

The second iterative scheme is subgradient based (or explicit proximal) and produces
a sequence {xk} via

xk ∈ argmin{λk〈gk−1, x〉 + d(x, xk−1) | x ∈ C}, k = 1, 2, . . . ,(1.2)

where 〈·, ·〉 is an inner product on Rn and gk−1 is a subgradient of the function f
at the point xk−1. With the choice d(x, y) = 2−1‖x − y‖2, one recovers the proxi-
mal algorithm (PA) (see, e.g., Martinet [31] and Rockafellar [40]) and the projected
subgradient method (see, e.g., [41]), respectively. In that case, the sequence {xk}
produced by either one of the above algorithms does not necessarily belong to C.
In this paper, the proximal term d(x, y) will play the role of a distance-like function
satisfying certain desirable properties (see section 2), which will force the iterates of
the produced sequence to stay in C, and thus automatically eliminate the constraints.
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†Département de Mathématiques, University Lyon I, Lyon, France (aauslen@cegetel.net).
‡School of Mathematical Sciences, Tel-Aviv University, Ramat-Aviv 69978, Israel (teboulle@math.

tau.ac.il). This author’s work was partially supported by the United States–Israel Binational Science
Foundation, BSF grant 2002-2010.

697



698 ALFRED AUSLENDER AND MARC TEBOULLE

1.1. Motivation and related works. The idea of replacing the quadratic
proximal term by a proximal function d(x, y) has been pursued in the literature
in several works. In the context of proximal-based methods of the form (1.1), two
popular choices for d include either a Bregman distance (see, e.g., [15, 16, 19, 29])
or a ϕ-divergence distance (see, e.g., [21, 43, 44]). More recent works have also
proposed proximal methods based on second order homogeneous kernels; see, e.g.,
[4, 5, 10, 42, 45]. These works have concentrated on the ground set C being poly-
hedral and in particular when C is the nonnegative octant in Rn. For semidefinite
programming problems, two particular proximal distances were proposed by Doljan-
sky and Teboulle [18]. Furthermore, applications of these algorithms to the dual of
convex programs, leading to smooth Lagrangian multiplier methods as well as exten-
sion to variational inequalities over polyhedral constraints, have also been developed
in many studies, e.g., [3, 27, 28, 36, 37]. More recent applications include continuous
time models of proximal-based methods; see, e.g., [1, 2, 13] and references therein.

In the context of explicit proximal methods, namely subgradient projection-type
algorithms of the form (1.2), a recent paper of Ben-Tal, Margalit, and Nemirovski [9]
has shown that an algorithm based on the mirror descent algorithm of Nemirovski
and Yudin introduced in [32] can be used to solve efficiently convex minimization
problems over the unit simplex with millions of variables. In a more recent study,
Beck and Teboulle [8] have shown that the mirror descent method can be viewed
as a subgradient projection algorithm based on a Bregman distance and have pro-
posed a specific variant for convex minimization over the unit simplex. Other inte-
rior gradient schemes can be found, for example, in [25, 26] and references therein.
These two works study multiplicative interior gradient-type schemes for minimizing
a continuously differentiable function over the nonnegative octant under various as-
sumptions, the former being a scheme suggested by [21], and the latter being based
on the ϕ-divergence distance. The revived interest in such gradient-type methods
relies mainly on the following facts. They require only first order information (e.g.,
function and subgradient evaluation at each step), they often lead to simple iterative
schemes for particular types of constraints (e.g., by picking the appropriate proximal
distance), and they exhibit a nearly dimension independent computational complex-
ity in terms of the problem’s dimension; see, e.g., [9, 8]. One main disadvantage of
gradient-based methods is that they often share a slow convergence rate for produc-
ing high accuracy solutions, typically an O(k−1) global convergence rate estimate for
function values, where k is the iteration counter; see, e.g., [32, 41]. In comparison,
the theoretically more efficient polynomial interior point methods (IPM) can achieve
high accuracy but require second order derivative information and an increase in com-
putational effort that depends on and grows polynomially in the design dimension n
of the problem. Thus, gradient-based methods can be a suitable practical alternative
for solving large-scale applications where high accuracy is not needed, and where the
IPM are not computationally tractable; see [9] and references therein.

1.2. Main contributions and summary of results. Motivated by all these
works, this paper focuses on the following three main theoretical goals: (a) to uncover
the main tools needed to analyze and design interior gradient and proximal methods,
(b) to establish convergence and global efficiency estimates for the basic representa-
tive schemes of these methods, and (c) to devise some new methods with improved
complexity. To achieve these goals, we first develop a general and simple principle,
also capable of handling more general constraints than the one alluded to above. This
is achieved by identifying the common mechanism underlying the analysis of interior
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proximal methods. This is developed in section 2, where we derive general results on
the convergence of the sequence produced by proximal-type methods and establish
global rates of convergence estimates in terms of function values. This development
allows us to recover some of the well-known variants of such methods, and to derive
and analyze new schemes. This is illustrated in section 3, which includes many exam-
ples and applications. In section 4, we continue along this line of analysis, to develop
a simple and general framework for the interior subgradient/gradient methods, akin
to the ones given in [9, 8]. The interior gradient methods we propose include both
fixed and Armijo–Goldstein stepsize rules. Applications of these results to conic opti-
mization and to convex minimization over the unit simplex are given. In particular we
propose, for the first time to our knowledge, new explicit interior gradient methods for
semidefinite and second order conic programs. Further motivated by the discussion
and references outlined above on the potential usefulness of interior gradient meth-
ods, it is natural to ask if one can devise simple interior gradient algorithms with an
improved computational complexity. Building on our previous results, and inspired
by the work of Nesterov [34], we answer this question positively in the last section
for one of the class of interior gradient algorithms discussed in section 4. The scheme
we propose naturally extends the optimal classical gradient scheme given in [34], and
it leads to a class of interior gradient algorithms for solving conic problems which
exhibits the faster global convergence rate estimate O(k−2).

1.3. Notation. We adopt the standard notation of convex analysis [39]. For a
proper convex and lsc function F : Rn → R ∪ {+∞}, its effective domain is defined
by domF = {x | F (x) < +∞}, and for all ε ≥ 0 its ε-subdifferential at x is defined
by ∂εF (x) = {g ∈ Rn | ∀z ∈ Rn, F (z) + ε ≥ F (x) + 〈g, z − x〉}, which coincides with
the usual subdifferential ∂F ≡ ∂0F whenever ε = 0. We set dom ∂F = {x ∈ Rn |
∂F (x) �= ∅}. For any closed convex set S ⊂ Rn, δS denotes the indicator function
of S, riS its relative interior, and NS(x) = ∂δS(x) = {ν ∈ Rn | 〈ν, z−x〉 ≤ 0 ∀z ∈ S}
the normal cone to S at x ∈ S. The set of n-vectors with nonnegative (positive)
components is denoted by Rn

+ (Rn
++).

2. A general framework for interior proximal methods. Let C be a non-
empty convex open set in Rn and f : Rn → R ∪ {+∞} a proper, lsc, and convex
function. Consider the optimization problem

(P) f∗ = inf{f(x) | x ∈ C},

where C denotes the closure of C. Unless otherwise specified, throughout this paper
we make the following standing assumptions on (P):

(a) dom f ∩ C �= ∅,
(b) −∞ < f∗.

We study the behavior of the following basic proximal iterative scheme to solve (P):

xk ∈ argmin{λkf(x) + d(x, xk−1) | x ∈ C}, k = 1, 2, . . . (λk > 0),

where d is some proximal distance. Our approach is motivated by and patterned after
many of the studies mentioned in the introduction, and our objective is to develop a
general framework to analyze the convergence of the resulting methods under various
settings. Given the optimization problem (P), essentially the basic ingredients needed
to achieve the aforementioned goals are

• to pick an appropriate proximal distance d which allows us to eliminate the
constraints,
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• given d, to find an induced proximal distance H, which will control the be-
havior of the resulting method.

We begin by defining an appropriate proximal distance d for problem (P).
Definition 2.1. A function d : Rn × Rn → R+ ∪ {+∞} is called a proximal

distance with respect to an open nonempty convex set C ⊂ Rn if for each y ∈ C it
satisfies the following properties:

(P1) d(·, y) is proper, lsc, convex, and C1 on C;
(P2) dom d(·, y) ⊂ C and dom ∂1d(·, y) = C, where ∂1d(·, y) denotes the subgradi-

ent map of the function d(·, y) with respect to the first variable;
(P3) d(·, y) is level bounded on Rn, i.e., lim‖u‖→∞ d(u, y) = +∞;
(P4) d(y, y) = 0.
We denote by D(C) the family of functions d satisfying Definition 2.1. Prop-

erty (P1) is needed to preserve convexity of d(·, y), (P2) will force the iterate xk to
stay in C, and (P3) is used to guarantee the existence of such an iterate. For each
y ∈ C, let ∇1d(·, y) denote the gradient map of the function d(·, y) with respect to the
first variable. Note that by definition d(·, ·) ≥ 0, and from (P4) the global minimum
of d(·, y) is obtained at y, which shows that ∇1d(y, y) = 0.

Proposition 2.1. Let d ∈ D(C), and for all y ∈ C consider the optimization
problem

P (y) f∗(y) = inf{f(u) + d(u, y) | u ∈ Rn}.

Then the optimal set S(y) of P (y) is nonempty and compact, and for each ε ≥ 0 there
exist u(y) ∈ C, g ∈ ∂εf(u(y)) such that

g + ∇1d(u(y), y) = 0,(2.1)

where ∂εf(u(y)) denotes the ε-subdifferential of f at u(y). For such a u(y) ∈ C we
have

f(u(y)) + d(u(y), y) ≤ f∗(y) + ε.(2.2)

Proof. We set t(u) = f(u) + d(u, y) + δC(u). Then by (P2) we have f∗(y) =
inf{t(u) | u ∈ Rn}. Furthermore, since f∗ is finite, it follows by (P3) that t(·) is
level bounded. Therefore with t(·) being a proper, lsc convex function, it follows that
S(y) is nonempty and compact. From the optimality conditions, for each u(y) ∈ S(y)
we have 0 ∈ ∂t(u(y)). Now, since dom f ∩ C �= ∅ and C is open, we can apply [39,
Theorem 23.8] so that

∂t(u) = ∂f(u) + ∇1d(u, y) + NC(u) ∀u.

Since dom ∂1d(·, y) = C, it follows that u(y) ∈ C, and hence NC(u(y)) = {0}, and
(2.1) holds for ε = 0 with g ∈ ∂f(u(y)). For ε > 0, (2.1) holds for such a pair (u(y), g)
since ∂f(u(y)) ⊂ ∂εf(u(y)), and thus the first part of the proposition is proved.
Finally, since for each y ∈ C the function d(·, y) is convex, and since g ∈ ∂εf(u(y)),
we have

f(u) + d(u, y) ≥ f(u(y)) + d(u(y), y) + 〈g + ∇1d(u(y), y), u− u(y)〉 − ε

so that f∗(y) = inf{f(u) + d(u, y) | u ∈ C} ≥ f(u(y)) + d(u(y), y) − ε.
Thanks to the above proposition, the following basic algorithm is well defined.
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Interior proximal algorithm (IPA). Given d ∈ D(C), start with a point
x0 ∈ C, and for k = 1, 2, . . . with λk > 0, εk ≥ 0, generate a sequence

{xk} ∈ C with gk ∈ ∂εkf(xk)(2.3)

such that

λkg
k + ∇1d(x

k, xk−1) = 0.(2.4)

The IPA can be viewed as an approximate interior proximal method when εk > 0
∀k ∈ N (the set of natural numbers), which becomes exact for the special case εk = 0
∀k ∈ N.

The next step is to associate with each given d ∈ D(C) a corresponding proximal
distance satisfying some desirable properties needed to analyze the IPA.

Definition 2.2. Given C ⊂ Rn, open and convex, and d ∈ D(C), a function
H : Rn ×Rn → R+ ∪ {+∞} is called the induced proximal distance to d if H is finite
valued on C × C and for each a, b ∈ C satisfies

H(a, a) = 0,(2.5)

〈c− b,∇1d(b, a)〉 ≤ H(c, a) −H(c, b) ∀c ∈ C.(2.6)

We write (d,H) ∈ F(C) to quantify the triple [C, d,H] that satisfies the premises
of Definition 2.2.

Likewise, we will write (d,H) ∈ F(C) for the triple [C, d,H] whenever there exists
H which is finite valued on C×C, satisfies (2.5)–(2.6) for any c ∈ C, and is such that
∀c ∈ C one has H(c, ·) level bounded on C. Clearly, one has F(C) ⊂ F(C).

The motivation behind such a construction is not as mysterious as it might look
at first sight. Indeed, for the moment, notice that the classical PA, which corresponds
to the special case C = C = Rn, d(x, y) = 2−1‖x − y‖2 and the induced proximal
distance H being exactly d, clearly satisfies (2.6), thanks to the well-known identity

‖z − x‖2 = ‖z − y‖2 + ‖y − x‖2 + 2〈z − y, y − x〉.

IPA with d ≡ H will be called self-proximal. Several useful examples of more
general self-proximal methods for various classes of constraint sets C will be given in
the next section.

As we shall see below, the requested properties for the function H associated
with d naturally emerge from the analysis of the classical PA as given in [24] and later
extended for various specific classes of IPA in [16, 44, 5]. Building on these works, we
can already easily obtain global rates of convergence estimates as well as convergence
in limit points of the produced sequence by IPA. To derive the global convergence
of the sequence {xk} to an optimal solution of (P), additional assumptions on the
induced proximal distance H, akin to the properties of norms, will be required.

Before giving our convergence results, we recall the following well-known proper-
ties on nonnegative sequences, which will be useful to us throughout this work.

Lemma 2.1 (see [35]). Let {vk}, {γk}, and {βk} be nonnegative sequences of real
numbers satisfying vk+1 ≤ (1+γk)vk+βk and such that

∑∞
k=1 βk < ∞,

∑∞
k=1 γk < ∞.

Then, the sequence {vk} converges.
Lemma 2.2 (see [35]). Let {λk} be a sequence of positive numbers, {ak} a se-

quence of real numbers, and bn := σ−1
n

∑n
k=1 λkak, where σn =

∑n
k=1 λk. If σn → ∞,

one has
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(i) lim inf an ≤ lim inf bn ≤ lim sup bn ≤ lim sup an,
(ii) lim bn = a whenever lim an = a.
Theorem 2.1. Let (d,H) ∈ F(C) and let {xk} be the sequence generated by

IPA. Set σn =
∑n

k=1 λk. Then the following hold:
(i) f(xn) − f(x) ≤ σ−1

n H(x, x0) + σ−1
n

∑n
k=1 σkεk ∀x ∈ C.

(ii) If limn→∞ σn = +∞ and εk → 0, then lim infn→∞ f(xn) = f∗ and the
sequence {f(xk)} converges to f∗ whenever

∑∞
k=1 εk < ∞.

(iii) Furthermore, suppose the optimal set X∗ of problem (P) is nonempty, and
consider the following cases:
(a) X∗ is bounded,
(b)

∑∞
k=1 λkεk < ∞ and (d,H) ∈ F(C).

Then, under either (a) or (b), the sequence {xk} is bounded with all its limit
points in X∗.

Proof. (i) From (2.4), since gk ∈ ∂εkf(xk) we have

λk(f(xk) − f(x)) ≤ 〈x− xk,∇1d(x
k, xk−1)〉 + λkεk ∀x ∈ C.(2.7)

Using (2.6) at the points c = x, a = xk−1, b = xk, the above inequality implies that

λk(f(xk) − f(x)) ≤ H(x, xk−1) −H(x, xk) + λkεk ∀x ∈ C.(2.8)

Summing over k = 1, . . . , n we obtain

−σnf(x) +

n∑
k=1

λkf(xk) ≤ H(x, x0) −H(x, xn) +

n∑
k=1

λkεk.(2.9)

Now setting x = xk−1 in (2.8), we obtain

f(xk) − f(xk−1) ≤ εk.(2.10)

Multiplying the latter inequality by σk−1 (with σ0 ≡ 0) and summing over k =
1, . . . , n, we obtain, after some algebra,

σnf(xn) −
n∑

k=1

λkf(xk) ≤
n∑

k=1

σk−1εk.

Adding this inequality to (2.9) and recalling that λk + σk−1 = σk, it follows that

f(xn) − f(x) ≤ σ−1
n [H(x, x0) −H(x, xn)] + σ−1

n

n∑
k=1

σkεk ∀x ∈ C,(2.11)

proving (i), since H(·, ·) ≥ 0.
(ii) If σn → +∞ and εk → 0, then dividing (2.9) by σn and invoking Lemma 2.2(i),

we obtain from (2.9) that lim infn→∞ f(xn) ≤ inf{f(x) | x ∈ C}, which together with
f(xn) ≥ inf{f(x) | x ∈ C} implies that lim infn→∞ f(xn) = inf{f(x) | x ∈ C} = f∗.
From (2.10) we have

0 ≤ f(xk) − f∗ ≤ f(xk−1) − f∗ + εk.

Then using Lemma 2.1 it follows that the sequence {f(xk)} converges to f∗ whenever∑∞
k=1 εk < ∞.



INTERIOR GRADIENT AND PROXIMAL METHODS 703

(iii) Case (a): If X∗ is bounded, then f is level bounded over C, and since the
sequence {f(xk)} converges to f∗, it follows that the sequence {xk} is bounded. Since
f is lsc, passing to the limit, and recalling that {xk} ⊂ C, it follows that each limit
point is an optimal solution.

Case (b): Here, we suppose that
∑∞

k=1 λkεk < ∞ and that (d,H) ∈ F(C). Then
(2.8) holds for each x ∈ C, and in particular for x ∈ X∗, so that

H(x, xk) ≤ H(x, xk−1) + λkεk ∀x ∈ X∗.(2.12)

Summing over k = 1, . . . , n, we obtain

H(x, xn) ≤ H(x, x0) +

∞∑
k=1

λkεk.

But, since in this case H(x, ·) is level bounded, the last inequality implies that the
sequence {xk} is bounded, and thus as in Case (a) it follows that all its limit points
are in X∗.

An immediate byproduct of the above analysis yields the following global rate of
convergence estimate for the exact version of IPA, i.e., with εk = 0 ∀k.

Corollary 2.1. Let (d,H) ∈ F(C), X∗ �= ∅, and {xk} be the sequence generated
by IPA with εk = 0 ∀k. Then, f(xn) − f∗ = O(σ−1

n ) ∀x ∈ C.

Proof. Under the given hypothesis, Theorem 2.1(i) holds for any x ∈ C, and it
follows that f(xn) − f∗ ≤ (σn)−1H(x∗, x0).

To establish the global convergence of the sequence {xk} to an optimal solu-
tion of problem (P), we need to make further assumptions on the induced proximal
distance H, mimicking the behavior of norms.

Let (d,H) ∈ F+(C) ⊂ F(C) be such that the function H satisfies the following
two additional properties:

(a1) ∀y ∈ C and ∀{yk} ⊂ C bounded with limk→+∞ H(y, yk) = 0, we have
limk→+∞ yk = y;

(a2) ∀y ∈ C and ∀{yk} ⊂ C converging to y, we have limk→+∞ H(y, yk) = 0.

With these additional hypotheses on H we immediately obtain that IPA globally
converges to an optimal solution of (P).

Theorem 2.2. Let (d,H) ∈ F+(C) and let {xk} be the sequence generated
by IPA. Suppose that the optimal set X∗ of (P) is nonempty, σn =

∑n
k=1 λk → ∞,∑∞

k=1 λkεk < ∞, and
∑∞

k=1 εk < ∞. Then the sequence {xk} converges to an optimal
solution of (P).

Proof. Let x ∈ X∗. Then, since (d,H) ∈ F+(C), from (2.12) with
∑n

k=1 λkεk <
+∞ and Lemma 2.1 we obtain that the sequence {H(x, xk)} converges to some
a(x) ∈ R ∀x ∈ X∗. Let x∞ be the limit of a subsequence {xkl}. Obviously, from
Theorem 2.1, x∞ ∈ X∗. Then by assumption (a2) liml→∞ H(x∞, xkl) = 0, so that
limk→∞ H(x∞, xk) = 0, and by assumption (a1) it follows that the sequence {xk}
converges to x∞.

Note that we have separated the two types of convergence results to emphasize

• the differences and roles played by each of the three classes F+(C) ⊂ F(C) ⊂
F(C),

• that the largest, and less demanding, class F(C) already provides reasonable
convergence properties for IPA, with minimal assumptions on the problem’s
data.
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These aspects are illustrated by several application examples in the next section.
Relations (2.3), (2.4) defining IPA can sometimes be difficult to implement, since

at each step we have to find by some algorithm in a finite number of steps an
εk-solution for the minimization of the function λkf(·) + d(·, xk−1). To overcome
this difficulty, we consider here (among others) a variant of the approximate rule
proposed in [20] for self-proximal Bregman methods.

Interior proximal algorithm with approximation rule (IPA1). Let
(d,H) ∈ F(C), λ∗ > 0, and for each k = 1, 2, . . . , let λk ≥ λ∗, ηk > 0, and εk > 0
with

∑∞
k=1 εk < ∞,

∑∞
k=1 ηk < ∞. Starting from a point x0 ∈ C, for all k ≥ 1 we

generate the sequences {xk}∞k=1 ⊂ C, {ek}∞k=1 ⊂ Rn via

ek = λkg
k + ∇1d(x

k, xk−1) with gk ∈ ∂f(xk),(2.13)

where the error sequence {ek} satisfies the conditions

‖ek‖ ≤ εk, ‖ek‖ sup(‖xk‖, ‖xk−1‖) ≤ ηk.(2.14)

Remark 2.1. From Proposition 2.1, a sequence {xk} given by relations (2.13),
(2.14) always exists. Furthermore, if f is C1 on C (C2 on C with d(·, y) ∈ C2 on C
for all y ∈ C), then any convergent gradient-type method (Newton-type method) will
provide such an xk in a finite number of steps.

Theorem 2.3. Let (d,H) ∈ F(C), and let {xk} be a sequence generated by
IPA1. Then we have the following:

(i) The sequence {f(xk)} converges to f∗.
(ii) Furthermore, suppose that the optimal set X∗ is nonempty, and consider the

following cases:
(a) X∗ is bounded;
(b) (d,H) ∈ F(C);
(c) (d,H) ∈ F+(C).

Then under (a) or (b), the sequence {xk} is bounded with all limit points
in X∗, while under (c) the sequence {xk} converges to an optimal solution.

Proof. Since gk ∈ ∂f(xk), using (2.6) and the Cauchy–Schwarz inequality we get
for any x ∈ C

λk(f(xk) − f(x)) ≤ 〈x− xk,∇1d(x
k, xk−1)〉 + 〈ek, xk − x〉

≤ H(x, xk−1) −H(x, xk) + ε̃k(x),(2.15)

with ε̃k(x) := ‖ek‖‖x‖ + 〈xk, ek〉. Summing (2.15) over k = 1, . . . , n and dividing by
σn =

∑n
i=1 λk we obtain

−f(x) +

n∑
k=1

λkf(xk)

σn
≤ σ−1

n

[
H(x, x0) −H(x, xn) +

n∑
k=1

ε̃k(x)

]
.(2.16)

Now setting x = xk−1 in (2.15) and αk := |ε̃k(xk−1)|λ−1
∗ , we obtain (f(xk) −

f(xk−1)) ≤ αk. But using (2.14), one has
∑∞

k=1 ε̃k(x) < ∞ and
∑∞

k=1 αk < ∞.
Therefore by passing to the limit in (2.16) and invoking Lemma 2.2(i) it follows that
lim infn→∞ f(xn) − f(x) ≤ 0 for each x ∈ C so that lim infn→∞ f(xn) ≤ inf{f(x) |
x ∈ C}. From here, the proof can be completed with the same arguments as in the
proofs of Theorems 2.1 and 2.2.

Theorem 2.3(c) recovers and extends [20, Theorem 1, p. 120] for the case of convex
minimization, which was proved there only for the Bregman self-proximal method.
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3. Proximal distances (d, H): Examples. It turns out that in most situa-
tions, when constructing an IPA for solving the convex problem (P), the proximal
distance H induced by d will be a Bregman proximal distance Dh generated by some
convex kernel h. In the first part of this section we recall the special features of the
Bregman proximal distance. In the second part we consider various types of con-
straint sets C for problem (P). We demonstrate through many examples for the pair
(d,H) that many well-known proximal methods, as well as new ones, can be handled
through our framework.

3.1. Bregman proximal distances. Let h : Rn → R∪{+∞} be a proper, lsc,
and convex function with domh ⊂ C and dom∇h = C, strictly convex and continuous
on domh, C1 on int domh = C. Define

H(x, y) := Dh(x, y) := h(x) − [h(y) + 〈∇h(y), x− y〉] ∀x ∈ Rn, ∀y ∈ dom∇h

= +∞ otherwise.(3.1)

The function Dh enjoys a remarkable three point identity [16, Lemma 3.1],

H(c, a) = H(c, b) + H(b, a) + 〈c− b,∇1H(b, a)〉 ∀a, b ∈ C, ∀c ∈ domh.(3.2)

This identity plays a central role in the convergence analysis.
To handle the constraint cases C versus C, we consider two types of kernels h.

The first type consists of convex kernel functions h (often called a Bregman function
with zone C; see, e.g., [15]) that satisfy the following conditions:

(B1) domh = C;
(B2) (i) ∀x ∈ C, Dh(x, ·) is level bounded on int(domh);

(ii) ∀y ∈ C, Dh(·, y) is level bounded;
(B3) ∀y ∈ domh, ∀{yk} ⊂ int(domh) with limk→∞ yk = y, one has limk→∞

Dh(y, yk) = 0;
(B4) if {yk} is a bounded sequence in int(domh) and y ∈ domh such that limk→∞

Dh(y, yk) = 0, then y = limk→∞ yk.
Note that (B4) is a direct consequence of the first three properties, a fact proved by
Kiwiel in [29, Lemma 2.16].

Let B be the class of kernels h satisfying properties (B1)–(B4). More general
Bregman proximal distances such as those introduced in [29] could also be candidates.
For the sake of simplicity we consider here only the case h ∈ B.

For the second type of kernels, we require the convex kernel h to satisfy two
(weaker)1 conditions:

(WB1) domh = C;
(WB2) (i) ∀x ∈ C, Dh(x, ·) is level bounded on C;

(ii) ∀y ∈ C, Dh(·, y) is level bounded.
We denote by WB the set of such convex kernels h.

We give here some examples that underline the difference between the classes B
and WB.

Example 3.1. Let C = Rn
++. Separable Bregman proximal distances are the most

commonly used in the literature. Let θ : R → R ∪ +∞ be a proper convex and lsc
function with (0,+∞) ⊂ dom θ ⊂ [0,+∞) and such that θ ∈ C2(0,+∞), θ′′(t) > 0

1The terminology “weaker” is used here to indicate that “weaker type” of convergence results
can be derived for this class. Indeed, with h ∈ WB one has (d,Dh) ∈ F(C) and only Theorem 2.1
(except (iii)(b)) can be applied.
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∀t > 0, and limt→0+ θ′(t) = −∞. We denote this class by Θ0 if θ(0) < +∞ and
by Θ+ whenever θ(0) = +∞ and θ is also assumed nonincreasing. Given θ in either
class, define h(x) =

∑n
j=1 θ(xj) so that Dh is separable. The first two examples are

functions θ ∈ Θ0, i.e., with dom θ = [0,+∞), and the last two are in Θ+, i.e., with
dom θ = (0,+∞):

• θ1(t) = t log t (Shannon entropy),
• θ2(t) = (pt− tp)/(1 − p) with p ∈ (0, 1),
• θ3(t) = − log t (Burg entropy),
• θ4(t) = t−1.

More examples can be found in, e.g., [29, 43]. Then, the corresponding proximal
distances Dh1 , Dh2 ∈ B, while Dh3 , Dh4 ∈ WB.

3.2. Self-proximal methods. The three point identity (3.2) plays a fundamen-
tal role in the convergence of Bregman-based self-proximal methods, namely those for
which we take d itself as a Bregman proximal distance, that is, d(x, y) = H(x, y) =
Dh(x, y), with Dh as defined in (3.1). Whenever h ∈ B, or in WB, properties (P1),
(P2), and (P3) hold for d = Dh.

Clearly, Dh(a, a) = 0 ∀a ∈ C, so that (P4) holds, and since H is always non-
negative it follows from (3.2) that (2.6) holds. Therefore for h ∈ WB one has
(d,H) = (Dh, Dh) ∈ F(C), while if h ∈ B, then (d,H) = (Dh, Dh) ∈ F+(C).

When C = Rn, with h(·) = ‖ · ‖2/2 ∈ B, then Dh(x, y) = ‖x − y‖2/2, and with
(d,H) = (Dh, Dh) ∈ F+(Rn), the IPA is exactly the classical proximal method and
Theorems 2.1 and 2.2 cover the usual convergence results, e.g., [24, 30, 31].

We now list several interesting special cases for the pair (d,H) leading to self-
proximal schemes for various types of constraints.

Nonnegative constraints. Let C = Rn
++ and C = Rn

+. For the examples given
in Example 3.1, the resulting self-proximal algorithms, namely with d = H = Dhi ,
yield (d,Dhi

) ∈ F+(C) for i = 1, 2 and (d,Dhi
) ∈ F(C) for i = 3, 4.

Semidefinite constraints. We denote by Sn the linear space of symmetric real
matrices equipped with the trace inner product 〈x, y〉 := tr(xy) and ‖x‖ =

√
tr(x2)

∀x, y ∈ Sn, where tr(x) is the trace of the matrix x and detx its determinant. The
cone of n × n symmetric positive semidefinite (positive definite) matrices is denoted
by Sn

+ (Sn
++). Let C = Sn

++ and C = Sn
+. Let h1 : Sn

+ → R, h1(x) = tr(x log x) and
h3 : Sn

++ → R, h3(x) = − tr(log x) = − log det(x) (which corresponds to θ1 and θ3,
respectively, of Example 3.1). For any y ∈ Sn

++, let

d1(x, y) = tr(x log x− x log y + y − x) with dom d1(·, y) = Sn
+,

d3(x, y) = tr(− log x + log y + xy−1) − n

= − log det(xy−1) + tr(xy−1) − n with dom d3(·, y) = Sn
++.

The proximal distances d1, d3 are Bregman type corresponding to h1, h3, respec-
tively, and were proposed by Doljansky and Teboulle in [18], who derived conver-
gence results for the associated IPA. From the results of [18] it is easy to see that
di ∈ D(C), i = 1, 3, and with H(x, y) = di(x, y) it follows that (d1, H) ∈ F(Sn

+) and
(d3, H) ∈ F(Sn

++) so that we recover the convergence results of [18] through Theo-
rem 2.1. However, as noticed in a counterexample [18, Example 4.1], property (B3)
does not hold even for d1, and therefore (di, H) /∈ F+(C), i = 1, 3. Consequently,
Theorem 2.2 does not apply, i.e., global convergence to an optimal solution cannot
be guaranteed. Similar results can be easily extended to the more general case with
C = {x ∈ Rm | B(x) ∈ Sn

++} assumed nonempty, with B(x) =
∑m

i=1 xiBi−B0, where
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Bi ∈ Sn ∀i = 0, 1, . . . ,m, and the map x →
∑m

i=1 xiBi being onto, by considering the
corresponding proximal distances,

D1(x, y) = d1(B(x), B(y)), D3(x, y) = d3(B(x), B(y)).

Convex programming. Let fi : Rn → R be concave and C1 on Rn for each
i ∈ [1,m]. We suppose that Slater’s condition holds, i.e., there exists some point
x0 ∈ Rn such that fi(x0) > 0 ∀i ∈ [1,m] and that the open convex set C is described
by

C = {x ∈ Rn | fi(x) > 0 ∀i = 1, . . . ,m}

so that by Slater’s assumption C �= ∅ and C = {x ∈ Rn | fi(x) ≥ 0, i ∈ [1,m]}.
Consider the class Θ+ of functions defined in Example 3.1, and for each θ ∈ Θ+ let

h(x) =

{∑m
i=1θ(fi(x)) if x ∈ C,

+ ∞ otherwise.
(3.3)

Obviously h is a proper, lsc, and convex function. Now, consider the Bregman prox-
imal distance associated with hν(x) := h(x) + ν

2‖x‖2 with ν > 0. Then, we take
d(x, y) = Dhν

(x, y), where Dhν
is the Bregman distance associated with hν . Thanks

to the condition ν > 0, it follows that hν ∈ WB and (d,Dhν ) ∈ F(C). An important
and interesting case is obtained by choosing the Burg function, θ3(t) = − log t. In
this case we obtain the following:

d(x, y) =

m∑
i=1

− log
fi(x)

fi(y)
+

〈∇fi(y), x− y〉
fi(y)

+
ν

2
‖x− y‖2.(3.4)

Note that in this case the function d(·, y) enjoys other interesting properties: for
example, when the functions fi are concave quadratic, then d(·, y) is self-concordant
for each y ∈ C, a property which is very useful when minimizing the function with
Newton-type methods [33]. When ν = 0, i.e., with d = Dh, such proximal distance
has been recently introduced by Alvarez, Bolte, and Brahic [1], in the context of
dynamical systems to study interior gradient flows, but it requires a nondegeneracy
condition, ∀x ∈ C: span{∇fi(x) | i = 1, . . . ,m} = Rn, which is satisfied mostly in
the polyhedral case. Here, in the context of proximal methods, the addition of the
regularized term in Dh precludes the use of such a condition.

Second order cone constraints. Let C = Ln
++ := {x ∈ Rn | xn > (x2

1 + · · · +
x2
n−1)

1/2} be the interior of the Lorentz cone, with closure denoted by Ln
+. Let Jn

be a diagonal matrix with its first (n− 1) entries being −1 and the last being 1, and
define h : Ln

++ → R by h(x) = − log(xTJnx). Then h is proper, lsc, and convex on
domh = Ln

++. Let hν(x) = h(x)+ν‖x‖2/2. Then thanks to ν > 0, one has hν ∈ WB,
and the Bregman proximal distance associated with hν is given by

Dhν (x, y) = − log
xTJnx

yTJny
+

2xTJny

yTJny
− 2 +

ν

2
‖x− y‖2,(3.5)

and we have (Dhν , Dhν ) ∈ F(Ln
++). As in the convex and semidefinite program-

ming cases, one can easily handle the more general case with a nonempty C =
{x ∈ Rn | Ax − b ∈ Lm

++}, where A ∈ Rm×n, b ∈ Rm, by choosing h(x) :=
− log(Ax− b)TJm(Ax− b).
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We will now show that, interestingly, even for IPA which are not self-proximal,
the induced proximal distance H from the choice of d for various types of constraints
will still be a Bregman proximal distance Dh with an appropriate convex kernel h in
the class B or WB.

3.3. Proximal functions based on ϕ-divergences.
ϕ-divergence kernels. Let ϕ : R → R ∪ {+∞} be an lsc, convex, proper

function such that domϕ ⊂ R+ and dom ∂ϕ = R++. We suppose in addition that ϕ
is C2, strictly convex, and nonnegative on R++ with ϕ(1) = ϕ′(1) = 0. We denote
by Φ the class of such kernels and by Φ1 the subclass of these kernels satisfying

ϕ′′(1)

(
1 − 1

t

)
≤ ϕ′(t) ≤ ϕ′′(1) log t ∀t > 0.(3.6)

The other subclass of Φ of interest is denoted by Φ2, where (3.6) is replaced by

ϕ′′(1)

(
1 − 1

t

)
≤ ϕ′(t) ≤ ϕ′′(1)(t− 1) ∀t > 0.(3.7)

Examples of functions in Φ1,Φ2 are (see, e.g., [5, 44])

ϕ1(t) = t log t− t + 1, domϕ = [0,+∞),

ϕ2(t) = − log t + t− 1, domϕ = (0,+∞),

ϕ3(t) = 2(
√
t− 1)2, domϕ = [0,+∞).

Corresponding to the classes Φr, with r = 1, 2, we define a ϕ-divergence proximal
distance by

dϕ(x, y) =

n∑
i=1

yriϕ

(
xi

yi

)
.

For any ϕ ∈ Φ, since argmin{ϕ(t) | t ∈ R} = {1}, ϕ is coercive and thus it follows
that dϕ ∈ D(C), with C = Rn

++.
The use of ϕ-divergence proximal distances is particularly suitable for handling

polyhedral constraints. Let C = {x ∈ Rn | Ax < b}, where A is an (m,n) matrix
of full rank m (m ≥ n). Particularly important cases include C = Rn

++ or C =
{x ∈ Rn | ai < xi < bi ∀i = 1, . . . , n}, with ai, bi ∈ R. For the sake of simplicity we
consider here only the case where C = Rn

++. Indeed, as is already noted in several
works (e.g., [3, 4, 44]), since these proximal distances are separable they can thus
be extended without difficulty to the polyhedral case by redefining d in the form
d(x, y) :=

∑m
i=1 di(bi −〈ai, x〉, bi −〈ai, y〉), where ai are the rows of the matrix A and

di(ui, vi) = vriϕ(uiv
−1
i ).

The class Φ1. It turns out that the induced proximal distance H associ-
ated with dϕ is the Bregman proximal distance obtained from the kernel h(x) =∑n

j=1 xj log xj (obtained from θ1) and given by

Dh(x, y) := K(x, y) =

n∑
j=1

xj log
xj

yj
+ yj − xj ∀x ∈ Rn

+, ∀y ∈ Rn
++,(3.8)

which is the Kullback–Liebler relative entropy. The fact that K plays a central role in
the analysis of IPA based on ϕ ∈ Φ1 was already realized in [28] and later formalized
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in [44, Lemma 4.1(ii)], which shows that for any ϕ ∈ Φ1 one has

〈c− b,∇1dϕ(b, a)〉 ≤ ϕ′′(1)[K(c, a) −K(c, b)].(3.9)

Therefore (2.6) is verified for H = ϕ′′(1)K and it follows that for any ϕ ∈ Φ1 one
has (dϕ, ϕ

′′(1)K) ∈ F+(C) and all the convergence results of section 2 apply for the
corresponding IPA. We note parenthetically that the induced proximal distance K
can also be obtained from the ϕ-divergence with the kernel ϕ1. In fact this should not
be surprising, since it can be verified that dϕ = Dh if and only if h(x) =

∑n
j=1 ϕ1(xj).

Regularized class Φ1. Let ϕ ∈ Φ1 and define d(x, y) = dϕ(x, y)+2−1ν‖x−y‖2,
with ν > 0. This proximal distance was recently considered in [2] in the context of
Lotka–Volterra dynamical systems with the choice ϕ = ϕ2. As shown there, one can
verify that with H(x, y) = K(x, y) + ν

2‖x− y‖2, one has (dϕ2 , H) ∈ F+(C).
The class Φ2: Second order homogeneous proximal distances [5, 10, 45].

Let ϕ(t) = μp(t) + ν
2 (t− 1)2 with ν ≥ μ > 0, p ∈ Φ2, and let the associated proximal

distance be defined by

dϕ(x, y) =

n∑
j=1

y2
jϕ

(
xj

yj

)
.

In particular, p(t) = − log t+ t− 1 gives the so-called logarithmic-quadratic proximal
distance [5]. Obviously dϕ ∈ D(C), and from the key inequality [4, Lemma 3.4] one
has

〈c− b,∇1d(b, a)〉 ≤ η(‖c− a‖2 − ‖c− b‖2) ∀a, b ∈ R++, ∀c ∈ R+

with η = 2−1(μ + ν). Therefore with H(x, y) = η‖x − y‖2 it follows that (dϕ, H) ∈
F+(C).

4. Interior gradient methods. When C = Rn, Correa and Lemarechal [17]
and Robinson [38] have remarked that the PA can be viewed as an ε-subgradient
descent method. This idea was recently extended by Auslender and Teboulle [7] for
the logarithmic-quadratic proximal method which allows us to handle linear inequality
constraints directly. Given the framework developed in section 2, we extend these
results for more general constraints and with various classes of proximal distances.

We first give the main convergence result. We then present applications and
examples which allow us to improve some known interior gradient–based methods
as well as to derive new and simple convergent algorithms for conic optimization
problems.

4.1. A general convergence theorem. To solve problem (P) inf{f(x) | x ∈
C} we consider the following general projected subgradient-based algorithm (PSA).

Take d ∈ D(C). Let λk > 0, εk ≥ 0, and m ∈ (0, 1], and for k ≥ 1 generate the
sequence {xk, gk} such that

xk−1 ∈ C, gk−1 ∈ ∂εkf(xk−1),(4.1)

xk ∈ argmin{λk〈gk−1, x〉 + d(x, xk−1) | x ∈ C},(4.2)

f(xk) ≤ f(xk−1) + m(〈gk−1, xk − xk−1〉 − εk).(4.3)

Let us briefly recall why the sequence {xk}, constructed by the exact IPA (εk = 0) in
section 2 via (2.3) and (2.4), fits in PSA (see, e.g., [17, 7] for more details). Starting
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IPA with x0 ∈ C, one has xk ∈ C, and it can be verified that gk ∈ ∂f(xk) is equivalent
to saying that

gk ∈ ∂ε∗kf(xk−1) with ε∗k = f(xk−1) − f(xk) + 〈gk, xk − xk−1〉 ≥ 0.

Therefore (2.3) and (2.4) are nothing else but (4.1) and (4.2). Then, with m = 1
and with ε∗k as defined above, inequality (4.3) holds as an equality, showing that the
sequence {xk} generated by IPA satisfies (4.1), (4.2), and (4.3).

Building on the material developed in section 2 it is now possible to establish
convergence results of PSA for various instances of the triple [C, d,H], extending
recent convergence results given in [7, Theorem 4.1]. Before doing so, we first note
that by using the same arguments as in the proof of Proposition 2.1, it is easily seen
that the existence of xk ∈ C is guaranteed.

Theorem 4.1. Let {xk} be a sequence generated by PSA with (d,H) ∈ F(C).
Set σn =

∑n
k=1 λk and αk = 〈gk−1, xk−1 − xk〉. Then,

(i)
∑∞

k=1 αk < ∞,
∑∞

k=1 εk < ∞, and αk ≥ λ−1
k H(xk, xk−1) ≥ 0 ∀k ∈ N.

(ii) ∀z ∈ C, f(xn) − f(z) ≤ σ−1
n [H(z, x0) +

∑n
k=1 λk(αk + εk)].

(iii) The sequence {f(xk)} is nonincreasing and converges to f∗ as σn → ∞.
(iv) Suppose that the optimal set X∗ is nonempty and σn → ∞. Then the se-

quence {xk} is bounded with all its limit points in X∗ under either one of the
following conditions:
(a) X∗ is bounded.
(b) (d,H) ∈ F(C) and

∑∞
k=1 λkεk < +∞ (which in particular is true if

{λk} is bounded above).
In addition, if (d,H) ∈ F+(C), then {xk} converges to an optimal solution

of (P).
Proof. (i) From the optimality conditions, (4.2) is equivalent to

λkg
k−1 + ∇1d(x

k, xk−1) = 0.

Since H(·, ·) ≥ 0 and H(a, a) = 0, from (2.6) with c = a = xk−1, b = xk we then
obtain

λkαk = 〈∇1d(x
k, xk−1), xk − xk−1〉 ≥ H(xk−1, xk) ≥ 0.

Furthermore, from (4.3) we obtain

m(αk + εk) ≤ f(xk−1) − f(xk),(4.4)

which also shows that {f(xk)} is nonincreasing. Summing over k = 1, . . . , n in the
last inequality it follows that

m

n∑
k=1

(αk + εk) ≤ f(x0) − f(xn) ≤ f(x0) − f∗,(4.5)

proving (i). Now since σn =
∑n

k=1 λk, using σk = λk+σk−1 (with σ0 = 0), multiplying
(4.4) by σk−1, and summing over k = 1, . . . n, we obtain

n∑
k=1

[(σk − λk)f(xk) − σk−1f(xk−1)] ≤ 0,
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which reduces to

σnf(xn) −
n∑

k=1

λkf(xk) ≤ 0.(4.6)

Now, since gk−1 ∈ ∂εkf(xk−1), then for any z ∈ C one has

f(z) − f(xk−1) + εk ≥ 〈gk−1, z − xk−1〉
= 〈gk−1, z − xk〉 + 〈gk−1, xk − xk−1〉

= − 1

λk
〈z − xk,∇1d(x

k, xk−1)〉 − αk

≥ 1

λk
[H(z, xk) −H(z, xk−1)] − αk,

where the last inequality uses (2.6) with b = xk, a = xk−1. Since f(xk) ≤ f(xk−1), it
then follows that

λk(f(xk) − f(z)) ≤ H(z, xk−1) −H(z, xk) + λk(αk + εk).

Summing the above inequality over k = 1, . . . , n, we obtain

−σnf(z) +

n∑
k=1

λkf(xk) ≤ H(z, x0) −H(z, xn) +

n∑
k=1

λk(αk + εk).

Adding this inequality to (4.6) and dividing by σn one obtains

f(xn) − f(z) ≤ H(z, x0)

σn
+

n∑
k=1

λk(αk + εk)

σn
∀z ∈ C.

This proves (ii). Suppose σn → ∞. Since the sequences {αk} and {εk} converge to 0,
invoking Lemma 2.2 and passing to the limit we obtain

lim
n→∞

f(xn) = lim sup
n→∞

f(xn) ≤ inf{f(x) | x ∈ C} = f∗,

proving (iii). The rest of the proof is exactly the same as in the proof of Theorems
2.1 and 2.2.

Using (ii) of Theorem 4.1 with (4.5), we obtain the following corollary.
Corollary 4.1. Let (d,H) ∈ F(C) and let {xk} be the sequence produced by

PSA. Suppose that X∗ �= ∅ and 0 < λ∗ ≤ λk ≤ λ∗. Then we have the global estimation
f(xn) − f∗ = O(n−1).

4.2. Conic optimization: Interior projected gradient methods with
strongly convex proximal distance.

4.2.1. Preliminaries. We consider now the problem

(M) inf{f(x) | x ∈ C ∩ V},

where V = {x : Ax = b}, with b ∈ Rm, A ∈ Rm×n, n ≥ m, f : Rn → R ∪ {+∞} is
convex and lsc, and we assume that ∃x0 ∈ dom f ∩ C : Ax0 = b.

When C is a convex cone, problem (M) is the standard conic optimization problem
(see, e.g., [33]), while whenever V = Rn it is just a pure conic optimization problem.
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In the following subsection, we assume also that f is continuously differentiable with
∇f Lipschitz on C ∩ V and Lipschitz constant L, i.e., ∃L > 0 such that

‖∇f(x) −∇f(y)‖ ≤ L‖x− y‖ ∀x, y ∈ C ∩ V.(4.7)

We consider now (d,H) ∈ F(C) such that d satisfies the following properties:
(s1) ∃σ > 0 : ∀y ∈ C ∩ V, d(·, y) is σ-strongly convex over C ∩ V, i.e.,

〈∇1d(x1, y) −∇1d(x2, y), x1 − x2〉 ≥ σ‖x1 − x2‖2 ∀x1, x2 ∈ C ∩ V,(4.8)

for some norm ‖ · ‖ in Rn.
(s2) ∀y ∈ C ∩ V, d(·, y) is C2 on C with Hessian function denoted by ∇2

1d(·, y).
Therefore with the same arguments as the ones given in the proof of Proposi-

tion 2.1, it follows that for each x ∈ C ∩ V, for each v ∈ Rn there exists a unique (by
strong convexity) point u(v, x) ∈ C ∩ V solving

u(v, x) = argmin{〈v, z〉 + d(z, x) | z ∈ V}.(4.9)

Then from the optimality conditions for the convex problem (4.9) (see, e.g., [39,
section 28]), ∃μ := μ(v, x) ∈ Rm such that2

v + Atμ + ∇1d(u(v, x), x) = 0, Au(v, x) = b.(4.10)

Clearly, problem (M) can be equivalently formulated in the form of problem (P) as
follows:

f∗ = min{f0(x) | x ∈ C} with f0 = f + δV .

Define V0 = {x : Ax = 0}. Note that for any w ∈ V one has f(w) = f0(w) and

γ(η, x) := (∇f(x) + Atη) ∈ ∂f0(x) ∀x ∈ C ∩ V, ∀η ∈ Rm.(4.11)

Indeed, for any z, x ∈ V we have z − x ∈ V0 and thus, for any η ∈ Rm,

f0(z) = f(z) ≥ f(x) + 〈∇f(x), z − x〉 = f0(x) + 〈∇f(x) + Atη, z − x〉
= f0(x) + 〈γ(η, x), z − x〉.

Since for z /∈ V this inequality obviously holds, (4.11) is verified.

4.2.2. Algorithms. We can now propose for solving problem (M) the basic
iteration of our algorithm. Given a step-size rule for choosing λk at each step k,
starting from a point x0 ∈ C ∩ V we generate iteratively the sequence xk ∈ C ∩ V by
the relation

xk = u(λk∇f(xk−1), xk−1).(4.12)

As a consequence of the above discussion relations (4.1) and (4.2) are satisfied with
f replaced by f0, εk = 0, and

gk−1 = γ

(
μ(λk∇f(xk−1), xk−1)

λk
, xk−1

)
∈ ∂f0(x

k−1).(4.13)

2Note that the first relation in the optimality condition can be rewritten equivalently as v +
∇1d(u(v, x), x) ∈ V⊥

0 , where V0 = {x : Ax = 0}.
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We propose now two step-size rules, and for each rule we will show that inequality (4.3)
holds and

∑∞
k=1 λk = ∞. As a consequence we will be able to apply Theorem 4.1 and

then to devise two convergent interior gradient projection algorithms which naturally
extend the results of Auslender and Teboulle [7].

Algorithm 1 (constant step-size rule). Let ε ∈ ]0, 1[ and set λ∗ := 2εσL−1,
λ∗ ∈ (0, λ∗). Start from a point x0 ∈ C ∩ V and generate the sequence {xk} ∈ C ∩ V
as follows: if ∇f(xk−1) ∈ V⊥

0 , stop. Otherwise, compute

xk = xk(λk) := u(λk∇f(xk−1), xk−1) with λk ∈ (λ∗, λ
∗].(4.14)

Theorem 4.2. Let {xk} be the sequence produced by Algorithm 1. If at step k
one has ∇f(xk−1) ∈ V⊥

0 , then xk−1 is an optimal solution. Otherwise, the sequence
{f(xk)} is nonincreasing and converges to f∗. Moreover, suppose that the optimal
set X∗ is nonempty; then

(a) if X∗ is bounded, the sequence {xk} is bounded with all its limit points in X∗;
(b) if (d,H) ∈ F+(C), the sequence {xk} converges to an optimal solution of (P).
Proof. First, if ∇f(xk−1) ∈ V⊥

0 , since xk−1 ∈ C ∩ V then obviously, from the
optimality conditions (4.10), it follows that xk−1 is also an optimal solution. Suppose
now that ∇f(xk−1) /∈ V⊥

0 . Since λk ≥ λ∗, then σn =
∑n

k=1 λk → ∞. Thus, it remains
to show (4.3), and our result would follow as a direct consequence of Theorem 4.1.
Since ∇f is Lipschitz, by the well-known descent lemma (see, e.g., [12, p. 667]) one
has

f(xk) ≤ f(xk−1) + 〈∇f(xk−1), xk − xk−1〉 +
L

2
‖xk − xk−1‖2.(4.15)

Now, we first remark that

(xk − xk−1) ∈ V0.(4.16)

Then using (4.8), with x1 = y = xk−1 ∈ C ∩ V, x2 = u(v, xk−1) ∈ C ∩ V, and
v = λk∇f(xk−1); (4.10); and gk−1 as defined in (4.13) (recalling that ∇1d(y, y) = 0),
it follows that

λk〈gk−1, xk−1 − xk〉 = λk〈∇f(xk−1), xk−1 − xk〉 ≥ σ‖xk − xk−1‖2.

This combined with (4.15) yields

f(xk) ≤ f(xk−1) + 〈xk − xk−1, gk−1〉
(

1 − Lλk

2σ

)
,

so that with f0(x
k) = f(xk), f0(x

k−1) = f(xk−1) we get

f0(x
k) ≤ f0(x

k−1) + 〈xk − xk−1, gk−1〉
(

1 − Lλk

2σ

)
.

Then with λ∗ = 2εσ
L , we get f0(x

k) ≤ f0(x
k−1) + 〈xk − xk−1, gk−1〉(1 − ε), showing

that (4.3) holds with m = 1 − ε.
The second algorithm extends the method proposed in [7] and allows us to use

a generalized step-size rule, reminiscent of the one used in the classical projected
gradient method as studied by Bertsekas [11].

Algorithm 2 (Armijo–Goldstein step-size rule). Let β ∈ (0, 1), m ∈ (0, 1),
and s > 0 be fixed chosen scalars. Start from a point x0 ∈ C ∩ V and generate
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the sequence {xk} ∈ C ∩ V as follows: if ∇f(xk−1) ∈ V⊥
0 stop. Otherwise, with

xk(λ) = u(λ∇f(xk−1), xk−1), set λk = βjks, where jk is the first nonnegative integer j
such that

f(xk(βjs)) − f(xk−1) ≤ m〈∇f(xk−1), xk(βjs) − xk−1〉.(4.17)

Then set xk = xk(λk).
In order to show that this step-size rule is well defined, we need the following

proposition.
Proposition 4.1. For any x ∈ C ∩ V, any v ∈ Rn, and λ > 0, the unique

solution u(λv, x) defined by (4.9) satisfies u(0, x) = x and the following properties
hold:

(i) σ‖x− u(λv, x)‖2 ≤ λ〈x− u(λv, x), v〉,
(ii) ‖u(λv,x)−x‖

λ ≤ σ−1‖v‖,
(iii) limλ→0+

u(λv,x)−x
λ exists and is equal to ρ(v, x) = u, where u ∈ V0 satisfies

Q(x)u + v ∈ V⊥
0(4.18)

with Q(x) = ∇2
1d(x, x),

(iv) 〈−ρ(v, x), v〉 ≥ σ‖ρ(v, x)‖2.
Proof. Fix any x ∈ C ∩ V. By (4.9), we have u(0, x) = argmin{d(z, x) | z ∈ V},

and thus by optimality conditions (4.10) with μ = 0 it follows that u(0, x) = x.
Furthermore, from (4.10) we have

〈λv + ∇1d(u(λv, x), x), x− u(λv, x)〉 = 0,

from which the inequality in (i) follows immediately by using the strong convexity
inequality (4.8) at y = x1 = x, x2 = u(λv, x), and (ii) follows from (i) and the
Cauchy–Schwarz inequality.

(iii) Since d(·, y) is strongly convex on C ∩ V it follows from (4.8) that

〈Q(x)h, h〉 ≥ σ‖h‖2 ∀h ∈ V0.(4.19)

As a consequence of the Lax–Milgram theorem (see, for example, [14, Corollary 5.8]),
(4.18) admits exactly one solution ρ(v, x). Note that ∇1d(x, x) = 0. Then, since by
(4.10) we have

λv + ∇1d(u(λv, x), x) + Atμ(λv, x) = 0,

it follows that

∀h ∈ V0 : λ−1〈∇1d(u(λv, x), x) −∇1d(x, x), h〉 = 〈−v, h〉.

Denote s(λ) := u(λv,x)−x
λ . Now, from (ii) the generalized sequence {s(λ)}λ>0 is

bounded. Since u(λv, x) = x+ λs(λ), taking the limit as λ → 0+ in the last equation
and using the definition of the derivative (recall that here d(·, y) ∈ C2 for every
y ∈ C ∩ V), it follows that any limit point u of the generalized sequence {s(λ)}λ>0

satisfies u ∈ V0 such that

〈∇2
1d(x, x)u, h〉 = 〈Q(x)u, h〉 = −〈v, h〉 ∀h ∈ V0,

which is equivalent to (4.18). As a consequence u = ρ(v, x) and limλ→0+ s(λ) exists
and is equal to ρ(v, x). To prove (iv), take h = ρ(v, x) ∈ V0 in the last equality and
use (4.19).
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We can now prove the convergence of Algorithm 2.
Theorem 4.3. Let {xk} be the sequence generated by Algorithm 2. If at step k

one has ∇f(xk−1) ∈ V⊥
0 , then xk−1 is an optimal solution. Otherwise, the algorithm is

well defined, i.e., there exists an integer jk such that λk = βjk , and the sequence {λk}
is bounded below by λ∗ = min(2σβL−1(1 − m), s) > 0. Furthermore, Theorem 4.2
holds for the sequence produced by Algorithm 2.

Proof. We have only to prove that the algorithm is well defined and that λk ≥ λ∗
(so that limn→∞ σn = +∞). Indeed, if we set εk = 0 and gk−1 as given in (4.13),
then by definition of Algorithm 2 the sequence {xk} satisfies relations (4.1), (4.2),
and (4.3). To simplify the notation set x := xk−1, v = ∇f(xk−1), x(λ) = u(λv, x).
First, if v ∈ V⊥

0 , since x ∈ C ∩V, then obviously, from optimality conditions (4.10), it
follows that x is also an optimal solution. Suppose now that v /∈ V⊥

0 and that (4.17)
does not hold. That is,

f(x(βjs)) − f(x) > m〈x(βjs) − x, v〉 ∀j ∈ N.(4.20)

Invoking the mean value theorem, ∃zj ∈ ]x, x(βjs)[ such that〈
∇f(zj),

x(βjs) − x

βjs

〉
> m

〈
x(βjs) − x

βjs
, v

〉
∀j ∈ N.

But by Proposition 4.1(i) it follows that limj→∞ zj = x. Moreover, passing to the
limit in the last inequality and using (iii) and (iv) of the same proposition, we obtain

σ(1 −m)‖ρ(v, x)‖2 ≤ (1 −m)〈−v, ρ(v, x)〉 ≤ 0,

which implies that ρ(v, x) = 0, and hence by (4.18) it follows that v ∈ V⊥
0 , and we

have reached a contradiction. Now let us prove that λk ≥ λ∗. As for the case of
the constant step-size rule, with the same arguments (using again the descent lemma;
cf. (4.15)) we obtain

f0(x
k(λ)) − f0(x

k−1) ≤ 〈gk−1, xk(λ) − xk−1〉
(

1 − Lλ

2σ

)
∀λ > 0,

where xk(λ) = u(λ∇f(xk−1), xk−1) so that (4.17) holds for all j ∈ N with βjs ≤
2σL−1(1 −m). But since by definition if jk �= 0, λkβ

−1 does not satisfy (4.17), then
λkβ

−1 > 2σL−1(1 −m), it follows that λk ≥ λ∗ ∀k. From here, we can then proceed
with the same statements and conclusions of Theorem 4.2 for Algorithm 2.

In general u(v, x) is not given explicitly and has to be computed by an algorithm.
However, there are important cases where the function d is such that u(v, x) is given
explicitly by an analytic formula, making these algorithms particularly attractive,
which we now describe.

4.2.3. Application examples. Consider the functions d with (d,H) ∈ F(C)
which are regularized distances of the form

d(x, y) = p(x, y) +
σ

2
‖x− y‖2,(4.21)

with p ∈ D(C).
Note that the log-quad function belongs to this class. Such a class has been

recently introduced and studied by Bolte and Teboulle [13] in the context of gradient-
like continuous dynamical systems for constrained minimization.
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We begin with two pure conic optimization problems, i.e., with V = Rn. We
then consider the semidefinite and second order conic problems. To the best of our
knowledge, this leads to the first explicit interior gradient methods for these problems
with convergence results. The last application considers convex minimization over the
unit simplex.

A. Convex minimization over C = Rn
++. Let ϕ ∈ Φr with r = 1, 2 and let

d be given by (4.21) with p(z, x) = μ
∑n

j=1 x
r
jϕ(x−1

j zj), σ ≥ μ > 0 for (z, x) ∈ C ×C.
Take for example ϕ(t) = − log t + t − 1 and r = 2, namely the log-quad function.
Then, (4.21) can be written as

d(z, x) =

n∑
j=1

x2
jω(x−1

j zj) with ω(t) =
σ

2
(t− 1)2 + μ(t− log t− 1).

Solving (4.9), one easily obtains (see also [7, eq. (2.3), p. 4]) the following explicit
formulas:

∀i = j, . . . , n, uj(v, x) = xj(ω
∗)′(−vjx

−1
j )

with (ω∗)′(s) = (2σ)−1{(σ − μ) + s +
√

((σ − μ) + s)2 + 4μσ}.

In the case r = 1, (4.9) reduces to solve the equation in z ≡ u(v, x) > 0 given by

v + μ(1 − xjz
−1
j ) + σ(zj − xj) = 0, j = 1, . . . , n.

A simple calculation then yields the unique positive solution of this quadratic equa-
tion:

uj(v, x) = (2σ)−1

[
σxj − μ− vj +

√
(σxj − μ− vj)2 + 4σμxj

]
∀j = 1, . . . , n.

B. Semidefinite programming, C = Sn
++. Take (as in section 3.2)

p(x, y) = tr(− log x + log y + xy−1) − n ∀x, y ∈ Sn
++

= +∞ otherwise,

which is obtained from the Bregman kernel h : Sn
++ → R defined by h(x) = − ln det(x).

Using the fact that ∇h(x) = −x−1, the optimality conditions for (4.9) allow us to
solve for z ≡ u(v, x) the matrix equation

σz − z−1 = ρ with ρ := σx− v − x−1.

A direct calculation shows that the matrix

u(v, x) = (2σ)−1(ρ +
√

ρ2 + 4σI) ∀x ∈ Sn
++, ∀v ∈ Sn

(where I denotes the n × n identity matrix) is the unique solution of this equation,
with u(v, x) ∈ Sn

++, since its eigenvalues are positive.
C. Second order cone programming, C = Ln

++. As in section 3, we

take hν(x) = − log(xTJnx) + ν
2‖x‖2, with Jn a diagonal matrix with its first (n− 1)

entries being −1 and the last entry being 1. Consider the associated Bregman distance
D ≡ Dhν (as given by (3.5), with ν ≡ 2σ > 0, the multiplication by 2 being just for
computational convenience):

D(x, y) = − log
xTJnx

yTJny
+

2xTJny

yTJny
− 2 + σ‖x− y‖2 ∀x, y ∈ Ln

++.
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Moreover, we use the following notation. For any ξ ∈ Rn, we set τ(ξ) := ξTJnξ and
we write ξ := (ξ̄, ξn) ∈ Rn−1×R. Writing the optimality conditions for (4.9), we have
to find the unique solution u(v, x) ≡ z ∈ Ln

++ (namely with τ(z) > 0) solving

v + ∇h(z) −∇h(x) + 2σ(z − x) = 0.(4.22)

Using ∇h(z) = −2τ(z)−1Jnz and defining w := (∇h(x) + 2σx − v)/2 := (w̄, wn) ∈
Rn−1 × R, (4.22) reduces to

σz − τ(z)−1Jnz = w.(4.23)

Decomposing (4.23) in the product space Rn−1 × R yields

σz̄ + τ(z)−1z̄ = w̄, σzn − τ(z)−1zn = wn,(4.24)

and by eliminating τ(z) > 0 from these last two equations we obtain

(2σzn − wn)z̄ = znw̄ ⇐⇒ (2σz̄ − w̄)zn = wnz̄.(4.25)

Now, multiplying (4.23) by z, we obtain σ‖z‖2 −wT z−1 = 0, which after completing
the square can be rewritten as ‖2σz̄− w̄‖2 + (2σzn −wn)2 = ‖w‖2 + 4σ. Using (4.25)
and defining ζ := 2σzn − wn, the last equation reads

w2
n‖w̄‖2

ζ2
+ ζ2 = ‖w‖2 + 4σ.(4.26)

Now, it is easy to verify that ζ > 0. Indeed, since z ∈ Ln
++, then zn > 0, and by

(4.24) one also has wn < σzn, and it follows that ζ = 2σzn − wn > σzn − wn > 0.
Out of the two remaining solutions of (4.26), a direct computation (using the fact
that (‖w‖2 +4σ)2−4w2

n‖w̄‖2 = (w2
n−‖w̄‖2 +4σ)2 +16σ‖w̄‖2) shows that the unique

positive solution of (4.26) that will warrant τ(z) > 0 is given by the following:

ζ =

(
‖w‖2 + 4σ +

√
(‖w‖2 + 4σ)2 − 4w2

n‖w̄‖2

2

)1/2

.

Therefore using (4.25) it follows that the unique solution u ≡ z ∈ Ln
++ of (4.22) is

given by z = (z̄, zn) with

z̄ =
zn
ζ
w̄ =

1

2σ

(
1 +

wn

ζ

)
w̄, zn =

1

2σ
(wn + ζ).(4.27)

Remark 4.1. It is worthwhile to mention that an alternative derivation of (4.27)
could also have been obtained by using properties and facts on Jordan algebra asso-
ciated with the second order cone; see, e.g., [22, 23].

D. Convex minimization over the unit simplex. An interesting special
case of a conic optimization, with V �= Rn, where u(v, x) can be explicitly given,
and where all this theory applies, is when C = Rn

+ and A = eT , b = 1, i.e.,
V = {x ∈ Rn |

∑n
j=1 xj = 1}, so that problem (M) reduces to a convex mini-

mization problem over the unit simplex Δ = {x ∈ Rn |
∑n

j=1 xj = 1, x ≥ 0}. This
problem arises in important applications. In [9], Ben-Tal, Margalit, and Nemirovski
demonstrated that an algorithm based on the mirror descent (MDA) can be success-
fully used to solve very large-scale instances of computerized tomography problems,
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modeled through (M). Recently, Beck and Teboulle [8] have shown that the MDA
can be viewed as a projection subgradient algorithm with strongly convex Bregman
proximal distances. As a result, to handle the simplex constraints Δ, they proposed
to use a Bregman proximal distance based on the entropy kernel

ψ(x) =

{∑n
j=1 xj log xj if x ∈ Δ,

+∞ otherwise
(4.28)

to produce an entropic mirror descent algorithm (EMDA). It was shown in [8] that
the EMDA preserved the same computational efficiency as the MDA (grows slowly
with the dimension of the problem), but has the advantage of being given explicitly
by a simple formula, since the problem

u(v, x) = argmin
z∈Δ

{〈v, z〉 + Dψ(z, x)}(4.29)

can be easily solved analytically and yields

uj(v, x) =
xj exp(−vj)∑n
i=1 xi exp(−vi)

, j = 1, . . . , n.(4.30)

The resulting EMDA of [8] was then defined as follows: for each j = 1, . . . , n with
vj = ∂f

∂xj
(xk−1),

xk
j (λk) = uj(λkv, x

k−1) =
xk−1
j exp (−λk

∂f
∂xj

(xk−1))∑n
i=1 x

k−1
i exp (−λk

∂f
∂xi

(xk−1))
,(4.31)

λk =

√
2 log k

Lf

√
k

,(4.32)

where the objective function was supposed to be Lipschitz on Δ and Lf is the Lipschitz
constant.

We can modify the EMDA with an Armijo–Goldstein step-size rule. Such a
version of the EMDA can be more practical, since we do not need to know/compute
the constant Lf . Indeed, it is well known (see, e.g., [8]) that

〈∇ψ(x) −∇ψ(y), x− y〉 ≥ ‖x− y‖2
1 ∀x, y ∈ Δ+ =

⎧⎨
⎩x ∈ Rn

∣∣∣∣∣∣
n∑

j=1

xj = 1, x > 0

⎫⎬
⎭,

namely ψ is 1-strongly convex with respect to the norm ‖·‖1, and hence so is d = H =
Dψ. Therefore we can apply Theorem 4.3, proving that the sequence {xk} defined by
(4.31), and with λk defined by the Armijo–Goldstein step-size rule (4.17), converges
to an optimal solution of (M).

5. Interior gradient methods with improved efficiency. In this section,
we further analyze the global convergence rate of interior gradient methods, and we
propose a new interior scheme which improves their efficiency. The classical gradient
method for minimizing a continuously differentiable function over Rn with Lipschitz
gradient is known to exhibit an O(k−1) global convergence rate estimate for function
values. In [34], Nesterov developed what he called an “optimal algorithm” for smooth
convex minimization and was able to improve the efficiency of the gradient method
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by constructing a method that keeps the simplicity of the gradient method but with
the faster rate O(k−2). Inspired by this work, it is thus natural to ask if this kind
of result can be extended to interior gradient methods. We answer this question
positively for a class of interior gradient methods. We propose an algorithm that
provides a natural extension of the results of [34] and leads to a simple “optimal”
interior gradient method for convex conic problems.

Consider the conic optimization problem as described in section 4.2.1, i.e.,

(M) inf{f(x) : x ∈ C ∩ V},

where V := {x ∈ Rn | Ax = b}, with b ∈ Rm, A ∈ Rm×n, n ≥ m, f : Rn → R∪{+∞}
is convex and lsc, and we assume that ∃x0 ∈ dom f ∩ C : Ax0 = b. We assume
also that f is continuously differentiable with ∇f Lipschitz on C ∩ V and Lipschitz
constant L, i.e., satisfying (4.7).

The basic idea is to generate a sequence of functions {qk} that approximate the
function f in such a way that at each step k ≥ 0 the difference qk(x)−f(x) is reduced
by a fraction (1 − αk), where αk ∈ [0, 1), that is,

qk+1(x) − f(x) ≤ (1 − αk)(qk(x) − f(x)) ∀x ∈ C ∩ V.(5.1)

Whenever (5.1) holds, we then obtain

qk(x) − f(x) ≤ γk(q0(x) − f(x)) ∀x ∈ C ∩ V,(5.2)

where

γk :=

k−1∏
l=0

(1 − αl).(5.3)

Thus, if at step k we have a sequence {xk} ∈ C∩V such that f(xk) ≤ infz∈C∩V qk(z) :=
q∗k, assuming that the optimal solution set X∗ of problem (P) is nonempty, we obtain
from (5.2) the global convergence rate estimate

f(xk) − f(x∗) ≤ γk(q0(x
∗) − f(x∗)).(5.4)

From the latter inequality it follows that if γk → 0, then the sequence {xk} is a
minimizing sequence for f and the convergence rate of f(xk) to f(x∗) is measured by
the magnitude of γk. Therefore to construct algorithms based on the above scheme
which was proposed in [34] we need

• to generate an appropriate sequence of functions {qk(·)},
• to guarantee that at each iteration k one can guarantee

f(xk) ≤ min
z∈C∩V

qk(z) := q∗k.

We begin by constructing the sequence of functions {qk(·)}. For that purpose, we
take here d ≡ H ∈ D(C), where H is a Bregman proximal distance (cf. (3.1)) with
kernel h such that

(h1) domh = C,
(h2) h is σ-strongly convex on C ∩ V.
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For every k ≥ 0 and for any x ∈ C ∩ V, we construct the sequence {qk(x)}
recursively via

q0(x) = f(x0) + cH(x, x0),(5.5)

qk+1(x) = (1 − αk)qk(x) + αklk(x, y
k),(5.6)

lk(x, y
k) = f(yk) + 〈x− yk,∇f(yk)〉.(5.7)

Here, c > 0 and αk ∈ [0, 1). The point x0 is chosen such that x0 ∈ C ∩ V, while the
point yk ∈ C is arbitrary and will be generated in a specific way later. We first show
that the sequence of functions {qk(·)} satisfies (5.1).

Lemma 5.1. The sequence {qk(x)} defined by (5.5)–(5.7) satisfies

qk+1(x) − f(x) ≤ (1 − αk)(qk(x) − f(x)) ∀x ∈ C ∩ V.

Proof. Since f is convex, we have f(x) ≥ lk(x, y
k) ∀x ∈ C ∩V, and together with

(5.6) we thus obtain

qk+1(x) ≤ (1 − αk)qk(x) + αkf(x) ∀x ∈ C ∩ V,

from which the desired result follows.
Using the notation of section 4, we recall that for each z ∈ C ∩V, for each v ∈ Rn

there exists a unique (by strong convexity of H(·, z)) point u(v, z) ∈ C ∩ V solving

u(v, z) = argmin{〈v, x〉 + H(x, z) | x ∈ C ∩ V}.(5.8)

The next result is crucial and shows that the sequence {qk(·)} admits a simple generic
form.

Lemma 5.2. For any k ≥ 0, one has

qk(x) = q∗k + ckH(x, zk) ∀x ∈ C ∩ V(5.9)

with

zk = argmin
x∈C∩V

qk(x), q∗k = qk(z
k), c0 = c, z0 = x0 ∈ C ∩ V.(5.10)

Furthermore, the sequence {zk} ∈ C ∩ V is uniquely defined by

zk+1 = argmin

{〈
x,

αk

ck+1
∇f(yk)

〉
+ H(x, zk)

∣∣∣∣ x ∈ C ∩ V
}

≡ u

(
αk

ck+1
∇f(yk), zk

)
,

(5.11)

where the positive sequence {ck} satisfies ck+1 = (1 − αk)ck.
Proof. The proof is by induction and will use key identity (3.2). For k = 0, since

z0 = x0 by (5.5), one has q0(x) = f(x0) + cH(x, z0). Then since c∇1H(z0, z0) = 0
(recall the properties of H), and since z0 ∈ C ∩ V, the optimality conditions imply
that z0 = argminx∈C∩V q0(x). Now suppose that (5.9) holds for some k and let us

prove that for any x ∈ C ∩ V,

qk+1(x) = q∗k+1 + ck+1H(x, zk+1).(5.12)

Substituting (5.9) into (5.6) and using ck+1 = (1 − αk)ck, one obtains

qk+1(x) = (1 − αk)q
∗
k + ck+1H(x, zk) + αklk(x, y

k).(5.13)
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Then by definition of zk+1 we have

zk+1 = argmin
x∈C∩V

qk+1(x) = u

(
αk

ck+1
∇f(yk), zk

)

with zk+1 ∈ C ∩ V, and

q∗k+1 = qk+1(z
k+1) = (1 − αk)q

∗
k + ck+1H(zk+1, zk) + αklk(z

k+1, yk).(5.14)

Subtracting (5.14) from (5.13), one obtains, using (5.7),

qk+1(x) = q∗k+1 + ck+1[H(x, zk) −H(zk+1, zk)] + αk[lk(x, y
k) − lk(z

k+1, yk)]

= q∗k+1 + ck+1[H(x, zk) −H(zk+1, zk)] + αk〈zk+1 − x,−∇f(yk)〉.(5.15)

Now, since zk+1 = argminx∈C∩V qk+1(x), then writing the optimality conditions for
(5.13) (recalling the properties of H) yields

ck+1〈∇1H(zk+1, zk), zk+1 − x〉 = −〈αk∇f(yk), zk+1 − x〉 ∀x ∈ C ∩ V.(5.16)

Using (5.16) in (5.15), it follows that for any x ∈ C ∩ V,

qk+1(x) = q∗k+1 + ck+1[H(x, zk) −H(zk+1, zk) + 〈zk+1 − x,∇1H(zk+1, zk)〉].(5.17)

Invoking the identity (3.2) at c = x, b = zk+1, and a = zk, the right-hand side of
(5.17) reduces to qk+1(x) = q∗k+1 + ck+1H(x, zk+1), and the lemma is proved.

The next result is fundamental to determining the main steps of the algorithm,
namely the formulas needed to update the sequence {xk} and to determine the choice
of the intermediary point yk.

Theorem 5.1. Let σ > 0, L > 0 be given. Suppose that for some k ≥ 0 we have
a point xk ∈ C ∩ V such that f(xk) ≤ q∗k = min{qk(x) : x ∈ C ∩ V}. Let αk ∈ [0, 1),
ck+1 = (1 − αk)ck, and C ∩ V � {zk} be given by (5.11). Define

yk = (1 − αk)x
k + αkz

k,(5.18)

xk+1 = (1 − αk)x
k + αkz

k+1.(5.19)

Then, the following inequality holds:

q∗k+1 ≥ f(xk+1) +
1

2

(
ck+1σ

α2
k

− L

)
‖xk+1 − yk‖2.

Proof. Let x ∈ C ∩ V. Since qk(x) = q∗k + ckH(x, zk), then by (5.6) and using
ck+1 = (1 − αk)ck one has

qk+1(x) = (1 − αk)q
∗
k + ck+1H(x, zk) + αklk(x, y

k),

and with zk+1 = argminx∈C∩V qk+1(x) one obtains

qk+1(z
k+1) = q∗k+1 = (1 − αk)q

∗
k + ck+1H(zk+1, zk) + αklk(z

k+1, yk).(5.20)

Under our assumption, we have q∗k ≥ f(xk), and thus using the gradient inequality
for f we have

q∗k ≥ f(xk) ≥ f(yk) + 〈xk − yk,∇f(yk)〉,
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and it follows from (5.20) and (5.7) that

q∗k+1 ≥ f(yk) + ck+1H(zk+1, zk) + 〈∇f(yk), rk〉,(5.21)

where rk = αk(z
k+1 − yk) + (1 − αk)(x

k − yk). Noting that rk can be written as

rk = (1 − αk)x
k + αkz

k − yk + αk(z
k+1 − zk),

and since by definition one has (1 − αk)x
k + αkz

k − yk = 0, then (5.21) reduces to

q∗k+1 ≥ f(yk) + ck+1H(zk+1, zk) + 〈αk(z
k+1 − zk),∇f(yk)〉.(5.22)

Using the definition of yk, xk+1 ∈ C ∩ V given in (5.18)–(5.19), one has xk+1 − yk =
αk(z

k+1 − zk). Since by hypothesis (h2) h is σ-strongly convex, it follows that
H(zk+1, zk) ≥ σ/2‖zk+1 − zk‖2, and then from (5.22) we have obtained

q∗k+1 ≥ f(yk) +
1

2

ck+1σ

α2
k

‖xk+1 − yk‖2 + 〈∇f(yk), xk+1 − yk〉.(5.23)

Now, since we assumed that f in C1,1(C ∩V), then by the descent lemma (cf. (4.15))
we have

f(yk) + 〈xk+1 − yk,∇f(yk)〉 ≥ f(xk+1) − L

2
‖xk+1 − yk‖2.(5.24)

Combining the latter inequality with (5.23) we obtain

q∗k+1 ≥ f(xk+1) +
1

2

(
ck+1σ

α2
k

− L

)
‖xk+1 − yk‖2.

Therefore by taking a sequence {αk} with σck+1 ≥ Lα2
k we can guarantee that

q∗k+1 ≥ f(xk+1). In particular, we can choose Lα2
k = σck(1 − αk), and this leads to

the following improved interior gradient algorithm.
Improved interior gradient algorithm (IGA).

Step 0. Choose a point x0 ∈ C ∩ V and a constant c > 0. Define z0 = x0 = y0,
c0 = c, λ = σL−1.

Step k. For k ≥ 0, compute the following:

αk =

√
(ckλ)2 + 4ckλ− λck

2
,

yk = (1 − αk)x
k + αkz

k,

ck+1 = (1 − αk)ck,

zk+1 = argmin
x∈C∩V

{〈
x,

αk

ck+1
∇f(yk)

〉
+ H(x, zk)

}
= u

(
αk

ck+1
∇f(yk), zk

)
,

xk+1 = (1 − αk)x
k + αkz

k+1.

Note that the computational work of this algorithm is exactly the same as that of the
interior gradient method in section 4 via the computation of zk+1, since the remaining
steps involve trivial computations. To estimate the rate of convergence we need the
following simple lemma on the sequence αk; see [34] for a proof.
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Lemma 5.3. Let λk > 0, ck > 0 with c0 = c, and let {αk} be the sequence
with αk ∈ [0, 1[ defined by α2

k = λkck(1 − αk) with ck+1 = (1 − αk)ck. Set γk :=∏k−1
l=0 (1 − αl). Then

γk ≤
(

1 +

√
c

2

k−1∑
l=0

√
λl

)−2

.

In particular, with λl = λ ∀l we have γk ≤ 4(k
√
λc + 2)−2.

We thus obtain a convergent interior gradient method with an improved conver-
gence rate estimate.

Theorem 5.2. Let {xk}, {yk} be the sequences generated by IGA and let x∗ be
an optimal solution of (P). Then for any k ≥ 0 we have

f(xk) − f(x∗) ≤ 4L

σk2c
C(x∗, x0) = O

(
1

k2

)
,

where C(x∗, x0) = c0H(x∗, x0) + f(x0)− f(x∗) and the sequence {xk} is minimizing,
i.e., f(xk) → f(x∗).

Proof. By Lemma 5.1, the sequence of functions {qk(·)} satisfies (5.1) and thus
(5.4) holds; i.e., using (5.5) we have

f(xk) − f(x∗) ≤ γk(q0(x
∗) − f(x∗)) = γk(f(x0) + c0H(x∗, x0) − f(x∗)) = γkC(x∗, x0).

Specializing Lemma 5.3 with λk = σL−1, we obtain

γk ≤ 4L

(k
√
σc + 2

√
L)

2 ≤ 4L

σck2
,

from which the desired result follows.
Thus, to solve (P) to accuracy ε > 0, one needs no more than �O(1/

√
ε)� iterations

of IGA, which is a significant reduction (by a squared root factor) in comparison to
the interior gradient method of section 4. In particular, we note that IGA can be
used to solve convex minimization over the unit simplex with this improved global
convergence rate estimate for the EMDA of section 4.
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smooth convex functions, Èkonom. i Mat. Metody, 24 (1988), pp. 509–517.
[35] B. T. Polyak, Introduction to Optimization, Optimization Software, New York, 1987.
[36] R. A. Polyak, Nonlinear rescaling vs. smoothing technique in constrained optimization, Math.

Program., 92 (2002), pp. 197–235.
[37] R. A. Polyak and M. Teboulle, Nonlinear rescaling and proximal-like methods in convex

optimization, Math. Program., 76 (1997), pp. 265–284.
[38] S. M. Robinson, Linear convergence of epsilon subgradients methods for a class of convex

functions, Math. Program., 86 (1999), pp. 41–50.
[39] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.
[40] R. T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control

Optim., 14 (1976), pp. 877–898.



INTERIOR GRADIENT AND PROXIMAL METHODS 725

[41] N. Z. Shor, Minimization Methods for Nondifferentiable Functions, Springer-Verlag, Berlin,
1985.

[42] P. J. da Silva e Silva, J. Eckstein, and C. Humes, Jr., Rescaling and stepsize selection
in proximal methods using separable generalized distances, SIAM J. Optim., 12 (2001),
pp. 238–261.

[43] M. Teboulle, Entropic proximal mappings with applications to nonlinear programming, Math.
Oper. Res., 17 (1992), pp. 670–681.

[44] M. Teboulle, Convergence of proximal-like algorithms, SIAM J. Optim., 7 (1997), pp. 1069–
1083.

[45] P. Tseng and D. P. Bertsekas, On the convergence of the exponential multiplier method for
convex programming, Math. Program., 60 (1993), pp. 1–19.



SIAM J. OPTIM. c© 2006 Society for Industrial and Applied Mathematics
Vol. 16, No. 3, pp. 726–750

SOLVING LIFT-AND-PROJECT RELAXATIONS
OF BINARY INTEGER PROGRAMS∗

SAMUEL BURER† AND DIETER VANDENBUSSCHE‡

Abstract. We propose a method for optimizing the lift-and-project relaxations of binary integer
programs introduced by Lovász and Schrijver. In particular, we study both linear and semidefinite
relaxations. The key idea is a restructuring of the relaxations, which isolates the complicating
constraints and allows for a Lagrangian approach. We detail an enhanced subgradient method and
discuss its efficient implementation. Computational results illustrate that our algorithm produces
tight bounds more quickly than state-of-the-art linear and semidefinite solvers.
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1. Introduction. In the field of optimization, binary integer programs have
proven to be an excellent source of challenging problems, and the successful solution
of larger and larger problems over the past few decades has required significant theo-
retical and computational advances. One of the fundamental issues is how to obtain
a “good” description of the convex hull of integer solutions, and many specific classes
of integer programs have been solved by finding problem-specific ways to address this
issue.

Researchers have also developed techniques for approximating the convex hull of
integer solutions without any specific knowledge of the problem, i.e., techniques that
apply to arbitrary binary integer programs. Some of the earliest work done in this
direction was by Gomory [19] in generating linear inequalities that tighten the basic
linear relaxation. A different idea, which has been advocated by several authors, is
to approximate the convex hull as the projection of some polyhedron lying in a space
of higher dimension. We refer the reader to [3, 38, 32, 4, 24, 7]. Connections between
these works are explored in [27, 26].

Although these so-called lift-and-project methods are quite powerful theoretically,
they present great computational challenges because one typically must optimize in
the space of the lifting, i.e., the space of higher dimension. Computational issues are
detailed in [4, 39, 11, 22, 14].

In this paper, we focus on the techniques proposed by Lovász and Schrijver (LS),
including both linear and semidefinite relaxations. In particular, our main goal is to
present improved computational methods for optimizing over the first-level LS relax-
ations. We are aware of only one study (by Dash [14]), which investigates the strength
of these relaxations computationally. This shortage of computational experience is
due to the dramatic size of these relaxations. For example, one specific semidefinite
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relaxation that has been considered by Dash (and which we also consider in this
paper) has well over 1.7 million constraints.

Since it is unlikely that these relaxations can be solved using direct algorithms,
we instead adopt the paradigm of decomposition, which is common in large-scale op-
timization methods. (Dash [14] also considers a decomposition approach.) The main
idea here is a clever decomposition of the LS relaxations, which allows for a Lagrangian
approach. Instead of using the common subgradient algorithm, however, we propose
to use an augmented Lagrangian algorithm, which is, in some sense, an enhanced sub-
gradient method and which also has connections with the bundle method for convex
optimization. We provide a theoretical explanation of the benefits of the augmented
Lagrangian algorithm and give a detailed explanation of our implementation, which
is demonstrated to outperform state-of-the-art subgradient, linear, and semidefinite
solvers on certain classes of problems.

We remark that, while the idea of using the augmented Lagrangian method for
linear programs is not new (see [35, 40]), little work has been done on the computa-
tional aspects of such a method. In this paper, we fill this gap concerning large-scale
linear programs and also present an augmented Lagrangian method for semidefinite
programs for the first time.

The paper is organized as follows. In section 2, we give background on the Lovász-
Schrijver lift-and-project relaxations as well as propose the decomposition technique
that will become the basis of our augmented Lagrangian algorithm. Then, in section
3, we discuss the augmented Lagrangian algorithm, including its theoretical benefits
and specialization in the current context. Next, in section 4, we present the details of
our implementation and computational results. We also discuss the strength of the
LS relaxations on various problem classes, with one highlight being that, in practice,
the LS semidefinite relaxation provides the strongest known bounds for a collection
of problems in the Quadratic Assignment Problem Library [36]. Finally, we conclude
with a few final remarks and suggestions for future research in section 5.

1.1. Notation and terminology. In this section, we introduce some of the
notation that will be used throughout the paper. Rn will refer to n-dimensional
Euclidean space. The norm of a vector x ∈ Rn is denoted by ‖x‖ :=

√
xTx. We let

ei ∈ Rn represent the ith unit vector, and e is the vector of all ones. Rn×n is the set
of real n× n matrices, Sn is the set of symmetric matrices in Rn×n, while Sn

+ is the
set of positive semidefinite symmetric matrices. The special notation R1+n and S1+n

is used to denote the spaces Rn and Sn with an additional “zeroth” entry prefixed or
an additional zeroth row and zeroth column prefixed, respectively. The inner product
of two matrices A,B ∈ Rn×n is defined as A •B := tr(ATB), where tr(·) denotes the
sum of the diagonal entries of a matrix. The Frobenius norm of a matrix A ∈ Rn×n

is defined as ‖A‖F :=
√
A •A. diag(A) is defined as the vector with the diagonal of

A as its entries.

2. The lift-and-project operators of Lovász and Schrijver. When solving
a 0-1 integer program of the form

min
{
cTx | Ax ≤ b, x ∈ {0, 1}n

}
,(IP)

we are often interested in relaxations of the convex hull of integer solutions

P := conv {x ∈ {0, 1}n | Ax ≤ b} .

Optimization over such relaxations provides lower bounds that can be used within
branch-and-bound methods or allow one to assess the quality of feasible solutions
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of (IP). The trivial linear programming (LP) relaxation is obtained by replacing
x ∈ {0, 1}n with x ∈ [0, 1]n. In an effort to develop relaxations that are stronger than
the LP relaxation, Lovász and Schrijver [32] introduced the lifted matrix variable

Y =

(
1
x

)(
1
x

)T

=

(
1 xT

x xxT

)
.

Given this definition relating Y and x ∈ {0, 1}n, we can observe a number of inter-
esting properties of Y :

1. Y is symmetric and positive semidefinite, i.e., Y ∈ S1+n
+ ;

2. the diagonal of Y equals the zeroth column of Y , i.e., diag(Y ) = Y e0;
3. if we multiply the constraints Ax ≤ b of P by some xi, we obtain the set of

nonlinear inequalities bxi −Axxi ≥ 0, which are valid for P ; these inequalities can be
written in terms of Y as (

b
∣∣−A

)
Y ei ≥ 0 ∀ i = 1, . . . , n;

4. analogously, multiplying Ax ≤ b by 1 − xi yields(
b
∣∣−A

)
Y (e0 − ei) ≥ 0 ∀ i = 1, . . . , n.

Lovász and Schrijver [32] observed that these properties could be used to obtain
relaxations of P . In particular, they homogenized the standard LP relaxation of (IP)
by defining

K :=

{(
x0

x

)
∈ R1+n | Ax ≤ x0b, 0 ≤ x ≤ x0e

}
.

We remark that enforcing x0 = 1 in K yields the LP relaxation and that the third
and fourth properties above can be written as Y ei ∈ K and Y (e0 − ei) ∈ K. They
then proposed the following sets:

M(K) :=
{
Y ∈ S1+n | Y e0 = diag(Y ), Y ei ∈ K, Y (e0 − ei) ∈ K ∀ i = 1, . . . , n

}
M+(K) :=

{
Y ∈ S1+n

+ | Y ∈ M(K)
}
.

Note that M+(K) differs from M(K) only in that positive semidefiniteness is enforced
on the Y variable. M(K) now leads to a linear relaxation of P via the projected set

N(K) :=

{
x ∈ Rn |

(
1
x

)
= diag(Y ) for some Y ∈ M(K)

}
,

and M+(K) leads to an analogous semidefinite relaxation N+(K) of P . In partic-
ular, Lovász and Schrijver [32] showed that P ⊆ N+(K) ⊆ N(K) and that N(K)
is contained in the LP relaxation of (IP). Further, they showed that applying these
relaxation procedures iteratively n times yields P exactly.

We remark that our definitions of N(K) and N+(K) are actually slices (at Y00 = 1
and x0 = 1) of the cones originally defined by Lovász and Schrijver [32].

Applying these ideas to the stable set problem, Lovász and Schrijver proved that
some classes of inequalities for the stable set polytope are satisfied by all the points
in N(K), while other classes are only valid for N+(K). In turn, these results have
significant implications for the complexity of finding maximum stable sets in various
classes of graphs. Further, theoretical results concerning the strength of N(K) and
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N+(K), as well as the higher-order liftings, have also been established; see [41, 12,
18, 25, 30].

To compute lower bounds available from the relaxations N(K) and N+(K), one
must solve the LP

min
{
cTx | x ∈ N(K)

}
(1)

or the semidefinite program (SDP)

min
{
cTx | x ∈ N+(K)

}
.(2)

Defining c̃ :=

(
0
c

)
and using the above definitions, (1) can be written explicitly as

min c̃TY e0(3)

s.t. Y = Y T ,(4)

Y e0 = diag(Y ),(5)

Y ei ∈ K ∀ i = 1, . . . , n,(6)

Y (e0 − ei) ∈ K ∀ i = 1, . . . , n,(7)

Y00 = 1.(8)

Likewise, (2) can be written as

min c̃TY e0

s.t. Y ∈ S1+n
+

(4)–(8).

A couple of comments concerning (1) and (2) are in order. First, the constraints
(6) and (7) imply Y e0 ∈ K. Combined with (8), this in turn implies that each
component of the zeroth column of Y is in [0, 1]. By (4), the same holds for the
zeroth row of Y , which implies by (6) that all other components of Y are in [0, 1].
Hence, we may replace K with K̂ := K ∩ [0, 1]1+n without affecting the optimal
solution sets of (1) and (2).

Second, if K is defined by m constraints, including upper and lower bounds, then
the LP described by (3)–(8) has O(n2 + nm) constraints and O(n2) variables. Con-
sequently, solving this LP using, say, the simplex method or interior-point methods
becomes too cumbersome even for problems with moderate n and m. This situation
is further exacerbated when solving (2). In fact, using standard SDP methods, (2)
will only be solvable for very small n and m. As a result, very little research has been
done on actually solving (1) and (2). Work involving (1) is discussed in [39] and some
computations of (2) for various 0-1 polytopes can be found in [14].

This second observation motivates us to investigate new optimization techniques
for solving (1) and (2), and, in particular, we are interested in applying decomposition
methods for large-scale optimization. We first show how this can be done for (1).
Unfortunately, all the constraints (4)–(8) are tightly linked, and so the problem does
not immediately lend itself to decomposition. To partially overcome this obstacle,
however, we introduce the matrix variable

Z = Y Q ∈ R(1+n)×n, where Q :=
(
e0 − e1

∣∣∣e0 − e2

∣∣∣ · · · ∣∣∣e0 − en

)
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and reformulate (3)–(8) as

min c̃TY e0

s.t. Y = Y T , Y e0 = diag(Y ), Z = Y Q(9)

Y ei ∈ K̂, Zei ∈ K̂ ∀ i = 1, . . . , n(10)

Y00 = 1.(11)

Note that K has been replaced with K̂ in accordance with the first comment above.
Furthermore, it is clear that the constraints (10) are separable over the columns of Y
and Z but that these same columns are linked via the constraints (9).

A reasonable idea is to apply Lagrangian relaxation to the constraints (9), and in
order to simplify notation, we denote (9) by the collection of linear equations h(Y,Z) =
0. Letting λ denote the vector of unconstrained dual multipliers for h(Y,Z) = 0, we
obtain the Lagrangian relaxation

L(λ) := min c̃TY e0 + λTh(Z, Y )

s.t. Y ei ∈ K̂ ∀ i = 0, 1, . . . , n(12)

Zei ∈ K̂ ∀ i = 1, . . . , n(13)

Y00 = 1.(14)

Note that we have added the constraint Y e0 ∈ K, which is redundant for (9) and (10)
but is included here in order to properly constrain the zeroth column of Y . It is now
clear that L(λ) is separable over the columns of Y and Z, and so to evaluate L(λ)
for any λ, we can simply solve 2n + 1 separate linear optimizations over K̂ (while
respecting the simple constraint Y00 = 1). Furthermore, from standard LP theory, we
know that the optimal value of

max
λ

L(λ)(15)

equals the optimal value of (1).
The semidefinite optimization (2) can be approached in a similar fashion, i.e.,

by introducing the auxiliary variable Z and then relaxing the linking constraints.
However, we must also introduce a dual multiplier S ∈ S1+n

+ for the constraint that
keeps Y positive semidefinite, which modifies the Lagrangian relaxation to read

L(λ, S) := min c̃TY e0 + λTh(Z, Y ) − S • Y
s.t. (12)–(14),

so that the resulting Lagrangian optimization is

sup
λ,S

{
L(λ, S) | S ∈ S1+n

+

}
.(16)

It is well known that the dual SDP of (2) has an interior-point, i.e., it satisfies Slater’s
condition, which implies that there is no duality gap and that optimality is attained
in (2)—although optimality may not be attained in the dual of (2). As a result, it is
not difficult to see that the optimal value of (16) equals that of (2).

Theoretically, one can solve both (15) and (16) using a subgradient method. Our
initial experiments, however, indicated that convergence of subgradient methods was
sometimes slow. This motivated us to examine an augmented Lagrangian method,
which overall proved to be more robust while still allowing us to exploit the structure
inherent in (1) and (2). We discuss these issues in detail in sections 3 and 4.
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3. The augmented Lagrangian method for linear conic programs. In
this section, we discuss the specialization of the augmented Lagrangian method—a
standard tool of nonlinear programming (NLP)—to the case of linear optimization
over linear and conic constraints, of which problems (1) and (2) are particular exam-
ples. More specifically, let C ⊆ Rq be a closed, convex cone, and let

X := {y ∈ Rq | Ey = f, y ∈ C}.(17)

We consider the following generic problem throughout this section:

min
{
cT y | Ay = b, y ∈ X

}
.(18)

Here, y ∈ Rq is the optimization variable and c ∈ Rq, A ∈ Rp×q, and b ∈ Rp are the
data. We assume that an optimal solution exists and denote the optimal value by v∗.

We acknowledge that initially it may seem counterintuitive to apply a NLP al-
gorithm to linear conic problems. In fact, we are aware of only two studies [35, 40],
which consider the augmented Lagrangian method in such a context, in particular for
C = Rq

+. In this section, however, besides laying the groundwork for the augmented
Lagrangian algorithm, we also hope to highlight the advantages of the method, which
when combined with several computational ideas discussed in section 4 make it a good
choice for optimizing (1) and (2).

3.1. The augmented Lagrangian method. The augmented Lagrangian method
can be seen as a combination of the standard subgradient and quadratic penalty meth-
ods. It is based on the following function, which is specified for fixed λ ∈ Rp and
σ > 0:

Lλ,σ(y) = cT y + λT (b−Ay) +
σ

2
‖b−Ay‖2

.(19)

The augmented Lagrangian method is then stated as Algorithm 1. Roughly speak-
ing, the augmented Lagrangian method runs the subgradient and quadratic penalty
methods at the same time by alternating between the update of λ and σ (typically
using some predefined update strategy, such as performing the nontrivial update of
σ every 10 iterations). Some of the main advantages of the augmented Lagrangian
algorithm over subgradient and penalty methods are that it yields both primal and
dual solutions, as well as dual bounds, for (18).

Algorithm 1 Augmented Lagrangian algorithm

Set λ1 = 0, σ1 = 1
for k = 1, 2, 3, . . . , do

Calculate some yk ∈ Argmin
{
Lλk,σk

(y) : y ∈ X
}

;
Calculate the subgradient dk = b−Ayk;
Choose either (αk = σk and ηk = 1) or (αk = 0 and ηk 
 1);
Calculate λk+1 = λk + αkd

k and σk+1 = ηkσk.
end for

There are also some additional, less obvious advantages of the augmented La-
grangian method. First, an important feature of the augmented Lagrangian, in con-
trast with the subgradient method, is that there is a definitive choice of step-size αk

in each iteration. This choice is dictated by convergence results for augmented La-
grangian methods (see [6]) and also seems to work well in practice. Second, it is well
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known in the study of NLP that the introduction of explicit dual variables into the
quadratic penalty method tends to lessen the ill-conditioning encountered in penalty
methods. In particular, it can be proved that if the iterates λk are sufficiently close
to an optimal dual solution, then there is a finite value of σ that still guarantees
convergence [6].

In fact, in the specific case of (18), where X is given by (17), it is possible to show
a much stronger result, namely that Algorithm 1 converges even if σk is held constant
at an arbitrary initial value σ1 > 0. In order to state the result, we point out that
the dual of (18) can be written explicitly as

max
{
bTλ + fT η | ATλ + ET η + s = c, s ∈ C∗} ,(20)

where

C∗ :=
{
s ∈ Rq : sT y ≥ 0 ∀ y ∈ C

}
is the dual cone of C, η ∈ Rm is the dual variable associated with the constraint
Ey = f , and s ∈ Rq is the dual variable associated with the constraint x ∈ C. We
also make the following assumptions: A has full row rank, and both (18) and (20)
have Slater points, i.e., feasible points in the interior of C and C∗, respectively. In
addition, we let ηk and sk denote the optimal multipliers associated with Ey = f and
y ∈ C gotten from the solution of the kth augmented Lagrangian subproblem. The
result is the following theorem.

Theorem 3.1. Let X be given by (17), and suppose that Algorithm 1 is executed
so that σk = σ1 for all k ≥ 1, i.e., the dual multiplier is updated nontrivially in each
iteration. Then any accumulation point of the combined sequence {(yk, λk+1, ηk, sk)}
constitutes a primal-dual optimal pair of (18) and (20).

This result is proven by Poljak and Tret′jakov [35] for the specific case of C =
Rq

+, and the essence of their proof carries over to general C. Although it is not
difficult to extend the result based on their ideas, we include a proof in section 3.4
for completeness.

We finish this subsection with a few observations. First, Theorem 3.1 shows that
(1) and (2) can theoretically be solved without ever increasing σ, and computational
experiments support this. In practice, however, it still may be advantageous to in-
crease σ to moderate levels in order to facilitate convergence of the method, as we
demonstrate in section 4.

Second, even with the theoretical and practical benefits of augmented Lagrangian
methods, it is still important to keep in mind that the inner optimization over y ∈ X
in each iteration of the algorithm utilizes a convex quadratic objective, instead of a
linear one as in the subgradient method. In some applications, this is a disadvantage
of the augmented Lagrangian method that may preclude its use, but we will show
that, in the case of (1) and (2), the use of the augmented Lagrangian method is
indeed beneficial.

Third, in practice it is rarely the case that the inner minimization of Algorithm
1 is computed exactly. Nonetheless, convergence is typically observed in practice
even if yk is a “nearly” optimal solution [6]. This behavior will guide some of our
implementation decisions, which we describe in section 4.

3.2. Variations on the augmented Lagrangian method. Typically the aug-
mented Lagrangian method is stated in terms of handling difficult equality constraints,
such as the constraints Ay = b in (18). Although there exist variations which can
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handle inequality constraints directly (see [34]), a standard approach for handling
inequalities is to simply add slack variables and then to revert to the equality case.
For example, consider the problem

min
{
cT y | Ay ≤ b, y ∈ X

}
.

By introducing the variable z ∈ Rp
+, we have the equivalent problem

min
{
cT y | Ay + z = b, (y, z) ∈ X × Rp

+

}
.

The augmented Lagrangian can now be applied directly to the second formulation.
Of course, the inner optimization of the augmented Lagrangian algorithm is now
slightly more complicated due to the addition of slack variables, but this complication
is usually worth the trouble.

Further extensions of this idea can also be considered. If Z ⊆ Rp is an arbitrary
set, a problem of the form

min
{
cT y | b−Ay ∈ Z, y ∈ X

}
can then be converted to

min
{
cT y : Ay + z = b, (y, z) ∈ X × Z

}
,

after which the augmented Lagrangian method can be applied. Here again, the sim-
plicity of the inner optimization over (y, z) ∈ X×Z is the key to the overall efficiency
of the augmented Lagrangian algorithm. In particular, convergence will be theoreti-
cally and practically more reliable if Z is convex.

3.3. Relationship with the bundle method. In section 3.1, we have pre-
sented the augmented Lagrangian algorithm as an alternative to the standard sub-
gradient algorithm. When the set X is convex, another well-known alternative to
the subgradient algorithm is the bundle method (see [29, 23]). Like the subgradient
method, the bundle method uses subgradient information to produce a sequence {λk}
of dual multipliers whose corresponding Lagrangian objective values converge to v∗.
However, the bundle method differs from the subgradient method in the precise way
that the subgradient information is used.

The bundle method is initialized with λ1 = 0 and, at the kth iteration, the
basic idea is to calculate λk+1 by solving an approximation of the Lagrangian dual
optimization

sup
λ∈Rp

min
{
cT y + λT (b−Ay) | y ∈ X

}
.(21)

More specifically, the bundle method assumes that a current best point λ̄ has been
calculated (note that λ̄ does not necessarily equal λk) and that a finite collection of
dual points {λj | j ∈ Jk} is available, for some finite index set Jk. For example, one
may take Jk = {1, . . . , k} so that the dual points correspond to the dual solutions λj

already produced by the algorithm in the first k − 1 iterations, though other choices
are possible. Defining X̃ := conv{yj : j ∈ Jk}, the approximation of (21) is then
given as

sup
λ∈Rp

min
{
cT y + λT (b−Ay) | y ∈ X̃

}
.(22)
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Generally speaking, the inner minimization of (22) (viewed as a function of λ) is
only considered a reliable approximation of the inner minimization of (21) for those λ
relatively close to λ̄. Hence, the next iterate λk+1 is not actually chosen as an optimal
solution of (22), but rather as an optimal solution of

max
λ∈Rp

min
{
cT y + λT (b−Ay) | y ∈ X̃

}
− ρ

2

∥∥λ− λ̄
∥∥2

,(23)

where ρ > 0 is a proximity parameter. In other words, (23) is similar to (22) ex-
cept that it penalizes points that are too far from the current best iterate λ̄, and the
parameter ρ controls the precise amount of penalization. Once λk+1 has been calcu-
lated, the bundle method calculates the value of the Lagrangian function at λk+1 and
decides whether or not λk+1 should become the new best iterate λ̄.

With this description of the bundle method, it is not difficult to see that the
bundle method’s procedure for computing λk+1 is similar to that of the augmented
Lagrangian algorithm. Indeed, (23) can be rearranged as

min

{
max
λ∈Rp

cT y + λT (b−Ay) − ρ

2

∥∥λ− λ̄
∥∥2 | y ∈ X̃

}
.(24)

Since the inner optimization of (24) is a concave maximization over λ ∈ Rp, its optimal
solution is given by λ̄ + ρ−1(b−Ay), which further simplifies (24) to

min

{
cT y + λ̄T (b−Ay) +

1

2ρ
‖ b−Ay‖2 | y ∈ X̃

}
.(25)

Letting σ = ρ−1, we now easily see that (25) is similar in form to the kth augmented
Lagrangian subproblem except that (25) approximates X by X̃. Next, once the bundle
method calculates an optimal solution yk of (25), λk+1 is calculated by the formula

λk+1 := λk + ρ−1
(
b−Ayk

)
,

which matches the update formula used by the augmented Lagrangian algorithm.
As described above, in addition to the approximation X̃ of X, the bundle method

differs from the augmented Lagrangian method in that it selectively keeps a current
best iterate λ̄ (which affects each stage of the algorithm), whereas the augmented
Lagrangian algorithm simply generates each λk in succession. It is further interesting
to note that the bundle method is known to converge for fixed ρ.

3.4. Proof of Theorem 3.1. In this subsection, we give the proof of Theorem
3.1, which has been stated in section 3.1. We remark that our proof is an extension
of the proof given in [35] for the case C = Rq

+.
The main idea of the theorem is that, when X is given by (17), the augmented

Lagrangian algorithm converges without ever increasing the penalty parameter σ. For
this, we consider the value σ > 0 to be fixed throughout the execution of Algorithm 1,
i.e., σk = σ for all k ≥ 1. Also recall the following assumptions: A has full row rank,
and (18) and (20) have Slater points. We will investigate three sequences produced
by the algorithm:

(i) the sequence {yk} of primal estimates;
(ii) the shifted sequence {λk+1} of dual multipliers; note that λk+1 is calculated

as a result of the kth augmented Lagrangian subproblem;
(iii) the sequence {(ηk, sk)} of optimal multipliers for the constraints Ey = f and

y ∈ C in the sequence of augmented Lagrangian subproblems.
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Because (18) and (20) each have a Slater point, strong duality holds and there
exists a primal-dual solution (y, λ, η, s) that satisfies sT y = 0. The kth augmented
Lagrangian problem (with fixed σ) is

min
{
cT y + (λk)T (b−Ay) +

σ

2
‖b−Ay‖2 | Ey = f, y ∈ C

}
,(26)

and its dual (see [16] for QP duality in the case of Rq
+) can be stated as

max bTλk + fT η +
σ

2

(
bT b− vTATAv

)
(27)

s.t. AT
(
λk + σ(b−Av)

)
+ ET η + s = c

s ∈ C∗.

Since (18) has a Slater point, so does (26). Furthermore, since A has full row rank, we
can use a Slater point from (20) to construct such a point for (27). As a result, strong
duality also holds between (26) and (27), and there exists a primal-dual solution
(y, v, η, s) such that v = y and sT y = 0.

We first show that Ayk → b via two lemmas and a proposition.
Lemma 3.2. Let λ̄ and λ̂ be arbitrary multipliers for Ax = b, and let ȳ and ŷ be

optimal solutions of the corresponding augmented Lagrangian subproblems. Then

(
λ̄− λ̂

)T

(Aȳ −Aŷ) ≥ σ‖Aȳ −Aŷ‖2.

Proof. Optimality of ȳ with respect to λ̄ implies

(c−AT (λ̄ + σ(b−Aȳ)))T (y − ȳ) ≥ 0

for all y such that Ey = f, y ∈ C. Likewise, for ŷ and λ̂:

(c−AT (λ̂ + σ(b−Aŷ)))T (y − ŷ) ≥ 0.

Applying these results with y = ŷ and y = ȳ, respectively, summing the two resultant
inequalities, and rearranging terms, we achieve the result.

Lemma 3.3. Let (λ∗, η∗, s∗) be an optimal solution of (20). Then any y ∈ X is
optimal for the augmented Lagrangian subproblem corresponding to λ∗ if and only if
y is optimal for (18).

Proof. Using dual feasibility, we have that

cT y + (λ∗)T (b−Ay) +
σ

2
‖b−Ay‖2

= (λ∗)T b + fT η∗ + (s∗)T y +
σ

2
‖b−Ay‖2

.

Hence, ignoring the constant terms bTλ∗ + fT η∗, the minimum value attainable by
the augmented Lagrangian function is clearly bounded below by 0. Moreover, 0 is
attained if and only if (s∗)T y = 0 and Ay = b, which proves the result.

Proposition 3.4. The sequence {Ayk} converges to b.
Proof. Let (λ∗, η∗, s∗) be any optimal solution of (20), and let y∗ be any optimal

solution of (18). For all k ≥ 1,

‖λk+1 − λ∗‖2 = ‖λk − λ∗‖2 + 2σ(b−Ayk)T (λk − λ∗) + σ2‖b−Ayk‖2

≤ ‖λk − λ∗‖2 − 2σ2‖Ay∗ −Ayk‖2 + σ2‖b−Ayk‖2

= ‖λk − λ∗‖2 − σ2‖b−Ayk‖2 (by Lemmas 3.2 and 3.3).
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For arbitrary N , summing this inequality for k = 1, . . . , N , we have

0 ≤
N∑

k=1

(
‖λk − λ∗‖2 − σ2‖b−Ayk‖2 − ‖λk+1 − λ∗‖2

)

= ‖λ1 − λ∗‖2 − ‖λN+1 − λ∗‖2 − σ2
N∑

k=1

‖b−Ayk‖2,

which implies σ2
∑N

k=1 ‖b−Ayk‖2 ≤ ‖λ1 − λ∗‖2. Hence, because N is arbitrary, Ayk

must converge to b.
Now, with Proposition 3.4 and an additional lemma, we prove Theorem 3.1.
Lemma 3.5. For all k ≥ 1, yk and (λk+1, ηk, sk) are primal-dual optimal solutions

of

min
{
cT y | Ay = Ayk, Ey = f, y ∈ C

}
,(28)

max
{
(Ayk)Tλ + fT η | ATλ + ET η + s = c, s ∈ C∗} .(29)

Proof. Clearly, yk is feasible for (28). Moreover, strong duality between (26) and
(27) implies that (λk, ηk, sk) is feasible for (27) such that (sk)T yk = 0. Combining this
with the definition λk+1 := λk + σ(b− Ayk), we see that (λk+1, ηk, sk) is feasible for
(29) and that strong duality holds between (28) and (29). This proves the result.

Proof of Theorem 3.1. By Lemma 3.5, for each k ≥ 1, (yk, λk+1, ηk, sk) is a
solution of the nonlinear system

Ay = Ayk, Ey = f, y ∈ C

ATλ + ET η + s = c, s ∈ C∗

yT s = 0.

By continuity, any accumulation point (ȳ, λ̄, η̄, s̄) of {(yk, λk+1, ηk, sk)} satisfies the
above system with Ayk replaced by its limit b (due to Proposition 3.4). In other
words, (ȳ, λ̄, η̄, s̄) is a primal-dual optimal solution for (18) and (20).

4. Computational issues and results. In this section, we discuss the imple-
mentation details of the augmented Lagrangian algorithm used to solve (1) and (2).
We then demonstrate the effectiveness of this approach on various problem classes and
also illustrate advantages of the augmented Lagrangian approach over other methods.

4.1. Optimizing over N(K) and N+(K). We have suggested in section 2
that one could consider a purely Lagrangian approach for solving the linear relaxation
(1) since the calculation of L(λ) is separable into 2n + 1 LPs over the columns of
the variables Y and Z. We have argued in section 3, however, that the augmented
Lagrangian method has several advantages over the Lagrangian approach. In the case
of (1), the kth augmented Lagrangian subproblem can be stated as

min c̃TY e0 + (λk)Th(Z, Y ) +
σk

2
‖h(Z, Y )‖2(30)

s.t. Y ei ∈ K̂ ∀ i = 0, 1, . . . , n(31)

Zei ∈ K̂ ∀ i = 1, . . . , n(32)

Y00 = 1.(33)
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An important observation is that, in contrast with L(λ), (30)–(33) is a nonseparable
convex QP. More precisely, the quadratic term in the objective (30) is the sole cause
of the nonseparability.

Even with this complication, we still advocate the use of the augmented La-
grangian method. To exploit the structure inherent in the constraints (31)–(33), we
propose to employ block coordinate descent for solving the subproblem, iteratively
taking a descent step over a particular column of Y or Z, while keeping all other
columns fixed. Block coordinate descent is known to be a convergent method; see
Proposition 2.7.1 in [6].

When the amount of coupling between the blocks is small, block coordinate de-
scent can be expected to converge quickly. One can observe that, because of the
particular structure of h(Y,Z), the amount of coupling between the columns of Y and
Z is relatively small. In particular, the greatest amount of coupling is between Y ei,
Zei, and Y e0 for i = 1, . . . , n. As a result, we expect block coordinate descent to be
a good choice for optimizing (30)–(33).

For optimizing over N+(K), we also advocate the augmented Lagrangian method,
but at first glance, it is not clear how to handle the constraint that Y be positive
semidefinite. This constraint is difficult not only because it involves positive semidef-
initeness but also because it links the columns of Y . To handle this constraint, we
follow the suggestions laid out in section 3.2. In particular, we introduce an “excess”
variable U , which is required to be symmetric positive semidefinite and must also
satisfy U = Y , and simultaneously drop the positive semidefiniteness constraint on
Y . After introducing a symmetric matrix S of Lagrange multipliers for the constraint
U = Y , the resulting kth augmented Lagrangian subproblem becomes

min c̃TY e0 + (λk)Th(Z, Y ) +
σk

2
‖h(Y,Z)‖2 + Sk • (U − Y ) +

σk

2
‖U − Y ‖2

F

s.t. (31)–(33), U � 0.

Again we propose to solve this problem using block coordinate descent. For
example, we first fix U and solve a series of QPs as we did in the case (30)–(33), one
for each column of Y and Z. We then proceed by fixing Y and Z and solving the
subproblem over U , which is equivalent to

min
{
2σ−1

k Sk • (U − Y ) + ‖U − Y ‖2
F | U � 0

}
.

By completing the square, we see that

2σ−1
k Sk • (U − Y ) + ‖U − Y ‖2

F = ‖σ−1
k Sk + (U − Y )‖2

F − σ−2
k Sk • Sk,

so that the above minimization is equivalent to solving

min
{∥∥σ−1

k Sk + (U − Y )
∥∥2

F
| U � 0

}
,

which in turn is solved explicitly by projecting Y −σ−1
k Sk onto the cone of symmetric

positive semidefinite matrices.
It is well known that calculating the projection M+ of a symmetric matrix M

onto the cone of symmetric positive semidefinite matrices can be done by calculating
the spectral decomposition M = QDQT and then forming the matrix M+ = QD+Q

T ,
where D+ is derived from D by replacing all negative diagonal entries with 0. How-
ever, in our case, the matrix that we project, M = Y − σ−1

k Sk, is not symmetric.
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Table 1

Number of variables and constraints in the descriptions of N(K) and N+(K) that serve as
the basis of the augmented Lagrangian algorithm. Note that m represents the number of linear
constraints (including lower and upper bounds) present in K̂.

Variables Constraints
Linear Linear SDP

Y, Z U enforced relaxed

N(K) (2n + 1)(n + 1) 0 1 + (2n + 1)m n
(
3
2
n + 5

2

)
0

N+(K) (2n + 1)(n + 1) 1
2
(n + 1)(n + 2) 1 + (2n + 1)m n

(
3
2
n + 5

2

)
+ (n + 1)2 1

Nevertheless, by using the identity

‖U −M‖2
F =

∥∥∥∥U − 1

2
(M + MT ) − 1

2
(M −MT )

∥∥∥∥
2

F

=

∥∥∥∥U − 1

2
(M + MT )

∥∥∥∥
2

F

−
(
U − 1

2
(M + MT )

)
•
(
M −MT

)
+

1

4

∥∥M −MT
∥∥2

F

=

∥∥∥∥U − 1

2
(M + MT )

∥∥∥∥
2

F

+
1

4

∥∥M −MT
∥∥2

F
,

where the final equality follows from the fact that the dot product of a symmetric
matrix and a skew-symmetric matrix is zero, we can easily see that the projection of
M is equal to the projection of (M + MT )/2, which is itself symmetric.

Note that since S is the dual multiplier for the equality U = Y , it is unrestricted.
However, from basic duality, it is not difficult to see that S will be constrained to
be positive semidefinite in the dual problem. An illustration of this is as follows.
Consider the generic SDP

min {C • Y | A(Y ) = b, Y − U = 0, U � 0} ,

which has the dual SDP

max
{
bT y | A∗(y) + S = C, −S  0

}
;

here, A is a generic linear operator and A∗ its adjoint. Thus, without loss of generality,
we may restrict each Sk to be positive semidefinite, enforcing this by projection after
each dual update.

Before moving onto the description of the specifics of the implementation in the
next subsection, we would like to give some sense of the actual size of the LPs and
SDPs that we are proposing to solve with the augmented Lagrangian method. This
is given in Table 1. In the table, the quantity m represents the number of linear
constraints (including lower and upper bounds) present in K̂.

4.2. Implementation details. The augmented Lagrangian algorithm for (1)
and (2) has been implemented in ANSI C under the Linux operating system on a
Pentium 4 having a 2.4 GHz processor and 1 GB of RAM. The pivoting algorithm of
CPLEX 8.1 for convex QP [21] has been employed for solving the 2n + 1 quadratic
subproblems encountered during block coordinate descent, and LAPACK [1] has been
utilized for the spectral decompositions required when projecting onto the positive
semidefinite cone.

The choice of a pivoting algorithm for the quadratic subproblems—as opposed to
an interior-point algorithm—was motivated by the warm-start capabilities of pivoting
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algorithms. In particular, it is not difficult to see that the objective functions of the
2n+ 1 quadratic subproblems change only slightly between loops of block coordinate
descent or between iterations of the augmented Lagrangian algorithm. As a result, the
ability to warm-start from an advance basis has proven to be invaluable for speeding
up the overall algorithm.

Although Theorem 3.1 indicates that it is theoretically not necessary to increase
the penalty parameter σ during the course of the algorithm, we have found that it is
indeed advantageous to increase σ in order to enhance convergence. Our update rule
is as follows:

Penalty update rule. Every 500 iterations, σ is increased by a factor
of 10.

We consider this to be a fairly conservative update rule.

Practically speaking, during the course of the algorithm, one can expect the norm
of the constraint violation—‖h(Y k, Zk)‖ in the case of (1) and (‖h(Y k, Zk)‖2 +‖Y k−
Uk‖2

F )1/2 in the case of (2)—to decrease towards 0, which is an indication that the
algorithm is converging. As a result, we implement the following overall stopping
criterion:

Stopping criterion. The augmented Lagrangian algorithm is termi-
nated once primal iterates are calculated such that the corresponding
constraint violation is less than 10−6.

We remark that, during early experiments on a handful of instances, this criterion
was not achieved due to numerical difficulties caused by a large value of σ—typically
around 108 or higher. As a result, we have also implemented the following:

Alternate stopping criterion. The augmented Lagrangian algorithm
is terminated once σ grows larger than 108.

Another implementation detail is how accurately the augmented subproblem is
solved in each iteration. Recall from section 3 that it is not theoretically necessary
to solve each subproblem exactly, and in fact, we have found in practice that it often
suffices to solve them fairly loosely. In the computational results presented in section
4.4, our goal is to highlight the quality and speed of dual bounds provided by (1) and
(2), rather than to calculate optimal solutions of high precision. In light of this goal,
we decided to “solve” each augmented Lagrangian subproblem by performing exactly
one cycle of block coordinate descent.

4.3. Problems. We have chosen four classes of 0-1 integer programs to illustrate
the performance of the augmented Lagrangian algorithm.

4.3.1. Maximum stable set. Given an undirected, simple graph G with vertex
set V = {1, . . . , n} and edge set E ⊆ V × V , the (unweighted) maximum stable set
problem is

max
{
eTx | xi + xj ≤ 1, (i, j) ∈ E, x ∈ {0, 1}n

}
.

As mentioned in section 2, the maximum stable set problem has been studied exten-
sively by Lovász and Schrijver, and a number of theoretical results are known which
illustrate the strength of (1) and (2).
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We have collected a total of 26 graphs for testing; a basic description of these
problems can be seen in Table 4. All graphs were obtained from the Center for Discrete
Mathematics and Theoretical Computer Science [15] and originated as test instances
for the maximum clique problem in the Second DIMACS Implementation Challenge.
As such, we actually use the complement graphs as instances of the maximum stable
set problem.

4.3.2. Problem of Erdös and Turán. We consider a 0-1 integer programming
formulation of a problem studied by Erdös and Turán: calculate the maximum size
of a subset of numbers in {1, . . . , n} such that no three numbers are in arithmetic
progression. This number is the optimal value of

max
{
eTx | xi + xj + xk ≤ 2, i + k = 2j, i < j < k, x ∈ {0, 1}n

}
.

For a full discussion, we refer the reader to [14], which includes background on the
problem as well as some active set approaches for approximately optimizing (2) in this
case. In the computational results, we consider 10 instances for n = 60, 70, . . . , 150. It
is interesting to note that the number of constraints in N(K) and N+(K) for n = 150
is approximately 1.7 million.

4.3.3. Market share. The market share instances from MIPLIB [33], mark-
share1 and markshare2, have proven to be very small yet challenging instances of
mixed integer programs. They are not pure binary integer programs, so one cannot
apply the lift-and-project operator directly. It is easy, however, to generate very sim-
ilar problems using only 0-1 variables. We first generate an m× n matrix, A, exactly
as is done for the market share instances (see [13]). We also define the vector b by
bi = � 1

2

∑n
j=1 Aij� for each i = 1, . . . ,m. The resulting IP is

min

m∑
i=1

⎛
⎝bi −

n∑
j=1

Aijxj

⎞
⎠

Ax ≤ b

x ∈ {0, 1}n.

We generated two instances of these problems of the same sizes as markshare1 (6×50)
and markshare2 (7 × 60).

4.3.4. Quadratic assignment. Besides 0-1 linear integer programs, the lift-
and-project relaxations provided by Lovász and Schrijver can easily be applied to 0-1
QPs with linear constraints. A quadratic objective xTQx in the original problem
becomes the linear objective

(
0 0
0 Q

)
• Y

in the lifted problem. Using this technique, we can also consider the quadratic as-
signment problem (QAP), which is a problem of this type arising in location theory.

Because of its difficulty, QAP has attracted a large amount of attention and
study; see [36, 10] and the recent survey by Anstreicher [2]. One of the most common
forms of the QAP is the Koopmans–Beckmann form: given an integer p and matrices
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A,B ∈ Rp×p, the QAP is

min

p∑
i=1

p∑
j=1

p∑
k=1

p∑
l=1

aijbklxikxjl

s.t.

p∑
i=1

xik = 1 ∀ k = 1, . . . , p

p∑
k=1

xik = 1 ∀ i = 1, . . . , p

xik ∈ {0, 1} ∀ i, k = 1, . . . , p.

We have taken 91 test instances from QAPLIB, and all instances in QAPLIB are in
Koopmans–Beckmann form.

In the effort to solve QAP to optimality, a variety of dual bounds have been
developed for QAP. In particular, we will compare with three bounds from the litera-
ture: (i) the Gilmore–Lawler bound (denoted GLB) [17, 28]; the LP bound (denoted
KCCEB) found in [22]; and the semidefinite programming bound (denoted RSB) of
Rendl and Sotirov [37]. It is known that KCCEB is stronger than GLB, and it has
been observed that RSB is stronger than KCCEB. As one might expect, however,
RSB requires the most time to compute, while GLB takes the least.

The bound KCCEB is based on the first-level reformulation-linearization tech-
nique of Sherali and Adams [38] applied to QAP. It is not difficult to see that this
relaxation is equivalent to (1), and so the bound provided by (1) and KCCEB are
theoretically equal, although slight differences are observed in practice due to compu-
tational differences such as the level of precision to which the relaxation is solved.

The derivation of RSB is based on similar lift-and-project ideas as (2). How-
ever, RSB selectively includes certain constraints that are implied by N+(K), while
adding in additional constraints that are not implied by N+(K) (at least not implied
explicitly). It is currently unclear whether one bound is theoretically stronger than
the other, although our computational results in the next subsection show that the
Lovász–Schrijver bound is stronger than RSB on all test instances.

One additional comment regarding QAP is in order. Since QAP has equality
constraints and upper bounds on the variables are redundant, it is possible to show
that the constraints (7) of (1) and (2) are implied by (6). As a result, in this instance
it is unnecessary to introduce the variable Z, which has the benefit of reducing the
number of quadratic subproblems in the block coordinate descent from 2n+1 to n+1.
We have implemented these savings in the code and remark that the calculation of
KCCEB has taken this into account as well.

4.4. Results. We first provide a comparison of our implementation with existing
methods on a few problems selected from our test instances. We feel that these
comparisons provide a fair indication of the advantages of our method in terms of
both bound quality and computation time. Next, we provide detailed information on
the performance of our method on the four problem classes discussed above.

4.4.1. Comparison with linear and semidefinite solvers. We directly solved
some instances of (1), i.e., optimization over N(K), using the dual simplex LP al-
gorithm of CPLEX 8.1 [21] (with both default pricing and steepest-edge pricing),
enforcing a time limit of 15,000 seconds. We show these results in Table 2 together
with the running times and bounds obtained by the augmented Lagrangian approach
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Table 2

Comparisons of bounds achieved for optimization over N(K) by CPLEX 8.1 dual simplex (with
default and steepest-edge pricing) and the augmented Lagrangian method. Timings (in seconds) are
also given. When prefixed to a timing, the symbol (�) indicates that the algorithm did not terminate
within the 15, 000 seconds allotted.

Bound Time(s)
CPLEX Auglag CPLEX Auglag

Name Default Steep Default Steep
MANN a9 18.0000 18.0000 18.0000 3 5 5
johnson8-2-4 9.3333 9.3333 9.3333 0 0 6
johnson8-4-4 23.3333 23.3333 23.3333 88 85 90
hamming6-2 32.0000 32.0000 32.0000 11 10 11
hamming6-4 21.3333 21.3333 21.3334 12 12 134
johnson16-2-4 40.0000 40.0000 40.0001 1,505 1,521 763
keller4 57.0000 57.0000 57.0001 4,745 5,059 4,910
hamming8-2 128.9971 128.9971 128.0000 � 15,000 � 15,000 640
san200 09 1 86.3989 82.3446 70.1613 � 15,000 � 15,000 4,840
san200 09 2 83.7750 87.7951 66.6667 � 15,000 � 15,000 3,484
san200 09 3 80.4699 83.8000 66.6678 � 15,000 � 15,000 2,538

Erdös–Turán (n = 60) 34.2857 34.2857 34.6688 4,126 2,421 354
Erdös–Turán (n = 70) 40.0000 40.0000 40.7446 � 15,000 14,119 778
Erdös–Turán (n = 80) 46.5922 46.4502 46.7352 � 15,000 � 15,000 1,686
Erdös–Turán (n = 90) 54.5405 54.1181 53.0720 � 15,000 � 15,000 2,550
Erdös–Turán (n = 100) 63.8962 63.4383 59.6474 � 15,000 � 15,000 2,810

applied to (1). Note that we include both stable set and Erdös–Turán instances and
that the instances are ordered roughly in terms of increasing size. We were unable to
solve larger, denser instances with CPLEX as these required more than the available
memory. For very large problems, these results clearly indicate the ability of our
method to obtain bounds for N(K) in much less time than is required by standard
LP solvers.

We also attempted to carry out some optimizations of N+(K) using standard
semidefinite solvers, such as CSDP developed by Borchers [8], but found that all but
the smallest of instances would require more than the 1 GB of available memory on
our computer.

4.4.2. Comparison with subgradient methods. We implemented a subgra-
dient approach for optimizing over N(K) using the volume algorithm developed in
[5], for which an open source framework is available from the COIN-OR repository
[31]. We found that this subgradient implementation in the current context was sen-
sitive to the choice of initial dual multipliers. Consequently, some experimentation
was required to settle upon appropriate starting duals. In particular, we found that
starting duals of all −1’s performed much better than all 0’s.

In Table 3, we compare the subgradient algorithm and our augmented Lagrangian
algorithm initialized with the same starting duals. We report not only the final
bound and total running time for both algorithms but also the time at which one
algorithm surpasses the best bound of the other. For example, on the brock200 1
instance, in 2,052 seconds the augmented Lagrangian algorithm achieved the same
bound that the subgradient algorithm achieved after 8,603 seconds. A quick summary
of Table 3 is that the subgradient algorithm outperforms augmented Lagrangian on
the Erdös–Turán instances, whereas augmented Lagrangian outperforms subgradient
on the stable set instances.

We found that increasing the number of cycles of coordinate descent (recall that
we use only one cycle in all computations in this paper) improved the convergence
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Table 3

Comparisons of bounds achieved for optimization over N(K) by the subgradient method and
the augmented Lagrangian method, along with timings (in seconds). Also shown is the time at which
one algorithm surpassed the best bound of the other.

Bound Time(s) Surpass Time(s)
Instance Subgrad Auglag Subgrad Auglag Subgrad Auglag

MANN a9 18.0098 18.0000 11 8 8
brock200 1 69.3607 66.6668 8,603 6,175 2,052
brock200 2 68.1062 66.6667 18,672 13,951 5,607
brock200 3 68.8632 66.6667 13,420 9,773 3,801
brock200 4 68.0411 66.6668 9,136 8,378 3,596
c-fat200-1 66.7608 66.6668 22,995 26,652 14,295
c-fat200-2 66.8576 66.6668 27,681 23,859 12,090
c-fat200-5 67.5605 66.6672 28,285 15,937 7,103
hamming6-2 32.0119 32.0000 31 20 20
hamming6-4 21.3543 21.3334 212 155 103
hamming8-2 128.0129 128.0000 2,407 1,118 1,065
hamming8-4 86.8582 85.3333 41,376 22,398 8,219
johnson16-2-4 40.0239 40.0003 972 684 522
johnson8-2-4 9.3875 9.3333 12 7 5
johnson8-4-4 23.3814 23.3333 177 98 69
keller4 57.8079 57.0001 5,275 4,960 1,865
p hat300-1 102.1317 100.0013 198,263 98,646 35,030
p hat300-2 102.7619 100.0036 129,663 61,445 17,471
p hat300-3 102.8840 100.0016 64,609 26,660 7,005
san200 07 1 72.2302 66.6667 12,224 7,550 2,054
san200 07 2 66.9081 66.6670 72,026 7,306 3,846
san200 09 1 70.0103 70.2033 14,733 4,746 11,193
san200 09 2 66.9371 66.6667 33,923 3,462 1,363
san200 09 3 66.9232 66.6668 31,469 2,528 1,353
sanr200 0 7 69.7920 66.6667 14,061 7,920 2,695
sanr200 0 9 66.8795 66.6667 32,368 3,459 1,410

Erdös–Turán (n = 60) 34.3553 37.5214 508 863 123
Erdös–Turán (n = 70) 40.1841 43.9156 589 1,591 202
Erdös–Turán (n = 80) 45.9178 49.3888 1,468 3,052 488
Erdös–Turán (n = 90) 51.5557 57.4332 2,169 3,927 714
Erdös–Turán (n = 100) 57.3410 62.7492 3,273 5,458 1,312
Erdös–Turán (n = 110) 63.1194 67.4054 5,858 9,752 2,337
Erdös–Turán (n = 120) 68.7601 71.9690 7,066 16,852 3,629
Erdös–Turán (n = 130) 74.5256 79.6999 14,909 19,356 6,113
Erdös–Turán (n = 140) 80.1107 88.7548 18,311 35,119 6,833
Erdös–Turán (n = 150) 85.9341 96.5941 24,155 85,492 8,078

of the augmented Lagrangian algorithm on the Erdös–Turán instances. However, the
resultant timings were still not competitive with the subgradient algorithm on these
instances. We remark that such convergence issues were much less prevalent in the
semidefinite computation using augmented Lagrangian, as Table 5 will demonstrate.

We also experimented with our own implementation of a subgradient method
to optimize over N+(K) but found that standard stepsize strategies for subgradient
methods did not seem appropriate for the positive semidefinite multiplier S. Conse-
quently, convergence was difficult to achieve in this case.

4.4.3. Maximum stable set. In Table 4, we give the dual bounds obtained
by the augmented Lagrangian algorithm for the maximum stable set instances. The
bounds and times (in seconds) to achieve those bounds are listed under N for (1) and
N+ for (2). When prefixed to the bound, the symbol (‡) indicates that the alternate
stopping criterion for our method was enforced, i.e., σ had grown too large before
primal feasibility had been obtained.
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Table 4

Results on the maximum stable set problem, comparing bounds achieved by the N and N+

procedures. Timings (in seconds) are also given. When prefixed to the bound, the symbol (‡) indicates
that the alternate stopping criterion was enforced.

Bound Time(s)
Name |V | |E| α ϑ+ ϑ N N+ N — N+

brock200 1 200 5066 21 27.2 27.5 66.6668 27.9874 5,119 28,590
brock200 2 200 10024 12 14.2 66.6671 ‡ 17.0805 11,174 67,302
brock200 3 200 7852 15 18.8 66.6670 ‡ 20.7928 8,674 51,665
brock200 4 200 6811 17 21.1 21.3 66.6681 22.8004 6,765 43,433
c-fat200-1 200 18366 12 12.0 12.0 66.6667 ‡ 14.9735 18,125 126,103
c-fat200-2 200 16665 24 24.0 24.0 66.6686 24.0877 13,861 83,691
c-fat200-5 200 11427 58 60.3 66.6671 58.1798 16,774 44,483
hamming6-2 64 192 32 32.0 32.0 32.0000 32.0000 11 15
hamming6-4 64 1312 4 4.0 5.3 21.3334 ‡ 4.5460 134 1,416
hamming8-2 256 1024 128 128.0 128.0 128.0000 128.0001 640 728
hamming8-4 256 11776 16 16.0 16.0 85.3340 ‡ 20.5442 21,723 90,169
johnson8-2-4 28 168 4 4.0 4.0 9.3333 4.0052 6 59
johnson8-4-4 70 560 14 14.0 14.0 23.3333 14.0076 90 479
johnson16-2-4 120 1680 8 8.0 8.0 40.0001 ‡ 10.2637 763 3,140
keller4 171 5100 11 13.5 14.0 57.0001 ‡ 15.4119 4,910 19,319
MANN-a9 45 72 16 17.5 18.0000 17.1790 5 50
p hat300-1 300 33917 8 10.0 10.1 100.0003 ‡ 18.6697 129,437 322,287
p hat300-2 300 22922 25 27.0 100.0004 ‡ 30.1066 83,142 244,428
p hat300-3 300 11460 36 41.2 100.0008 43.3282 33,554 101,995
san200 07 1 200 5970 30 30.0 30.0 66.6672 30.7071 7,995 31,049
san200 07 2 200 5970 18 18.0 18.0 66.6670 ‡ 20.0176 7,710 37,102
san200 09 1 200 1990 70 70.0 70.0 70.1613 70.5464 4,840 6,947
san200 09 2 200 1990 60 60.0 60.0 66.6667 60.7250 3,484 6,977
san200 09 3 200 1990 44 44.0 44.0 66.6678 44.4080 2,538 12,281
sanr200 07 200 6032 18 23.6 23.8 66.6672 24.9716 7,946 36,576
sanr200 09 200 2037 42 49.3 66.6667 49.3156 3,335 9,428

In order to gauge the quality of the bounds in Table 4, we also include the size
α of the maximum stable set (either obtained from the literature or computed using
the IP solver of CPLEX) as well as the Lovász ϑ number of the graph (obtained
by the algorithm of Burer and Monteiro [9]) and Schrijver’s strengthening ϑ+ of ϑ
(obtained from Kim Toh (personal communication)). Note that the value of ϑ+ was
not available for all instances. The numbers ϑ and ϑ+ are polynomial-time computable
upper bounds on α, which are obtained by solving two related semidefinite programs.
Theoretically, the N+ bound is at least as strong as ϑ+, which is at least as strong
as ϑ, but computationally, ϑ takes less time to compute than ϑ+, which in turn takes
much less time than the N+ bound (a reasonable estimate is roughly one order of
magnitude less).

The results indicate that, at least on the majority of problems in this sample of
graphs, the computed N+ bound is significantly tighter than the computed N bound.
Moreover, it is a real challenge for the augmented Lagrangian algorithm to optimize
the N+ bound fully, which is evidenced by the fact that the computed value for
the N+ bound is actually higher than ϑ on most instances. This demonstrates the
possibility for further improvement of our optimization technique, perhaps by more
sophisticated guidelines for choosing the number of cycles of block coordinate descent
or for updating σ.

Nevertheless, we stress that our overall intention is to show that (1) and (2) can
be (approximately) solved for general 0-1 integer programs. Accordingly, Table 4
serves to demonstrate that, given a specific problem (such as the stable set problem),
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Table 5

Results on the problem of Erdös and Turán, comparing bounds achieved by the N and N+

procedures. Timings (in seconds) are also given. Lower and upper bounds (LB and UB) were
achieved by running the IP solver of CPLEX 8.1 for at most 15, 000 seconds.

Bound Time(s)
n LB UB N N+ N N+

60 19 19 34.6688 31.4183 354 653
70 20 20 40.7446 36.6120 778 1,062
80 22 27 46.7352 41.6060 1,686 1,676
90 24 32 53.0720 46.5339 2,550 3,164

100 25 37 59.6474 51.8541 2,810 4,295
110 27 44 65.8540 57.0635 5,387 6,773
120 30 48 71.1935 62.1836 10,932 9,659
130 32 55 77.2897 67.2867 11,023 13,459
140 32 60 82.9586 72.3553 21,164 18,239
150 32 66 89.5872 77.2238 34,180 23,450

our method allows one to compute the N and N+ bounds and hence to evaluate their
quality.

4.4.4. Problem of Erdös and Turán. Table 5 lists the results of our algorithm
on the Erdös–Turán instances, and the details of the table are the same as for Table
4. In order to assess the quality of the computed N and N+ bounds, we ran CPLEX’s
IP solver on each instance for at most 15,000 seconds and report the best lower bound
(LB) and best upper bound (UB) achieved.

Three things are interesting to note. First, the N+ bounds are a significant
improvement over the bounds reported by Dash [14] (for example, Dash gives a bound
of 87.6 for n = 150). Second, the times for computing the N and N+ bounds are not
dramatically different from one another, and in fact, on some of the largest problems,
the N+ bound actually takes less time to compute. Third, the upper bound calculated
by CPLEX’s IP solver (after 15,000 seconds) is significantly tighter than the computed
N and N+ bounds, which puts into perspective the time dedicated to calculating N
and N+. Even still, as with the stable set instances in the previous subsection, the
results demonstrate that the augmented Lagrangian greatly improves our capabilities
for actually computing the Lovász–Schrijver bounds.

4.4.5. Market share. Besides solving both the N and N+ relaxations of our
market share instances, we also ran the default CPLEX IP solver for 15,000 on each in-
stance in order to obtain lower and upper bounds. The results appear in the following
table (recall that these are minimization problems).

Bound Time(s)
Instance lb ub N N+ N N+

Markshare1 (6 × 50) 0 3 0.0000 0.0000 20 17
Markshare2 (7 × 60) 0 11 0.0000 0.0000 37 31

Since the problems are quite small, optimizing over N and N+ is done very quickly.
However, neither relaxation improves on the basic LP bound of 0. This demonstrates
that lift-and-project operators are not always able to strengthen the LP relaxation of
an IP.

4.4.6. Quadratic assignment. Tables 6 and 7 list our results on the quadratic
assignment instances, and the details of the table are similar to Table 4, except for
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Table 6

Results on the quadratic assignment problem (I), comparing gaps achieved by three previous
bounding techniques and the two techniques of this paper, N and N+. Timings (in seconds) for N
and N+ are also given. Gaps are calculated with respect to the feasible value listed, which is known
to be optimal unless the symbol (†) is prefixed. When prefixed to the gap, the symbol (‡) indicates
that the alternate stopping criterion was enforced.

Gap (%) Time(s)
Name Feas Val GLB KCCEB RSB N N+ N N+

bur026a 5,426,670 2.05 1.29 1.19 0.19 17,929 60,397
bur026b 3,817,852 2.70 1.69 1.57 0.22 18,248 53,749
bur026c 5,426,795 2.11 1.21 1.08 0.18 17,932 67,918
bur026d 3,821,225 2.87 1.64 1.51 0.21 18,064 69,804
bur026e 5,386,879 1.48 0.97 0.86 ‡ 0.20 18,530 71,917
bur026f 3,782,044 1.99 1.27 1.14 0.10 18,195 78,748
bur026g 10,117,172 1.37 0.61 0.51 0.15 19,214 73,082
bur026h 7,098,658 1.77 0.75 0.63 0.09 18,385 70,939
chr012a 9,552 24.15 1.09 0.00 0.00 330 352
chr012b 9,742 26.65 0.00 0.00 0.00 293 363
chr012c 11,156 28.50 4.28 0.00 0.00 376 410
chr015a 9,896 43.16 11.65 4.35 0.14 1,415 1,461
chr015b 7,990 41.76 11.94 0.01 0.00 1,467 1,140
chr015c 9,504 35.13 3.80 0.00 0.00 901 1,188
chr018a 11,098 38.92 9.56 3.28 0.00 3,357 3,947
chr018b 1,534 0.00 0.00 0.00 0.13 1,277 6,239
chr020a 2,192 1.92 1.19 1.00 0.18 3,878 6,307
chr020b 2,298 4.44 1.70 0.87 0.13 4,030 9,778
chr020c 14,142 39.18 7.68 0.05 0.02 5,046 6,812
chr022a 6,156 3.77 0.58 0.24 0.03 6,762 12,711
chr022b 6,194 4.17 0.65 0.26 0.19 7,070 18,377
chr025a 3,796 27.16 4.98 0.53 0.37 13,901 33,402
els019 17,212,548 30.45 5.45 2.00 0.04 5,879 9,821
esc016a 68 44.12 39.71 13.24 29.41 5.88 452 1,195
esc016b 292 24.66 6.16 1.37 4.79 0.68 474 1,103
esc016c 160 48.13 43.13 11.25 26.25 3.75 538 1,981
esc016d 16 81.25 75.00 50.00 75.00 18.75 397 1,520
esc016e 28 57.14 57.14 17.86 50.00 3.57 349 1,318
esc016g 26 53.85 53.85 23.08 46.15 3.85 351 1,315
esc016h 996 37.25 29.32 2.61 29.32 1.91 618 1,369
esc016i 14 100.00 100.00 35.71 100.00 14.29 160 1,601
esc016j 8 87.50 75.00 12.50 75.00 0.00 345 1,331
esc032a † 130 73.08 69.23 20.77 10,503 143,084
esc032b † 168 42.86 42.86 21.43 5,308 130,393
esc032c † 642 45.48 40.65 4.05 15,223 114,053
esc032d † 200 47.00 44.00 4.50 10,767 117,556
esc032e 2 100.00 100.00 0.00 498 143,593
esc032f 2 100.00 100.00 0.00 496 144,820
esc032g 6 100.00 100.00 ‡ 0.00 506 107,683
esc032h † 438 41.32 33.79 3.20 15,031 140,406
had012 1,652 7.02 2.00 0.54 1.82 0.00 363 244
had014 2,724 8.52 2.31 0.33 2.13 0.00 818 1,092
had016 3,720 9.73 4.49 0.56 4.30 0.13 1,396 2,551
had018 5,358 10.86 5.23 0.77 5.06 0.11 2,518 4,966
had020 6,922 10.92 5.13 0.53 4.98 0.16 4,119 8,835

the following: (i) the best-known feasible value for the QAP is listed such that, if
the symbol (†) is not prefixed, then the feasible value is actually optimal, while (†) is
present when the value is not known to be optimal; (ii) instead of listing dual bounds,
we give optimality gaps, i.e.,

gap =
feas val − bound

feas val
× 100%.
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Table 7

Results on the quadratic assignment problem (II), comparing gaps achieved by three previous
bounding techniques and the two techniques of this paper, N and N+. Timings (in seconds) for N
and N+ are also given. Gaps are calculated with respect to the feasible value listed, which is known
to be optimal unless the symbol (†) is prefixed. When prefixed to the gap, the symbol (‡) indicates
that the alternate stopping criterion was enforced.

Gap (%) Time(s)
Name Feas Val GLB KCCEB RSB N N+ N N+

kra030a 88,900 23.10 15.00 12.86 14.51 2.50 30,618 128,883
kra030b 91,420 24.45 16.61 11.23 16.10 4.07 30,648 136,187
kra032 88,700 24.02 10.19 16.06 3.51 40,543 225,053
lipa020a 3,683 0.00 0.00 0.00 0.00 1,337 3,699
lipa020b 27,076 0.00 0.00 0.00 1,556 4,276
lipa030a 13,178 0.00 0.00 0.01 0.02 20,584 121,748
lipa030b 151,426 0.00 0.00 0.00 10,783 77,868
nug012 578 14.71 9.86 3.63 9.52 1.73 315 469
nug014 1,014 15.98 2.17 8.97 0.39 837 1,093
nug015 1,150 16.26 10.17 2.43 9.48 0.78 1,043 1,543
nug016a 1,610 18.39 11.86 2.48 11.49 0.75 1,456 2,421
nug016b 1,240 17.58 12.74 4.19 12.26 1.69 1,338 2,143
nug017 1,732 19.86 13.51 3.64 13.05 1.44 1,932 3,379
nug018 1,930 19.48 14.20 4.04 13.89 1.92 2,393 4,932
nug020 2,570 19.96 15.45 4.63 15.14 2.49 3,772 7,577
nug021 2,438 24.82 17.64 4.72 17.10 2.46 5,150 13,791
nug022 3,596 30.95 21.19 4.34 20.88 2.34 6,110 18,074
nug024 3,488 23.28 18.09 5.10 17.75 2.61 8,581 25,887
nug025 3,744 23.37 18.16 5.58 17.76 3.29 10,457 31,082
nug027 5,234 29.29 5.14 21.63 2.33 14,406 69,574
nug028 5,166 26.71 5.13 21.58 2.92 16,501 81,564
nug030 6,124 25.39 21.86 5.24 21.60 3.10 21,762 127,011
rou012 235,528 14.12 5.09 5.03 4.79 0.11 566 759
rou015 354,210 15.71 8.64 5.91 8.30 1.13 1,377 2,027
rou020 725,522 17.31 11.59 8.50 11.36 4.19 5,112 10,997
scr012 31,410 11.31 5.96 6.65 5.07 0.00 489 496
scr015 51,140 12.52 5.07 4.51 3.70 0.00 1,403 1,197
scr020 110,030 30.23 14.12 13.66 13.58 3.88 5,182 10,564
ste036a 9,526 25.22 17.49 16.80 5.31 68,877 427,884
ste036b 15,852 45.41 30.65 7.61 73,431 358,981
ste036c 8,239,110 22.40 14.70 ‡ 3.92 89,618 377,109
tai012a 224,416 12.70 1.61 0.73 1.02 0.00 563 414
tai012b 39,464,925 75.20 22.66 ‡ 20.04 ‡ 1.01 845 1,039
tai015a 388,214 15.64 9.34 6.04 9.12 2.86 1,402 2,022
tai015b 51,765,268 78.28 0.52 0.53 0.35 2,070 3,199
tai017a 491,812 16.08 10.23 8.23 10.01 3.11 2,521 4,414
tai020a 703,482 17.46 12.34 9.41 12.11 4.52 5,056 10,418
tai020b 122,455,319 88.40 24.44 ‡ 23.06 ‡ 4.11 7,981 15,591
tai025a 1,167,256 17.55 13.82 10.79 14.30 4.66 13,382 39,565
tai025b 344,355,646 86.15 56.93 ‡ 55.82 ‡ 11.70 16,855 65,262
tai030a 1,818,146 17.24 13.91 9.13 13.74 6.12 27,299 155,797
tai030b † 637,117,113 93.57 78.46 ‡ 78.46 ‡ 18.47 31,333 247,114
tai035a † 2,422,002 19.44 16.66 16.52 8.48 60,604 329,608
tai035b † 283,315,445 88.49 64.05 ‡ 66.40 ‡ 15.42 63,888 430,914
tho030 149,936 39.59 33.40 9.26 32.84 4.75 28,180 99,265

A missing entry from the table (applicable only in the case of KCCEB and RSB)
indicates that the gap was not available in the literature. In addition, note that the
number contained in the names of the QAP instances is the size n of the QAP; for
example, the instance bur026a has n = 26.

Though theory predicts that the KCCEB and N gaps should equal one another,
we do see some discrepancies in Tables 6 and 7, probably because of numerical differ-
ences in the algorithms. Typically, N is slightly better than KCCEB, but in compar-
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Table 8

Results on the quadratic assignment problem (III), comparing gaps achieved by the bounding
technique of Hahn et al. [20] (denoted by H) and the semidefinite technique of this paper, N+. The
problem instances are a subset of those shown in Tables 6 and 7.

Gap (%)
Name H N+

had16 0.00 0.13
had18 0.00 0.11
had20 0.00 0.16
kra30a 2.98 2.50
kra30b 4.72 4.07
nug12 0.00 1.73
nug15 0.00 0.78
nug20 3.23 2.49

Gap (%)
Name H N+

nug30 6.11 3.10
rou15 0.00 1.13
rou20 3.60 4.19
tai20a 3.93 4.52
tai25a 6.48 4.66
tai30a 7.25 6.12
tho30 8.82 4.75

Table 9

Average number of iterations of the augmented Lagrangian algorithm over all problems on three
of the four problem classes, for both N(K) and N+(K).

Stable Erdös–Turán Market Share QAP
N(K) 371 760 251 2,796
N+(K) 1,648 1,197 205 2,812

ison with timings reported in [22], the calculation of N takes more time. We should
point out, however, that the algorithm used to compute KCCEB exploits the struc-
ture of QAP to a great extent (more than just the reduction of 2n + 1 subproblems
to n + 1 mentioned previously) and does not appear to be generalizable to other 0-1
problems. On the other hand, the augmented Lagrangian method can be applied to
any 0-1 problem.

The tables also indicate that the N+ gap is significantly tighter than the RSB gap.
In fact, on a number of relatively small problems, the N+ gap is 0, indicating that (2)
solves the QAP exactly. Previous to these results, RSB had provided the strongest
known bounds for problems in QAPLIB. Only partial timing results are given by
Rendl and Sotirov [37], and so we are unable to make precise timing comparisons
with RSB.

After the initial appearance of this paper, Hahn (personal communication) an-
nounced bounds for several of the instances in Tables 6 and 7, which were calculated
with an algorithm of Hahn et al. [20] (but were not specifically presented there). The
bounds are obtained by solving the second-level Sherali–Adams linear program for
the QAP. We present the bounds compared with our semidefinite bounds in Table 8.

4.4.7. Some further details. The tables of the previous subsections include
bounds and timings for the augmented Lagrangian runs. Some additional aggre-
gate information on the number of iterations is given in Table 9. Here, “number
of iterations” refers to the number of outermost loops in the augmented Lagrangian
algorithm—indexed by k in the statement of Algorithm 1.

For problems with m much larger than n, the most computationally intensive
part of the augmented Lagrangian algorithm (applied to both N(K) and N+(K)) is
using CPLEX to solve the convex QP subproblems corresponding to the columns of
Y and Z. We consider all stable and Erdös–Turán instances, which have n ≤ 300
and often m ≈ O(n2), to be of this type. On the other hand, in the case of N+(K),
the O(n3) eigenvalue decompositions required by the semidefinite projections (two
per iteration) will constitute a large part of the computation, especially for large n
and small m. For example, for the QAP instances, n ranges from 144 to 1,225 and
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m = 3n + 2. This helps to explain the fact that, while the average number of QAP
iterations for N(K) and N+(K) shown in Table 9 are not significantly different, the
corresponding timings in Tables 6 and 7 are quite different.

5. Conclusions. In this paper, we propose a novel method to apply dual decom-
position to the lift-and-project relaxations of binary integer programs introduced by
Lovász and Schrijver [32]. We believe that this is some of the first work that focuses
on developing effective tools for solving these very large relaxations. Rather than
using subgradient techniques to solve the dual, we show how to use an augmented
Lagrangian technique to obtain bounds from these relaxations in both the LP and
semidefinite case. We extend a result by Poljak and Tret′jakov [35] to show that in the
case of linear, conic programs, the augmented Lagrangian approach can use a constant
penalty parameter and still guarantee convergence. Through extensive computational
testing, we demonstrate the ability of this technique to outperform standard LP, SDP,
and subgradient methods for various classes of problems. For some instances, such as
QAP, the bounds computed from these relaxations are the tightest known to date.

As part of our future work in this area, we will study the possibility of using
special purpose algorithms to solve the QP subproblems, especially in cases such as
QAP where the constraints of the subproblems are simply a homogenization of the
assignment polytope. We also intend to examine how these techniques may be used
to yield tight relaxations of problems with a mix of binary and continuous variables
and of continuous nonconvex QP’s.

In addition to introducing some of the first effective solution techniques for linear
and positive semidefinite lift-and-project relaxations, the success of this approach also
demonstrates the applicability of augmented Lagrangian techniques even for linear,
conic problems. We believe it will be interesting to investigate how well this technique
performs on other large-scale linear, conic problems with block-angular structure.
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Abstract. We show that every real nonnegative polynomial f can be approximated as closely
as desired (in the l1-norm of its coefficient vector) by a sequence of polynomials {fε} that are sums
of squares. The novelty is that each fε has a simple and explicit form in terms of f and ε.
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1. Introduction. The study of relationships between nonnegative and sums of
squares (s.o.s.) polynomials, initiated by Hilbert, is of real practical importance in
view of numerous potential applications, notably in polynomial programming. Indeed,
checking whether a given polynomial is nonnegative is a NP-hard problem whereas
checking whether it is s.o.s. reduces to solving a (convex) semidefinite programming
(SDP) problem for which efficient algorithms are now available. (For instance, it is
known that up to an a priori fixed precision, an SDP is solvable in time polynomial
in the input size of the problem.)

For instance, recent results in real algebraic geometry, most notably by Schmüdgen
[16], Putinar [13], Jacobi and Prestel [5], have provided s.o.s. representations of poly-
nomials, positive on a compact semialgebraic set; the interested reader is referred to
Prestel and Delzell [12] and Scheiderer [15] for a nice account of such results. This in
turn has permitted the development of efficient SDP-relaxations in polynomial opti-
mization (see, e.g., Lasserre [6, 7, 8], Parrilo [10, 11], Schweighofer [17], and the many
references therein).

So, back to a comparison between nonnegative and s.o.s. polynomials, on the
negative side, Blekherman [4] has shown that if a degree > 2 is fixed (and for a large
fixed number of variables), then the cone of nonnegative polynomials is much larger
than that of s.o.s. However, on the positive side, a denseness result [2] states that the
cone of s.o.s. polynomials is dense in the space of polynomials that are nonnegative on
[−1, 1]n (for the l1-norm ‖f‖1 =

∑
α |fα| whenever f is written

∑
α fαx

α in the usual
canonical basis); see, e.g., Berg, Christensen, and Ressel [2, Theorem 9.1, p. 273]).

Contribution. We show that every nonnegative polynomial f is almost a s.o.s.,
namely we show that f can be approximated by a sequence of s.o.s. polynomials {fε}ε,
in the specific form

fε = f + ε

r(f,ε)∑
k=0

n∑
j=1

x2k
j

k!
,(1.1)

for some r(f, ε) ∈ N, so that ‖f − fε‖1 → 0 as ε ↓ 0. (Notice that in (1.1), one may
replace r(f, ε) with any r ≥ r(f, ε) and still get the same result.)
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This result is in the spirit of the previous denseness result. However, we provide
in (1.1) an explicit converging approximation with a very specific (and simple) form;
namely, it suffices to slightly perturbate f by adding a small coefficient ε > 0 to each
square monomial x2k

i for all i = 1, . . . , n and all k = 0, 1, . . . , r, with r sufficiently
large. To prove this result we combine the following:

• a (generalized) Carleman’s sufficient condition (due to Nussbaum [9]) for a
moment sequence y = {yα} to have a unique representing measure μ (i.e., such that
yα =

∫
xαdμ for all α ∈ Nn), and

• a duality result from convex optimization.
As a consequence, we may thus define a procedure to approximate the global

minimum of a polynomial f , at least when there is a global minimizer x∗ that satisfies
‖x∗‖∞ ≤ M for some known M . It consists of solving a sequence of SDP-relaxations
which are simpler and easier to solve than those defined in Lasserre [6]; see section 3.

Finally, we also consider the case where f is a convex polynomial, nonnegative on
a convex semialgebraic set K defined by (concave polynomial) inequalities gj ≥ 0. We
show that the approximation fε of f , defined in (1.1), has a certificate of positivity
on K (or a representation) similar to Putinar’s s.o.s. representation [13], but in which
the s.o.s. polynomial coefficients of the gj ’s now become simple nonnegative scalars,
the Lagrange multipliers of a related convex optimization problem.

2. Notation and definitions. For a real symmetric matrix A, the notation
A � 0 (resp., A 	 0) stands for A positive semidefinite (resp., positive definite). The
sup-norm supj |xj | of a vector x ∈ Rn, is denoted by ‖x‖∞. Let R[x1, . . . , xn] be the
ring of real polynomials, and let

vr(x) := (1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x1xn, x

2
2, x2x3, . . . , x

r
n)(2.1)

be the canonical basis for the R-vector space Ar of real polynomials of degree at
most r, and let s(r) be its dimension. Similarly, v∞(x) denotes the canonical basis
of R[x1, . . . , xn] as a R-vector space, denoted A. So a vector in A always has finitely
many nonzero entries.

Therefore, a polynomial p ∈ Ar is written

x 
→ p(x) =
∑
α∈Nn

pαx
α = 〈p, vr(x)〉, x ∈ Rn,

(where xα = xα1
1 xα2

2 . . . xαn
n ) for some vector p = {pα} ∈ Rs(r), the vector of coeffi-

cients of p in the basis (2.1).
Extending p with zeros, we can also consider p as a vector indexed in the basis

v∞(x) (i.e., p ∈ A). If we equip A with the usual scalar product 〈., .〉 of vectors, then
for every p ∈ A,

p(x) =
∑
α∈Nn

pαx
α = 〈p, v∞(x)〉, x ∈ Rn.

Given a sequence y = {yα} indexed in the basis v∞(x), let Ly : A → R be the
linear functional

p 
→ Ly(p) :=
∑
α∈Nn

pαyα = 〈p,y〉.
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Given a sequence y = {yα} indexed in the basis v∞(x), the moment matrix Mr(y) ∈
Rs(r)×s(r) with rows and columns indexed in the basis vr(x) in (2.1), satisfies

[Mr(y)(1, j) = yα and Mr(y)(i, 1) = yβ ] ⇒ Mr(y)(i, j) = yα+β .

For instance, with n = 2,

M2(y) =

⎡
⎢⎢⎢⎢⎢⎢⎣

y00 y10 y01 y20 y11 y02

y10 y20 y11 y30 y21 y12

y01 y11 y02 y21 y12 y03

y20 y30 y21 y40 y31 y22

y11 y21 y12 y31 y22 y13

y02 y12 y03 y22 y13 y04

⎤
⎥⎥⎥⎥⎥⎥⎦
.

A sequence y = {yα} has a representing measure μy if

yα =

∫
Rn

xα μy(dx) ∀α ∈ Nn.(2.2)

In this case one also says that y is a moment sequence. In addition, if μy is unique,
then y is said to be a determinate moment sequence.

The matrix Mr(y) defines a bilinear form 〈., .〉y on Ar, by

〈q, p〉y := 〈q,Mr(y)p〉 = Ly(qp), q, p ∈ Ar,

and if y has a representing measure μy, then

〈q,Mr(y)q〉 =

∫
Rn

q(x)2 μy(dx) ≥ 0,(2.3)

so that Mr(y) � 0.

Next, given a sequence y = {yα} indexed in the basis v∞(x), let y
(i)
2k := Ly(x2k

i )

for every i = 1, . . . , n and every k ∈ N. That is, y
(i)
2k denotes the element in the

sequence y, corresponding to the monomial x2k
i .

Of course not every sequence y = {yα} has a representing measure μy as in (2.2).
However, there exists a sufficient condition to ensure that it is the case. The following
result is stated in Berg [3, Theorem 5, p. 117] is from Nussbaum [9], and is restated
here, with our notation.

Theorem 2.1. Let y = {yα} be an infinite sequence such that Mr(y) � 0 for all
r = 0, 1, . . .. If

∞∑
k=1

(y
(i)
2k )−1/2k = ∞, i = 1, . . . , n,(2.4)

then y is a determinate moment sequence.

The condition (2.4) in Theorem 2.1 is called Carleman’s condition as it extends
to the multivariate case the original Carleman’s sufficient condition given for the
univariate case.
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3. Preliminaries. Let BM be the closed ball

BM = {x ∈ Rn | ‖x‖∞ ≤ M}.(3.1)

Proposition 3.1. Let f ∈ R[x1, . . . , xn] be such that −∞ < f∗ := infx f(x).
Then, for every ε > 0 there is some Mε ∈ N such that

f∗
M := inf

x∈BM

f(x) < f∗ + ε ∀M ≥ Mε.

Equivalently, f∗
M ↓ f∗ as M → ∞.

Proof. Suppose it is false. That is, there is some ε0 > 0 and an infinite sequence
{Mk} ⊂ N, with Mk → ∞, such that f∗

Mk
≥ f∗ + ε0 for all k. But let x0 ∈ Rn be

such that f(x0) < f∗ + ε0. With any Mk ≥ ‖x0‖∞, one obtains the contradiction
f∗ + ε0 ≤ f∗

Mk
≤ f(x0) < f∗ + ε0.

To prove our main result (Theorem 4.1 below), we first introduce the following
related optimization problems:

P : f∗ := inf
x∈Rn

f(x),(3.2)

and for 0 < M ∈ N,

PM : inf
μ∈P(Rn)

{∫
f dμ |

∫ n∑
i=1

ex
2
i dμ ≤ neM

2

}
,(3.3)

where P(Rn) is the space of probability measures on Rn. The respective optimal
values of P and PM are denoted inf P = f∗ and inf PM , or min P and minPM if the
infimum is attained.

Proposition 3.2. Let f ∈ R[x1, . . . , xn] be such that −∞ < f∗ := infx f(x),
and consider the two optimization problems P and PM defined in (3.2) and (3.3),
respectively. Then, inf PM ↓ f∗ as M → ∞. If f has a global minimizer x∗ ∈ Rn,
then minPM = f∗ whenever M ≥ ‖x∗‖∞.

Proof. Let μ ∈ P(Rn) be admissible for PM . As f ≥ f∗ on Rn then it follows
immediately that

∫
fdμ ≥ f∗, and so, inf PM ≥ f∗ for all M .

As BM is closed and bounded, it is compact and so with f∗
M as in Proposition

3.1, there is some x̂ ∈ BM such that f(x̂) = f∗
M . In addition let μ ∈ P(Rn) be the

Dirac probability measure at the point x̂. As ‖x̂‖∞ ≤ M ,

∫ n∑
i=1

ex
2
i dμ =

n∑
i=1

e(x̂i)
2 ≤ neM

2

,

so that μ is an admissible solution of PM with value
∫
f dμ = f(x̂) = f∗

M , which
proves that inf PM ≤ f∗

M . This latter fact, combined with Proposition 3.1 and with
f∗ ≤ inf PM , implies inf PM ↓ f∗ as M → ∞, the desired result. The final statement
is immediate by taking as a feasible solution for PM , the Dirac probability measure
at the point x∗ ∈ BM (with M ≥ ‖x∗‖∞). As its value is now f∗, it is also optimal,
and so PM is solvable with optimal value minPM = f∗.
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Proposition 3.2 provides a rationale for introducing the following SDP problems.
Let 2rf be the degree of f and for every rf ≤ r ∈ N, consider the SDP problem

Qr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
y

Ly(f)

(
=

∑
α

fαyα

)

s.t. Mr(y) � 0
r∑

k=0

n∑
i=1

y
(i)
2k

k!
≤ neM

2

,

y0 = 1,

(3.4)

and its associated dual SDP problem

Q∗
r

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

max
λ≥0,γ,q

γ − neM
2

λ

s.t. f − γ = q − λ

r∑
k=0

n∑
j=1

x2k
j

k!

q s.o.s. of degree ≤ 2r,

(3.5)

with respective optimal values inf Qr and sup Q∗
r (or min Qr and max Q∗

r if the opti-
mum is attained, in which case the problems are said to be solvable). For more details
on SDP theory, the interested reader is referred to the survey paper [18].

The SDP problem Qr is a relaxation of PM , and we next show that in fact
• Qr is solvable for all r ≥ r0,
• its optimal value min Qr → inf PM as r → ∞, and
• Q∗

r is also solvable with same optimal value as Qr, for every r ≥ rf .
This latter fact will be crucial to prove our main result in the next section. Let

l∞ (resp., l1) be the Banach space of bounded (resp., summable) infinite sequences
with the sup-norm (resp., the l1-norm).

Theorem 3.3. Let f ∈ R[x1, . . . , xn] be of degree 2rf , with global minimum
f∗ > −∞, and let M > 0 be fixed. Then:

(i) For every r ≥ rf , Qr is solvable, and min Qr ↑ inf PM as r → ∞.

(ii) Let y(r) = {y(r)
α } be an optimal solution of Qr and complete y(r) with zeros to

make it an element of l∞. Every (pointwise) accumulation point y∗ of the sequence
{y(r)}r∈N is a determinate moment sequence, that is,

y∗α =

∫
Rn

xα dμ∗, α ∈ Nn,(3.6)

for a unique probability measure μ∗, and μ∗ is an optimal solution of PM .
(iii) For every r ≥ rf , max Q∗

r = min Qr.
For a proof, see section 5.1.
So, one can approximate the optimal value f∗ of P as closely as desired, by solving

SDP-relaxations {Qr} for sufficiently large values of r and M . Indeed, f∗ ≤ inf PM ≤
f∗
M , with f∗

M as in Proposition 3.1. Therefore, let ε > 0 be fixed, arbitrary. By
Proposition 3.2, we have f∗ ≤ inf PM ≤ f∗ + ε provided that M is sufficiently large.
Next, by Theorem 3.3(i), one has inf Qr ≥ inf PM − ε provided that r is sufficiently
large, in which case, we finally have f∗ − ε ≤ inf Qr ≤ f∗ + ε.

For instance, if the infimum f∗ is attained and one knows an upper bound M
on ‖x∗‖∞ for some global minimizer x∗, then the sequence of SDP-relaxations Qr
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in (3.4) with M being fixed, will suffice. Notice that the SDP-relaxations Qr are
simpler than the one defined in Lasserre [6]. Both have the same variables y ∈ Rs(2r),
but the former has one SDP constraint Mr(y) � 0 and one scalar inequality (as one
substitutes y0 with 1) whereas the latter has the same SDP constraint Mr(y) � 0 and
one additional SDP constraint Mr−1(θy) � 0 for the localizing matrix associated with
the polynomial x 
→ θ(x) = M2 − ‖x‖2. This results in a significant simplification.

4. Sum of squares approximation. Let A be equipped with the norm

f 
→ ‖f‖1 :=
∑
α∈Nn

|fα|, f ∈ A.

Theorem 4.1. Let f ∈ R[x1, . . . , xn] be nonnegative with global minimum f∗,
that is,

0 ≤ f∗ ≤ f(x), x ∈ Rn.

(i) There is some r0 ∈ N, λ0 ≥ 0 such that, for all r ≥ r0 and λ ≥ λ0,

f + λ

r∑
k=0

n∑
j=1

x2k
j

k!
is a sum of squares.(4.1)

(ii) For every ε > 0, there is some r(f, ε) ∈ N such that,

fε := f + ε

r(f,ε)∑
k=0

n∑
j=1

x2k
j

k!
is a sum of squares.(4.2)

Hence, ‖f − fε‖1 → 0 as ε ↓ 0.
For a detailed proof, the reader is referred to section 5.2.
Remark 4.2. Notice that whenever r ≥ r(f, ε) (with r(f, ε) as in Theorem 4.1(ii)),

the polynomial

fεr := f + ε

r∑
k=0

n∑
j=1

x2k
j

k!

is also a sum of squares, as we add up squares to fε in (4.2).
In some specific examples, one may even obtain ad hoc perturbations fε of f ,

simpler than the one in (4.2), and with same properties. This is illustrated in the
following nice example, kindly provided by Bruce Reznick.

Example 1. Consider the Motzkin polynomial (x, y) 
→ f(x, y) = 1 + x2y2(x2 +
y2 − 3), which is nonnegative, but not a sum of squares. Then, for all n ≥ 3, the
polynomial

fn := f + 24−2nx2n

is a sum of squares, and ‖f − fn‖1 → 0 as n → ∞. To prove this, write

f(x, y) = (xy2 + x3/2 − 3x/2)2 + p(x),

with p(x) = 1−(x3/2−3x/2)2 = (1−x2)2(1−x2/4). Next, the univariate polynomial
x 
→ q(x) := p(x) + 24−2nx2n is nonnegative on R, hence a sum of squares. Indeed, if
x2 ≤ 4, then p ≥ 0 and so q ≥ 0. If x2 > 4, then |p(x)| ≤ (x2)2x2/4 = x6/4. From

q(x) ≥ 24−2nx2n − |p(x)| ≥ x6

4
((x2/4)n−3 − 1),

and the fact that n ≥ 3, x2 > 4, we deduce that q(x) ≥ 0.
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Theorem 4.1(ii) is a denseness result in the spirit of Theorem 9.1 in Berg, Chris-
tensen, and Ressel [2, p. 273] which states that the cone of s.o.s. polynomials is dense
(also for the norm ‖f‖1) in the cone of polynomials that are nonnegative on [−1, 1]n.
(However, notice that Theorem 4.1(ii) provides an explicit converging sequence {fε}
with a simple and very specific form.) One may thus wonder whether the specific s.o.s.
approximation fε in (4.2) is also valid for polynomials f that are only nonnegative
on [−1, 1]n, and not necessarily on the whole Rn. The answer is no. To see this, let
x0 ∈ Rn be such that f(x0) < 0, and let M > ‖x0‖∞. Observe that with fε as in

(4.2), one has fε(x) < f(x) + ε
∑n

i=1 ex
2
i , for all x ∈ Rn, no matter the value of the

parameter r(f, ε). Therefore, fε(x0) < f(x0) + εneM
2

. Hence, for ε < |f(x0)|e−M2

/n,
we have fε(x0) < 0. On the other hand, other ad hoc perturbations of the same flavor,
may work. Consider the following example, again kindly provided by Bruce Reznick.

Example 2. Let f be the univariate polynomial x 
→ f(x) := 1 − x2, nonnegative
on [−1, 1]. The following ad hoc perturbation x 
→ fn(x) := f(x) + cnx

2n is s.o.s.
whenever cn ≥ (n− 1)n−1/nn, and so, one may choose cn so as to also obtain ‖fn −
f‖1 → 0, as n → ∞. In this case, one has to be very careful in the choice of the
coefficient cn. It cannot be too small because the degree of fn is fixed a priori (2n),
whereas for a nonnegative polynomial f , the parameter ε can be fixed arbitrarily, and
independently of f . On the other hand, r(f, ε) is not known.

We next consider the case of a convex polynomial, nonnegative on a convex semi-
algebraic set. Given {gj}mj=1 ⊂ R[x1, . . . , xn], let K ⊂ Rn be the semialgebraic set

K := {x ∈ Rn | gj(x) ≥ 0, j = 1, . . . ,m}.(4.3)

Corollary 4.3. Let K be as in (4.3), where all the gj’s are concave, and assume
that Slater’s condition holds, i.e., there exists x0 ∈ K such that gj(x0) > 0 for all
j = 1, . . . ,m.

Let f ∈ R[x1, . . . , xn] be convex, nonnegative on K, and with a minimizer on K,
that is, f(x∗) ≤ f(x) for all x ∈ K, for some x∗ ∈ K. Then there exists a nonnegative
vector λ ∈ Rm such that for every ε > 0, there is some rε = r(f, λ, g1, . . . , gm, ε) ∈ N
for which

f + ε

rε∑
k=0

n∑
i=1

x2k
i

k!
= f0 +

m∑
j=1

λj gj ,(4.4)

with f0 ∈ R[x1, . . . , xn] being a sum of squares. (Therefore, the degree of f0 is less
than max[2rε,deg f,deg g1, . . . ,deg gm].)

Proof. Consider the convex optimization problem f∗ := min{f(x) | x ∈ K}. As f
is convex, K is a convex set and Slater’s condition holds, the Karush–Kuhn–Tucker
(KKT) optimality condition holds. That is, there exists a nonnegative vector λ ∈ Rm

of Lagrange–KKT multipliers, such that

∇f(x∗) =

m∑
j=1

λj∇gj(x
∗); λjgj(x

∗) = 0, j = 1, . . . ,m.

(See, e.g., Rockafellar [14].) In other words, x∗ is also a (global) minimizer of the
convex Lagrangian L := f −

∑m
j=1 λjgj . Then f∗ = f(x∗) = L(x∗) is the (global)

minimum of f over K, as well as the global minimum of L over Rn, i.e.,

f −
m∑
j=1

λjgj − f∗ ≥ 0, x ∈ Rn.(4.5)
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As f ≥ 0 on K, f∗ ≥ 0, and so L ≥ 0 on Rn. Then (4.4) follows from Theorem 4.1(ii),
applied to the polynomial L.

When K is compact (and so, f has necessarily a minimizer x∗ ∈ K), one may
compare Corollary 4.3 with Putinar’s representation [13] of polynomials, positive on
K. When f is nonnegative on K (compact), and with

fε := f + ε

rε∑
k=0

n∑
i=1

x2k
i

k!
,(4.6)

one may rewrite (4.4) as

fε = f0 +

m∑
j=1

λj gj ,(4.7)

which is indeed a certificate of positivitity of fε on K. In fact, as fε > 0 on K, (4.7)
can be seen as a special form of Putinar’s s.o.s. representation, namely

fε = q0 +

m∑
j=1

qj gj , with q0, . . . , qm s.o.s.(4.8)

(which holds under an additional assumption on the gj ’s). So, in the convex compact
case, and under Slater’s condition, Corollary 4.3 states that if f ≥ 0 on K, then its
approximation fε in (4.6), has the simplified Putinar representation (4.7), in which
the s.o.s. coefficients {qj} of the gj ’s in (4.8), now become simple nonnegative scalars
in (4.7), namely, the Lagrange–KKT multipliers {λj}.

5. Proofs.

5.1. Proof of Theorem 3.3. We will prove (i) and (ii) together. We first prove
that Qr is solvable. This is because the feasible set (which is closed) is compact.
Indeed, the constraint

r∑
k=0

n∑
i=1

y
(i)
2k /k! ≤ neM

2

implies that every diagonal element y
(i)
2k of of Mr(y) is bounded by τr := nr!eM

2

. By
Lemma 6.2, this in turn implies that its diagonal elements (i.e., y2α, with |α| ≤ r) are
all bounded by τr.

This latter fact, and again Mr(y) � 0, also imply that in fact every element of
Mr(y) is bounded by τr, that is, |yα| ≤ τr for all |α| ≤ 2r. Indeed, for a symmetric
matrix A � 0, every nondiagonal element Aij satisfies A2

ij ≤ AiiAjj so that |Aij | ≤
maxi Aii.

Therefore the set of feasible solutions of Qr is a closed bounded subset of Rs(2r),
hence compact. As Ly(f) is linear in y, the infimum is attained at some feasible point.
Thus, for all r ≥ rf , Qr is solvable with optimal value min Qr ≤ inf PM . The latter
inequality is because the moment sequence y associated with an arbitrary feasible
solution μ of PM , is obviously feasible for Qr, and with value Ly(f) =

∫
fdμ.

Next, as the sequence {min Qr}r is obviously monotone nondecreasing, one has
min Qr ↑ ρ∗ ≤ inf PM , as r → ∞. We have seen that every entry of Mr(y) is bounded
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by τr, and this bound holds for all r ≥ rf . Moreover, Mr(y) is also a (north-west
corner) submatrix of Ms(y) for every s > r. Indeed, whenever s > r, one may write

Ms(y) =

⎡
⎣ Mr(y) | B

− | −
B′ | C

⎤
⎦

for some appropriate matrices B and C. Therefore, for the same reasons, any feasible
solution y of Qs satisfies |yα| ≤ τr for all α ∈ Nn such that |α| ≤ 2r. Therefore, for
every s ∈ N, and every feasible solution y of Qs, we have

|yα| ≤ τr ∀α ∈ Nn, 2r − 1 ≤ |α| ≤ 2r, r = 1, . . . , s.

Thus, given y = {yα}, denote by ŷ = {ŷα} the new sequence obtained from y by the
scaling

ŷα := yα/τr ∀α ∈ Nn, 2r − 1 ≤ |α| ≤ 2r, r = 1, 2, . . . .

So let y(r) = {y(r)
α } be an optimal solution of Qr and complete y(r) with zeros to

make it an element of l∞. Hence, all the elements ŷ(r) are in the unit ball B1 of l∞,
defined by

B1 = {y = {yα} ∈ l∞ | ‖y‖∞ ≤ 1}.

By the Banach–Alaoglu theorem, this ball is sequentially compact in the σ(l∞, l1)
(weak*) topology of l∞ (see, e.g., Ash [1]). In other words, there exists an element
ŷ∗ ∈ B1 and a subsequence {rk} ⊂ N, such that ŷ(rk) → ŷ∗ for the weak* topology
of l∞, that is, for all u ∈ l1,

〈ŷ(rk),u〉 → 〈ŷ∗,u〉, as k → ∞.(5.1)

In particular, pointwise convergence holds, that is, for all α ∈ Nn,

ŷ(rk)
α → ŷ∗α, as k → ∞,

and so, defining y∗ from ŷ∗ by

y∗
α = τr ŷ∗

α ∀α ∈ Nn, 2r − 1 ≤ |α| ≤ 2r, r = 1, 2, . . .

one also obtains the pointwise convergence

∀α ∈ Nn, y(rk)
α → y∗α, as k → ∞.(5.2)

We next prove that y∗ is the moment sequence of an optimal solution μ∗ of problem
PM . From the pointwise convergence (5.2), we immediately get Mr(y

∗) � 0 for all
r ≥ rf , because Mr(y) belongs to the cone of positive semidefinite matrices of size
s(r), which is closed. Next, and again by pointwise convergence, for every s ∈ N,

s∑
j=0

n∑
i=1

(y∗)
(i)
2j /j! = lim

k→∞

s∑
j=0

n∑
i=1

(y(rk))
(i)
2j /j! ≤ neM

2

,

and so, by the monotone convergence theorem

∞∑
j=0

n∑
i=1

(y∗)
(i)
2j /j! = lim

s→∞

s∑
j=0

n∑
i=1

(y∗)
(i)
2j /j! ≤ neM

2

.(5.3)
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But (5.3) implies that y∗ satisfies Carleman’s condition (2.4). Indeed, from (5.3),

for all i = 1, . . . , n, we have (y∗)
(i)
2k < ρk! for all k ∈ N, and so, as k! ≤ kk =

√
k

2k
,

[(y∗)
(i)
2k ]−1/2k > (ρ)−1/2k/

√
k,

which in turn implies

∞∑
k=0

[(y∗)
(i)
2k ]−1/2k >

∞∑
k=0

ρ−1/2k

√
k

= +∞.

Hence, by Theorem 2.1, y∗ is a determinate moment sequence, that is, there exists a
unique measure μ∗ on Rn, such that

y∗α =

∫
Rn

xα dμ∗, α ∈ Nn.

By (5.3), ∫ n∑
i=1

ex
2
i dμ∗ =

∞∑
j=0

n∑
i=1

(y∗)
(i)
2j /j! ≤ neM

2

,

which proves that μ∗ is admissible for PM .
But then, again by the pointwise convergence (5.2) of y(rk) to y∗, we get Ly(rk)(f) →

Ly∗(f) =
∫
fdμ∗ as k → ∞, which, in view of Ly(rk)(f) ≤ inf PM for all k, implies∫

f dμ∗ = Ly∗(f) ≤ inf PM .

But this proves that μ∗ is an optimal solution of PM because μ∗ is admissible for PM

with value
∫
fdμ∗ ≤ inf PM . As the converging subsequence {rk} was arbitrary, it is

true for every limit point. Hence, we have proved (i) and (ii).
(iii) Let y be the moment sequence associated with the probability measure μ on

the ball BM/2 ⊂ Rn

BM/2 = {x ∈ Rn | ‖x‖∞ ≤ M/2},

with uniform distribution. That is,

μ(B) = M−n

∫
B∩BM/2

dx, B ∈ B,

where B is the sigma-algebra of Borel subsets of Rn.
As μ has a continuous density fμ > 0 on BM/2, it follows easily that Mr(y) 	 0

for all r ≥ rf . In addition,

r∑
k=0

n∑
i=1

y
(i)
2k /k! <

∫ n∑
i=1

ex
2
i dμ < neM

2

,

so that y is a strictly admissible solution for Qr. Hence, the SDP problem Qr satisfies
Slater’s condition, and so, there is no duality gap between Qr and Q∗

r , and Q∗
r is

solvable if inf Qr is finite; see, e.g., Vandenberghe and Boyd [18]. Thus, Q∗
r is solvable

because we proved that Qr is solvable. In other words, sup Q∗
r = max Q∗

r = min Qr,
the desired result.
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5.2. Proof of Theorem 4.1. It suffices to prove (i) and (ii) for the case f∗ > 0.
Indeed, if f∗ = 0 take ε > 0 arbitrary, fixed. Then f +nε ≥ f∗

ε = f∗ +nε > 0 and so,
suppose that (4.1) holds for f + nε (for some r0, λ0). In particular, pick λ ≥ λ0 + ε,
so that

f + nε + (λ− ε)

rλ∑
k=0

n∑
j=1

x2k
j

k!
= qλ,

(with qλ s.o.s.), for rλ ≥ r0. Equivalently,

f + λ

rλ∑
k=0

n∑
j=1

x2k
j

k!
= qλ + ε

rλ∑
k=1

n∑
j=1

x2k
j

k!
= q̂λ,

where q̂λ is a s.o.s. Hence (4.1) also holds for f (with λ0 + ε in lieu of λ0).
Similarly, for (4.2). As f∗ = 0, f + nε > 0 and so, suppose that (4.2) holds for

f + nε. In particular,

f + nε + ε

rε∑
k=0

n∑
j=1

x2k
j

k!
= qε,

(with qε s.o.s.), for some rε. Equivalently,

f + 2ε

rε∑
k=0

n∑
j=1

x2k
j

k!
= qε + ε

rε∑
k=1

n∑
j=1

x2k
j

k!
= q̂ε,

where q̂ε is a s.o.s. Hence (4.2) also holds for f . Therefore, we will assume that
f∗ > 0.

(i) As f∗ > 0, let M0 be such that f∗ > 1/M0, and fix M > M0. Consider the SDP
problem Q∗

r defined in (3.5), associated with M . By Proposition 3.2, f∗ ≤ inf PM . By
Theorem 3.3, max Q∗

r = min Qr ↑ inf PM ≥ f∗. Therefore, there exists some rM ≥ rf
such that max Q∗

rM ≥ f∗ − 1/M > 0. That is, if (qM , λM , γM ) is an optimal solution

of Q∗
rM , then γM − nλMeM

2 ≥ f∗ − 1/M > 0. In addition,

f − γM = qM − λM

rM∑
k=0

n∑
j=1

x2k
j

k!
,

that we rewrite

f − (γM − nλMeM
2

) = qM + λM

⎛
⎝neM

2 −
rM∑
k=0

n∑
j=1

x2k
j

k!

⎞
⎠ .(5.4)

Equivalently,

f + λM

rM∑
k=0

n∑
j=1

x2k
j

k!
= qM + nλMeM

2

+ (γM − nλMeM
2

).

Define q̂M to be the s.o.s. polynomial

q̂M := qM + nλMeM
2

+ (γM − nλMeM
2

),
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so that we obtain

f + λM

rM∑
k=0

n∑
j=1

x2k
j

k!
= q̂M ,(5.5)

the desired result.
If we now take r > rM and λ ≥ λM we also have

f + λ

r∑
k=0

n∑
j=1

x2k
j

k!
= f + λM

rM∑
k=0

n∑
j=1

x2k
j

k!

+ λM

r∑
k=rM+1

n∑
j=1

x2k
j

k!
+ (λ− λM )

r∑
k=0

n∑
j=1

x2k
j

k!

= q̂M + λM

r∑
k=rM+1

n∑
j=1

x2k
j

k!
+ (λ− λM )

r∑
k=0

n∑
j=1

x2k
j

k!

= ˆ̂qM ,

that is,

f + λ
r∑

k=0

n∑
j=1

x2k
j

k!
= ˆ̂qM ,(5.6)

where ˆ̂qM is a s.o.s. polynomial, the desired result.
(ii) Let M be as in (i) above. Evaluating (5.4) at x = 0, and writing f(0) =

f(0) − f∗ + f∗, yields

f(0) − f∗ + f∗ − (γM − nλMeM
2

) = qM (0) + nλM (eM
2 − 1),

and as 1/M ≥ f∗ − (γM − nλMeM
2

),

λM ≤ 1/M + f(0) − f∗

n (eM2 − 1)
.

Now, letting M → ∞, yields λM → 0.
Now, let ε > 0 be fixed, arbitrary. There is some M > M0 such that λM ≤ ε in

(5.5). Therefore, (4.2) is just (5.6) with λ := ε > λM and r = rε ≥ rM . Finally, from
this, we immediately have

‖f − fε‖1 ≤ ε

n∑
i=1

∞∑
k=0

1

k!
= ε ne → 0, as ε ↓ 0.

6. Appendix. In this section we derive two auxiliary results that are helpful in
the proofs of Theorems 3.3 and 4.1 in section 5.

Lemma 6.1. Let n = 2 and let y be a sequence (with y0 = 1) indexed in the basis
(2.1), and such that Mr(y) � 0. Then all the diagonal entries of Mr(y) are bounded
by τr := maxk=1,...,r max [y2k,0, y0,2k].

Proof. It suffices to prove that all the entries y2α,2β with α + β = r are bounded
by sr := max [y2r,0, y0,2r], and repeat the argument for entries y2α,2β with α + β =
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r−1, r−2, etc. Then, take τr := maxk=1,...,r sk. So, consider the odd case r = 2p+1,
and the even case r = 2p.

• The odd case r = 2p+1. Let Γ := {(2α, 2β) | α+β = r, α, β �= 0}, and notice
that

Γ = {(2r − 2k, 2k) | k = 1, . . . , r − 1} = Γ1 ∪ Γ2

with

Γ1 := {(r, 0) + (r − 2k, 2k), | k = 1, . . . , p},

and

Γ2 := {(0, r) + (2j, r − 2j), | j = 1, . . . , p}.

Therefore, consider the two rows (and columns) corresponding to the indices (r, 0)
and (r − 2k, 2k), or (0, r) and (2j, r − 2j). In view of Mr(y) � 0, one has{

y2r,0 × y2r−4k,4k ≥ (y2r−2k,2k)
2, k = 1, . . . , p,

y0,2r × y4j,2r−4j ≥ (y2j,2r−2j)
2, j = 1, . . . , p.

(6.1)

Thus, let s := max {y2α,2β |α+β = r, αβ �= 0}, so that either s = y2r−2k∗,2k∗ for some
1 ≤ k∗ ≤ p, or s = y2j∗,2r−2j∗ for some 1 ≤ j∗ ≤ p. But then, in view of (6.1), and
with sr := max [y2r,0, y0,2r],

sr × s ≥ y2r,0 × y2r−4k∗,4k∗ ≥ (y2r−2k∗,2k∗)2 = s2,

or,

sr × s ≥ y0,2r × y4j∗,2r−4j∗ ≥ (y2j∗,2r−2j∗)
2 = s2,

so that s ≤ sr, the desired result.
• The even case r = 2p. Again, the set Γ := {(2α, 2β) |α + β = r, α, β �= 0} can

be written Γ = Γ1 ∪ Γ2, with

Γ1 := {(r, 0) + (r − 2k, 2k), |k = 1, . . . , p},

and

Γ2 := {(0, r) + (2j, r − 2j), | j = 1, . . . , p}.

The only difference with the odd case is that Γ1 ∩ Γ2 = (2p, 2p) �= ∅. But the rest of
the proof is the same as in the odd case.

Lemma 6.2. Let r ∈ N be fixed, and let y be a sequence (with y0 = 1) such that the
associated moment matrix Mr(y) is positive semidefinite, i.e., Mr(y) � 0. Assume

that there is some τr ∈ R such that the diagonal elements {y(i)
2k } satisfy y

(i)
2k ≤ τr for

all k = 1, . . . , r, and all i = 1, . . . , n.
Then, the diagonal elements of Mr(y) are all bounded by τr (i.e., y2α ≤ τr for all

α ∈ Nn, with |α| ≤ r).
Proof. The proof is by induction on the the number n of variables. By our

assumption it is true for n = 1, and by Lemma 6.1 it is true for n = 2. Thus, suppose
it is true for k = 1, 2, . . . , n − 1 variables and consider the case of n variables (with
n ≥ 3).
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By our induction hypothesis, it is true for all elements y2α, where at least one

index, say αi, is zero (αi = 0). Indeed, the submatrix A
(i)
r (y) of Mr(y), obtained

from Mr(y) by deleting all rows and columns corresponding to indices α ∈ Nn in
the basis (2.1), with αi > 0, is a moment matrix of order r, with n − 1 variables
x1, . . . , xi−1, xi+1, . . . , xn. Hence, by a permutation of rows and columns, we can
write

Mr(y) =

⎡
⎣ A

(i)
r (y) | B
− | −
B′ | C

⎤
⎦ ,

for some appropriate matrices B and C. In particular, all elements y2α with αi = 0,

are diagonal elements of A
(i)
r (y). In addition, its diagonal elements y

(j)
2k , j �= i, are all

bounded by τr. And of course, A
(i)
r (y) � 0. Therefore, by our induction hypothesis,

all its diagonal elements are bounded by τr. As i was arbitrary, we conclude that all
elements y2α with at least one index being zero, are all bounded by τr.

We next prove it is true for an arbitrary element y2α with |α| ≤ r and α > 0, i.e.,
αj ≥ 1 for all j = 1, . . . , n. With no loss of generality, we assume that α1 ≤ α2 ≤
· · · ≤ αn.

Consider the two elements y2α1,0,β and y0,2α2,γ , with β, γ ∈ Nn−2 such that

|β| = |α| − 2α1; |γ| = |α| − 2α2,

and

(2α1, 0, β) + (0, 2α2, γ) = (2α1, 2α2, β + γ) = 2α.

So, for instance, take β = (β3, β4, . . . , βn), γ = (γ3, γ4, . . . , γn), defined by

β := (α3 + α2 − α1, α4, . . . , αn), γ := (α3 + α1 − α2, α4, . . . , αn).

By construction, we have 4α1 + 2|β| = 4α2 + 2|γ| = 2|α| ≤ 2r, so that both
y4α1,0,2β and y0,4α2,2γ are diagonal elements of Mr(y) with at least one entry equal
to 0. Hence, by the induction hypothesis,

y4α1,0,2β ≤ τr, y0,4α2,2γ ≤ τr.

Next, consider the two rows and columns indexed by (2α1, 0, β) and (0, 2α2, γ). The
constraint Mr(y) � 0 clearly implies

τ2
r ≥ y4α1,0,2β × y0,4α2,2γ ≥ (y2α1,2α2,β+γ)2 = y2

2α.

Hence, y2α ≤ τr, the desired result.
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[16] K. Schmüdgen, The K-moment problem for compact semi-algebraic sets, Math. Ann., 289

(1991), pp. 203–206.
[17] M. Schweighofer, Optimization of polynomials on compact semialgebraic sets, SIAM J. Op-

tim, 15 (2005), pp. 805–825.
[18] L. Vandenberghe and S. Boyd, Semidefinite programming, SIAM Rev., 38 (1996), pp. 49–95.



SIAM J. OPTIM. c© 2006 Society for Industrial and Applied Mathematics
Vol. 16, No. 3, pp. 766–797

ENHANCED FRITZ JOHN CONDITIONS FOR
CONVEX PROGRAMMING∗

DIMITRI P. BERTSEKAS† , ASUMAN E. OZDAGLAR† , AND PAUL TSENG‡

Abstract. We consider convex constrained optimization problems, and we enhance the clas-
sical Fritz John optimality conditions to assert the existence of multipliers with special sensitivity
properties. In particular, we prove the existence of Fritz John multipliers that are informative in
the sense that they identify constraints whose relaxation, at rates proportional to the multipliers,
strictly improves the primal optimal value. Moreover, we show that if the set of geometric multipliers
is nonempty, then the minimum-norm vector of this set is informative and defines the optimal rate of
cost improvement per unit constraint violation. Our assumptions are very general and, in particular,
allow for the presence of a duality gap and the nonexistence of optimal solutions. In particular, for
the case where there is a duality gap, we establish enhanced Fritz John conditions involving the dual
optimal value and dual optimal solutions.

Key words. convex program, Fritz John multiplier, geometric multiplier, duality, sensitivity
analysis
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1. Introduction. We consider the convex constrained optimization problem

(P)
minimize f(x)
subject to x ∈ X, g(x) = (g1(x), . . . , gr(x))′ ≤ 0,

where X is a nonempty convex subset of �n, and f : X → � and gj : X → � are
convex functions. Here and throughout the paper, we denote by � the real line, by
�n the space of n-dimensional real column vectors with the standard Euclidean norm,
‖ · ‖, and by ′ the transpose of a vector. We say that a function f : X → � is convex
(respectively, closed) if its epigraph epi(f) =

{
(x,w) | x ∈ X, f(x) ≤ w

}
is convex

(respectively, closed). For some of our results, we will assume that f, g1, . . . , gr are
also closed. We note that our analysis readily extends to the case where there are
affine equality constraints by replacing each affine equality constraint with two affine
inequality constraints.

We refer to problem (P) as the primal problem and we consider the dual problem

(D)
maximize q(μ)
subject to μ ≥ 0,

where q is the dual function:

q(μ) = inf
x∈X

{
f(x) + μ′g(x)

}
, μ ∈ �r.
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We denote by f∗ and q∗ the optimal values of (P) and (D), respectively:

f∗ = inf
x∈X, g(x)≤0

f(x), q∗ = sup
μ≥0

q(μ).

We write f∗ < ∞ or q∗ > −∞ to indicate that (P) or (D), respectively, has at least
one feasible solution. The weak duality theorem states that q∗ ≤ f∗. If q∗ = f∗, we
say that there is no duality gap.

An important result (see, e.g., [BNO03, Proposition 6.6.1]) is that there always
exist a scalar μ∗

0 and a vector μ∗ = (μ∗
1, . . . , μ

∗
r)

′ satisfying the following conditions:
(i) μ∗

0f
∗ = infx∈X

{
μ∗

0f(x) + μ∗′g(x)
}
.

(ii) μ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) μ∗
0, μ

∗
1, . . . , μ

∗
r are not all equal to 0.

This type of conditions traces its origin to Fritz John’s work [Joh48], although John’s
original conditions associate the multiplier pair (μ∗

0, μ
∗) with a specific optimal so-

lution of problem (P), and condition (i) instead involves the first derivatives at this
optimal solution being equal to zero (assuming X = �n). Since John’s work has
been primarily responsible for popularizing the idea of using the extra multiplier μ∗

0

without any constraint qualification, we call a pair (μ∗
0, μ

∗) satisfying (i)–(iii) an FJ-
multiplier.1

If the coefficient μ∗
0 of an FJ-multiplier is nonzero, by normalization one can

obtain an FJ-multiplier of the form (1, μ∗), and we have

μ∗ ≥ 0, f∗ = q(μ∗).

A vector μ∗ thus obtained is called a geometric multiplier. It is well known and readily
seen from the weak duality theorem that μ∗ is a geometric multiplier if and only if
there is no duality gap and μ∗ is an optimal solution of the dual problem. It is further
known that the set of geometric multipliers is closed and coincides with the negative
of the subdifferential of the perturbation function

p(u) = inf
x∈X, g(x)≤u

f(x)

at u = 0, provided that p is convex and proper and p(0) is finite [Roc70, Theorem
29.1], [BNO03, Proposition 6.5.8]. If in addition the origin is in the relative interior of
dom(p) (a constraint qualification that guarantees that the set of geometric multipliers
is nonempty) and μ∗ is the geometric multiplier of minimum norm, then either μ∗ = 0,
in which case 0 ∈ ∂p(0) and u = 0 is a global minimum of p, or μ∗ 	= 0, in which
case μ∗ is a direction of steepest descent for p at u = 0; i.e., the directional derivative
p′(0; d) of p at 0 in the direction d satisfies

inf
‖d‖=1

p′(0; d) = p′
(
0;μ∗/‖μ∗‖

)
=

1

‖μ∗‖ sup
v∈∂p(0)

μ∗′v = −‖μ∗‖ < 0.(1)

Thus, the minimum-norm geometric multiplier provides useful sensitivity informa-
tion; namely, relaxing the inequality constraints at rates equal to the components of
μ∗/‖μ∗‖ yields a decrease of the optimal value at the optimal rate, which is equal to
‖μ∗‖.

1Fritz John’s conditions were independently derived earlier by Karush [Kar39], as noted in Kuhn’s
historical note [Kuh91, section 6].
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On the other hand, if the origin is not a relative interior point of dom(p), there
may be no direction of steepest descent, because the directional derivative function
p′(0; ·) is discontinuous, and the infimum over ‖d‖ = 1 in (1) may not be attained.
This can happen even if there is no duality gap and there exists a geometric multiplier.
As an example, consider the following two-dimensional problem:

minimize −x2

subject to x ∈ X = {x | x2
2 ≤ x1}, g1(x) = x1 ≤ 0, g2(x) = x2 ≤ 0.

It can be verified that

dom(p) = {u | u2
2 ≤ u1} + {u | u ≥ 0},

and

p(u) =

⎧⎪⎨
⎪⎩
−u2 if u2

2 ≤ u1,

−√
u1 if u1 ≤ u2

2, u1 ≥ 0, u2 ≥ 0,

∞ otherwise,

while

q(μ) =

⎧⎪⎨
⎪⎩
− (μ2−1)2

4μ1
if μ1 > 0,

0 if μ1 = 0, μ2 = 1,

−∞ otherwise.

We have f∗ = q∗ = 0, and the set of geometric multipliers is

{μ ≥ 0 | μ2 = 1}.

However, the geometric multiplier of minimum norm, μ∗ = (0, 1), is not a direction
of steepest descent, since starting at u = 0 and going along the direction (0, 1), p(u)
is equal to 0, so

p′(0;μ∗) = 0.

In fact p has no direction of steepest descent at u = 0, because p′(0; ·) is not continuous.
To see this, note that directions of descent d = (d1, d2) are those for which d1 > 0
and d2 > 0, and that along any such direction, we have

p′(0; d) = −d2.

It follows that

inf
‖d‖=1

p′(0; d) = −1 = −‖μ∗‖,

but there is no direction of descent that attains the infimum above. On the other
hand, there are sequences {uk} ⊂ dom(p) and {xk} ⊂ X of infeasible points (in fact,
the sequences uk = xk = (1/k2, 1/k)) such that

lim
k→∞

p(0) − p(uk)

‖uk+‖
= lim

k→∞

f∗ − f(xk)

‖g+(xk)‖ = ‖μ∗‖ = 1,

where we denote

u+
j = max{0, uj}, u+ = (u+

1 , . . . , u
+
r )′, g+

j (x) = max
{
0, gj(x)

}
,

g+(x) = (g+
1 (x), . . . , g+

r (x))′.
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Thus, the minimum norm of geometric multipliers can still be interpreted as the
optimal rate of improvement of the cost per unit constraint violation. However, this
rate of improvement cannot be obtained by approaching 0 along a straight line but
only by approaching it along a curve.

In this paper, we derive more powerful versions of the Fritz John conditions,
which provide sensitivity information, like the one discussed above. In particular,
in addition to conditions (i)–(iii) above, we obtain an additional necessary condition
(e.g., condition (CV) of Proposition 2 in the next section) that narrows down the set
of candidates for optimality. Furthermore, our conditions also apply in the excep-
tional case where the set of geometric multipliers is empty. In this case, we will show
that a certain degenerate FJ-multiplier, i.e., one of the form (0, μ∗) with μ∗ 	= 0 and
0 = infx∈X μ∗′g(x), provides sensitivity information analogous to that provided by
the minimum-norm geometric multiplier. In particular, there exists an FJ-multiplier
(0, μ∗) such that, by relaxing the inequality constraints at rates proportional to the
components of μ∗/‖μ∗‖, we can strictly improve the primal optimal value. Further-
more, ‖μ∗‖ is the optimal rate of improvement per unit constraint violation. In the
case where there is a duality gap, we also prove dual versions of these results, involv-
ing the dual optimal value, and dual FJ-multipliers. To our knowledge, except for a
preliminary version of our work that appeared in the book [BNO03], these are the first
results that provide enhanced, sensitivity-related Fritz John conditions for convex pro-
gramming and also derive the optimal sensitivity rate under very general assumptions,
i.e., without any constraint qualification and even in the presence of a duality gap.

This paper is organized as follows. In section 2, we present enhanced Fritz John
conditions for convex problems that have optimal solutions. In section 3, we present
analogous results for convex problems that have dual optimal solutions. In particular,
we show that the dual optimal solution of minimum norm provides useful sensitivity
information, even in the presence of a duality gap. We also introduce the notion of
pseudonormality, and we discuss its connections to classical constraint qualifications.
In section 4, we present Fritz John conditions for problems that may not have optimal
solutions. In section 5, we prove dual versions of these conditions involving the dual
optimal value.

2. Enhanced Fritz John conditions. The existence of FJ-multipliers is often
used as the starting point for the analysis of the existence of geometric multipliers.
Unfortunately, these conditions in their classical form are not sufficient to deduce the
existence of geometric multipliers under some of the standard constraint qualifications,
such as when X = �n and the constraint functions gj are affine. Recently, the classical
Fritz John conditions have been enhanced through the addition of an extra necessary
condition, and their effectiveness has been significantly improved (see Hestenes [Hes75,
Theorem 10.5 on page 242] for the case X = �n, Bertsekas [Ber99, Proposition
3.3.11] for the case where X is a closed convex set, and Bertsekas and Ozdaglar
[BeO02] for the case where X is a closed set). All of these results assume that an
optimal solution exists and that the cost and the constraint functions are smooth
(but possibly nonconvex). In this section, we retain the assumption of existence of an
optimal solution, and instead of smoothness we assume the following.

Assumption 1 (closedness). The functions f and g1, . . . , gr are closed.
We note that f and g1, . . . , gr are closed if and only if they are lower semicontin-

uous on X, i.e., for each x̄ ∈ X, we have

f(x̄) ≤ lim inf
x∈X, x→x̄

f(x), gj(x̄) ≤ lim inf
x∈X, x→x̄

gj(x), j = 1, . . . , r
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(see, e.g., [BNO03, Proposition 1.2.2]). Under the preceding assumption, we prove
the following version of the enhanced Fritz John conditions. Because we assume that
f and g1, . . . , gr are convex over X rather than over �n, the lines of proof from the
preceding references (based on the use of gradients or subgradients) break down. We
use a different line of proof, which is based instead on minimax arguments. The proof
also uses the following lemma.

Lemma 1. Consider the convex problem (P) and assume that −∞ < q∗. If μ∗ is
a dual optimal solution, then

q∗ − f(x)

‖g+(x)‖ ≤ ‖μ∗‖ ∀ x ∈ X that are infeasible.

Proof. For any x ∈ X that is infeasible, we have from the definition of the dual
function that

q∗ = q(μ∗) ≤ f(x) + μ∗′
g(x) ≤ f(x) + μ∗′

g+(x) ≤ f(x) + ‖μ∗‖‖g+(x)‖.

Note that the preceding lemma shows that the minimum distance to the set
of dual optimal solutions is an upper bound for the cost improvement/constraint
violation ratio

(
q∗ − f(x)

)
/‖g+(x)‖. The next proposition shows that, under certain

assumptions including the absence of a duality gap, this upper bound is sharp and is
asymptotically attained by an appropriate sequence {xk} ⊂ X. The same fact will
also be shown in section 3, but under considerably more general assumptions (see
Proposition 7).

Proposition 2. Consider the convex problem (P) under Assumption 1 (closed-
ness), and assume that x∗ is an optimal solution. Then there exists an FJ-multiplier
(μ∗

0, μ
∗) satisfying the following condition (CV). Moreover, if μ∗

0 	= 0, then μ∗/μ∗
0

must be the geometric multiplier of minimum norm.
(CV) If μ∗ 	= 0, then there exists a sequence {xk} ⊂ X of infeasible points that

converges to x∗ and satisfies

f(xk) → f∗, g+(xk) → 0,(2)

f∗ − f(xk)

‖g+(xk)‖ →
{
‖μ∗‖/μ∗

0 if μ∗
0 	= 0,

∞ if μ∗
0 = 0,

(3)

g+(xk)

‖g+(xk)‖ → μ∗

‖μ∗‖ .(4)

Proof. For positive integers k and m, we consider the saddle function

Lk,m(x, ξ) = f(x) +
1

k3
‖x− x∗‖2 + ξ′g(x) − 1

2m
‖ξ‖2.

We note that, for fixed ξ ≥ 0, Lk,m(x, ξ), viewed as a function from X to �, is
closed and convex because of the closedness assumption. Furthermore, for a fixed x,
Lk,m(x, ξ) is negative definite quadratic in ξ. For each k, we consider the set

Xk = X ∩
{
x | ‖x− x∗‖ ≤ k

}
.

Since f and gj are closed and convex when restricted to X, they are closed, convex,
and coercive when restricted to Xk. Thus, we can use the saddle point theorem (e.g.,
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[BNO03, Proposition 2.6.9]) to assert that Lk,m has a saddle point over x ∈ Xk and
ξ ≥ 0. This saddle point is denoted by (xk,m, ξk,m).

The infimum of Lk,m(x, ξk,m) over x ∈ Xk is attained at xk,m, implying that

f(xk,m) +
1

k3
‖xk,m − x∗‖2 + ξk,m

′
g(xk,m)

= inf
x∈Xk

{
f(x) +

1

k3
‖x− x∗‖2 + ξk,m

′
g(x)

}

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

1

k3
‖x− x∗‖2 + ξk,m

′
g(x)

}
(5)

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

1

k3
‖x− x∗‖2

}
= f(x∗).

Hence, we have

Lk,m(xk,m, ξk,m) = f(xk,m) +
1

k3
‖xk,m − x∗‖2 + ξk,m

′
g(xk,m) − 1

2m
‖ξk,m‖2

≤ f(xk,m) +
1

k3
‖xk,m − x∗‖2 + ξk,m

′
g(xk,m)(6)

≤ f(x∗).

Since Lk,m(xk,m, ξ) is quadratic in ξ, the supremum of Lk,m(xk,m, ξ) over ξ ≥ 0 is
attained at

ξk,m = mg+(xk,m).(7)

This implies that

Lk,m(xk,m, ξk,m) = f(xk,m) +
1

k3
‖xk,m − x∗‖2 +

m

2
‖g+(xk,m)‖2

≥ f(xk,m) +
1

k3
‖xk,m − x∗‖2(8)

≥ f(xk,m).

From (6) and (8), we see that the sequence {xk,m}, with k fixed, belongs to the
set

{
x ∈ Xk | f(x) ≤ f(x∗)

}
, which is compact. Hence, {xk,m} has a cluster point

(as m → ∞), denoted by xk, which belongs to
{
x ∈ Xk | f(x) ≤ f(x∗)

}
. By passing

to a subsequence if necessary, we can assume without loss of generality that {xk,m}
converges to xk as m → ∞. For each k, the sequence

{
f(xk,m)

}
is bounded from

below by infx∈Xk f(x), which is finite by Weierstrass’s theorem since f is closed and
coercive when restricted to Xk. Also, for each k, Lk,m(xk,m, ξk,m) is bounded from
above by f(x∗) (cf. (6)), so the equality in (8) implies that

lim sup
m→∞

gj(x
k,m) ≤ 0 ∀ j = 1, . . . , r.

Therefore, by using the lower semicontinuity of gj , we obtain g(xk) ≤ 0, implying
that xk is a feasible solution of problem (P), so that f(xk) ≥ f(x∗). Using (6) and
(8) together with the lower semicontinuity of f , we also have

f(xk) ≤ lim inf
m→∞

f(xk,m) ≤ lim sup
m→∞

f(xk,m) ≤ f(x∗),
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thereby showing that for each k,

lim
m→∞

f(xk,m) = f(x∗).

Together with (6) and (8), this also implies that for each k,

lim
m→∞

xk,m = x∗.

Combining the preceding relations with (6) and (8), for each k, we obtain

lim
m→∞

(f(xk,m) − f(x∗) + ξk,m
′
g(xk,m)) = 0.(9)

Denote

δk,m =
√

1 + ‖ξk,m‖2, μk,m
0 =

1

δk,m
, μk,m =

ξk,m

δk,m
.(10)

Since δk,m is bounded from below by 1, by dividing (9) by δk,m, we obtain

lim
m→∞

(μk,m
0 f(xk,m) − μk,m

0 f(x∗) + μk,m′
g(xk,m)) = 0.

By the preceding relations, for each k we can find a sufficiently large integer mk

such that ∣∣μk,mk

0 f(xk,mk) − μk,mk

0 f(x∗) + μk,mk
′
g(xk,mk)

∣∣ ≤ 1

k
,(11)

and

‖xk,mk − x∗‖ ≤ 1

k
, |f(xk,mk) − f(x∗)| ≤ 1

k
, ‖g+(xk,mk)‖ ≤ 1

k
.(12)

Dividing both sides of the first relation in (5) by δk,mk , we obtain

μk,mk

0 f(xk,mk) +
1

k3δk,mk
‖xk,mk − x∗‖2 + μk,mk

′
g(xk,mk)

≤ μk,mk

0 f(x) + μk,mk
′
g(x) +

1

kδk,mk
∀ x ∈ Xk,

where we also use the fact that ‖x−x∗‖ ≤ k for all x ∈ Xk (see the definition of Xk).

Since the sequence {(μk,mk

0 , μk,mk)} is bounded, it has a cluster point, denoted by
(μ∗

0, μ
∗), which satisfies conditions (ii) and (iii) in the definition of an FJ-multiplier.

For any x ∈ X, we have x ∈ Xk for all k sufficiently large. Without loss of generality,
we will assume that the entire sequence {(μk,mk

0 , μk,mk)} converges to (μ∗
0, μ

∗). Taking
the limit as k → ∞, and using (11), we obtain

μ∗
0f(x∗) ≤ μ∗

0f(x) + μ∗′g(x) ∀ x ∈ X.

Since μ∗ ≥ 0, this implies that

μ∗
0f(x∗) ≤ inf

x∈X

{
μ∗

0f(x) + μ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

{
μ∗

0f(x) + μ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

μ∗
0f(x)

= μ∗
0f(x∗).
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Thus we have

μ∗
0f(x∗) = inf

x∈X

{
μ∗

0f(x) + μ∗′g(x)
}
,

so that (μ∗
0, μ

∗) also satisfies condition (i) in the definition of an FJ-multiplier.
If μ∗ = 0, then μ∗

0 	= 0, (CV) is automatically satisfied, and μ∗/μ∗
0 = 0 has

minimum norm. Moreover, condition (i) yields f∗ = infx∈X f(x), so that (CV) (in
particular, (3)) is satisfied by only μ∗ = 0.

Assume now that μ∗ 	= 0, so that the index set J = {j 	= 0 | μ∗
j > 0} is nonempty.

Then, for sufficiently large k, we have ξk,mk

j > 0 and hence gj(x
k,mk) > 0 for all

j ∈ J . Thus, for each k, we can choose the index mk to further satisfy xk,mk 	= x∗, in
addition to (11) and (12). Using (7), (10), and the fact that μk,mk → μ∗, we obtain

g+(xk,mk)

‖g+(xk,mk)‖ =
μk,mk

‖μk,mk‖ → μ∗

‖μ∗‖ .

Using also (6) and f(x∗) = f∗, we have that

f∗ − f(xk,mk)

‖g+(xk,mk)‖ ≥ ξk,mk
′
g(xk,mk)

‖g+(xk,mk)‖ = ‖ξk,mk‖ =
‖μk,mk‖
μk,mk

0

.(13)

If μ∗
0 = 0, then μk,mk

0 → 0, so (13) together with ‖μk,mk‖ → ‖μ∗‖ > 0 yields

f∗ − f(xk,mk)

‖g+(xk,mk)‖ → ∞.

If μ∗
0 	= 0, then (13) together with μk,mk

0 → μ∗
0 and ‖μk,mk‖ → ‖μ∗‖ yields

lim inf
k→∞

f∗ − f(xk,mk)

‖g+(xk,mk)‖ ≥ ‖μ∗‖
μ∗

0

.

Since μ∗/μ∗
0 is a geometric multiplier and f∗ = q∗, Lemma 1 implies that in fact

μ∗/μ∗
0 is of minimum norm and the inequality holds with equality. From (12),

we have f(xk,mk) → f(x∗), g+(xk,mk) → 0, and xk,mk → x∗. Hence, the se-
quence {xk,mk} also satisfies conditions (4)–(5) of the proposition, concluding the
proof.

Note that (4) implies that, for all k sufficiently large,

gj(x
k) > 0 ∀ j ∈ J g+

j (xk) = o

(
min
j∈J

g+
j (xk)

)
∀ j /∈ J,

where J = {j 	= 0 | μ∗
j > 0}. Thus, the (CV) condition (complementarity violation) in

Proposition 2 refines that used in [BNO03, section 5.7] by also estimating the rate of
cost improvement. As an illustration of Proposition 2, consider the two-dimensional
example of Duffin:

minimize x2

subject to x = (x1, x2)
′ ∈ �2, ‖x‖ − x1 ≤ 0.

Here f∗ = 0, and x∗ = (x∗
1, 0) is an optimal solution for any x∗

1 ≥ 0. Also, q(μ) = −∞
for all μ ≥ 0, so q∗ = −∞ and there is a duality gap. It can be seen that μ∗

0 = 0,
μ∗ = 1 form an FJ-multiplier and, together with xk = (x∗

1,−1/k)′, satisfy condition
(CV).
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Lk,m(xk,m, ξk,m)

0 u

pk(u)

uk,m = g(xk,m)

slope = - ξk,m

  - m/2 ||u+||2 + Lk,m(xk,m, ξk,m)

Fig. 1. Illustration of the saddle point of the function Lk,m(x, ξ) over x ∈ Xk and ξ ≥ 0 in

terms of the function pk(u), which is the optimal value of problem (14) as a function of u.

The proof of Proposition 2 can be explained in terms of the construction shown
in Figure 1. Consider the function Lk,m introduced in the proof,

Lk,m(x, ξ) = f(x) +
1

k3
‖x− x∗‖2 + ξ′g(x) − 1

2m
‖ξ‖2.

Note that the term (1/k3)‖x− x∗‖2 ensures that x∗ is a strict local minimum of the
function f(x) + (1/k3)‖x− x∗‖2. To simplify the following discussion, let us assume
that f is strictly convex, so that this term can be omitted from the definition of Lk,m.
This assumption is satisfied by the above example if its cost function is changed to
ex, for which f∗ = 1 and q∗ = 0.

For any nonnegative vector u ∈ �r, let pk(u) denote the optimal value of the
problem

minimize f(x)
subject to g(x) ≤ u,

x ∈ Xk = X ∩
{
x
∣∣ ‖x− x∗‖ ≤ k

}
.

(14)

For each k and m, the saddle point of the function Lk,m(x, ξ), denoted by (xk,m, ξk,m),
can be characterized in terms of pk(u) as follows.

The maximization of Lk,m(x, ξ) over ξ ≥ 0 for any fixed x ∈ Xk yields

ξ = mg+(x),(15)

so that we have

Lk,m(xk,m, ξk,m) = inf
x∈Xk

sup
ξ≥0

{
f(x) + ξ′g(x) − 1

2m
‖ξ‖2

}

= inf
x∈Xk

{
f(x) +

m

2
‖g+(x)‖2

}
.
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This minimization can also be written as

Lk,m(xk,m, ξk,m) = inf
x∈Xk

inf
u∈�r, g(x)≤u

{
f(x) +

m

2
‖u+‖2

}

= inf
u∈�r

inf
x∈Xk, g(x)≤u

{
f(x) +

m

2
‖u+‖2

}
(16)

= inf
u∈�r

{
pk(u) +

m

2
‖u+‖2

}
.

The vector uk,m = g(xk,m) attains the infimum in the preceding relation. This mini-
mization can be visualized geometrically as in Figure 1. The point of contact of the
graphs of the functions pk(u) and Lk,m(xk,m, ξk,m)− (m/2)‖u+‖2 corresponds to the
vector uk,m that attains the infimum in (16). A similar compactification-regularization
technique is used in [Roc93, section 9].

We can also interpret ξk,m in terms of the function pk. In particular, the infimum
of Lk,m(x, ξk,m) over x ∈ Xk is attained at xk,m, implying that

f(xk,m) + ξk,m
′
g(xk,m) = inf

x∈Xk

{
f(x) + ξk,m

′
g(x)

}
= inf

u∈�r

{
pk(u) + ξk,m

′
u
}
.

Replacing g(xk,m) by uk,m in the preceding relation, and using the fact that xk,m is
feasible for problem (14) with u = uk,m, we obtain

pk(uk,m) ≤ f(xk,m) = inf
u∈�r

{
pk(u) + ξk,m

′
(u− uk,m)

}
.

Thus, we see that

pk(uk,m) ≤ pk(u) + ξk,m
′
(u− uk,m) ∀ u ∈ �r,

which, by the definition of the subgradient of a convex function, implies that

−ξk,m ∈ ∂pk(uk,m)

(cf. Figure 1). It can be seen from this interpretation that the limit of Lk,m(xk,m, ξk,m)
as m → ∞ is equal to pk(0), which is equal to f(x∗) for each k. The limit of the
normalized sequence {

(1, ξk,mk)√
1 + ‖ξk,mk‖2

}

as k → ∞ yields the FJ-multiplier (μ∗
0, μ

∗), and the sequence {xk,mk} is used to
construct the sequence that satisfies condition (CV) of the proposition.

3. Minimum-norm dual optimal solutions. In the preceding section we fo-
cused on the case where a primal optimal solution exists and we showed that the
geometric multiplier of minimum norm is informative. Notice that a geometric mul-
tiplier is automatically a dual optimal solution. When there is a duality gap, there
exists no geometric multiplier, even if there is a dual optimal solution. In this section
we focus on the case where a dual optimal solution exists and we will see that, anal-
ogously, the dual optimal solution of minimum norm is informative. In particular,
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it satisfies a condition analogous to condition (CV), with primal optimal value f∗

replaced by q∗. Consistent with our analysis in section 2, we call such a dual optimal
solution informative [BNO03, section 6.6.2] since it indicates the constraints to relax
and the rate of relaxation in order to obtain a primal cost reduction by an amount
that is strictly greater than the size of the duality gap f∗ − q∗.

We begin with the following proposition on the existence of an FJ-multiplier,
which requires no additional assumptions on (P). It will be used to prove Lemma 4.
This proposition is a direct extension of a well-known result [Lue79, page 217] and its
proof may be found in [BNO03, Proposition 6.6.1]. A similar result is given in [Hes75,
page 326], assuming (P) has an optimal solution.

Proposition 3 (Fritz John conditions). Consider the convex problem (P), and
assume that f∗ < ∞. Then there exists an FJ-multiplier (μ∗

0, μ
∗).

If the scalar μ∗
0 in the preceding proposition can be proved to be positive, then

μ∗/μ∗
0 is a geometric multiplier for problem (P). This can be used to show the existence

of a geometric multiplier in the case where the Slater condition [Sla50] holds; i.e., there
exists a vector x ∈ X such that g(x) < 0. Indeed, in this case the scalar μ∗

0 cannot
be 0, since if it were, then according to the proposition, we would have

0 = inf
x∈X

μ∗′g(x)

for some vector μ∗ ≥ 0 with μ∗ 	= 0, while for this vector, we would also have
μ∗′g(x) < 0, which is a contradiction.

Using Proposition 3, we have the following lemma which will be used to prove
the next proposition, as well as Proposition 12 in the next section.

Lemma 4. Consider the convex problem (P), and assume that f∗ < ∞. For each
δ > 0, let

fδ = inf
x∈X

gj(x)≤δ, j=1,... ,r,

f(x).(17)

Then the dual optimal value q∗ satisfies fδ ≤ q∗ for all δ > 0 and

q∗ = lim
δ↓0

fδ.

Proof. We first note that either limδ↓0 f
δ exists and is finite, or else limδ↓0 f

δ =
−∞, since fδ is monotonically nondecreasing as δ ↓ 0, and fδ ≤ f∗ for all δ > 0.
Since f∗ < ∞, there exists some x ∈ X such that g(x) ≤ 0. Thus, for each δ > 0 such
that fδ > −∞, the Slater condition is satisfied for problem (17), and by Proposition
3 and the subsequent discussion, there exists a μδ ≥ 0 satisfying

fδ = inf
x∈X

{
f(x) + μδ′g(x) − δ

r∑
j=1

μδ
j

}

≤ inf
x∈X

{
f(x) + μδ′g(x)

}
= q(μδ)

≤ q∗.

For each δ > 0 such that fδ = −∞, we also have fδ ≤ q∗, so that

fδ ≤ q∗ ∀ δ > 0.
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By taking the limit as δ ↓ 0, we obtain

lim
δ↓0

fδ ≤ q∗.

To show the reverse inequality, we consider two cases: (1) fδ > −∞ for all δ > 0
that are sufficiently small, and (2) fδ = −∞ for all δ > 0. In case (1), for each δ > 0
with fδ > −∞, choose xδ ∈ X such that gj(x

δ) ≤ δ for all j and f(xδ) ≤ fδ + δ.
Then, for any μ ≥ 0,

q(μ) = inf
x∈X

{
f(x) + μ′g(x)

}
≤ f(xδ) + μ′g(xδ) ≤ fδ + δ + δ

r∑
j=1

μj .

Taking the limit as δ ↓ 0, we obtain

q(μ) ≤ lim
δ↓0

fδ,

so that q∗ ≤ limδ↓0 f
δ. In case (2), choose xδ ∈ X such that gj(x

δ) ≤ δ for all j and
f(xδ) ≤ −1/δ. Then, similarly, for any μ ≥ 0, we have

q(μ) ≤ f(xδ) + μ′g(xδ) ≤ −1

δ
+ δ

r∑
j=1

μj ,

so by taking δ ↓ 0, we obtain q(μ) = −∞ for all μ ≥ 0, and hence also q∗ = −∞ =
lim↓0 f

δ.
Using Lemmas 1 and 4, we prove below the main result of this section, which

shows under very general assumptions that the minimum-norm dual optimal solution
is informative.

Proposition 5 (existence of informative dual optimal solution). Consider the
convex problem (P) under Assumption 1 (closedness), and assume that f∗ < ∞ and
−∞ < q∗. If there exists a dual optimal solution, then the dual optimal solution μ∗ of
minimum norm satisfies the following condition (dCV). Moreover, it is the only dual
optimal solution that satisfies this condition.
(dCV) If μ∗ 	= 0, then there exists a sequence {xk} ⊂ X of infeasible points that

satisfies

f(xk) → q∗, g+(xk) → 0,(18)

q∗ − f(xk)

‖g+(xk)‖ → ‖μ∗‖,(19)

g+(xk)

‖g+(xk)‖ → μ∗

‖μ∗‖ .(20)

Proof. Let μ∗ be the dual optimal solution of minimum norm. Assume that
μ∗ 	= 0. For k = 1, 2, . . . , consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 1

k4
, k = 1, . . . , r.
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By Lemma 4, for each k, the optimal value of this problem is less than or equal to q∗.
Since q∗ is finite (in view of the assumptions −∞ < q∗ and f∗ < ∞, and the weak
duality relation q∗ ≤ f∗), we may select for each k a vector x̃k ∈ X that satisfies

f(x̃k) ≤ q∗ +
1

k2
, gj(x̃

k) ≤ 1

k4
, j = 1, . . . , r.

Consider also the problem

minimize f(x)

subject to gj(x) ≤ 1

k4
, j = 1, . . . , r,

x ∈ X̃k = X ∩
{
x
∣∣∣ ‖x‖ ≤ k

(
max1≤i≤k ‖x̃i‖ + 1

)}
.

By the closedness assumption, f and gj are closed and convex when restricted to X,

so they are closed, convex, and coercive when restricted to X̃k. Thus, the problem
has an optimal solution, which we denote by xk. Note that, since x̃k belongs to the
feasible solution set of this problem, we have

f(xk) ≤ f(x̃k) ≤ q∗ +
1

k2
.(21)

For each k, we consider the saddle function

Lk(x, μ) = f(x) + μ′g(x) − ‖μ‖2

2k

and the set

Xk = X̃k ∩
{
x | gj(x) ≤ k, j = 1, . . . , r

}
.

We note that Lk(x, μ), for fixed μ ≥ 0, is closed, convex, and coercive in x, when
restricted to Xk, and negative definite quadratic in μ for fixed x. Hence, using the
saddle point theorem (e.g., [BNO03, Proposition 2.6.9]), we can assert that Lk has a
saddle point over x ∈ Xk and μ ≥ 0, denoted by (xk, μk).

Since Lk is quadratic in μ, the supremum of Lk(x
k, μ) over μ ≥ 0 is attained at

μk = kg+(xk).(22)

Similarly, the infimum in infx∈Xk Lk(x, μ
k) is attained at xk, implying that

f(xk) + μk′
g(xk) = inf

x∈Xk

{
f(x) + μk′

g(x)
}

= inf
x∈Xk

{
f(x) + kg+(xk)′g(x)

}
≤ inf

x∈Xk, gj(x)≤ 1
k4 , j=1,... ,r,

{
f(x) + k

r∑
j=1

g+
j (xk)′gj(x)

}

≤ inf
x∈Xk, gj(x)≤ 1

k4 , j=1,... ,r,

{
f(x) +

r

k2

}
= f(xk) +

r

k2

≤ q∗ +
r + 1

k2
,

(23)
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where the second inequality holds in view of the fact that xk ∈ Xk, implying that
g+
j (xk) ≤ k, j = 1, . . . , r, and the third inequality follows from (21).

We also have

Lk(x
k, μk) = sup

μ≥0
inf

x∈Xk
Lk(x, μ)

≥ sup
μ≥0

inf
x∈X

Lk(x, μ)

= sup
μ≥0

{
inf
x∈X

{
f(x) + μ′g(x)

}
− ‖μ‖2

2k

}

= sup
μ≥0

{
q(μ) − ‖μ‖2

2k

}

≥ q(μ∗) − ‖μ∗‖2

2k

= q∗ − ‖μ∗‖2

2k
,

(24)

where we recall that μ∗ is the dual optimal solution with minimum norm.
Combining (24) and (23), we obtain

q∗ − 1

2k
‖μ∗‖2 ≤ Lk(x

k, μk)

= f(xk) + μk′
g(xk) − 1

2k
‖μk‖2(25)

≤ q∗ +
r + 1

k2
− 1

2k
‖μk‖2.

This relation shows that ‖μk‖2 ≤ ‖μ∗‖2+2(r+1)/k, so the sequence {μk} is bounded.
Let μ be a cluster point of {μk}. Without loss of generality, we assume that the entire
sequence {μk} converges to μ. We also have from (25) that

lim
k→∞

{
f(xk) + μk′

g(xk)
}

= q∗.

Hence, taking the limit as k → ∞ in (23) yields

q∗ ≤ inf
x∈X

{
f(x) + μ′g(x)

}
= q(μ) ≤ q∗.

Hence μ is a dual optimal solution, and since ‖μ‖ ≤ ‖μ∗‖ (which follows by taking
the limit in (25)), by using the minimum norm property of μ∗, we conclude that any
cluster point μ of μk must be equal to μ∗. Thus μk → μ∗, and using (25), we obtain

lim
k→∞

k
(
Lk(x

k, μk) − q∗
)

= −1

2
‖μ∗‖2.(26)

Using (22), it follows that

Lk(x
k, μk) = sup

μ≥0
Lk(x

k, μ) = f(xk) +
1

2k
‖μk‖2,

which combined with (26) yields

lim
k→∞

k
(
f(xk) − q∗

)
= −‖μ∗‖2,
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implying that f(xk) < q∗ for all sufficiently large k, since μ∗ 	= 0. Since μk → μ∗,
(22) also implies that

lim
k→∞

kg+(xk) = μ∗.

It follows that the sequence {xk} satisfies (18), (19), and (20). Moreover, Lemma 1
shows that {xk} satisfies (19) only when μ∗ is the dual optimal solution of minimum
norm. This completes the proof.

Our next result of this section shows that Assumption 1 in Proposition 5 can in
fact be relaxed. We denote by f the closure of f , i.e., the function whose epigraph
is the closure of f . Similarly, for each j, we denote by gj the closure of gj . A key
fact we use is that replacing f and gj by their closures does not affect the closure of
the primal function, and hence also the dual function. This is based on the following
lemma on the closedness of functions generated by partial minimization.

Lemma 6. Consider a function F : �n+r �→ (−∞,∞] and the function p : �n �→
[−∞,∞] defined by

p(u) = inf
x∈�n

F (x, u).

Then the following hold:
(a)

P (epi(F )) ⊂ epi(p) ⊂ cl(P (epi(F ))),(27)

P (cl(epi(F ))) ⊂ cl(epi(p)),(28)

where P (·) denotes projection on the space of (u,w), i.e., P (x, u, w) = (u,w).
(b) If F is the closure of F and p is defined by

p(u) = inf
x∈�n

F (x, u),

then the closures of p and p coincide.
Proof. (a) The left-hand side of (27) follows from the definition

epi(p) =

{
(u,w)

∣∣∣ inf
x∈�n

F (x, u) ≤ w

}
.

To show the right-hand side of (27), note that for any (u,w) ∈ epi(p) and every integer
k ≥ 1, there exists an xk such that (xk, u, w + 1/k) ∈ epi(F ), so that (u,w + 1/k) ∈
P (epi(F )) and (u,w) ∈ cl(P (epi(F ))).

To show (28), let (u,w) belong to P (cl(epi(F ))). Then there exists x such
that (x, u, w) ∈ cl

(
epi(F )

)
, and hence there is a sequence (xk, uk, wk) ∈ epi(F )

such that xk → x, uk → u, and wk → w. Thus we have p(uk) ≤ F (xk, uk) ≤ wk,
implying that (uk, wk) ∈ epi(p) for all k. It follows that (u,w) ∈ cl

(
epi(p)

)
.

(b) By taking closure in (27), we see that

cl(epi(p)) = cl(P (epi(F ))),(29)

and by replacing F with F , we also have

cl(epi(p)) = cl(P (epi(F ))).(30)
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On the other hand, by taking closure in (28), we have

cl(P (epi(F ))) ⊂ cl(P (epi(F ))),

which implies that

cl(P (epi(F ))) = cl(P (epi(F ))).(31)

By combining (29)–(31), we see that

cl
(
epi(p)

)
= cl

(
epi(p)

)
.

Using Lemmas 1 and 6, we now prove the next main result of this section.
Proposition 7 (relaxing closedness assumption in Proposition 5). Consider the

convex problem (P), and assume that f∗ < ∞, −∞ < q∗, and dom(f) = dom(gj),
j = 1, . . . , r. If μ∗ is the dual optimal solution of minimum norm, then it satisfies
condition (dCV) of Proposition 5. Moreover, it is the only dual optimal solution that
satisfies this condition.

Proof. We apply Lemma 6 to the primal function p(u), which is defined by partial
minimization over x ∈ �n of the extended real-valued function

F (x, u) =

{
f(x) if x ∈ X, g(x) ≤ u,

∞ otherwise.

Note that the closure of F is

F (x, u) =

{
f(x) if x ∈ X, g(x) ≤ u,

∞ otherwise,

where g = (g1, . . . , gr)
′ and X = dom(f) = dom(gj), j = 1, . . . , r.2 Thus, by Lemma

6, replacing X, f , and g with X, f , and g does not change the closure of the primal
function, and therefore does not change the dual function.

Assume μ∗ 	= 0. By Proposition 5, there exists a sequence {xk} ⊂ X of infeasible
points that satisfies

q∗ − f(xk)

‖g+(xk)‖ → ‖μ∗‖, g+(xk)

‖g+(xk)‖ → μ∗

‖μ∗‖ , ‖g+(xk)‖ → 0.

We will now perturb the sequence {xk} so that it lies in ri(X), while it still satisfies
the preceding relations. Indeed, fix any x ∈ ri(X). For each k, we can choose a
sufficiently small ε ∈ (0, 1) such that f(εx + (1 − ε)xk) and ‖g+(εx + (1 − ε)xk)‖
are arbitrarily close to f(xk) and ‖g+(xk)‖, respectively. This is possible because f ,

2Why? By definition of the closure of F , F (x, u) = lim inf(xk,uk)→(x,u) F (xk, uk). Suppose

F (x, u) < ∞. Then there exist xk ∈ X and uk such that (xk, uk) → (x, u), f(xk) → F (x, u), and
g(xk) ≤ uk for all k = 1, 2, . . . . Passing to the limit yields f(x) ≤ F (x, u) and g(x) ≤ u. Conversely,
suppose f(x) < ∞ and g(x) ≤ u. Fix any x ∈ ri(X), and let xε = (1 − ε)x + εx, uε = (1 − ε)u + εu,
where u = g(x). Then xε ∈ ri(X) = ri(X) and g(xε) ≤ uε for ε ∈ (0, 1). Since f coincides with f on
ri(X) and f is continuous along any line segment in X, this implies

lim
ε→0

f(xε) = lim
ε→0

f(xε) = f(x).

Thus limε→0 F (xε, uε) = f(x), implying F (x, u) ≤ f(x).
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g1, . . . , gr are closed and hence continuous along the line segment that connects xk

and x. Thus, for each k, we can choose εk ∈ (0, 1) so that the corresponding vector
xk = εkx + (1 − εk)x

k satisfies∣∣∣∣∣q
∗ − f(xk)

‖g+(xk)‖ − q∗ − f(xk)

‖g+(xk)‖

∣∣∣∣∣ ≤ 1

k
,

∣∣∣∣∣ g+(xk)

‖g+(xk)‖ −
g+(xk)

‖g+(xk)‖

∣∣∣∣∣ ≤ 1

k
, ‖g+(xk)‖ → 0.

Since x lies in ri(X) = ri(X), every point in the open line segment that connects xk

and x, including xk, lies in ri(X), so that f(xk) = f(xk) and g(xk) = g(xk). We thus
obtain a sequence {xk} in the relative interior of X satisfying

q∗ − f(xk)

‖g+(xk)‖
→ ‖μ∗‖, g+(xk)

‖g+(xk)‖
→ μ∗

‖μ∗‖ , ‖g+(xk)‖ → 0.

The first and the third relations imply f(xk) → q∗. Thus μ∗ satisfies condition (dCV)
of Proposition 5. By Lemma 1, μ∗ is the only dual optimal solution that satisfies this
condition.

3.1. Fritz John conditions and constraint qualifications. We close this
section by discussing the connection of the Fritz John conditions with classical con-
straint qualifications that guarantee the existence of a geometric multiplier (and hence
also the existence of a dual optimal solution, which makes the analysis of the present
section applicable). As mentioned earlier in this section, the classical Fritz John con-
ditions of Proposition 3 can be used to assert the existence of a geometric multiplier
when the Slater condition holds. However, Proposition 3 is insufficient to show that a
geometric multiplier exists in the case of affine constraints. The following proposition
strengthens the Fritz John conditions for this case, so that they suffice for the proof
of the corresponding existence result. In contrast to the Kuhn–Tucker theory [Hes75],
[Roc70], this does not assume (P) has an optimal solution.

Proposition 8 (Fritz John conditions for affine constraints). Consider the con-
vex problem (P), and assume that the functions g1, . . . , gr are affine, and f∗ < ∞.
Then there exists an FJ-multiplier (μ∗

0, μ
∗) satisfying the following condition:

(CV′) If μ∗ 	= 0, then there exists a vector x̃ ∈ X satisfying

f(x̃) < f∗, μ∗′
g(x̃) > 0.

Proof. If infx∈X f(x) = f∗, then μ∗
0 = 1 and μ∗ = 0 form an FJ-multiplier, and

condition (CV′) is automatically satisfied. We will thus assume that infx∈X f(x) < f∗,
which also implies that f∗ is finite.

Let the affine constraint function be represented as

g(x) = Ax− b

for some real matrix A and vector b. Consider the nonempty convex sets

C1 =
{
(x,w) | there is a vector x ∈ X such that f(x) < w

}
,

C2 =
{
(x, f∗) | Ax− b ≤ 0

}
.

Note that C1 and C2 are disjoint. The reason is that if (x, f∗) ∈ C1 ∩ C2, then we
must have x ∈ X, Ax − b ≤ 0, and f(x) < f∗, contradicting the fact that f∗ is the
optimal value of the problem.
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Since C2 is polyhedral, by the polyhedral proper separation theorem (see [Roc70,
Theorem 20.2] or [BNO03, Proposition 3.5.1]), there exists a hyperplane that separates
C1 and C2 and does not contain C1, i.e., there exists a vector (ξ, μ∗

0) such that

μ∗
0f

∗ + ξ′z ≤ μ∗
0w + ξ′x ∀ x ∈ X,w, z with f(x) < w, Az − b ≤ 0,(32)

inf
(x,w)∈C1

{μ∗
0w + ξ′x} < sup

(x,w)∈C1

{μ∗
0w + ξ′x}.

These relations imply that

μ∗
0f

∗ + sup
Az−b≤0

ξ′z ≤ inf
(x,w)∈C1

{μ∗
0w + ξ′x} < sup

(x,w)∈C1

{μ∗
0w + ξ′x},(33)

and that μ∗
0 ≥ 0 (since w can be taken arbitrarily large in (32)).

Consider the linear program in (33):

maximize ξ′z
subject to Az − b ≤ 0.

By (33), this program is bounded and therefore it has an optimal solution, which we
denote by z∗. The dual of this program is

minimize b′μ
subject to ξ = A′μ, μ ≥ 0.

By linear programming duality, it follows that this problem has a dual optimal solution
μ∗ ≥ 0 satisfying

sup
Az−b≤0

ξ′z = ξ′z∗ = μ∗′
b, ξ = A′μ∗.(34)

Note that μ∗
0 and μ∗ satisfy the nonnegativity condition (ii). Furthermore, we cannot

have both μ∗
0 = 0 and μ∗ = 0, since then by (34) we would also have ξ = 0, and (33)

would be violated. Thus, μ∗
0 and μ∗ also satisfy condition (iii) in the definition of an

FJ-multiplier.
From (33), we have

μ∗
0f

∗ + sup
Az−b≤0

ξ′z ≤ μ∗
0w + ξ′x ∀ x ∈ X with f(x) < w,

which together with (34) implies that

μ∗
0f

∗ + μ∗′
b ≤ μ∗

0w + μ∗′
Ax ∀ x ∈ X with f(x) < w,

or

μ∗
0f

∗ ≤ inf
x∈X, f(x)<w

{
μ∗

0w + μ∗′
(Ax− b)

}
.(35)

Similarly, from (33) and (34), we have

μ∗
0f

∗ < sup
x∈X, f(x)<w

{
μ∗

0w + μ∗′
(Ax− b)

}
.(36)
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Using (35), we obtain

μ∗
0f

∗ ≤ inf
x∈X

{μ∗
0f(x) + μ∗′

(Ax− b)}

≤ inf
x∈X,Ax−b≤0

{μ∗
0f(x) + μ∗′

(Ax− b)}

≤ inf
x∈X,Ax−b≤0

μ∗
0f(x)

= μ∗
0f

∗.

Hence, equality holds throughout above, which proves condition (i) in the definition
of an FJ-multiplier.

We will now show that the vector μ∗ also satisfies condition (CV′). To this end,
we consider separately the cases where μ∗

0 > 0 and μ∗
0 = 0.

If μ∗
0 > 0, let x̃ ∈ X be such that f(x̃) < f∗ (based on our earlier assumption

that infx∈X f(x) < f∗). Then condition (i) yields

μ∗
0f

∗ ≤ μ∗
0f(x̃) + μ∗′(Ax̃− b),

implying that 0 < μ∗
0(f

∗ − f(x̃)) ≤ μ∗′(Ax̃− b), and showing condition (CV′).
If μ∗

0 = 0, condition (i) together with (36) yields

0 = inf
x∈X

μ∗′(Ax− b) < sup
x∈X

μ∗′(Ax− b).(37)

The above relation implies the existence of a vector x̂ ∈ X such that μ∗′
(Ax̂− b) > 0.

Let x ∈ X be such that f(x) < f∗, and consider a vector of the form

x̃ = αx̂ + (1 − α)x,

where α ∈ (0, 1). Note that x̃ ∈ X for all α ∈ (0, 1), since X is convex. From (37),
we have μ∗′(Ax− b) ≥ 0 which combined with the inequality μ∗′

(Ax̂− b) > 0 implies
that

μ∗′(Ax̃− b) = αμ∗′(Ax̂− b) + (1 − α)μ∗′(Ax− b) > 0 ∀ α ∈ (0, 1).(38)

Furthermore, since f is convex, we have

f(x̃) ≤ αf(x̂) + (1 − α)f(x) = f∗ +
(
f(x) − f∗) + α

(
f(x̂) − f(x)

)
∀ α ∈ (0, 1).

Thus, for α small enough so that α
(
f(x̂) − f(x)

)
< f∗ − f(x), we have f(x̃) < f∗ as

well as μ∗′(Ax̃− b) > 0 (cf. (38)).
We now introduce the following constraint qualification, which is analogous to

one introduced for nonconvex problems by Bertsekas and Ozdaglar [BeO02].
Definition 9. The constraint set of the convex problem (P) is said to be pseudo-

normal if there does not exist a vector μ ≥ 0 and a vector x̃ ∈ X satisfying the
following conditions:

(i) 0 = infx∈X μ′g(x).
(ii) μ′g(x̃) > 0.
To provide a geometric interpretation of pseudonormality, let us introduce the set

G =
{
g(x) | x ∈ X

}
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G = {g(x) | x ∈ X}

0

μ

 Not Pseudonormal

Pseudonormal (Slater Condition)

G = {g(x) | x ∈ X}

H

μ

0

  Pseudonormal (Linear Constraints)

G = {g(x) | x ∈ X}

μ

0

X = Rn

(b) (c)

(a)

H

H

Fig. 2. Geometric multiplier interpretation of pseudonormality. Consider the set
G =

{
g(x) | x ∈ X

}
and the hyperplanes that support this set. For feasibility, G should intersect the nonpositive orthant
{z | z ≤ 0}. The first condition [0 = infx∈X μ′g(x)] in the definition of pseudonormality means that
there is a hyperplane H with normal μ ≥ 0, which passes through 0, supports G, and contains G in
its positive halfspace (note that, as illustrated in figure (b), this cannot happen if G intersects the
interior of the nonpositive orthant; cf. the Slater criterion). The second condition means that H
does not fully contain G (cf. figures (a) and (c)). If the Slater criterion holds, the first condition
cannot be satisfied. If the linearity criterion holds, the set G is an affine set and the second condition
cannot be satisfied (this depends critically on X being an affine set rather than X being a general
polyhedron).

and consider hyperplanes that support this set and pass through 0. As Figure 2
illustrates, pseudonormality means that there is no hyperplane with a normal μ ≥ 0
that properly separates the sets {0} and G, and contains G in its positive halfspace.

It is evident (see also Figure 2) that pseudonormality holds under the Slater
condition, i.e., if there exists an x̄ ∈ X such that g(x̄) < 0. Proposition 8 also shows
that if f∗ < ∞, the constraint functions g1, . . . , gr are affine, and the constraint
set is pseudonormal, then there exists a geometric multiplier satisfying the special
condition (CV’) of Proposition 8. As illustrated also in Figure 2, the constraint set
is pseudonormal if X is an affine set and gj , j = 1, . . . , r, are affine functions. In
conclusion, if f∗ < ∞, and either the Slater condition holds, or X and g1, . . . , gr
are affine, then the constraint set is pseudonormal, and a geometric multiplier is
guaranteed to exist . Since in this case there is no duality gap, Proposition 7 guarantees
the existence of a geometric multiplier (the one of minimum norm) that satisfies the
corresponding (CV) condition and sensitivity properties.
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Finally, consider the question of pseudonormality and existence of geometric mul-
tipliers in the case where X is the intersection of a polyhedral set and a convex set C,
and there exists a feasible solution that belongs to the relative interior of C. Then,
the constraint set need not be pseudonormal, as Figure 2(a) illustrates. However,
it is pseudonormal in the extended representation (i.e., when the affine inequalities
that represent the polyhedral part are lumped with the remaining affine inequality
constraints), and it follows that there exists a geometric multiplier in the extended
representation. From this, it follows that there exists a geometric multiplier in the
original representation as well (see Exercise 6.2 of [BNO03]).

4. Fritz John conditions when there is no optimal solution. In the pre-
ceding sections, we studied sensitivity properties of the geometric multiplier or dual
optimal solution of minimum norm in the case where there exists a primal optimal
solution or a dual optimal solution. In this section and the next section, we allow the
problem to have neither a primal nor a dual optimal solution, and we develop several
analogous results.

The Fritz John conditions of Propositions 3 and 8 are weaker than Proposition
2 in that they do not include conditions analogous to condition (CV). Unfortunately,
such a condition does not hold in the absence of additional assumptions, as can be
seen from the following example.

Example 1. Consider the one-dimensional problem

minimize f(x)
subject to g(x) = x ≤ 0, x ∈ X = {x | x ≥ 0},

where

f(x) =

⎧⎪⎨
⎪⎩
−1 if x > 0,

0 if x = 0,

1 if x < 0.

Then f is convex over X, and the assumptions of Propositions 3 and 8 are satisfied.
Indeed, each FJ-multiplier must have the form μ∗

0 = 0 and μ∗ > 0 (cf. Figure 3).
However, here we have f∗ = 0, and for all x with g(x) > 0, we have x > 0 and
f(x) = −1. Thus, there is no sequence {xk} ⊂ X satisfying (2)–(4).

The following proposition imposes the stronger closedness assumption in order to
derive an enhanced set of Fritz John conditions analogous to those in Proposition 2.
The proof uses ideas that are similar to the ones of the proof of Proposition 2, but
is more complicated because an optimal solution of (P) may not exist. In particular,
we approximate X by a sequence of expanding bounded convex subsets and we work
with an optimal solution of the corresponding problem.

Proposition 10 (enhanced Fritz John conditions). Consider the convex problem
(P) under Assumption 1 (closedness), and assume that f∗ < ∞. Then there exists an
FJ-multiplier (μ∗

0, μ
∗) satisfying the following condition (CV). Moreover, if μ∗

0 	= 0,
then μ∗/μ∗

0 must be the geometric multiplier of minimum norm.

(CV) If μ∗ 	= 0, then there exists a sequence {xk} ⊂ X of infeasible points that
satisfies (2), (3), and (4).

Proof. If f(x) ≥ f∗ for all x ∈ X, then μ∗
0 = 1 and μ∗ = 0 form an FJ-multiplier,

and condition (CV) is satisfied. Moreover, (CV) (in particular, (3)) is satisfied by
only μ∗ = 0. We will thus assume that there exists some x ∈ X such that f(x) < f∗.
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S={(g(x),f(x)) | x  ∈ X}

f*

u

w

(μ∗,μ0∗)

Fig. 3. Illustration of the set S =
{(

g(x), f(x)
)
| x ∈ X

}
in Example 1. Even though μ∗ > 0,

there is no sequence {xk} ⊂ X such that g(xk) > 0 for all k, and f(xk) → f∗.

In this case, f∗ is finite. Consider the problem

minimize f(x)
subject to x ∈ Xk, g(x) ≤ 0,

(39)

where

Xk = X ∩ {x | ‖x‖ ≤ βk}, k = 1, 2, . . . ,

and β is a scalar that is large enough so that for all k, the constraint set
{
x ∈ Xk |

g(x) ≤ 0
}

is nonempty. Since f and gj are closed and convex when restricted to X,
they are closed, convex, and coercive when restricted to Xk. Hence, problem (39) has
an optimal solution, which we denote by xk. Since this is a more constrained problem
than the original, we have f∗ ≤ f(xk) and f(xk) ↓ f∗ as k → ∞. Let

γk = f(xk) − f∗.

Note that if γk = 0 for some k, then xk is an optimal solution for problem (P), and
the result follows from Proposition 2 on enhanced Fritz John conditions for convex
problems with an optimal solution. Therefore, we assume that γk > 0 for all k.

For positive integers k and positive scalars m, we consider the saddle function

Lk,m(x, ξ) = f(x) +
(γk)2

4k2
‖x− xk‖2 + ξ′g(x) − ‖ξ‖2

2m
.

We note that Lk,m(x, ξ), viewed as a function from Xk to �, for fixed ξ ≥ 0, is closed,
convex, and coercive, in view of the closedness assumption. Furthermore, Lk,m(x, ξ)
is negative definite quadratic in ξ for fixed x. Hence, we can use the saddle point
theorem (e.g., [BNO03, Proposition 2.6.9]) to assert that Lk,m has a saddle point
over x ∈ Xk and ξ ≥ 0, which we denote by (xk,m, ξk,m).

We now derive several properties of the saddle points (xk,m, ξk,m), which set the
stage for the main argument. The first of these properties is

f(xk,m) ≤ Lk,m(xk,m, ξk,m) ≤ f(xk),

which is shown in the next paragraph.
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The infimum of Lk,m(x, ξk,m) over x ∈ Xk is attained at xk,m, implying that

f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 + ξk,m

′
g(xk,m)

= inf
x∈Xk

{
f(x) +

(γk)2

4k2
‖x− xk‖2 + ξk,m

′
g(x)

}

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

(γk)2

4k2
‖x− xk‖2 + ξk,m

′
g(x)

}
(40)

≤ inf
x∈Xk, g(x)≤0

{
f(x) +

(γk)2

4k2
‖x− xk‖2

}
= f(xk).

Hence, we have

Lk,m(xk,m, ξk,m) = f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 + ξk,m

′
g(xk,m) − 1

2m
‖ξk,m‖2

≤ f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 + ξk,m

′
g(xk,m)(41)

≤ f(xk).

Since Lk,m is quadratic in ξ, the supremum of Lk,m(xk,m, ξ) over ξ ≥ 0 is attained at

ξk,m = mg+(xk,m).(42)

This implies that

Lk,m(xk,m, ξk,m) = f(xk,m) +
(γk)2

4k2
‖xk,m − xk‖2 +

m

2
‖g+(xk,m)‖2

≥ f(xk,m).

(43)

We next show another property of the saddle points (xk,m, ξk,m), namely, that
for each k, we have

lim
m→∞

f(xk,m) = f(xk) = f∗ + γk.(44)

For a fixed k and any sequence of integers m that tends to ∞, consider the corre-
sponding sequence {xk,m}. From (41) and (43), we see that {xk,m} belongs to the set{
x ∈ Xk | f(x) ≤ f(xk)

}
, which is compact, since f is closed. Hence, {xk,m} has a

cluster point, denoted by x̂k, which belongs to
{
x ∈ Xk | f(x) ≤ f(xk)

}
. By passing

to a subsequence if necessary, we can assume without loss of generality that {xk,m}
converges to x̂k. We claim that x̂k is feasible for problem (39), i.e., x̂k ∈ Xk and
g(x̂k) ≤ 0. Indeed, the sequence

{
f(xk,m)

}
is bounded from below by infx∈Xk f(x),

which is finite by Weierstrass’s theorem since f is closed and coercive when restricted
to Xk. Also, for each k, Lk,m(xk,m, ξk,m) is bounded from above by f(xk) (cf. (41)),
so (43) implies that

lim sup
m→∞

gj(x
k,m) ≤ 0 ∀ j = 1, . . . , r.

Therefore, by using the closedness of gj , we obtain g(x̂k) ≤ 0, implying that x̂k is a
feasible solution of problem (39). Thus, f(x̂k) ≥ f(xk). Using (41) and (43) together
with the closedness of f , we also have

f(x̂k) ≤ lim inf
m→∞

f(xk,m) ≤ lim sup
m→∞

f(xk,m) ≤ f(xk),
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thereby showing (44).
The next step in the proof is given in the following lemma.
Lemma 11. For all sufficiently large k, and for all scalars m ≤ 1/

√
γk, we have

f(xk,m) ≤ f∗ − γk

2
.(45)

Furthermore, there exists a scalar mk ≥ 1/
√
γk such that

f(xk,mk) = f∗ − γk

2
.(46)

Proof. Let γ = f∗ − f(x), where x was defined earlier as the vector in X such
that f(x) < f∗. For sufficiently large k, we have x ∈ Xk and γk < γ. Consider the
vector

zk =

(
1 − 2γk

γk + γ

)
xk +

2γk

γk + γ
x,

which belongs to Xk for sufficiently large k (by the convexity of Xk and the fact that
2γk/(γk + γ) < 1). By the convexity of f , we have

f(zk) ≤
(

1 − 2γk

γk + γ

)
f(xk) +

2γk

γk + γ
f(x)

=

(
1 − 2γk

γk + γ

)
(f∗ + γk) +

2γk

γk + γ
(f∗ − γ)(47)

= f∗ − γk.

Similarly, by the convexity of gj , we have

gj(z
k) ≤

(
1 − 2γk

γk + γ

)
gj(x

k) +
2γk

γk + γ
gj(x) ≤ 2γk

γk + γ
gj(x).(48)

Using (43), we obtain

f(xk,m) ≤ Lk,m(xk,m, ξk,m)

= inf
x∈Xk

sup
ξ≥0

Lk,m(x, ξ)

= inf
x∈Xk

{
f(x) +

(γk)2

4k2
‖x− x̄k‖2 +

m

2
‖g+(x)‖2

}

≤ f(x) + (βγk)2 +
m

2
‖g+(x)‖2 ∀ x ∈ Xk,

where in the last inequality we also use the definition of Xk so that ‖x− x̄k‖ ≤ 2βk
for all x ∈ Xk. Substituting x = zk in the preceding relation, and using (47) and
(48), we see that for large k,

f(xk,m) ≤ f∗ − γk + (βγk)2 +
2m(γk)2

(γk + γ)2
‖g+(x)‖2.

Since γk → 0, this implies that for sufficiently large k and for all scalars m ≤ 1/
√

γk,
we have

f(xk,m) ≤ f∗ − γk

2
,
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i.e., (45) holds.

We next show that there exists a scalar mk ≥ 1/
√
γk such that (46) holds. In

the process, we show that, for fixed k, Lk,m(xk,m, ξk,m) changes continuously with
m, i.e., for all m > 0, we have Lk,m(xk,m, ξk,m) → Lk,m(xk,m, ξk,m) as m → m. (By
this we mean that, for every sequence {mt} that converges to m, the corresponding

sequence Lk,mt(xk,mt

, ξk,m
t

) converges to Lk,m(xk,m, ξk,m).) Denote

fk(x) = f(x) +
(γk)2

4k2
‖x− xk‖2.

From (43), we have

Lk,m(xk,m, ξk,m) = f̄(xk,m) +
m

2
‖g+(xk,m)‖2 = inf

x∈Xk

{
f̄(x) +

m

2
‖g+(x)‖2

}
,

so that for all m ≥ m, we obtain

Lk,m(xk,m, ξk,m) = fk(xk,m) +
m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2.

It follows that Lk,m(xk,m, ξk,m) → Lk,m(xk,m, ξk,m) as m ↓ m. Similarly, we have for
all m ≤ m

fk(xk,m) +
m

2
‖g+(xk,m)‖2 ≤ fk(xk,m) +

m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2

= fk(xk,m) +
m

2
‖g+(xk,m)‖2 +

m−m

2
‖g+(xk,m)‖2

≤ fk(xk,m) +
m

2
‖g+(xk,m)‖2 +

m−m

2
‖g+(xk,m)‖2.

For each k, f(xk,m) is bounded from below by infx∈Xk f(x), which is finite by Weier-
strass’s theorem since f is closed and coercive when restricted to Xk. Since, by (41)
and (43),

f(xk,m) +
m

2
‖g+(xk,m)‖2 ≤ f(xk),

we see that m‖g+(xk,m)‖2 is bounded from above as m ↑ m > 0, so that (m −
m)‖g+(xk,m)‖2 → 0. Therefore, we have from the preceding relation that Lk,m(xk,m,
ξk,m) → Lk,m(xk,m, ξk,m) as m ↑ m, which shows that Lk,m(xk,m, ξk,m) changes
continuously with m.

Next, we show that, for fixed k, xk,m → xk,m as m → m. Since, for each k,
xk,m belongs to the compact set

{
x ∈ Xk | f(x) ≤ f(xk)

}
, it has a cluster point as

m → m. Let x̂ be a cluster point of xk,m. Using the continuity of Lk,m(xk,m, ξk,m)
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in m, and the closedness of fk and gj , we obtain

Lk,m(xk,m, ξk,m) = lim
m→m̄

Lk,m(xk,m, ξk,m)

= lim
m→m

{
fk(xk,m) +

m

2
‖g+(xk,m)‖2

}

≥ fk(x̂) +
m

2
‖g+(x̂)‖2

≥ inf
x∈Xk

{
fk(x) +

m

2
‖g+(x)‖2

}
= Lk,m(xk,m, ξk,m).

This shows that x̂ attains the infimum of fk(x)+ m
2 ‖g+(x)‖2 over x ∈ Xk. Since this

function is strictly convex, it has a unique optimal solution, showing that x̂ = xk,m.
Finally, we show that f(xk,m) → f(xk,m) as m → m. Since f is lower semicontin-

uous at xk,m, we have f(xk,m) ≤ lim infm→m f(xk,m). Thus it suffices to show that
f(xk,m) ≥ lim supm→m f(xk,m). Assume that f(xk,m) < lim supm→m f(xk,m). Using
the continuity of Lk,m(xk,m, ξk,m) in m and the fact that xk,m → xk,m as m → m,
we have

fk(xk,m) + lim inf
m→m

‖g+(xk,m)‖2 < lim sup
m→m

Lk,m(xk,m, ξk,m)

= Lk,m(xk,m, ξk,m)

= fk(xk,m) + ‖g+(xk,m)‖2.

This contradicts the lower semicontinuity of gj , so that f(xk,m) ≥ lim supm→m f(xk,m).
Thus f(xk,m) is continuous in m.

From (44), (45), and the continuity of f(xk,m) in m, we see that there exists some

scalar mk ≥ 1/
√
γk such that (46) holds.

We are now ready to construct FJ-multipliers with the desired properties. By
combining (46), (41), and (43) (for m = mk), together with the facts that f(xk) → f∗

and γk → 0 as k → ∞, we obtain

lim
k→∞

(
f(xk,mk) − f∗ +

(γk)2

4k2
‖xk,mk − xk‖2 + ξk,m

′
kg(xk,mk)

)
= 0.(49)

Denote

δk =
√

1 + ‖ξk,mk‖2, μk
0 =

1

δk
, μk =

ξk,mk

δk
.(50)

Since δk is bounded from below by 1, (49) yields

lim
k→∞

(
μk

0f(xk,mk) − μk
0f

∗ +
(γk)2

4k2δk
‖xk,mk − xk‖2 + μk′

g(xk,mk)

)
= 0.(51)

Substituting m=mk in the first relation of (40) and dividing by δk, we obtain

μk
0f(xk,mk) +

(γk)2

4k2δk
‖xk,mk − xk‖2 + μk′

g(xk,mk)

≤ μk
0f(x) + μk′

g(x) +
(βγk)2

δk
∀ x ∈ Xk,
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where we also use the fact that ‖x−x̄k‖ ≤ 2βk for all x ∈ Xk (cf. the definition of Xk).
Since the sequence

{
(μk

0 , μ
k)
}

is bounded, it has a cluster point, denoted by (μ∗
0, μ

∗),
which satisfies conditions (ii) and (iii) in the definition of an FJ-multiplier. Without
loss of generality, we will assume that the entire sequence

{
(μk

0 , μ
k)
}

converges to
(μ∗

0, μ
∗). For any x ∈ X, we have x ∈ Xk for all k sufficiently large. Taking the limit

as k → ∞ in the preceding relation and using (51) and γk → 0 yield

μ∗
0f

∗ ≤ μ∗
0f(x) + μ∗′g(x) ∀ x ∈ X,

which implies that

μ∗
0f

∗ ≤ inf
x∈X

{
μ∗

0f(x) + μ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

{
μ∗

0f(x) + μ∗′g(x)
}

≤ inf
x∈X, g(x)≤0

μ∗
0f(x)

= μ∗
0f

∗.

Thus we have

μ∗
0f

∗ = inf
x∈X

{
μ∗

0f(x) + μ∗′g(x)
}
,

so that μ∗
0, μ

∗ satisfy condition (i) in the definition of an FJ-multiplier. Note that
the existence of x ∈ X such that f(x) < f∗, together with condition (i), implies that
μ∗ 	= 0.

Finally, we establish condition (CV). Using (42) and (50) and the fact that μk →
μ∗, we obtain

g+(xk,mk)

‖g+(xk,mk)‖ =
μk,mk

‖μk,mk‖ → μ∗

‖μ∗‖ .

We have from (46) and γk → 0 that f(xk,mk) → f∗. We also have from (41), (43)
with m = mk, and (46) that

mk

2
‖g+(xk,mk)‖2 ≤ f(x̄k) − f(xk,mk) =

3

2
γk,

where the equality uses (42) and (50). Since γk → 0 and mk ≥ 1/
√

γk → ∞, this
yields g+(xk,mk) → 0. Moreover, combining the above inequality with (46) yields

f∗ − f(xk,mk)

‖g+(xk,mk)‖ =
γk

2‖g+(xk,mk)‖ ≥ mk‖g+(xk,mk)‖
6

=
‖μk,mk‖
6μk,mk

0

.(52)

If μ∗
0 = 0, then μk,mk

0 → 0, and so (52) together with ‖μk,mk‖ → ‖μ∗‖ > 0 yields

f∗ − f(xk,mk)

‖g+(xk,mk)‖ → ∞.

It follows that the sequence {xk,mk} satisfies condition (CV) of the proposition. If
μ∗

0 	= 0, then μ∗/μ∗
0 is a geometric multiplier and f∗ = q∗, so that μ∗/μ∗

0 is also a dual
optimal solution. Thus the set of dual optimal solutions is nonempty and coincides
with the set of geometric multipliers. Then, the vector (1, μ̄), where μ̄ is the dual
optimal solution of minimum norm, is an FJ-multiplier and, by Proposition 5 and the
fact that f∗ = q∗, it satisfies condition (CV) and is the only dual optimal solution
that satisfies this condition. This completes the proof.
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5. Dual Fritz John conditions when there is no optimal solution. The
FJ-multipliers of Propositions 3, 8, and 10 define a hyperplane with normal (μ∗, μ∗

0)
that supports the set of constraint-cost pairs

M =
{
(u,w) | there exists x ∈ X such that g(x) ≤ u, f(x) ≤ w

}
at (0, f∗). On the other hand, it is possible to construct a hyperplane that supports
the set M at the point (0, q∗), where q∗ is the dual optimal value, while asserting
the existence of a sequence that satisfies a condition analogous to condition (CV) of
Proposition 10. This is the subject of the next proposition. Its proof uses Lemmas 1
and 4.

In analogy with an FJ-multiplier, we consider a scalar μ∗
0 and a vector μ∗ =

(μ∗
1, . . . , μ

∗
r)

′, satisfying the following conditions:
(i) μ∗

0q
∗ = infx∈X

{
μ∗

0f(x) + μ∗′g(x)
}
.

(ii) μ∗
j ≥ 0 for all j = 0, 1, . . . , r.

(iii) μ∗
0, μ

∗
1, . . . , μ

∗
r are not all equal to 0.

We call such a pair (μ∗
0, μ

∗) a dual FJ-multiplier. If μ∗
0 	= 0, then μ∗/μ∗

0 is a dual
optimal solution; otherwise μ∗

0 = 0 and μ∗ 	= 0.
Proposition 12 (enhanced dual Fritz John conditions). Consider the convex

problem (P) under Assumption 1 (closedness), and assume that f∗ < ∞ and −∞ <
q∗. Then there exists a dual FJ-multiplier (μ∗

0, μ
∗) satisfying the following condition

(dCV). Moreover, if μ∗
0 	= 0, then μ∗/μ∗

0 must be the dual optimal solution of minimum
norm.
(dCV) If μ∗ 	= 0, then there exists a sequence {xk} ⊂ X of infeasible points that

satisfies

f(xk) → q∗, g+(xk) → 0,(53)

q∗ − f(xk)

‖g+(xk)‖ →
{
‖μ∗‖/μ∗

0 if μ∗
0 	= 0,

∞ if μ∗
0 = 0,

(54)

g+(xk)

‖g+(xk)‖ → μ∗

‖μ∗‖ .(55)

Proof. Since by assumption we have −∞ < q∗ and f∗ < ∞, it follows from
the weak duality relation q∗ ≤ f∗ that both q∗ and f∗ are finite. For k = 1, 2, . . . ,
consider the problem

minimize f(x)

subject to x ∈ X, gj(x) ≤ 1

k4
, j = 1, . . . , r.

By Lemma 4, for each k, the optimal value of this problem is less than or equal to q∗.
Then, for each k, there exists a vector x̃k ∈ X that satisfies

f(x̃k) ≤ q∗ +
1

k2
, gj(x̃

k) ≤ 1

k4
, j = 1, . . . , r.

Consider also the problem

minimize f(x)

subject to gj(x) ≤ 1

k2
, j = 1, . . . , r,

x ∈ X̃k = X ∩ {x | ‖x‖ ≤ k
(
max1≤i≤k ‖x̃i‖ + 1

)
}.

(56)
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Since f and gj are closed and convex when restricted to X, they are closed, convex,

and coercive when restricted to X̃k. Hence, problem (56) has an optimal solution,
which we denote by xk. Note that since x̃k belongs to the feasible solution set of this
problem, we have

f(xk) ≤ f(x̃k) ≤ q∗ +
1

k2
.(57)

For each k, we consider the saddle function

Lk(x, ξ) = f(x) + ξ′g(x) − ‖ξ‖2

2k

and the set

Xk = X̃k ∩
{
x | gj(x) ≤ k, j = 1, . . . , r

}
.(58)

We note that Lk(x, ξ), for fixed ξ ≥ 0, is closed, convex, and coercive in x, when
restricted to Xk, and negative definite quadratic in ξ for fixed x. Hence, using the
saddle point theorem (e.g., [BNO03, Proposition 2.6.9]), we can assert that Lk has a
saddle point over x ∈ Xk and ξ ≥ 0, denoted by (xk, ξk).

Since Lk is quadratic in ξ, the supremum of Lk(x
k, ξ) over ξ ≥ 0 is attained at

ξk = kg+(xk).(59)

Similarly, the infimum of Lk(x, ξ
k) over x ∈ Xk is attained at xk, implying that

f(xk) + ξk
′
g(xk) = inf

x∈Xk

{
f(x) + ξk

′
g(x)

}
= inf

x∈Xk

{
f(x) + kg+(xk)′g(x)

}
≤ inf

x∈Xk, gj(x)≤ 1
k4 , j=1,... ,r,

{
f(x) + k

r∑
j=1

g+
j (xk)′gj(x)

}

≤ inf
x∈Xk, gj(x)≤ 1

k4 , j=1,... ,r,

{
f(x) +

r

k2

}

= f(xk) +
r

k2

≤ q∗ +
r + 1

k2
,

(60)

where the second inequality follows using the fact g+
j (xk) ≤ k, j = 1, . . . , r (cf. (58)),

and the third inequality follows from (57).

Since q∗ is finite, we may select a nonnegative sequence {ζk} such that

q(ζk) → q∗,
‖ζk‖2

2k
→ 0.(61)

(For example, we can take ζk to be any maximizer of q(ζ) subject to ζ ≥ 0 and
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‖ζ‖ ≤ k1/3.) Then, we have for all k

Lk(x
k, ξk) = sup

ξ≥0
inf

x∈Xk
Lk(x, ξ)

≥ sup
ξ≥0

inf
x∈X

Lk(x, ξ)

= sup
ξ≥0

{
inf
x∈X

{
f(x) + ξ′g(x)

}
− ‖ξ‖2

2k

}

= sup
ξ≥0

{
q(ξ) − ‖ξ‖2

2k

}

≥ q(ζk) − ‖ζk‖2

2k
.

(62)

Combining (62) and (60), we obtain

q(ζk) − ‖ζk‖2

2k
≤ Lk(x

k, ξk)

= f(xk) + ξk
′
g(xk) − ‖ξk‖2

2k

≤ f(xk) + ξk
′
g(xk)

≤ q∗ +
r + 1

k2
.

(63)

Taking the limit in the preceding relation and using (61), we obtain

lim
k→∞

{
f(xk) − q∗ + ξk

′
g(xk)

}
= 0.(64)

Denote

δk =
√

1 + ‖ξk‖2, μk
0 =

1

δk
, μk =

ξk

δk
.(65)

Since δk is bounded from below by 1, (64) yields

lim
k→∞

{μk
0

(
f(xk) − q∗

)
+ μk′

g(xk)} = 0.(66)

Dividing both sides of the first relation in (60) by δk, we get

μk
0f(xk) + μk′

g(xk) ≤ μk
0f(x) + μk′

g(x) ∀ x ∈ Xk.

Since the sequence
{
(μk

0 , μ
k)
}

is bounded, it has a cluster point (μ∗
0, μ

∗). This cluster
point satisfies conditions (ii) and (iii) of the proposition. Without loss of generality,
we assume that the entire sequence converges. For any x ∈ X, we have x ∈ Xk for
all k sufficiently large. Taking the limit as k → ∞ in the preceding relation and using
(66) yield

μ∗
0q

∗ ≤ μ∗
0f(x) + μ∗′

gj(x) ∀ x ∈ X.

We consider separately the two cases, μ∗
0 > 0 and μ∗

0 = 0, in the above relation to
show that (μ∗

0, μ
∗) satisfy condition (i) of the proposition. Indeed, if μ∗

0 > 0, by
dividing with μ∗

0, we have

q∗ ≤ inf
x∈X

{
f(x) +

μ∗′

μ∗
0

g(x)

}
= q

(
μ∗

μ∗
0

)
≤ q∗.
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Similarly, if μ∗
0 = 0, it can be seen that

0 = inf
x∈X

μ∗′
g(x)

(since f∗ < ∞, so that there exists an x ∈ X such that g(x) ≤ 0 and μ∗′g(x) ≤ 0).
Hence, in both cases, we have

μ∗
0q

∗ = inf
x∈X

{μ∗
0f(x) + μ∗′

g(x)},

thus showing condition (i) in the definition of a dual FJ-multiplier.
If μ∗ = 0, then μ∗

0 	= 0, (dCV) is automatically satisfied, and μ∗/μ∗
0 = 0 has

minimum norm. Assume now that μ∗ 	= 0. Using (59), (65), and the fact that
μk → μ∗, we obtain

g+(xk)

‖g+(xk)‖ =
μk

‖μk‖ → μ∗

‖μ∗‖ .

This proves (55). Also, we have from (63) that

k
(
f(xk) − q∗

)
+ ξk

′
kg(xk) ≤ r + 1

k
∀ k = 1, 2, . . . .

Using (59), this yields

k
(
f(xk) − q∗

)
+ ‖ξk‖2 ≤ r + 1

k
.

Dividing both sides by ‖ξk‖ = k‖g+(xk)‖ and using (65) yield

q∗ − f(xk)

‖g+(xk)‖ ≥ ‖ξk‖ − r + 1

k‖ξk‖ =
‖μk‖
μk

0

− r + 1

k‖μk‖/μk
0

.(67)

If μ∗
0 = 0, then μk

0 → 0, and so (67) together with ‖μk‖ → ‖μ∗‖ > 0 yields

q∗ − f(xk)

‖g+(xk)‖ → ∞.

If μ∗
0 	= 0, then (67) together with μk

0 → μ∗
0 and ‖μk‖ → ‖μ∗‖ yields

lim inf
k→∞

q∗ − f(xk)

‖g+(xk)‖ ≥ ‖μ∗‖
μ∗

0

.

Since μ∗/μ∗
0 is a dual optimal solution, Lemma 1 shows that in fact μ∗/μ∗

0 is of
minimum norm and the inequality holds with equality.

We finally show that f(xk) → q∗ and g+(xk) → 0. By (63) and (61), we have

lim
k→∞

‖ξk‖2

2k
= 0.(68)

By (59), we have

ξk
′
g(xk) =

1

k
‖ξk‖2,
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and so using also (63) and (61), we obtain

lim
k→∞

f(xk) +
‖ξk‖2

2k
= q∗,

which together with (68) shows that f(xk) → q∗. Moreover, (68) and (59) imply that

lim
k→∞

k‖g+(xk)‖2 = 0,

showing that g+(xk) → 0. Therefore, the sequence {xk} satisfies condition (dCV) of
the proposition, completing the proof.

Note that the proof of Proposition 12 is similar to the proof of Proposition 2. The
idea is to generate saddle points of the function

Lk(x, ξ) = f(x) + ξ′g(x) − ‖ξ‖2

2k

over x ∈ Xk (cf. (58)) and ξ ≥ 0. It can be shown that

Lk(x
k, ξk) = inf

u∈�r

{
pk(u) +

k

2
‖u+‖2

}
,

where pk(u) is the optimal value of the problem

minimize f(x)
subject to g(x) ≤ u, x ∈ Xk

(see the discussion following the proof of Proposition 2). For each k, the value
Lk(x

k, ξk) can be visualized geometrically as in Figure 1. However, here the rate
at which Xk approaches X is chosen high enough so that Lk(x

k, ξk) converges to q∗

as k → ∞ (cf. (63)), and not to f∗, as in the proof of Propositions 2 or 10.
As a final remark, it appears that the closedness assumption in Proposition 12

can be relaxed analogously as in Proposition 7 by using Lemmas 1 and 6.
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NONLINEAR INEXACT UZAWA ALGORITHMS
FOR LINEAR AND NONLINEAR SADDLE-POINT PROBLEMS∗

QIYA HU† AND JUN ZOU‡

Abstract. This paper proposes some nonlinear Uzawa methods for solving linear and nonlinear
saddle-point problems. A nonlinear inexact Uzawa algorithm is first introduced for linear saddle-
point problems. Two different PCG techniques are allowed in the inner and outer iterations of the
algorithm. This algorithm is then extended for a class of nonlinear saddle-point problems arising
from some convex optimization problems with linear constraints. For this extension, some PCG
method used in the inner iteration needs to be carefully constructed so that it converges in a certain
energy norm instead of the usual l2-norm. It is shown that the new algorithm converges under some
practical conditions and there is no need for any a priori estimates on the minimal and maximal
eigenvalues of the two local preconditioned systems involved. The two new methods perform more
efficiently than the existing methods in the cases where no good preconditioners are available for the
Schur complements.

Key words. linear and nonlinear saddle-point problems, inexact Uzawa algorithm, precondi-
tioning
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1. Introduction. This paper is mainly concerned with the construction of effi-
cient nonlinear inexact Uzawa algorithms for solving the nonlinear saddle-point system{

F (x) + B y = f,
Bt x = g,

(1.1)

where B is an n ×m matrix with full column rank (m ≤ n), and F : Rn → Rn is a
nonlinear vector-valued function, not necessarily differentiable.

The nonlinear saddle-point system of form (1.1) arises frequently in augmented
Lagrangian formulations of inverse problems [16], electromagnetic Maxwell equations
[13], [15], and nonlinear optimizations, for example, of the form (cf. [12], [22], [41]){

min
x∈Rn

{J(x) − (f, x)}
s.t. Btx = g,

(1.2)

where J(x) is the function satisfying ∇J(x) = F (x).
When F (x) is linear, for example, F (x) = Ax with A being an n× n symmetric

positive definite matrix, system (1.1) reduces to the well-known (linear) saddle-point
problem {

Ax + B y = f,
Bt x = g.

(1.3)
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As we shall see, the Schur complement matrix

K = BtA−1B(1.4)

associated with system (1.3), and its preconditioners, play an essential role in solving
the saddle-point problem.

During the past decade, there has been a growing interest in preconditioned it-
erative methods for solving the indefinite saddle-point system of equations like (1.3);
see [4], [10], [11], [18], [20], [37], [39]. The standard Uzawa-type method [2], [3] and
the minimal residual (MINRES) method are the most popular iterative methods for
solving (1.3). Let Â and K̂ be two positive definite matrices, which are assumed
to be the preconditioners for the matrices A and K, respectively. Then it is known
that the convergence rates of both the standard Uzawa-type method and the MIN-
RES method depend on the condition numbers cond(Â−1A) and cond(K̂−1K) of the
two local preconditioned systems, and they are much less efficient when one of the
two condition numbers is relatively larger than the other. To effectively deal with
the case where cond(Â−1A) is relatively larger than con(K̂−1K), a nonlinear inexact
Uzawa algorithm was proposed in [10], in which the inner iteration uses a (nonlin-
ear) iterative method to replace the action of A−1. Recently we have introduced two
new algorithms (Algorithms 3.1 and 4.1 in [29]) to improve the existing algorithms
and convergence results. These two algorithms were, respectively, designed to effec-
tively treat two different cases: (a) cond(Â−1A) � cond(K̂−1K); (b) cond(K̂−1K)
� cond(Â−1A). It was shown that Algorithm 3.1 in [29] is efficient for case (a), but
Algorithm 4.1 there may not always be efficient for case (b), as there is one condition
(see (4.2) in [29]) which may not be easily guaranteed in applications.

The purpose of this paper is twofold. To better understand the difference between
linear and nonlinear saddle-point problems, we first propose some improved version of
Algorithm 4.1 in [29] for solving linear system (1.3). As we shall see, the new algorithm
is always convergent without any assumptions on the spectra of the preconditioned
systems K̂−1K and Â−1A. This seems to be an important advantage of the new
algorithm over the existing iterative methods for saddle-point problems. Then we
extend this improved algorithm to effectively solve nonlinear saddle-point problems
of form (1.1), which is assumed to arise from some convex minimization problems
with linear constraints.

To our knowledge, there have been very few investigations into the rate of con-
vergence for preconditioned iterative methods for nonlinear saddle-point systems. Al-
Baali and Fletcher studied in [1] rates of convergence of preconditioned nonlinear
conjugate gradient (CG) methods for unconstrained optimizations, when the precon-
ditioning matrix is taken to be the exact Hessian matrix at each iteration. In [14],
Chen gave a deep analysis on rates of convergence of inexact Uzawa methods for non-
linear saddle-point systems, when the exact Hessian matrix at each iteration is used
in the preconditioner for the Schur complement. Most existing analyses are carried
out in the standard l2-norm, which may not be so natural and accurate for many
problems from applications.

In this paper, we shall make an effort to study convergence rates of inexact Uzawa
algorithms in the energy-norm when the exact Hessian matrix in the Schur comple-
ment is replaced by some inexact preconditioner at each iteration. Due to the non-
linearity of the saddle-point system, the conditioning of the preconditioned Schur
complement may become much worse than that of the preconditioned Hessian ma-
trix at each iteration. In this case, a special nonlinear preconditioning process is first
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introduced to improve the conditioning of the preconditioned Schur complement. Fur-
ther, a preconditioned nonlinear CG method is introduced in the inner iteration for
the nonlinear system related to F (·) at each iteration. To ensure the convergence of
the global inexact Uzawa algorithm, the preconditioned nonlinear CG method needs
to be carefully constructed so that it converges in a certain energy norm instead of
the usual l2-norm. As we shall see, the new algorithm is always convergent without
any assumptions on the spectra of the preconditioned Schur complement systems and
Hessian matrices. More important, all the tolerance parameters involved in the inner
iterations of the inexact Uzawa algorithm can be taken to be some fixed constants in-
dependent of the iterations, for example, 1/2 or 1/3. This appears to be an important
advantage of the new algorithm over the existing ones.

Although quite different from what we are doing here, we mention another in-
teresting and popular approach widely used in the optimization community. This
approach intends to solve a nonlinear equality-constrained minimization problem by
sequential quadratic programming in which successively quadratic subproblems are
solved. Each quadratic subproblem amounts to solving a linear Karush–Kuhn–Tucker
(KKT) saddle-point system. Global preconditioners for the resulting KKT coefficient
matrices have been widely studied, and maintain the block structures of the original
KKT matrices; see [5], [6], [7], [23], [32], and the references therein.

The rest of this paper is organized as follows. First, in section 2 we propose an
improved variant of Algorithm 4.1 studied in [29] for linear saddle-point problems.
The algorithm is then extended for nonlinear saddle-point problems in section 3, and
its rate of convergence is also analyzed under some weak smoothness assumptions
on the nonlinear functions F (·). Finally, in section 4 we apply two new algorithms
proposed in sections 2 and 3 to solve an algebraic system of nonlinear saddle-point
problem and a linear saddle-point problem arising from the domain decomposition
method with Lagrange multiplier.

2. Nonlinear inexact Uzawa algorithms for linear saddle-point prob-
lems. In this section, we shall propose an improved variant of Algorithm 4.1 from
[29] for solving the linear saddle-point problem (1.3) and study its convergence. This
improved algorithm will be extended in section 3 to solve the nonlinear saddle-point
system (1.1). To do so, we need to introduce some notation. Rl will mean the usual
l-dimensional Euclidean space. For any l× l positive definite matrix G, ‖x‖G will rep-
resent the G-induced norm, namely ‖x‖G = (Gx, x)1/2 for all x ∈ Rl. To describe the
nonlinear inexact Uzawa algorithm, we introduce a nonlinear mapping ΨA : Rn → Rn

such that for any given ξ ∈ Rn, ΨA(ξ) is an “approximation” to the solution ϕ of the
linear system

Aϕ = ξ.(2.1)

The following assumption was often made on the accuracy of the approximation (e.g.,
see (4.2) in [10]):

‖ΨA(ξ) −A−1ξ‖A ≤ δ ‖A−1ξ‖A ∀ξ ∈ Rn(2.2)

for some δ ∈ (0, 1). Assumption (2.2) is natural and can be satisfied, for example, by
the approximate inverse generated by the preconditioned conjugate gradient (PCG)
iteration or by one sweep of a multigrid method with conjugate gradient smoothing
[10].

We first recall an algorithm from [29] for solving the linear saddle-point problem
(1.3).
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Algorithm 2.1 (nonlinear inexact Uzawa-steepest descent). Given {x0, y0} ∈
Rn ×Rm, the sequence of pairs {xi, yi} ∈ Rn ×Rm is defined for i = 1, 2, . . . , by the
following.

Step 1. Compute fi = f − (Axi + Byi) and ΨA(fi); update

xi+1 = xi + ΨA(fi).(2.3)

Step 2. Compute gi = Btxi+1 − g and di = K̂−1gi. Then compute the relaxation
parameter

τi =

{
(gi,di)

(ΨA(Bdi),Bdi)
for gi 	= 0;

1 for gi = 0.
(2.4)

Update

yi+1 = yi +
1

2
τi di.(2.5)

To study the convergence of Algorithm 2.1, we assume ΨA satisfies

‖A−1fi − ΨA(fi)‖A ≤ δf ‖A−1fi‖A,(2.6)

‖A−1Bdi − ΨA(Bdi)‖A ≤ δd ‖A−1Bdi‖A(2.7)

for two positive constants δf < 1 and δd < 1. We remark that one can simply take
δf and δd to be the constant δ in (2.2). But the introduction of these two different
constants enables us to see how the rate of convergence depends more explicitly on
the accuracies of the nonlinear inner iterations in (2.3) and (2.5).

To measure the convergence rate of Algorithm 2.1 more accurately, an appropriate
norm is very crucial. For each element v from the product space Rn × Rm, we will
write it as v = {v1, v2}, where v1 ∈ Rn and v2 ∈ Rm. Then, as we did in [28], [29],
we shall use the norm

|||v||| = (‖v1‖2
A−1 + ‖v2‖2

K)
1
2 ∀ v = {v1, v2} ∈ Rn ×Rm.(2.8)

Finally, we introduce three error vectors exi ∈ Rn, eyi ∈ Rm, and Ei ∈ Rn ×Rm:

exi = x− xi, eyi = y − yi, Ei = {
√
δfi, e

y
i }, i = 0, 1, 2, . . . ,

and two parameters

κ̂ = cond(K̂−1K), β̂ =

√
1 − 4κ̂(1 − 2δd)

(1 + κ̂)2(1 − δd)2
;(2.9)

then we have the following estimates on the rate of convergence of Algorithm 2.1 in
[29].

Lemma 2.1. Assume that (2.6) and (2.7) are satisfied with the parameters δf < 1
3

and δd < 1
2 ; then Algorithm 2.1 converges. Moreover, the following estimate holds:

|||Ei+1||| ≤ ρ̂ |||Ei|||, i = 0, 1, 2, . . . .(2.10)

Also, (2.10) implies for i = 1, 2, 3, . . . that

‖exi ‖A ≤ (
√

1 + 4δf + ρ̂)ρ̂i−1|||E0|||, ‖eyi ‖K ≤ ρ̂i |||E0|||,(2.11)
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where the rate of convergence ρ̂ < 1 and can be estimated by

ρ̂ =

⎧⎨
⎩

√
δf + δ2

f + δf for 0 < 1+β̂
2 ≤ 4δf

1+δf
;

1 − 1
4 (1 − β̂)(1 + δf ) for

4δf
1+δf

< 1+β̂
2 < 1.

(2.12)

Remark 2.1. Algorithm 2.1 converges when a general preconditioner K̂ is used for
the Schur complement system K = BtA−1B and a general nonlinear iteration ΨA is
used for solving Aϕ = ξ involved in the inner iteration. However, the steepest descent
method converges with a reasonable rate only when a good preconditioner is available
for the Schur complement system, namely, κ̂ = cond(K̂−1K) is not large. This is
the case when the saddle-point problem arises, for example, from the Stokes problem
[39]. Without such a good preconditioner the method may converge with a very slow
rate. Particularly, Algorithm 2.1 may be much less effective when cond(K̂−1K) �
cond(Â−1A).

Another algorithm (Algorithm 4.1) was proposed in [29] that combines the non-
linear inexact Uzawa algorithm with the CG method, in an effort to accelerate the
nonlinear inexact Uzawa algorithm when cond(K̂−1K) � cond(Â−1A). This is the
case when the saddle-point problems arise from the domain decomposition method
with Lagrange multiplier [27], [34], or from the Lagrange multiplier formulations for
optimization problems [25] and the parameter identification [16], [33]. But the algo-
rithm still does not seem satisfactory, as its convergence can be guaranteed only under
some restriction; see (4.2) in [29]. Next, we propose an improved variant of Algorithm
4.1 in [29].

Let H = BtÂ−1B. Consider the equation

Hψ = gi,(2.13)

where gi = Btxi+1 − g comes from Algorithm 2.1. We apply the PCG method with
the preconditioner K̂ to solve system (2.13) and let ΨH(gi) be the approximation
generated by this iteration. Assume that the approximation satisfies

‖ΨH(gi) −H−1gi‖H ≤ δg ‖H−1gi‖H(2.14)

for some δg ∈ (0, 1). For the approximation di = ΨH(gi), we introduce a relaxation
parameter τ i such that the error

‖τ i di −K−1gi‖2
K

is minimized. If di 	= 0, the direct calculation gives

τ i =
(gi, di)

(Kdi, di)
=

(gi, di)

(A−1Bdi, Bdi)
.

But the action of A−1 is usually very expensive, and thus will be replaced by the
action of ΨA:

τi =
(gi, di)

(ΨA(Bdi), Bdi)
≈ τ i.(2.15)

With this parameter τi, we propose the following new algorithm.
Algorithm 2.2 (nonlinear inexact Uzawa with mixed iteration). Given {x0, y0} ∈

Rn ×Rm, the sequence of pairs {xi, yi} ∈ Rn ×Rm is defined for i = 1, 2, . . . , as fol-
lows.
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Step 1. Compute fi = f − (Axi + Byi) and ΨA(fi); update

xi+1 = xi + ΨA(fi).(2.16)

Step 2. Compute gi = Btxi+1 − g and di = ΨH(gi). Then compute the parameter
τi:

τi =

{
(gi, di)

(ΨA(Bdi), Bdi)
if di 	= 0;

1 if di = 0
(2.17)

and update

yi+1 = yi +
1

2
τi di.(2.18)

Remark 2.2. Clearly when both fi and gi vanish, the vectors xi and yi are the
exact solution of (1.3). Thus Algorithm 2.2 terminates.

Next we shall analyze the convergence of Algorithm 2.2. Let κ∗ = cond(Â−1A)
and κ = κ∗(1 + δg)/(1 − δg). It follows from (2.14) that there is a symmetric and

positive definite matrix Q̂i (see Lemma 9 in [4]) such that Q̂−1
i gi = ΨH(gi) and all

eigenvalues of the matrix Q̂−1
i H are in the interval [1−δg, 1+δg]. Using this property,

one can directly check that

cond(Q̂−1
i K) ≤ κ =

1 + δg
1 − δg

cond(Â−1A).

This relation tells us the actual effect of introducing of approximation ΨH : when
cond(K̂−1K) � cond(Â−1A), the effect of ΨH(gi) (= Q̂−1

i gi) amounts to generat-

ing a new preconditioner Q̂i such that cond(Q̂−1
i K) is much more improved than

cond(K̂−1K) and has about the same magnitude as cond(Â−1A), e.g., less than three
times cond(Â−1A) when we take δg = 1

2 .
Let δf and δd be two parameters in (2.6) and (2.7), respectively, with fi and di

given in Algorithm 2.2, and define

β =

√
1 − 4κ(1 − 2δd)

(1 + κ)2(1 − δd)2
;(2.19)

then Algorithm 2.2 can be viewed as a variant of Algorithm 2.1 with K̂ replaced by
Q̂i. The following theorem follows from Lemma 2.1.

Theorem 2.2. Assume that (2.6) and (2.7) are satisfied with δf < 1
3 and δd < 1

2 ;
then Algorithm 2.2 converges. Moreover, the following estimate holds:

|||Ei+1||| ≤ ρ |||Ei|||, i = 0, 1 . . . ,(2.20)

which implies for i = 1, 2, . . . that

‖exi ‖A ≤ (
√

1 + 4δf + ρ)ρi−1|||E0|||, ‖eyi ‖K ≤ ρi|||E0|||,(2.21)

where the rate of convergence ρ(< 1) can be estimated by

ρ =

⎧⎨
⎩

√
δf + δ2

f + δf for 0 < 1+β
2 ≤ 4δf

1+δf
;

1 − 1
4 (1 − β)(1 + δf ) for

4δf
1+δf

< 1+β
2 < 1.

(2.22)



804 QIYA HU AND JUN ZOU

Remark 2.3. We see from Theorem 2.2 that the convergence of Algorithm 2.2 is
independent of the spectrum of the preconditioned Schur complement K̂−1K, and the
convergence rate of this new algorithm depends only on the condition number κ∗, not
on cond(K̂−1K). In contrast to Algorithm 2.1, Algorithm 2.2 should be very efficient
for the case when cond(K̂−1K) � cond(Â−1A). This seems to be an important
advantage of the new algorithm over the existing iterative methods for saddle-point
problems. The coefficient 1/2 in (2.18) is obtained by the worst case δg → 1− (refer
to [29]). In applications, the parameter δg is much less than 1, so we can choose a
larger parameter than 1/2 in (2.18), e.g., 7/10.

3. Nonlinear inexact Uzawa algorithms for nonlinear saddle-point prob-
lems. In this section, we discuss how to effectively extend the new Algorithm 2.2
proposed in section 2 for the linear saddle-point problem (1.3) to solve the nonlinear
saddle-point system (1.1), which is assumed to arise from some convex minimization
problems with linear constraints, e.g., of the form{

min
x∈Rn

{J(x) − (f, x)}
s.t. Btx = g,

(3.1)

where J(x) is the function satisfying ∇J(x) = F (x).

3.1. Notation and assumptions. We start with a few smoothness descriptions
on the nonlinear mapping F : Rn → Rn in (1.1) and recall some existing results from
[18] and [36], which will be used in the subsequent analysis.

As standard assumptions for nonlinear systems (cf. [1], [14]), we assume that F
is Lipschitzian and strongly monotone with modulus μ, i.e.,

(F (ξ) − F (η), ξ − η) ≥ μ ‖ξ − η‖2 ∀ ξ, η ∈ Rn.(3.2)

By Rademacher’s theorem [18], the Lipschitzian property of F implies that F is
differentiable almost everywhere. Let DF be the set of points where F is differentiable,
and let ∇F (ξ) be the gradient of F at ξ ∈ DF . Then at any point x ∈ Rn, we introduce
a set ∂s F (x):

∂sF (x) =

{
lim
ξ→x

ξ∈DF

∇F (ξ)

}
.

With this set, we can define a generalized Jacobian of F at x in the sense of Clarke
[18] by

∂F (x) = co ∂sF (x),

where co ∂sF (x) is the convex hull of the set.
It is known (cf. [18]) that if F is locally Lipschitzian, then the following generalized

mean-value theorem holds: for any ξ, η ∈ Rn,

F (ξ) − F (η) ∈ co ∂F (ξη)(ξ − η),(3.3)

where ξη is the line segment between ξ and η, and co ∂F (ξη) = co{V ∈ ∂F (ζ), ζ ∈
ξη}.

A nice consequence (cf. [36]) of the strong monotone property (3.2) is that all
matrices from ∂F (η) for any η ∈ Rn are positive definite, and the following holds for
any V ∈ ∂F (η):

(V ξ, ξ) ≥ μ (ξ, ξ) ∀ ξ ∈ Rn.(3.4)
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As in [14], we do not assume F is differentiable everywhere but that it is semi-
smooth on Rn in the sense that for any ξ ∈ Rn there is a positive definite matrix Aξ

such that

lim
α→0

Aξ∈∂sF (ξ+α)

‖F (ξ + α) − F (ξ) −Aξα‖
‖α‖ = 0.(3.5)

Nonlinear saddle-point problems with nondifferentiable but semismooth vector-valued
functions F arise from some convex optimizations and numerical solutions of certain
nonlinear partial differential equations; we refer to [14] for such examples.

3.2. Properties of F in terms of its generalized Jacobian. Note that all
the descriptions in section 3.1 of the smoothness of the nonlinear mapping F : Rn →
Rn are in terms of the l2-norm. As we will see later, it is more accurate to interpret
these smoothness properties in terms of the so-called energy-norm, that is, the induced
norm by the generalized Jacobian of F , especially by the generalized Jacobian Ax of
F at x, where {x, y} ∈ Rn × Rm is the exact solution of system (1.1). This will be
the task of this section. For the sake of simplicity, we shall write Ax as A below.

First, directly from (3.4) and (3.5), we know that if F is semismooth on Rn, then
for any ξ ∈ Rn there is a positive definite matrix Aξ such that

lim
α→0

Aξ∈∂sF (ξ+α)

‖F (ξ + α) − F (ξ) −Aξα‖A−1

‖α‖A
= 0.(3.6)

Next, by the strictly monotone and Lipschitzian property of F we immediately know
there are two positive constants c0 and C0, which will be frequently needed later, such
that

c0 ‖ξ − η‖2
A ≤ (F (ξ) − F (η), ξ − η) ∀ ξ, η ∈ Rn,(3.7)

‖F (ξ) − F (η)‖2
A−1 ≤ C0 ‖ξ − η‖2

A ∀ ξ, η ∈ Rn.(3.8)

The use of constants c0 and C0 is more reasonable than the use of the corresponding
constants in the sense of the l2-norm. For instance, when F (x) is linear, say F (x) =
Ax, then c0 = C0 = 1, but the corresponding constants in the sense of the l2-norm
depend on the smallest and largest eigenvalues of A.

Starting now, we shall often use SV (ξ, r) to denote a ball in Rn which is centered
at point ξ, with radius r measured in the ‖ · ‖V -norm. The next lemma gives two
further properties of the nonlinear vector-valued function F .

Lemma 3.1. There are two positive constants c1 ≤ 1 and C1 ≥ 1 depending only
on constants c0 and C0 such that

(F (ζ) − F (ξ), ζ − ξ) ≤ C1(Aη(ζ − ξ), ζ − ξ) ∀ζ, ξ, η ∈ Rn,(3.9)

‖F (ζ) − F (ξ)‖A−1
η

≥ c1 ‖ζ − ξ‖Aη ∀ζ, ξ, η ∈ Rn.(3.10)

Proof. We first consider (3.9). It follows from (3.8) that for any ζ, ξ ∈ Rn,

(F (ζ) − F (ξ), ζ − ξ) ≤ ‖F (ζ) − F (ξ)‖A−1 ‖ζ − ξ‖A ≤
√
C0‖ζ − ξ‖2

A.(3.11)

But for any η ∈ Rn, by (3.6) there exists a positive number r = r(η) such that

‖F (η + α) − F (η) −Aηα‖A−1 ≤ c0
2
‖α‖A ∀ α ∈ SA(0, r).(3.12)
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This, together with (3.7), leads to

‖α‖2
A ≤ 1

c0
(F (η + α) − F (η), α) =

1

c0
{(F (η + α) − F (η) −Aηα, α) + (Aηα, α)}

≤ 1

c0
{‖F (η + α) − F (η) −Aηα‖A−1 ‖α‖A + (Aηα, α)}

≤ 1

2
‖α‖2

A +
1

c0
(Aηα, α).

So we have

‖α‖2
A ≤ 2

c0
(Aηα, α) ∀α ∈ SA(0, r).(3.13)

Noting that inequality (3.13) is invariant with respect to any constant scaling of
α, (3.9) follows readily from (3.11) and (3.13) with C1 = 2

√
C0/c0, or C1 = 1 if√

C0/c0 < 1/2.
Now we consider (3.10). By (3.12) and (3.8), we derive

(Aηα, α) ≤ ‖Aηα‖A−1 ‖α‖A
≤ (‖Aηα− F (η + α) + F (η)‖A−1 + ‖F (η + α) − F (η)‖A−1) ‖α‖A
≤

(c0
2

+
√
C0

)
‖α‖2

A ∀α ∈ SA(0, r),(3.14)

which is invariant up to any constant scaling of α, while by (3.7) we have

‖α‖2
A ≤ 1

c0
(F (η + α) − F (η), α) ≤ 1

c0
‖F (η + α) − F (η)‖A−1

η
‖α‖Aη

.(3.15)

Then (3.10) follows immediately from (3.14) and (3.15), with c1 = 2c0/(c0 + 2
√
C0)

or c1 = 1 if
√
C0/c0 < 1/2.

We end this section by assuming some sort of Lipschitzian property on the gener-
alized Jacobian of F : there exists a positive constant L such that for any two vectors
ξ, η ∈ Rn,

‖A− 1
2 (Vξ − Vη)A

− 1
2 ‖ ≤ L ‖ξ − η‖A ∀Vξ ∈ ∂F (ξ), Vη ∈ ∂F (η).(3.16)

3.3. Algorithms and their convergence. We are now going to extend the
new Algorithm 2.2 in section 2 for the linear saddle-point problem (1.3) to solve the
nonlinear saddle-point problem (1.1). As we have observed, an essential improvement
of this new algorithm over the existing ones (cf. [10]) lies in the fact that its conver-
gence is guaranteed and its rate of convergence can be estimated by assuming only
constant upper bounds for the error reduction factors (δf < 1/3 and δd < 1/2) in the
nonlinear inner iterations. These conditions may be easily satisfied, for example, by
the approximate inverse generated by the PCG iteration with the preconditioner Â.
Such loose requirements come as the consequence of the choice of a particular norm
||| · |||; see Remark 2.1 in [29]. In order to preserve this good feature in the current
nonlinear saddle-point system, one should use a norm similar to ||| · ||| involving the
matrix A = Ax. But unlike the linear saddle-point problem, the matrix Ax is not
available now since it involves the x-component of the exact solution {x, y} to system
(1.1). This fact brings in one of the major difficulties of nonlinear systems and can
be regarded as the main distinction between the linear and nonlinear saddle-point
problems.
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Now, we discuss how to extend Algorithm 2.2 of section 2 to solve the nonlinear
saddle-point problem (1.1). Let {xi, yi} ∈ Rn ×Rm be the ith iterate, and set

fi = f − F (xi) −Byi.

Let xi+1 be an approximate solution of the nonlinear equation

F (ξ) = f −Byi(3.17)

such that the residual εi = F (xi+1) − (f −Byi) satisfies

‖εi‖A−1 ≤ δ0 ‖fi‖A−1(3.18)

with 0 ≤ δ0 < 1. In general, the approximation xi+1 can be obtained by some
iterative method with xi as a natural initial guess. This will be discussed in detail in
section 3.4.

Let Ai = Axi
be a positive definite matrix as defined in (3.5), and let Âi be a

(positive definite) preconditioner of Ai; then we obtain an exact Schur complement
at xi and its approximation:

Ki = BtA−1
i B, Hi = BtÂ−1

i B.

Let K̂i be a preconditioner for Hi, and set gi = Btxi+1 − g. Similarly to the
introduction of the mapping ΨH in (2.14), we define a nonlinear mapping ΨHi :
Rm → Rm such that

‖ΨHi(gi) −H−1
i gi‖Hi ≤ δg ‖H−1

i gi‖Hi(3.19)

for some δg ∈ (0, 1). Let di = ΨHi(gi); then we introduce a nonlinear solver ΨAi+1 :
Rn → Rn satisfying

‖ΨAi+1
(Bdi) −A−1

i+1Bdi‖Ai+1
≤ γ ‖A−1

i+1Bdi‖Ai+1
(3.20)

for some γ ∈ [0, 1). As we observed in the linear saddle-point case, a relaxation
parameter τ i (see (2.15)) is important to ensure the convergence of our new algorithm:

τ i =
(gi, di)

(ΨA(Bdi), Bdi)
for di 	= 0.

Unfortunately, the matrix A = Ax is no longer available for the current nonlinear
problem (1.1). One alternative is to use the approximation Ai+1 of A; this leads to
the following new choice of the relaxation parameter τi:

τi =
(gi, di)

(ΨAi+1(Bdi), Bdi)
for di 	= 0.(3.21)

With this parameter and the motivation of Algorithm 2.2 for linear saddle-point
problems, we propose the following algorithm for solving the nonlinear saddle-point
system (1.1).

Algorithm 3.1 (nonlinear inexact Uzawa with mixed iteration). Given {x0, y0} ∈
Rn ×Rm, the sequence {xi, yi} ∈ Rn ×Rm is defined for i = 1, 2, . . . as follows:

Step 1. Compute xi+1 such that

F (xi+1) = f −Byi + εi.
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Step 2. Compute gi = Btxi+1−g and di = ΨHi
(gi). Then compute the parameter

τi:

τi =

{
(gi, di)

(ΨAi+1
(Bdi), Bdi)

if di 	= 0;

1 if di = 0

and update

yi+1 = yi +
1

2
τi di.(3.22)

To understand and more accurately describe the convergence of this new algo-
rithm, we need to introduce a few more parameters. First, by (3.6) we know that for
any parameter ω ∈ (0, 1), there is a positive number rω such that

‖F (x + α) − F (x) −Ax‖A−1 ≤ ω ‖α‖A ∀α ∈ SA(0, rω).(3.23)

Then we introduce a constant δd that is the minimal positive number satisfying

‖ΨAi+1(Bdi) −A−1Bdi‖A ≤ δd ‖A−1Bdi‖A.(3.24)

Now set rγ = (1 − 2γ)/(6L) for any positive parameter γ < 1
2 , and

κi = cond(Â−1
i Ai), κ0 =

1 + δg
1 − δg

max
i

κi, β0 =

√
1 − 4κ0(1 − 2δd)

(1 + κ0)2(1 − δd)2
,(3.25)

we will see δd < 1
2 when xi+1 ∈ SA(x, rγ) (Lemma 3.7), and hence we have 0 < β0 < 1.

The following few parameters will be used to describe the convergence region and
convergence rate of Algorithm 3.1:

ρ0 =

{ √
δ0 + δ2

0 + δ0 for 0 < 1+β0

2 ≤ 4δ0
1+δ0

,

1 − 1
4 (1 − β0)(1 + δ0) for 4δ0

1+δ0
< 1+β0

2 < 1
(3.26)

and

ρω =
ω
√

1 + δ0(1 +
√
δ0)

c0
, ω0 =

c0(1 − ρ0)√
1 + δ0(1 +

√
δ0)

, r∗ω =
c0

(1 +
√
δ0)

min{rω, rγ}.

(3.27)
Our final preparation is to choose an appropriate norm in which the convergence

can be ensured and well measured. As for the linear saddle-point problem, we define
||| · ||| to be the same as in (2.8), but with A = Ax and K = BtA−1B here.

Now we are ready to state our main results of this section about the convergence
of Algorithm 3.1, whose proof will be provided in section 3.5.

Theorem 3.2. Let ω0 < 1 be a fixed positive constant, ω ∈ (0, ω0) be a given
parameter, and rω be the maximal positive number such that estimate (3.23) is satis-
fied. Assume that (3.20) holds with γ < 1

2 and that the initial guess {x0, y0} satisfies
|||E0||| ≤ r∗ω. If the tolerance εi in Step 1 satisfies (3.18) with δ0 < 1

3 , then Algo-
rithm 3.1 converges, and the rate of convergence can be estimated by

|||Ei+1||| ≤ ρ∗0 |||Ei|||, i = 0, 1, 2, . . . ,(3.28)

where ρ∗0 = ρ0 + ρω < 1, and

Ei = {
√
δ0fi, e

y
i }, fi = f − F (xi) −Byi, eyi = y − yi.
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Remark 3.1. From Theorem 3.2 we see that the preconditioner K̂i for Hi can
be chosen in Algorithm 3.1 without any particular restriction, and the approximation
accuracy parameters δ0 and δd are independent of any other parameter, unlike in
most existing algorithms. The rate of convergence ρ∗0 depends only on δd and β0,
and does not depend directly on cond(K̂−1

i K); therefore no proper scalings of the

preconditioner K̂i are required as in the existing inexact Uzawa algorithms.
Remark 3.2. In Theorem 3.2, the initial guess {x0, y0} is required to lie within

a small neighborhood of {x, y}. Care must be taken for the choice of such initial
guesses. In applications, the initial guess may be obtained using a globally convergent
algorithm for (1.1) with one or two iterations, for example, the simple perturbation
method as described below.

Given a small positive number μ, approximate (1.1) by the perturbed system

F (x) + By = f, Btx− μ y = g.(3.29)

Expressing y in terms of x from the second equation and then substituting it into the
first equation, we obtain

F (x) +
1

μ
BBtx = f +

1

μ
Bg.(3.30)

One can solve this nonlinear equation using some classical iterative methods, for
instance, the steepest descent method, which is known to have slow convergence but
usually converges very fast at the first few iterations. Once an approximation of x is
available, the approximation of y can be obtained directly from the second equation
in (3.29). As this process is used to generate only an initial guess, the perturbation
parameter μ need not be too small, e.g., one may take μ = 0.1.

3.4. Solution of system (3.17). One major task in Algorithm 3.1 is to find
some effective way to compute xi+1 such that the tolerance requirement (3.18) is
satisfied with δ0 < 1

3 . In this subsection we will propose an iterative algorithm for
computing xi+1 which meets the requirement.

Let x∗
i be the exact solution of (3.17); then we have f −Byi = F (x∗

i ), and (3.18)
can be written as

‖F (xi+1) − F (x∗
i )‖A−1 ≤ δ0‖F (xi) − F (x∗

i )‖A−1 .(3.31)

When nonlinear equation (3.17) is solved by an iterative method with the initial guess
xi, condition (3.31) should come from the convergence results in the underlying norm.
Unfortunately, this conclusion is not straightforward here since the convergences of
most iterative methods for nonlinear equations are analyzed in the l2-norm (cf. [30],
[31], [36]), not in the “energy-norm” as required in (3.31).

Let Gi be a functional defined by

Gi(ξ) = J(ξ) + (Byi, ξ) − (f, ξ),

where J(x) is the functional in (3.1) satisfying ∇J(x) = F (x). Then (3.17) amounts
to the following minimization problem: Find x∗

i ∈ Rn such that

Gi(x
∗
i ) = min

ξ∈Rn
Gi(ξ).(3.32)

Next, we propose a PCG-type method to solve this minimization problem.
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Algorithm 3.2 (PCG-type method for solving (3.32)). Set

x
(0)
i = xi, p

(0)
i = −Â−1

i ∇Gi(xi),

then generate a sequence {x(k)
i }∞k=1 as follows.

Step 1. Compute the parameter τ
(k−1)
i such that

Gi(x
(k−1)
i + τ

(k−1)
i p

(k−1)
i ) = min

τ
Gi(x

(k−1)
i + τ p

(k−1)
i ).(3.33)

Update

x
(k)
i = x

(k−1)
i + τ

(k−1)
i p

(k−1)
i .(3.34)

Step 2. Compute

θ
(k)
i = −(Â−1

i ∇Gi(x
(k)
i ), A

x
(k)
i

p
(k−1)
i )/(A

x
(k)
i

p
(k−1)
i , p

(k−1)
i ).(3.35)

Compute

p
(k)
i = −Â−1

i ∇Gi(x
(k)
i ) − θ

(k)
i p

(k−1)
i .(3.36)

Before analyzing the convergence of Algorithm 3.2, let us introduce a few useful

constants. For the sake of simplicity, we shall write A
(k)
i = A

x
(k)
i

below. First, we can

easily see the existence of the two constants C
(k)
i and c

(k)
i from Lemma 3.1 and by

noting the relation

∇Gi(ξ + α) −∇Gi(ξ) = ∇J(ξ + α) −∇J(ξ) = F (ξ + α) − F (ξ).

The first constant C
(k)
i ≥ 1 is the smallest positive number satisfying

(∇Gi(ξ + α) −∇Gi(ξ), α) ≤ C
(k)
i (A

(k)
i α, α)(3.37)

for ξ = x
(k)
i and α = s p

(k)
i with all s > 0, also for ξ = x∗

i and α = t(x
(k)
i − x∗

i ) with

all t ∈ (0, 1); the second constant c
(k)
i ≤ 1 is the largest positive number satisfying

c
(k)
i ‖x(k)

i − x∗
i ‖A(k)

i

≤ ‖∇Gi(x
(k)
i ) −∇Gi(x

∗
i )‖(A

(k)
i

)−1 .(3.38)

It is obvious that for a less accurate estimate one may simply take the above two con-

stants C
(k)
i and c

(k)
i to be the constants C1 and c1 from (3.9) and (3.10), respectively.

Now define

κ
(k)
i = cond(Â

− 1
2

i A
(k)
i Â

− 1
2

i ), ρ
(k)
i = 1 −

(
c
(k)
i

C
(k)
i

)2
4κ

(k)
i

(κ
(k)
i + 1)2

.

Clearly, we see that ρ
(k)
i lies in the range 0 < ρ

(k)
i < 1. The following estimate holds

on the rate of convergence with Algorithm 3.2.

Lemma 3.3. Let x∗
i be the exact solution of (3.32), and let the sequence {x(k)

i }∞k=1

be generated by Algorithm 3.2. Then the following estimate holds:

Gi(x
(k+1)
i ) −Gi(x

∗
i ) ≤ ρ

(k)
i (Gi(x

(k)
i ) −Gi(x

∗
i )), k = 0, 1 . . . .(3.39)
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If we set xi+1 = x
(k0)
i for some positive integer k0, then

Gi(xi+1) −Gi(x
∗
i ) ≤

(
k0∏
k=1

ρ
(k−1)
i

)
(Gi(x

(k)
i ) −Gi(x

∗
i )).(3.40)

Proof. Using the generalized mean-value theorem and (3.34), we have for any
τ > 0,

(3.41)

Gi(x
(k)
i + τ p

(k)
i ) −Gi(x

(k)
i )

=

∫ 1

0

(
∇Gi(x

(k)
i + t τ p

(k)
i ), τ p

(k)
i

)
dt

= τ
(
∇Gi(x

(k)
i ), p

(k)
i

)
+

∫ 1

0

(
∇Gi(x

(k)
i + t τ p

(k)
i ) −∇Gi(x

(k)
i ), τ p

(k)
i

)
dt.

But it follows from (3.37) with ξ = x
(k)
i and α = t τ p

(k)
i that(

∇Gi(x
(k)
i + t τ p

(k)
i ) −∇Gi(x

(k)
i ), τ p

(k)
i

)
≤ C

(k)
i t τ2(A

(k)
i p

(k)
i , p

(k)
i ).

Plugging this into (3.41) yields

Gi(x
(k)
i + τ p

(k)
i ) −Gi(x

(k)
i ) ≤ τ (∇Gi(x

(k)
i ), p

(k)
i ) +

1

2
C

(k)
i τ2(A

(k)
i p

(k)
i , p

(k)
i ).(3.42)

Noting that the parameter τ
(k)
i defining x

(k+1)
i satisfies (3.33), we obtain

Gi(x
(k+1)
i ) −Gi(x

(k)
i ) ≤ − (∇Gi(x

(k)
i ), p

(k)
i )2

2C
(k)
i (A

(k)
i p

(k)
i , p

(k)
i )

(3.43)

if we take in (3.42) that

τ = − (∇Gi(x
(k)
i ), p

(k)
i )

C
(k)
i (A

(k)
i p

(k)
i , p

(k)
i )

.

To further estimate the fraction in (3.43), we first know from (3.33) that

(∇Gi(x
(k)
i ), p

(k−1)
i ) = 0.(3.44)

Using this, and making the scalar product of both sides of (3.36) with ∇Gi(x
(k)
i ), we

derive

(∇Gi(x
(k)
i ), p

(k)
i ) = −‖Â− 1

2
i ∇Gi(x

(k)
i )‖2.(3.45)

On the other hand, by direct computing using (3.36) and (3.35) we get

(A
(k)
i p

(k)
i , p

(k)
i ) = ‖Â−1

i ∇Gi(x
(k)
i )‖2

A
(k)
i

− (Â−1
i ∇Gi(x

(k)
i ), A

(k)
i p

(k−1)
i )2

‖p(k−1)
i ‖2

A
(k)
i

≤ ‖Â−1
i ∇Gi(x

(k)
i )‖2

A
(k)
i

.(3.46)
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Now it follows from (3.45), (3.46), (3.43), and a well-known matrix-eigenvalue in-
equality (see (3.1) in [29]) that

Gi(x
(k+1)
i ) −Gi(x

(k)
i ) ≤ − ‖Â− 1

2
i ∇Gi(x

(k)
i )‖4

2C
(k)
i ‖Â−1

i ∇Gi(x
(k)
i )‖2

A
(k)
i

≤ − 1

2C
(k)
i

4κ
(k)
i

(κ
(k)
i + 1)2

‖∇Gi(x
(k)
i )‖2

(A
(k)
i

)−1
.(3.47)

But noting ∇Gi(x
∗
i ) = 0, we deduce from (3.38) that

‖∇Gi(x
(k)
i )‖2

(A
(k)
i

)−1
= ‖∇Gi(x

(k)
i ) −∇Gi(x

∗
i )‖2

(A
(k)
i

)−1
≥ (c

(k)
i )2 ‖x(k)

i − x∗
i ‖2

A
(k)
i

.

This, along with (3.47), implies

Gi(x
(k+1)
i ) −Gi(x

(k)
i ) ≤ − (c

(k)
i )2

2C
(k)
i

4κ
(k)
i

(κ
(k)
i + 1)2

‖x(k)
i − x∗

i ‖2
Ai
.(3.48)

Furthermore, by the generalized mean-value theorem and the fact that ∇Gi(x
∗
i ) = 0

again, we can write

Gi(x
(k)
i ) −Gi(x

∗
i ) =

∫ 1

0

(
∇Gi(x

∗
i + t(x

(k)
i − x∗

i )) −∇Gi(x
∗
i ), x

(k)
i − x∗

i

)
dt.

Taking ξ = x∗
i and α = t (x

(k)
i − x∗

i ) in (3.37), we come to

Gi(x
(k)
i ) −Gi(x

∗
i ) ≤

C
(k)
i

2
‖x(k)

i − x∗
i ‖2

A
(k)
i

.

Combining this with (3.48) leads to

Gi(x
(k+1)
i ) −Gi(x

(k)
i ) ≤ −

(
c
(k)
i

C
(k)
i

)2
4κ

(k)
i

(κ
(k)
i + 1)2

(G(x
(k)
i ) −G(x∗

i )).

Therefore

Gi(x
(k+1)
i ) −Gi(x

∗
i ) ≤

⎛
⎝1 −

(
c
(k)
i

C
(k)
i

)2
4κ

(k)
i

(κ
(k)
i + 1)2

⎞
⎠ (G(x

(k)
i ) −G(x∗

i )),

which proves the desired result.

Remark 3.3. Algorithm 3.2 is always convergent, so we have x
(k)
i → x∗

i and

p
(k)
i → 0 as k → +∞. Then by (3.6) one can verify that C

(k)
i → 1 and c

(k)
i → 1 as

k → +∞. This implies

lim
k→∞

ρ
(k)
i = 1 − 4κi

(κi + 1)2
=

(1 − κi

1 + κi

)2

with κi = cond(Â−1
i Ai).

Remark 3.4. The second inequality in (3.46) cannot become an equality except
that

(Â−1
i ∇Gi(x

(k)
i ), A

(k)
i p

(k−1)
i ) = 0.
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But this orthogonality does not hold, since we have only (∇Gi(x
(k)
i ), p

(k−1)
i ) = 0 but

Âi 	= A
(k)
i in general. So (3.46) should be a strict inequality, and in turn the actual

rate of convergence of Algorithm 3.2 is faster than that described by (3.39), i.e., the
convergence rate of the steepest descent method (cf. [35]). Also, we remark that the
exact line search is assumed in Algorithm 3.2. For the cases with inexact line searches,

the relaxation parameter θ
(k)
i needs to be corrected somehow, and the discussion is

much more technical (cf. [1], [19], [40]).
With the convergence rate estimate given by Lemma 3.3, the next lemma discusses

how to meet the tolerance condition (3.18).

Lemma 3.4. For a given pair {xi, yi} in Rn × Rm, let {x(k)
i }∞k=1 be a sequence

generated by Algorithm 3.2 for the minimization problem (3.32). Then for any δ0 ∈
(0, 1), there exists an integer k0 depending on δ0 such that with xi+1 = x

(k0)
i , the

residual εi = F (xi+1) − (f −Byi) satisfies the tolerance condition (3.18).
Proof. Let x∗

i be the minimizer in (3.32) and the solution to (3.17). It follows
from (3.8) that

‖εi‖2
A−1 = ‖F (xi+1) − F (x∗

i )‖2
A−1 ≤ C0‖xi+1 − x∗

i ‖2
A.(3.49)

By the mean-value theorem and the fact that ∇Gi(x
∗
i ) = 0, we can write

Gi(xi+1) −Gi(x
∗
i ) =

∫ 1

0

(∇Gi(x
∗
i + t(xi+1 − x∗

i )), xi+1 − x∗
i )dt

=

∫ 1

0

(∇Gi(x
∗
i + t(xi+1 − x∗

i )) −∇Gi(x
∗
i ), xi+1 − x∗

i )dt

=

∫ 1

0

(F (x∗
i + t(xi+1 − x∗

i )) − F (x∗
i ), xi+1 − x∗

i )dt.

This, along with (3.7), leads to

Gi(xi+1) −Gi(x
∗
i ) ≥ c0

∫ 1

0

t ‖xi+1 − x∗
i ‖2

Adt =
c0
2
‖xi+1 − x∗

i ‖2
A;

combining it with (3.49) and (3.39), we have

‖εi‖2
A−1 ≤ 2C0

c0
(Gi(xi+1) −Gi(x

∗
i )) ≤

2C0 δ̂i
c0

(Gi(xi) −Gi(x
∗
i ))(3.50)

with δ̂i =
∏k0

k=1 ρ
(k−1)
i . On the other hand, using the mean-value theorem and (3.8),

we see

Gi(xi) −Gi(x
∗
i ) =

∫ 1

0

(∇Gi(x
∗
i + t(xi − x∗

i )), xi − x∗
i )dt

=

∫ 1

0

(F (x∗
i + t(xi − x∗

i )) − F (x∗
i ), xi − x∗

i )dt

≤ C0

2
‖xi − x∗

i ‖2
A.(3.51)

But it follows from (3.7) that

‖xi − x∗
i ‖2

A ≤ 1

c0
(F (xi) − F (x∗

i ), xi − x∗
i ) ≤

1

c0
‖F (xi) − F (x∗

i )‖A−1 ‖xi − x∗
i ‖A,
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which implies that

‖xi − x∗
i ‖A ≤ 1

c0
‖F (xi) − F (x∗

i )‖A−1 .

This combined with (3.51) gives

Gi(xi) −Gi(x
∗
i ) ≤

C0

2c20
‖F (xi) − F (x∗

i )‖2
A−1 .

Now we obtain from (3.50) that

‖εi‖2
A−1 ≤ δ̂iC

2
0

c30
‖F (xi) − F (x∗

i )‖2
A−1 =

δ̂iC
2
0

c30
‖fi‖2

A−1 ,

which leads to the satisfaction of (3.18) when k0 is chosen such that δ̂i ≤ c30δ
2
0

C2
0

.

3.5. An analysis on the convergence of Algorithm 3.1. We are now ready
to study the convergence of Algorithm 3.1 and show Theorem 3.2. For this purpose,
we need a few auxiliary lemmas. We remark that all notation below will be the same
as in subsection 3.3. But for the sake of convenience, let us recall some frequently used
notation here: {x, y} is the exact solution to (1.1), Aξ is a positive definite matrix
defined by (3.6) at any given point ξ ∈ Rn, but with Ax simply denoted as A and Axi

as Ai. The following are some error, or residual, vector quantities:

Ei = {
√
δ0fi, e

y
i }, fi = f − F (xi) −Byi, exi = x− xi, eyi = y − yi.

The first lemma below gives conditions on the current approximation pair {xi, yi}
to ensure xi+1 lies in a specified neighborhood of x.

Lemma 3.5. Let rω be a fixed positive number, and let the pair {xi, yi} be given
such that |||Ei||| ≤ c0

(1+
√
δ0)

rω. If xi+1 ∈ Rn is generated such that condition (3.18)

holds for the residual εi = F (xi+1) − (f −Byi), then xi+1 ∈ SA(x, rω).
Proof. We know from the first equation of (1.1) that f = F (x) + By; hence

F (xi+1) − F (x) = B(y − yi) + εi.(3.52)

But it follows from (3.7) that

c0‖xi+1 − x‖2
A ≤ (F (xi+1) − F (x), xi+1 − x)

= (B(y − yi) + εi, xi+1 − x)

≤ ‖B(y − yi) + εi‖A−1 ‖xi+1 − x‖A,

which implies

‖xi+1 − x‖A ≤ 1

c0
‖B(y − yi) + εi‖A−1 ≤ 1

c0
(‖B(y − yi)‖A−1 + ‖εi‖A−1).

This, along with (3.18), leads to

‖xi+1 − x‖A ≤ 1

c0
(‖B(y − yi)‖A−1 + δ0‖fi‖A−1)

=
1

c0
(‖eyi ‖K +

√
δ0‖

√
δ0fi‖A−1)

≤ (1 +
√
δ0)

c0
|||Ei|||,(3.53)

which proves the desired result.
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The next lemma demonstrates that the matrix A = Ax will be close to Ai+1 as
long as xi+1 stays close to x.

Lemma 3.6. For any given positive ε < 1, and any xi+1 ∈ SA(x, ε/(2L)), we
have

‖(A−Ai+1)α‖A−1 ≤ ε ‖α‖A ∀α ∈ Rn.(3.54)

So all the eigenvalues of the matrix A−1Ai+1 lie in the interval [1 − ε, 1 + ε], and

‖α‖A ≤
‖α‖Ai+1√

1 − ε
∀α ∈ Rn.(3.55)

Proof. Clearly (3.54) is invariant with respect to any constant scaling of α. There-
fore it suffices to show that there is a number α0 > 0 such that (3.54) holds for all
α ∈ Rn satisfying ‖α‖A ≤ α0. To show this, we rewrite (A−Ai+1)α as

(A−Ai+1)α = [Aα− (F (x + α) − F (x))] + [F (xi+1 + α) − F (xi+1) −Ai+1α]

+[F (x + α) − F (x) − (F (xi+1 + α) − F (xi+1))],

then by the triangle inequality we have

‖(A−Ai+1)α‖A−1 ≤ ‖Aα− (F (x + α) − F (x))‖A−1

+‖F (xi+1 + α) − F (xi+1) −Ai+1α‖A−1

+‖F (x + α) − F (x) − (F (xi+1 + α) − F (xi+1))‖A−1 .(3.56)

But for any given positive ε < 1, we know from (3.6) that there is a positive number
α0 such that the following two estimates hold for any α ∈ Rn satisfying ‖α‖A ≤ α0,

‖Aα− (F (x + α) − F (x))‖A−1 ≤ ε

4
‖α‖A,(3.57)

‖F (xi+1 + α) − F (xi+1) −Ai+1α‖A−1 ≤ ε

4
‖α‖A.(3.58)

Let G(ξ) = F (ξ+α)−F (ξ). Clearly, the Lipschitzian property of F implies the same
property for G. Thus by (3.3) there is a matrix V ∈ co ∂G(xi+1x) such that

F (x + α) − F (x) − (F (xi+1 + α) − F (xi+1)) = G(x) −G(xi+1) = V (x− xi+1);

this gives

(3.59)

‖F (x + α) − F (x) − (F (xi+1 + α) − F (xi+1))‖A−1 ≤ ‖A− 1
2V A− 1

2 ‖ ‖x− xi+1‖A.

As G(ξ) = F (ξ + α) − F (ξ), we have

co ∂G(xi+1x) = co ∂F (α + xi+1x) − co ∂F (xi+1x),

so it follows from (3.16) that

‖A− 1
2V A− 1

2 ‖ ≤ L ‖α‖A.

This with (3.59) yields

‖F (x + α) − F (x) − (F (xi+1 + α) − F (xi+1))‖A−1 ≤ L‖x− xi+1‖A ‖α‖A.
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Thus for any xi+1 ∈ SA(x, ε/(2L)), we have

‖F (x + α) − F (x) − (F (xi+1 + α) − F (xi+1))‖A−1 ≤ ε

2
‖α‖A;

this, along with (3.57) and (3.58), proves (3.54).
Now by writing (3.54) as

‖(I −A−1Ai+1)α‖A ≤ ε ‖α‖A,

we see that the eigenvalues of A−1Ai+1 must lie in the interval [1− ε, 1+ ε]. This fact
further implies

(A(A−1Ai+1)α, α) ≥ (1 − ε)(Aα,α) ∀α ∈ Rn;

therefore,

(Aα,α) = (Ai+1α, α) + (Aα,α) − (A(A−1Ai+1)α, α)

≤ (Ai+1α, α) + ε (Aα,α),

which leads to estimate (3.55).
Remark 3.5. We see from the proof of Lemma 3.6 that estimate (3.54) is a direct

consequence of (3.5) or (3.6). If F is smooth, then inequality (3.54) amounts to the
condition that the gradient of F is Lipschitzian.

Lemma 3.7. For a given parameter γ < 1
2 , assume xi+1 ∈ SA(x, ε/(2L)) with

ε < (1 − 2γ)/3, and (3.20) is satisfied. Then (3.24) holds with δd < 1
2 .

Proof. For simplicity, we write b = Bdi and Ψ(b) = ΨAi+1
(Bdi). Then it suffices

to verify

‖Ψ(b) −A−1b‖A ≤ 1

2
‖A−1b‖A(3.60)

under the condition

‖Ψ(b) −A−1
i+1b‖Ai+1 ≤ γ ‖A−1

i+1b‖Ai+1 .(3.61)

To see this, first by the triangle inequality,

‖Ψ(b) −A−1b‖A ≤ ‖Ψ(b) −A−1
i+1b‖A + ‖A−1

i+1b−A−1b‖A.(3.62)

Using (3.55) and (3.61) above we derive

‖Ψ(b) −A−1
i+1b‖A ≤

‖Ψ(b) −A−1
i+1b‖Ai+1√

1 − ε
≤ γ√

1 − ε
‖A−1

i+1b‖Ai+1 .(3.63)

On the other hand, it follows from (3.54) and (3.55) that

‖A−1
i+1b−A−1b‖A = ‖(A−Ai+1)A

−1
i+1b‖A−1 ≤ ε ‖A−1

i+1b‖A ≤ ε√
1 − ε

‖A−1
i+1b‖Ai+1 .

Substituting this and (3.63) into (3.62), and using Lemma 3.6 again, leads to

‖Ψ(b) −A−1b‖A ≤ γ + ε√
1 − ε

‖A−1
i+1b‖Ai+1 =

γ + ε√
1 − ε

‖b‖A−1
i+1

≤ γ + ε

1 − ε
‖b‖A−1 =

γ + ε

1 − ε
‖A−1b‖A.(3.64)

This proves (3.60) by noting γ+ε
1−ε < 1

2 when ε < 1−2γ
3 .
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Recalling that gi, τi, and ΨHi
(gi) are the quantities used in Algorithm 3.1, that

the parameter β0 is defined in (3.25), and that K = BtA−1B is the exact Schur
complement with A = Ax, using (3.24) ensured by Lemma 3.7 we can derive the
following lemma, which is basically the same as Lemma 3.1 in [29] (but with different
notation).

Lemma 3.8. For a given parameter γ < 1
2 , assume xi+1 ∈ SA(x, ε/(2L)) with

ε < (1 − 2γ)/3, and (3.20) is satisfied. Then there is a symmetric and positive definite
matrix Qi such that
(i) Q−1

i gi = 1
2 τi ΨHi

(gi);

(ii) all eigenvalues of the matrix Q−1
i K are in the interval [(1 − β0)/2, 1].

The following lemma is basically Lemma 3.5 in [28], with slight modifications.
Lemma 3.9. Let N be an n× n symmetric and positive semidefinite matrix, and

let F(N) be a block matrix given by

F(N) =

(
−δ0(I + N) −

√
δ0N

−
√
δ0N (I −N)

)
.

If all positive eigenvalues of N lie in the interval [1− 1+β0

2 , 1], then we have ‖F(N)‖ ≤
ρ0, where ρ0 < 1 is defined in (3.26).

Proof of Theorem 3.2. With the previous technical preparations, we are now
ready to demonstrate Theorem 3.1. First, we recall that ρ0, ρω, and r∗ω are three
parameters defined in (3.26) and (3.27). Then for Theorem 3.2 it suffices to prove
that ρ∗0 = ρ0 + ρω < 1, and the following relations hold for i = 0, 1, 2, . . .:

|||Ei+1||| ≤ ρ∗0|||Ei||| < |||Ei||| ≤ r∗ω.(3.65)

We shall achieve this by induction. We start with the verification of this for i = 0.
To do so, we shall first derive an error propagation equation. We know from (3.52)
(i = 0) that

F (x1) − F (x) = Bey0 + ε0.(3.66)

But by the assumption of Theorem 3.2 on the initial guess {x0, y0} and the definition of
r∗ω, we know |||E0||| ≤ r∗ω = c0r̂ω/(1 +

√
δ0) with r̂ω = min{rω, rγ}, so x1 ∈ SA(x, r̂ω)

by Lemma 3.5, which implies x1 ∈ SA(x, rγ) ∩ SA(x, rω). This enables us to apply
Lemma 3.8(i) and Algorithm 3.1 to write

y1 = y0 + Q−1
0 Bt(x1 − x).(3.67)

With (3.66), we can further deduce

A
1
2 (x1 − x)

= A− 1
2 (F (x1) − F (x)) −A− 1

2 [F (x1) − F (x) −A(x1 − x)]

= A− 1
2 (Bey0 + ε0) − ϕ1,(3.68)

where ϕ1 = A− 1
2 [F (x1) − F (x) − A(x1 − x)]. Setting N0 = A− 1

2BQ−1
0 BtA− 1

2 , we
obtain from (3.67) and (3.68) that

A− 1
2Bey1 = A− 1

2Bey0 −N0[A
− 1

2 (Bey0 + ε0) − ϕ1]

= (I −N0)A
− 1

2Bey0 −N0A
− 1

2 ε0 + N0ϕ1.(3.69)
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Multiplying (3.66) by A− 1
2 , we have

A− 1
2 (F (x) − F (x1)) = −A− 1

2Bey0 −A− 1
2 ε0.(3.70)

Then using the fact that

f1 = f − F (x1) −By1 = F (x) − F (x1) + Bey1,

we derive from (3.69) and (3.70) that

A− 1
2 f1 = −(I + N0)A

− 1
2 ε0 −N0A

− 1
2Bey0 + N0ϕ1.(3.71)

Now by defining for k = 0, 1, 2, . . . ,

Ey
k = A− 1

2Beyk, Exy
k =

√
δ0A

− 1
2 fk, eεk =

√
δ0

−1
A− 1

2 εk,

we come to the following propagation equation using (3.69) and multiplying (3.71) by√
δ0: (

Exy
1

Ey
1

)
= F(N0)

(
eε0

Ey
0

)
+

( √
δ0N0 ϕ1

N0 ϕ1

)
.(3.72)

We know from Lemma 3.8(ii) that all the positive eigenvalues of the matrix N0 lie
in the interval [1 − 1+β0

2 , 1]; thus ‖F(N0)‖ ≤ ρ0 by Lemma 3.9. Then with the
assumption of Theorem 3.2 on the tolerance εi for i = 0, 1, 2, . . . , we know (3.18) is
satisfied, leading to

‖eε0‖ ≤ ‖
√

δ0A
− 1

2 f0‖ = ‖Exy
0 ‖.

By this, with the definition of the norm ||| · |||, we see

‖eε0‖2 + ‖Ey
0‖2 ≤ |||E0|||2.

Using this and the bound ‖F(N0)‖ ≤ ρ0, we derive from (3.72) that

|||E1||| ≤ ρ0 |||E0||| +
√

1 + δ0 ‖ϕ1‖.(3.73)

Noting x1 ∈ SA(x, rω), it follows from (3.23), (3.53), and the definition of ρω in (3.27)
that √

1 + δ0 ‖ϕ1‖ =
√

1 + δ0 ‖F (x1) − F (x) −A(x1 − x)‖A−1

≤ ω
√

1 + δ0 ‖x1 − x‖A

≤ ω
√

1 + δ0(1 +
√
δ0)

c0
|||E0||| = ρω|||E0|||.

Then we know from (3.73) that

|||E1||| ≤ (ρ0 + ρω)|||E0||| = ρ∗0|||E0|||.

Noting the fact that ω is taken from the range (0, ω0), we have

ρω =
ω
√

1 + δ0(1 +
√
δ0)

c0
<

ω0

√
1 + δ0(1 +

√
δ0)

c0
.
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This, with the definition of ω0 in (3.27), shows ρω < 1− ρ0, so ρ∗0 = ρω + ρ0 < 1, and

|||E1||| ≤ ρ∗0|||E0||| < |||E0||| ≤ r∗ω,

which verifies (3.65) for i = 0.
Now we assume (3.65) holds for i = k− 1 with any integer k > 1; then in exactly

the same manner as for deriving the error propagation equation (3.72), we have(
Exy

k+1

Ey
k+1

)
= F(Nk)

(
eεk

Ey
k

)
+

( √
δ0Nk ϕk+1

Nk ϕk+1

)
(3.74)

where ϕk+1 = A− 1
2 [F (xk+1) − F (x) − A(xk+1 − x)] and Nk = A− 1

2BQ−1
k BtA− 1

2 .
With this relation, one can follow exactly the same proof as for i = 0 above to verify
that (3.65) holds for i = k. This completes the proof of (3.65) by induction.

4. Numerical experiments. In this section, we shall apply two new algorithms
proposed in sections 2 and 3, Algorithms 2.2 and 3.1, and some other existing algo-
rithms, to solve a linear saddle-point problem arising from a domain decomposition
method with a Lagrange multiplier and a nonlinear saddle-point problem.

4.1. A linear saddle-point problem arising from a domain decompo-
sition method with a Lagrange multiplier. Domain decomposition methods
with Lagrange multipliers have become popular in solving second order elliptic prob-
lems; see, for example, [8], [27], [34], and the references therein. This method allows
nonmatching grids to be used in different subdomains, with Lagrange multipliers
introduced to preserve necessary interface continuities between local solutions from
neighboring subdomains. A domain decomposition method with a Lagrange mul-
tiplier results in a saddle-point system with respect to the primal variable and the
Lagrange multiplier. Two different approaches are often used to solve the resulting
saddle-point system: the first one eliminates the primal variable in the system and
forms an interface equation for the multiplier, then solves the interface equation by
a PCG method [26]; the second directly solves the saddle-point system by some pre-
conditioned iterative method [27], [34]. We shall compare the efficiency of these two
different approaches.

Consider the model elliptic problem

−∇ · (a∇u) = f in Ω; u = g on ∂Ω,(4.1)

where Ω is a three-dimensional rectangular domain Ω = [0, 2]× [0, 1]2. We decompose
Ω into two subdomains Ω1 and Ω2: Ω1 = [0, 1]3, Ω2 = [1, 2] × [0, 1]2, and then
triangulate each subdomain Ωk (k = 1, 2) into smaller cubic elements, each with edges
of equal length hk. We remark that the two triangulations in Ω1 and Ω2, denoted
T h1 and T h2 , respectively, are not required to match on the interface Γ = Ω1 ∩ Ω2.
By Nhk

we denote the set of vertices of all elements in the triangulation of Ωk, and
Γhk

= Γ ∩Nhk
for k = 1, 2.

On each Ωk, we define V h(Ωk) ⊂ H1(Ωk) to be the standard Q1 finite element
space [17], [24], associated with the triangulation T hk , and

V h
g (Ωk) =

{
v ∈ V h(Ωk); v(xi) = g(xi) ∀xi ∈ Nhk

∩ (∂Ωk\Γ)
}
,

V h
g (Ω) =

{
v = {v1, v2} ∈ V h

g (Ω1) × V h
g (Ω2); v1(xi) = v2(xi) ∀xi ∈ Γh1

}
.
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Now the finite element approximation of the elliptic problem (4.1) can be formu-
lated as follows: Find {uh1 , uh2} ∈ V h

g (Ω) such that

2∑
k=1

(a∇uhk
,∇vk)Ωk

=

2∑
k=1

(f, vk)Ωk
∀ v = {v1, v2} ∈ V h

0 (Ω).(4.2)

By introducing a discrete Lagrange multiplier χ to remove the constraints on the
interface as required in the finite element space V h

g (Ω), system (4.2) can be written
as the algebraic saddle-point system [27]⎛

⎝ A1 0 B1

0 A2 B2

Bt
1 Bt

2 0

⎞
⎠

⎛
⎝ U1

U2

χ

⎞
⎠ =

⎛
⎝ b1

b2
d

⎞
⎠ ,(4.3)

where A1 and A2 are the stiffness matrices associated with the bilinear form (a∇·,∇·)Ωk

under the nodal basis of V hk
0 (Ωk), and Uk corresponds to the nodal values of uhk

in
Ωk ∪ Γhk

.
By eliminating the variables U1 and U2 in (4.3), we obtain the interface equation

[26]

Kχ = b(4.4)

with

K =
2∑

k=1

Bt
kA

−1
k Bk, b =

2∑
k=1

Bt
kA

−1
k bk − d.

We note that the Schur complement K is a dense matrix, possibly of large size.
The direct solver for system (4.4) is very expensive. Instead, we will consider the
following three iterative methods for solving (4.3).

M1. Solve the interface equation (4.4) by the CG method. Recall that we are
mainly interested in the case where no good preconditioners are available for
the Schur complement, so CG is used here instead of PCG, although some
effective preconditioners are available for the current Schur complement;
see, e.g., [9], [21]. In fact, this main interest prompts us to choose the worst
preconditioner, the identity, for the Schur complement K involved in all
three algorithms we shall test.

M2. Solve the saddle-point system (4.3) directly by the well-known precondi-
tioned MINRES method [39]. We will take an (algebraic) multigrid pre-
conditioner (cf. [42]) to be the preconditioner Â for the first 2 × 2 block
matrix in the coefficient matrix of (4.3) and the identity matrix to be the
preconditioner K̂ for the Schur complement K.

M3. Solve the saddle-point system (4.3) directly by Algorithm 2.2 of section 2.
The preconditioners Â and K̂ are taken to be the same as in M2. The ap-
proximation ΨA(φ) is taken to be Â−1φ for any φ, while the approximation
ΨH(gi) is generated by two PCG iterations for solving (2.13). (Note that
PCG is the same as CG here since K̂ is taken to be the identity.)

Table 4.1 shows the numerical results with M1, M2, and M3, where the coefficient
a(x, y, z) in (4.1) is taken to be a(x, y, z) = 1+xyz, and functions f and g are taken so

that the exact solution of (4.1) is u(x, y, z) = (x+y+z)
1
5 . Considering the singularity
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Table 4.1

Number of iterations and CPU time (in seconds).

h1 M1 M2 M3 (θ = 1
2
) M3 (θ = 0.7)

iter CPU iter CPU iter CPU iter CPU
1/8 10 0.14 20 0.53 10 0.52 8 0.43
1/16 15 16.6 33 8.5 11 6.6 10 6.0
1/32 21 1956.9 58 158.5 13 89.9 12 86.3

of the solution at the origin, we take h1 = h2/2. In all the experiments, the initial
guesses for the three iterative methods are taken to be zero, and the outer iterations
terminate when the relative error of the residual reaches 10−5. We mentioned in
Remark 2.3 that the coefficient 1/2 in (2.18) can be replaced by a larger number than
1/2, which is now tested in Table 4.1 with two different choices of this coefficient,
denoted by a parameter θ.

We remark that the actions of the Schur complement K involve the actions of
the local solvers A−1

k . These actions must be very accurate, since our target is to
solve system (4.3) or (4.4). One may use both direct solvers or iterative solvers to
realize the actions of these local solvers. But if iterative solvers are used, the stopping
criterion should be up to a very high accuracy. So we have chosen in our experiments
to realize these local solvers by the standard direct solver, a banded sparse version of
the Gauss elimination.

From Table 4.1 we see that the new method (M3), Algorithm 2.2, outperforms
M1 and M2 essentially, and this appears to be more evident when the discrete system
becomes larger.

4.2. An algebraic nonlinear saddle-point problem. We now consider an
algebraic nonlinear saddle-point problem and compare the convergence of the new
Algorithm 3.1 of section 3 and the well-known augmented-Uzawa method, which has
been widely used for nonlinear saddle-point systems.

Let Im be the m×m identity matrix, and let Tm an m×m matrix with entries
given by

tij =

{
1 if |i− j| = 1;
0 otherwise.

For n = 2m, we define an n× n symmetric positive definite matrix M and an n×m
matrix B with full rank as follows:

M =

(
5
2Im − 1

4Tm −Im
−Im

5
2Im − 1

4Tm

)
, B = (0, 2Im − Tm)t.

The smallest and largest eigenvalues of M are given by [14]

λ1 = 4 sin2 m

2(n + m)
π + sin2 1

2(m + 1)
π = 1 + sin2 1

2(m + 1)
π,

λn = 4 sin2 n

2(n + m)
π + sin2 m

2(m + 1)
π = 3 + sin2 m

2(m + 1)
π.

Now we define the nonlinear mapping F as

F (ξ) = Mξ +
1

5

(
ξ1

1 + ξ2
1

,
ξ2

1 + ξ2
2

, . . . ,
ξn

1 + ξ2
n

)t

∀ ξ = (ξ1 ξ2 · · · ξn)t ∈ Rn.(4.5)
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One can verify that F is strongly monotone and Lipschitz continuous. Moreover, we
have

∇F (ξ) = M +
1

5
diag

(
1 − ξ2

1

(1 + ξ2
1)2

,
1 − ξ2

2

(1 + ξ2
2)2

, . . . ,
1 − ξ2

n

(1 + ξ2
n)2

)
,

which implies

4

5
‖ζ‖2 ≤ (∇F (ξ)ζ, ζ) ≤ 21

5
‖ζ‖2 ∀ζ, ξ ∈ Rn.(4.6)

Let Ai = ∇F (xi). If we choose Âi = In, we have cond(Â−1
i Ai) ≤ 21/4. Noting

that the Schur complement Ki = BtA−1
i B is a dense matrix without any special

structure, it is difficult to find a reasonable preconditioner K̂i for Ki. Therefore we
will take the worst preconditioner K̂i = Im.

The functional J(ξ) satisfying ∇J(ξ) = F (ξ) can be written as

J(ξ) =
1

2
(Mξ, ξ) +

1

10

n∑
l=1

ln(1 + ξ2
l ).(4.7)

One can see that J(ξ) is uniformly convex. This enables us to realize the nonlinear
inner iteration in Algorithm 3.1 for finding xi+1 by Algorithm 3.2.

The right-hand side functions f and g in (1.1) are generated using system (1.1)
when the exact solution is taken to be

x = (1, 1, . . . , 1)t, y =

(
1,

1

2
, . . . ,

1

m

)t

.

We will compare the new nonlinear inexact Uzawa algorithm (Algorithm 3.1) with
the well-known augmented-Uzawa method (see [38, pp. 234–244]). The augmented-
Uzawa method converges, provided that the inner iteration involved is accurate enough,
and the augmented parameter r is taken to be sufficiently large (or the initial guess
is very close to the exact solution).

The initial guess x0 for both Algorithm 3.1 and the augmented-Uzawa method
will be taken to be the approximation generated by three steps of the steepest descent
method for solving the perturbation system (3.30) with μ = 1/10 and the zero initial
guess. With x0 available, y0 is then determined from the second equation of (3.29).
The iterations of Algorithm 3.1 and the augmented-Uzawa method terminate when

ε =

{
‖f − F (xi) −Byi‖2 + ‖g −Btxi‖2

‖f‖2 + ‖g‖2

} 1
2

≤ 10−5.(4.8)

We first apply Algorithm 3.1 for the nonlinear saddle-point problem (1.1) with the
data described as above. There are three stopping parameters δ0, δg, and γ involved
in the inner iterations. For the convenience of numerical tests, we will replace the
norms used in (3.18), (3.19), and (3.20) by the l2-norms of the relative errors of the
residuals, and take δ0 = 1/4 and γ = 1/4, but a few different choices for δg. The
convergence results of Algorithm 3.1 are summarized in Table 4.2.

We then apply the augmented-Uzawa method for the nonlinear saddle-point prob-
lem (1.1) with the data described as above. Each nonlinear inner iteration involved in
the augmented-Uzawa algorithm is realized by 30 or 40 iteration of Algorithm 3.2—a
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Table 4.2

Number of iterations and CPU time (in seconds) with Algorithm 3.1.

(n, m) (100, 50) (200, 100) (400, 200) (800, 400)
iter CPU iter CPU iter CPU iter CPU

δg = 1/4 32 2.1 30 9.5 30 104.9 28 676.6
δg = 1/6 29 2.2 31 14.4 29 87.3 27 635.6
δg = 1/8 29 1.8 28 11.0 28 77.4 27 633.8

Table 4.3

Number of iterations and CPU time with augmented-Uzawa algorithm (30 inner iterations).

(n, m) (100, 50) (200, 100) (400, 200) (800, 400)
iter CPU iter CPU iter CPU iter CPU

r = 10 255 85.5 180 267.8 139 987.7 106 7375.1
r = 50 62 20.8 49 73.1 40 284.9 31 2160.8
r = 100 64 21.6 61 90.8 51 361.8 40 2786.6

Table 4.4

Number of iterations and CPU time with augmented-Uzawa algorithm (40 inner iteration).

(n, m) (100, 50) (200, 100) (400, 200) (800, 400)
iter CPU iter CPU iter CPU iter CPU

r = 10 255 115.5 179 388.1 138 1311.1 106 10553.7
r = 50 53 24.1 38 82.6 28 266.7 22 2195.9
r = 100 44 19.9 41 89.0 30 285.6 24 2406.2

Table 4.5

Number of iterations and CPU time with augmented-Uzawa algorithm (ε̃ ≤ 10−2).

(n, m) (100, 50) (200, 100) (400, 200) (800, 400)
iter CPU iter CPU iter CPU iter CPU

r = 10 255 97.0 179 354.8 138 1342.1 106 10269.6
r = 50 52 62.5 37 198.7 28 880.8 22 6249.0
r = 100 27 34.8 18 114.7 13 331.9 10 2356.4

preconditioned CG-type method. The numerical results are summarized in Table 4.3
(30 inner iterations) and Table 4.4 (40 inner iterations).

In order to better understand the effect of the inner iterations, we have also
implemented stopping the inner iterations by the standard stopping criterion, which
is set to stop the inner iterations when the relative residual is less than ε̃. The
numerical results are summarized in Table 4.5.

Tables 4.3–4.5 indicate that both the convergence rate and the CPU time of the
augmented-Uzawa algorithm depend strongly on the augmented parameter r. But
there is still no theory about the selection of a reasonable or optimal parameter r.

One can see from Tables 4.2–4.5 that Algorithm 3.1 is evidently more efficient
than the augmented-Uzawa method (even if the optimal parameter r may be found).
For the augmented-Uzawa method, one can clearly see that it converges faster with
more inner iterations, which, however, does not necessarily lead to less CPU times;
see the figures in Table 4.3 and 4.4 with r = 50. When the inner iterations are set
to be too accurate, the total CPU time may be much longer; compare the figures in
Tables 4.4 and 4.5 with r = 50. But how to set the stopping criterion for the inner
iterations of the augmented-Uzawa method is rather difficult and often quite problem
dependent.



824 QIYA HU AND JUN ZOU

Acknowledgments. The authors wish to thank two anonymous referees for
many constructive comments which led to great improvement in the results and the
presentation of the paper.

REFERENCES

[1] M. Al-Baali and R. Fletcher, On the order of convergence of preconditioned nonlinear
conjugate gradient methods, SIAM J. Sci. Comput., 17 (1996), pp. 658–665.

[2] K. Arrow, L. Hurwicz, and H. Uzawa, Studies in Linear and Nonlinear Programming, Stan-
ford University Press, Stanford, CA, 1958.

[3] O. Axelsson, Numerical algorithms for indefinite problems, in Elliptic Problem Solvers, Aca-
demic Press, New York, 1984, pp. 219–232.

[4] R. Bank, B. Welfert, and H. Yserentant, A class of iterative methods for solving saddle
point problems, Numer. Math., 56 (1990), pp. 645–666.

[5] A. Battermann and M. Heinkenschloss, Preconditioners for Karush–Kuhn–Tucker matri-
ces arising in the optimal control of distributed systems, in Control and Estimation of
Distributed Parameter Systems (Vorau, 1996), W. Desch, F. Kappel, and K. Kunisch, eds.,
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Abstract. In this paper we study the problem of finding an optimal pricing policy for the
use of the public transportation network in a given populated area. The transportation network,
modeled by a Borel set Σ ⊂ Rn of finite length, the densities of the population and of the services
(or workplaces), modeled by the respective finite Borel measures ϕ0 and ϕ1, and the effective cost
A(t) for a citizen to cover a distance t without the use of the transportation network are assumed
to be given. The pricing policy to be found is then a cost B(t) to cover a distance t with the use of
the transportation network (i.e., the “price of the ticket for a distance t”), and it has to provide an
equilibrium between the needs of the population (hence minimizing the total cost of transportation
of the population to the services/workplaces) and that of the owner of the transportation network
(hence maximizing the total income of the latter). We present a model for such a choice and discuss
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1. Introduction. Suppose that a set Σ ⊂ Ω represents a public transportation
network (say, a railway) in a city modeled by a convex set Ω ⊂ Rn, n ≥ 2. If a
path θ ⊂ Ω connecting x ∈ Ω to y ∈ Ω is interpreted as the itinerary of a passenger
moving from x to y, then H1(θ \ Σ) and H1(θ ∩ Σ), where H1 stands for the one-
dimensional Hausdorff measure, can be naturally interpreted as the “effective lengths”
of the part of the itinerary which the passenger covers, respectively, outside of and
along the public transportation network. Let a function A: R+ → R̄+ represent the
effective cost (in terms of time, money, and/or fatigue) for a single citizen of traveling
without using the public transportation network (i.e., “by own means”), while B:
R+ → R̄+ represents the analogous cost of traveling with the use of such a network
(i.e., “by train”). The former clearly characterizes the pattern of behavior of the
population which we consider to be known, while the latter is a pricing policy on
the use of the transportation network imposed by its owner. Under this assumption
each single citizen moving along a path θ will choose the most convenient distance
L(B, θ) ≤ H1(θ ∩ Σ) to cover with the use of the transportation network (i.e., “by
train”), and thus will cover H1(θ)−L(B, θ) without using the transportation network
(i.e., “by own means”). Then the number

δ(B, θ) := A(H1(θ) − L(B, θ)) + B(L(B, θ))

represents the total cost for a citizen of traveling along θ. Suppose the densities
of the residents ϕ0 and of the services (or workplaces) ϕ1 are given. The residents
obviously travel to reach the services or workplaces and are free to use or not to use
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the transportation network. The choice of the way of transportation of the residents
can be naturally described by the Monge–Kantorovich optimal transportation model
(see, e.g., [1, 5, 6, 7, 8] for the detailed presentation of the respective theory).

The problem we study in the present paper is as follows. A company owning the
public transportation network Σ would naturally be interested in using it in the most
effective way, that is, to earn the maximum profit. The only tool at its disposal which
can be used to accomplish this task is the pricing policy for the use of the network,
i.e., the function B. However, the population reacts to each particular pricing policy
B by choosing its own pattern of behavior, namely, the itineraries and maybe even the
destinations of everyday movements. In particular, to maximize the profit, the owner
of the public transportation network is tempted to increase B. But one can expect
that the higher the latter is, the less people are interested in using the transportation
network. For instance, if B is “extremely high” (of course depending on the other
factors, such as the cost function A and the size of Ω), nobody will use the public
transportation network, and hence such a “greedy” policy would make the company
fail. Therefore, a more modest pricing policy is expected to be optimal. The paper is
concerned with the existence and the qualitative properties of such an optimal pricing
policy.

2. Notation and preliminaries. In this paper the ambient space Ω ⊂ Rn,
n ≥ 2, representing the given city is assumed to be a convex body (i.e., a bounded
closed convex set with nonempty interior) equipped with the Euclidean distance. The
convexity assumption on Ω is mainly introduced to simplify the presentation. Instead,
more general domains Ω can be considered equipped with the geodesic distance relative
to Ω, which in the case of nonconvex Ω does not coincide with the Euclidean distance.
The public transportation network in Ω is assumed to be represented by a Borel set
Σ ⊂ Ω of finite length, i.e., H1(Σ) < ∞.

We call two Lipschitz-continuous paths θ̂1, θ̂2: [0, 1] → Ω equivalent if there is
a continuous surjective increasing function (usually called “reparameterization”) φ:

[0, 1] → [0, 1] such that θ̂1(t) = θ̂2(φ(t)) for all t ∈ [0, 1]. Let Θ stand for the set
of equivalence classes of Lipschitz-continuous paths. In this way each θ ∈ Θ can
be clearly identified with some directed rectifiable curve. In what follows we will
frequently slightly abuse the language, identifying the elements of Θ (i.e., directed
rectifiable curves) with their parameterizations (i.e., Lipschitz-continuous paths pa-
rameterizing such curves) when it cannot lead to a confusion. We consider the set Θ
to be equipped with the distance

dΘ(θ1, θ2) := inf

{
max
t∈[0,1]

|θ̂1(t) − θ̂2(t)| : θ̂i parameterization of θi, i = 1, 2

}
,(2.1)

where | · | is the Euclidean norm in Rn. It is easy to see that θν → θ in Θ implies
the Hausdorff convergence of the respective traces, though the converse is clearly not
true.

If {θ1, θ2} ⊂ Θ are such that θ1(1) = θ2(0), then we define θ1 ◦θ2 ∈ Θ the directed
rectifiable curve possessing a parameterization

θ1 ◦ θ2(t) :=

{
θ1(2t) if t ∈ [0, 1/2],
θ2(2t− 1) if t ∈ (1/2, 1].

It is important to remark that every subset of curves in Θ having uniformly
bounded length is compact. In fact, let a sequence {θν} ⊂ Θ satisfy H1(θν) ≤ l for
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some l ≥ 0 and for all ν ∈ N. Then each θν admits a parameterization with Lipschitz
constant not exceeding l, and hence by the Ascoli–Arzelà theorem θν → θ in Θ for
some θ ∈ Θ and for a subsequence of ν (not relabeled).

For a locally compact metric space X we denote by M+(X) the space of positive
Radon measures over X equipped with the ∗-weak topology. If ϕ ∈ M+(X) and B(X)
stands for the Borel σ-algebra of X, then by Bϕ(X) we denote the completion of the
latter with respect to ϕ (in other words, Bϕ(X) is generated by B(X) ∪ ϕ−1({0}),
i.e., by Borel sets and ϕ-nullsets). Then a map f : X → Y is called ϕ-measurable, if it
is measurable with respect to Bϕ(X). If f : X → Y is a ϕ-measurable (in particular,
Borel measurable) map between locally compact metric spaces X and Y , then we
denote by f#ϕ the push-forward of the measure ϕ, i.e., the measure defined by

(f#ϕ)(B) := ϕ(f−1(B))

for every Borel B ⊂ Y .
We recall the basic facts about Γ-convergence. For a sequence of functionals fν :

X → R̄, ν ∈ N, defined over a metric space X, we set

(Γ− lim infν fν)(x) := inf{lim infν fν(xν) : xν → x},
(Γ− lim supν fν)(x) := inf{lim supν fν(xν) : xν → x},

and we say that this sequence Γ− converges to a functional f : X → R̄ as ν → ∞,
written f := Γ− limν fν , if f = Γ− lim infν fν = Γ− lim supν fν . If fν = g for all
ν ∈ N, then the functional g− := Γ− limν fν is called the relaxation (or l.s.c. envelope)
of the functional g: X → R̄. Clearly, infX g = infX g−. One also observes that Γ−-
convergence is stable with respect to the passage to relaxations, namely,

Γ− lim
ν

fν = Γ− lim
ν

f−
ν .

We also define

Γ+ lim sup
ν

fν := −Γ− lim inf
ν

(−fν), Γ+ lim inf
ν

fν := −Γ− lim sup
ν

(−fν),

and hence f := Γ+ limν fν , if f = Γ+ lim infν fν = Γ+ lim supν fν . It is easy to show
that a Γ−-limit (resp., Γ+-limit) of an arbitrary sequence of functionals is a l.s.c.
(resp., u.s.c.) function.

Finally, for the functional f : X → R̄ defined over a metric space X, we denote
by ArgminXf (resp., ArgmaxXf) the set of minimizers (resp., maximizers) of f in X,
i.e.,

ArgminXf := {x ∈ X : f(x) = infX f},
ArgmaxXf := {x ∈ X : f(x) = supX f}.

3. Problem setting.

3.1. Behavior of the population. In our model the population is characterized
by two nonnegative Borel measures ϕ0 and ϕ1 over Ω, the former modeling the density
of the population, the latter modeling the density of the destinations of their everyday
movements (say, the density of services or of workplaces), and by the function A:
R+ → R̄+, which is interpreted as the cost per unit mass of moving without the use
of public transportation network (i.e., by own means). We request that the total
masses of ϕ0 and ϕ1 be equal, namely,

ϕ0(Ω) = ϕ1(Ω).
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In what follows we will always assume that the function A is monotone nondecreasing
and continuous. From the applicative point of view, it might be useful to think that
A(0) = 0 (i.e., the “cost of not moving anywhere” is zero), although technically we
will not need such an assumption for the validity of all the results proven in what
follows.

In this section we propose two different models for the choice of the optimal pricing
policy B, and consider some of their equivalent formulations. As for the requirements
on B, it seems quite natural to request that B be monotone nondecreasing (i.e.,
the price of a short-distance trip should not exceed that of a long-distance one) and
that B(0) = 0 (i.e., the owner of the transportation network may only charge for
effective movements along the network and hence may not charge for “people staying
at home”). Below we develop what we think is a reasonable model of behavior of
both population and the owner of the transportation network under only the above
assumptions on A and B. We will see that in this model there is no way to distinguish
between the pricing policy B and its l.s.c. envelope B−, and therefore later on we will
be able to assume without loss of generality that B is l.s.c.

3.1.1. Individual behavior. We first consider the question of how each citizen
chooses the distance L(B, θ) to cover with the use of the transportation network once
his itinerary θ ∈ Θ is chosen and supposing that the pricing policy B is a monotone
nondecreasing function. Clearly, with θ ∈ Θ fixed, once one chooses to cover the
distance l with the use of the transportation network, one pays the cost

g(l) := A(H1(θ) − l) + B(l).

Therefore, it is reasonable to choose for L(B, θ) a minimizer of the latter function
over [0,H1(θ ∩ Σ]). Note that such a minimizer might not exist when B is not l.s.c.
However, the l.s.c. envelope g− of the function g given by the formula

g−(l) = A(H1(θ) − l) + B−(l),

where B− stands for the l.s.c. envelope of B, attains it minimum value over [0,H1(θ∩
Σ)], which coincides with the infimum of g over the same interval. Note that if l
minimizes g− but not g, it means that in l the function B has a jump and B(l) >
limξ→l− B(ξ). In other words, in this case it is convenient for a citizen to cover along
the transportation network any distance ξ < l arbitrarily close to l, but not exactly
l, while the cost of transportation along θ will be arbitrarily close to g−(l). It is
natural then to define L(B, θ) to be one of the minimizers of g− over [0,H1(θ∩Σ)]. It
might happen, however, that a minimizer, of g− is not unique, i.e., covering different
distances with the use of the public transportation network along the same path gives
an identical cost to the individual. We therefore make the following assumption:
every person chooses to cover the minimum possible distance by his own means (or,
equivalently, the maximum possible distance with the use of the public transportation
network) as long as the total cost for him is the same. Translated in mathematical
terms, this leads to the following definition: each person traveling along θ is covering
on the transportation network the distance

L(B, θ) := max{l ∈ Argminξ≤H1(θ∩Σ) A(H1(θ) − ξ) + B−(ξ)}.(3.1)

It is immediate to note that the maximum in the above definition is actually attained
and hence the cost of transportation along θ is given by

δ(B, θ) := min
l∈[0,H1(θ∩Σ)]

(A(H1(θ) − l) + B−(l))

= A(H1(θ) − L(B, θ)) + B−(L(B, θ)).
(3.2)
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It is worth noting that L(B, ·) is Borel measurable, and δ(B, ·) is l.s.c. as claimed
in Lemma 3.1 below.

Lemma 3.1. For each monotone nondecreasing function B the function L(B, ·):
Θ → R+ is Borel measurable and the function δ(B, ·): Θ → R+ is l.s.c.

Proof. Define

α(s, t) := max
{
σ ∈ Argmin{A(s− σ) + B−(σ) : 0 ≤ σ ≤ t}

}
,

β(s, t) := min{A(s− σ) + B−(σ) : 0 ≤ σ ≤ t},

so that of course L(B, θ) = α(H1(θ),H1(θ ∩ Σ)) and δ(B, θ) = β
(
H1(θ),H1(θ ∩ Σ)

)
.

The function β is trivially monotone nondecreasing in s and monotone nonincreasing
in t. On the other hand, the function α is u.s.c. Indeed, take two sequences sν → s
and tν → t as ν → ∞ and suppose that σν := α(sν , tν) → σ̄. For σ < σ̄ one has
σ < σν ≤ tν for sufficiently large ν, and then by definition A(sν − σ) + B−(σ) ≥
A(sν −σν)+B−(σν). Passing to the limit in ν and recalling that A is continuous and
B− l.s.c., one gets A(s−σ)+B−(σ) ≥ A(s−σ̄)+B−(σ̄), so that α(s, t) ≥ σ̄. The thesis
now follows because θ �→ H1(θ) is l.s.c. by the Golab theorem (see Theorem 4.4.7 [2])
and θ �→ H1(θ ∩ Σ) is u.s.c. by Lemma 4.1.

3.1.2. Collective behavior: Transport measures. Now we would like to
study which itineraries are chosen by the people in their everyday movements. These
itineraries will be modeled by a special measure η ∈ M+(Θ) which will say, roughly
speaking, how many people are choosing each particular path. We will call a measure
η ∈ M+(Θ) a transport measure (or simply a transport), if

pi#η = ϕi, i = 0, 1,

where the map pi: Θ → Ω is defined by pi(θ) := θ(i), i = 0, 1. Define now the
functional C(B) over M+(Θ) by the formula

C(B)(η) :=

∫
Θ

δ(B, θ) dη(θ).

We will show in Proposition 3.2 that C(B) admits a minimizer ηopt over the set of all
admissible transports. From a purely heuristic point of view, the optimal transport
ηopt says, roughly speaking, how many people take each particular path θ in their ev-
eryday movements. Further on we denote by Eopt(B) the set of all optimal transports
ηopt for a given B, namely,

Eopt(B) := Argmin {C(B)(η) : η admissible transport}.

3.1.3. Equivalent formulation: Transport plans. The problem of minimiz-
ing C is in fact just a version of the classical Monge–Kantorovich transport problem.
To see this, define the function dB : Ω × Ω → R̄ by setting

dB(x, y) := inf {δ(B, θ) : θ ∈ Θ, θ(0) = x, θ(1) = y} ,

where δ(B, θ) is given by (3.2). The number dB(x, y) can be naturally interpreted
as the cost for a single person of traveling from x to y, once the opportunity of
using the public transportation network is offered. Then the everyday movement
of the population to their workplaces can be also modeled by a transport plan γ ∈
M+(Ω × Ω), i.e., a finite Borel measure over Ω × Ω satisfying

πi#γ = ϕi, i = 0, 1,(3.3)
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where πi: Ω × Ω → Ω, i = 0, 1, stand for the projections on the first and the second
factor, respectively, namely, πi(x0, x1) := xi. The term “transport plan” refers to the
fact that in a very heuristic way one can think that γ(x, y) stands for the number
of people who move from point x to point y, and hence represents the “plan of
transportation” of the population ϕ0 to the destinations ϕ1. The population chooses
the transport plan so as to minimize over all admissible transport plans (i.e., measures
γ ∈ M+(Ω × Ω) satisfying (3.3)) the total cost of everyday movement given by the
Monge–Kantorovich functional IB defined by the relationship

IB(γ) :=

∫
Ω×Ω

dB(x, y) dγ(x, y).

We will denote by MK(B) the respective infimum of IB . Namely, we set

MK(B) := inf {IB(γ) : γ admissible transport plan} .

The latter infimum is attained at some optimal transport plan γopt since the set of ad-
missible transport plans is obviously compact in ∗-weak topology of measures, while
the integrand dB is l.s.c. (in fact, even continuous), as will be shown in Proposi-
tion 5.3(i). We remark that the optimal transport plan γopt obviously may depend on
B and characterizes, though not completely, the pattern of behavior of the population
once the pricing policy B is known. Roughly speaking γopt says “who goes where”
given the pricing policy B for the use of the public transportation network, though
it does not say “along which path.” Further on we denote by Γopt(B) the set of all
optimal transport plans γopt for a given B, namely,

Γopt(B) := Argmin {IB(γ) : γ admissible transport plan}.

Define the set of the “optimal paths”

Θ̃(B) := {θ ∈ Θ : dB(θ(0), θ(1)) = δ(B, θ)}

and denote by QB(x, y) the set of optimal paths connecting x with y, namely,

QB(x, y) = {θ ∈ Θ̃(B) : θ(0) = x, θ(1) = y},

so that

Θ̃(B) =
⋃

(x,y)∈Ω×Ω

QB(x, y).

A trivial by-product of Proposition 5.3(ii) is the fact that both Θ̃(B) and QB(x, y)
are closed sets (as for the latter, one can also conclude immediately from Lemma 3.1
that each QB(x, y) is closed as a set of minima of a l.s.c. function δ(B, ·) on a closed
set).

The assertion below provides a relationship between the Monge–Kantorovich
problem of finding an optimal transport plan and the problem of minimizing C(B)
over all transports.

Proposition 3.2. If B is a monotone nondecreasing function one has

MK(B) = min {C(B)(η) : η admissible transport} .(3.4)
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Moreover, if ηopt ∈ Eopt(B), then γ := (p0 × p1)#ηopt ∈ Γopt(B). Vice versa, there is

a Borel map qB: Ω × Ω → Θ̃(B) such that whenever γopt ∈ Γopt(B), η := qB#γopt ∈
Eopt(B).

Finally, every ηopt ∈ Eopt(B) is concentrated over Θ̃(B), i.e., ηopt(Θ\Θ̃(B)) = 0.
Proof. If η is an admissible transport, then γ := (p0×p1)#η is clearly an admissible

transport plan. Hence, recalling the definition (3.2) of dB , we have

C(B)(η) =

∫
Θ

δ(B, θ) dη ≥
∫

Θ

dB((p0 × p1)(θ)) dη

=

∫
Ω×Ω

dB(x, y) dγ = IB(γ) ≥ MK(B).

(3.5)

On the other hand, there is a Borel measurable selector qB : Ω × Ω → Θ̃(B) of

the multivalued map QB : Ω × Ω−◦ Θ̃(B) (we use the symbol −◦ instead of an arrow
to stress that QB is multivalued). To verify this claim, it suffices to observe that the
graph of QB defined by

Graph QB := {(x, y, θ) : (x, y) ∈ Ω × Ω, θ ∈ QB(x, y)}
= {(x, y, θ) ∈ Ω × Ω × Θ : x = θ(0), y = θ(1)} ∩ (Ω × Ω × Θ̃(B))

is closed because Θ̃(B) is closed (in view of Proposition 5.3(ii)), while QB(x, y) is
nonempty for each (x, y) ∈ Ω × Ω, and we refer to the Kuratowski–Ryll–Nardzewski
measurable selection theorem (Theorem III.6 [4] or Theorem 5.2.1 [9]). Then, given
an arbitrary optimal transport plan γopt ∈ Γopt(B) we observe that ηopt := qB#γopt
is an admissible transport. Moreover,

MK(B) =

∫
Ω×Ω

dB(x, y) dγopt =

∫
Ω×Ω

δ(B, qB(x, y)) dγopt

=

∫
Θ

δ(B, θ) dηopt = C(B)(ηopt) ≥ inf C(B),

(3.6)

where the infimum of C(B) is taken over the set of all admissible transports. Together
with (3.5) this proves that ηopt is an optimal transport and hence the validity of the
first claim of the statement is also proven. From (3.5) with η optimal transport,
we get that (p0 × p1)#η is an optimal transport plan. Finally, since in (3.5) all the
inequalities are actually equalities when η is an optimal transport, we get the validity
of the last claim.

We now introduce another auxiliary construction to be used in what follows.
Define

λ := diam Ω + H1(Σ) and Θ′ := {θ ∈ Θ : H1(θ) ≤ λ},(3.7)

so that clearly Θ′ ⊂ Θ is compact. We prove now the following very easy estimates.
Lemma 3.3. For every (x, y) ∈ Ω × Ω one has

dB(x, y) ≤ A(diam Ω).

Further, if θ ∈ Θ̃(B) \ Θ′, then B−(L(B, θ)) = 0.
Proof. Let [x, y] ∈ Θ stand for the line segment with endpoints x ∈ Ω and y ∈ Ω.

One has therefore

dB(x, y) ≤ δ(B, [x, y]) ≤ A(H1([x, y])) = A(|x− y|) ≤ A(diam Ω),
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since |x − y| ≤ diam Ω and A is monotone nondecreasing. Hence, the first claim is
proven.

For θ ∈ Θ̃(B) we just proved

δ(B, θ) = A(H1(θ) − L(B, θ)) + B−(L(B, θ)) ≤ A(diam Ω).

If, moreover, H1(θ) ≥ λ, then minding L(B, θ) ≤ H1(θ ∩ Σ) ≤ H1(Σ) we get

A(H1(θ) − L(B, θ)) ≥ A(λ−H1(Σ)) = A(diam Ω),

and hence B−(L(B, θ)) = 0, concluding the proof.
Remark. If A is either strictly increasing or unbounded (i.e., A(l) → ∞ as l →

+∞), then it easily follows from Lemma 3.3 that all the paths in Θ̃(B) must have

uniformly bounded length (independent of B). In fact, for all θ ∈ Θ̃(B) one has
δ(B, θ) = A(H1(θ) − L(B, θ)) + B−(L(B, θ)) ≤ A(diam Ω); hence

A(H1(θ) −H1(Σ)) ≤ A(H1(θ) − L(B, θ)) ≤ A(diam Ω),

which implies that H1(θ) ≤ l for some l > 0 independent of both θ and B.

3.2. Income of the owner of the transportation network. We have to
calculate now how much each person pays to the owner of the public transportation
network.

Consider first the case when one knows only the transport plan γ. We assume
then that people moving from x to y choose an optimal path θ ∈ Θ̃(B) connecting
those two points, and thus we need to calculate how much of this path is actually
covered by using the public transportation network. It can happen, however, that
there are many optimal paths connecting the same couple of points. We assume, then
in line with the assumption made when defining L, that every person chooses the
maximum possible distance to cover via the transportation network as long as the
total cost for him is the same, and hence covers the distance

Λ(B, x, y) := sup
θ∈QB(x,y)

L(B, θ)(3.8)

along the transportation network. Under this assumption the income of the owner of
the transportation network becomes

Ĝ(B, γ) :=

∫
Ω×Ω

B−(Λ(B, x, y)) dγ(x, y).

Note that we integrate B−(Λ) rather than B(Λ) because, if B is not l.s.c., for people
it might be more convenient to use the transportation network for the distance just
slightly lower than Λ.

Since Λ(B, ·, ·) is a Borel function as we show below, then the above integral is
well defined.

Lemma 3.4. For each monotone nondecreasing function B the function Λ(B, ·, ·):
Ω × Ω → R+ is Borel measurable.

Proof. We have

Λ(B, x, y) = sup
k∈N

Λk(B, x, y), where Λk(B, x, y) := sup
θ∈QB(x,y),H1(θ)≤k

L(B, θ).
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Let (xν , yν) → (x, y) in Ω × Ω as ν → ∞, and let θν ∈ QB(xν , yν) be such that

L(B, θν) ≥ Λk(B, xν , yν) − 1/ν and H1(θν) ≤ k

for all ν ∈ N. Then up to a subsequence (not relabeled) θν → θ as ν → ∞ and
θ ∈ QB(x, y) according to Proposition 5.3(ii). Therefore, minding that L(B, ·) is

u.s.c. on Θ̃(B) as a consequence of Lemma 5.7, we get

Λk(B, x, y) ≥ L(B, θ) ≥ lim sup
ν

L(B, θν) ≥ lim sup
ν

Λk(B, xν , yν).

This means that each Λk(B, ·, ·) is u.s.c., which suffices to conclude the proof.
Remark. If A is either strictly increasing or unbounded, then by the remark

following Lemma 3.3 one has that all paths in Θ̃(B) have uniformly bounded length.
Hence, using the notation of the above proof, Λ = Λk for some k ∈ N sufficiently
large, and hence Λ(B, ·, ·) is u.s.c. Since in this case each QB(x, y) is compact, then
in fact the supremum in the definition (3.8) of Λ is attained (i.e., is a maximum).

Now consider the more particular case when the movement of the population is
described by some optimal transport η ∈ Eopt(B). Then the income of the owner of
the transportation network can be expressed as

F̂ (B, η) :=

∫
Θ

B−(L(B, θ)) dη(θ)

(again, we integrate B−(L) rather than B(L) because if B is not l.s.c. it might be more
convenient for people to use the transportation network for a distance just slightly
lower than L).

3.3. How to choose an optimal pricing policy. Below we assume the public
transportation network Σ and the function A (the cost of moving “by own means”)
to be given, and will be interested in the optimal choice of B. We note that all the
functionals introduced actually depend on B− rather than on B. Thus, further on
we will define the class B of admissible pricing policies B: R+ → R+ which are the
monotone nondecreasing l.s.c. functions satisfying B(0) = 0.

The choice of the optimality criterion for B leads to two different models.

3.3.1. Short-term optimality. The first and simplest model suggests that we
choose a B as a maximizer of Ĝ(·, γ) once the transport plan γ describing the everyday
movement of the population is known. Namely, the problem reads as follows.

Problem 1. Given a transport plan γ, find a B ∈ B maximizing Ĝ(·, γ) over B.
Such a model refers to the situation when the pattern of behavior of the population

in terms of “who goes where” is independent of the choice of the pricing policy B and
therefore is simply initially fixed. It reasonably suits the company which is planning
a short-term profit: within a short period of time the movements of the people are
unlikely to change with the change of the pricing policy for the transportation network.
We remark that in such a case, though the sources and destinations of movement of
the population (given by γ) are known and independent of the pricing policy B, the
actual itineraries (described by a transport η) might depend on B.

The statement below provides an equivalent formulation of Problem 1.
Proposition 3.5. One has

sup{Ĝ(B, γ) : B ∈ B}
= sup

{
F̂ (B, η) : B ∈ B, η ∈ Argmin{C(B)(η′) : (p0 × p1)#η′ = γ}

}
.
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Moreover, if one of the above suprema is attained in B ∈ B, then so is the other one.

Proof. Let η ∈ Argmin{C(B)(η′) : (p0 × p1)#η′ = γ}. Then η is concentrated

on Θ̃(B). In fact, otherwise, minding that δ(B, θ) > dB((p0 × p1)(θ)) over Θ \ Θ̃(B),
we get C(η) > IB(γ) by (3.5). But by (3.6) we have IB(γ) = C(qB#γ), where qB
is defined as in Proposition 3.2. Since by construction (p0 × p1)#(qB#γ) = γ, this
contradicts the minimality of η.

Since η is concentrated in Θ̃(B), and keeping in mind that (p0 × p1)#η = γ, one
has

F̂ (B, η) =

∫
Θ

B(L(B, θ)) dη(θ)

≤
∫

Θ

B(Λ(B, θ(0), θ(1))) dη(θ)

=

∫
Ω×Ω

B(Λ(B, x, y)) dγ(x, y) = Ĝ(B, γ).

(3.9)

On the other hand, define Θ̂(B) ⊂ Θ̃(B) and Q̂B(x, y) ⊂ QB(x, y) as follows:

Θ̂(B) := {θ ∈ Θ̃(B) : L(B, θ) = Λ(B, θ(0), θ(1))},
Q̂B(x, y) := {θ ∈ Θ̂(B) : θ(0) = x, θ(1) = y}.

We observe that Θ̂(B) is the set where the u.s.c. function θ ∈ Θ̃(B) �→ L(B, θ) equals

the Borel function θ ∈ Θ̃(B) �→ Λ(B, θ(0), θ(1)). Hence, Θ̂(B) is a Borel set. Then

Graph Q̂B :=
{

(x, y, θ) : (x, y) ∈ Ω × Ω, θ ∈ Q̂B(x, y)
}

= {(x, y, θ) : θ(0) = x, θ(1) = y} ∩ (Ω × Ω × Θ̂(B))

is also a Borel set since the set {(x, y, θ) : θ(0) = x, θ(1) = y} is closed. By the von
Neumann–Aumann measurable selection theorem (Theorems III.222 and III.23 of [4],
or, equivalently, Corollary 5.5.8 [9]) one has

Δ := {(x, y) ∈ Ω × Ω : Q̂B(x, y) = ∅} ∈ Bγ ,

and, moreover, there is a γ-measurable (but not necessarily Borel measurable) selec-

tion q̂B,γ : Δ → Θ̂(B).

We show now that for every couple (x, y) ∈ Δ one has

B(Λ(B, x, y)) = 0.(3.10)

In fact, if {θν} ⊂ QB(x, y) is a maximizing sequence for L(B, ·) (i.e., L(B, θν) ↑
Λ(B, x, y) as ν → ∞), then necessarily H1(θν) ≥ λ for all sufficiently large ν. Other-
wise, up to a subsequence, one would have θν → θ as ν → ∞, and due to the fact that
L(B, ·) is u.s.c. on Θ̃(B) one would have L(B, θ) = Λ(B, x, y), contrary to the assump-
tion (x, y) ∈ Δ. By Lemma 3.3 for all sufficiently large ν, we have B(L(B, θν)) = 0.
Minding that B is l.s.c. and monotone nondecreasing, we therefore get (3.10).

Consider now a θ̂ ∈ Θ such that H1(θ̂) > λ. For every (x, y) ∈ Ω × Ω \ Δ we set

q̂B,γ(x, y) := qB(x, y),
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where qB : Ω × Ω → Θ̃(B) is defined in Proposition 3.2. Clearly, for such (x, y),
according to (3.10) one has

B(L(B, q̂B,γ(x, y))) ≥ 0 = B(Λ(B, x, y)).

Hence, due to the definition of q̂B,γ , the above relationship is satisfied for all (x, y) ∈
Ω × Ω.

Minding that q̂B,γ is clearly γ-measurable, we define ηγ := (q̂B,γ)#γ, getting then

F̂ (B, ηγ) =

∫
Θ

B(L(B, θ)) dηγ(θ)

=

∫
Ω×Ω

B(L(B, q̂B,γ(x, y))) dγ(x, y)

≥
∫

Ω×Ω

B(Λ(B, x, y)) dγ(x, y) = Ĝ(B, γ).

Together with (3.9) this concludes the proof.

3.3.2. Long-term optimality. Another and more complex problem refers to
a quite different situation when the pattern of behavior of the population (i.e., the
transport plan γ) is a priori unknown and is chosen by the population so as to minimize
its own travel costs. In other words, γ is chosen among optimal transport plans for
the given pricing policy B, i.e., γ ∈ Γopt(B), or, equivalently, the transport η is chosen
among optimal transports for B, i.e., η ∈ Eopt(B). To state formally the respective
problem, we define

F (B, η) :=

{
F̂ (B, η) if η ∈ Eopt(B),
−∞ otherwise.

The problem now reads as follows.
Problem 2. Find a B ∈ B such that for some transport η the pair (B, η)

maximizes F among all functions B ∈ B and admissible transports.
This problem is well suited for a company looking for a long-term profit. In fact,

in a long-term perspective, the directions of the population movements are adjusted
to the pricing policy of the transportation network.

The latter problem admits clearly an equivalent formulation. Namely, set

G(B, γ) :=

{
Ĝ(B, γ) if γ ∈ Γopt(B),
−∞ otherwise.

Problem 2 is then equivalent to that of finding a B: R+ → R̄+ maximizing
G(B, γ) among all functions B ∈ B, where γ varies among all admissible transport
plans, as stated in the following assertion.

Proposition 3.6. One has

supF = supG.

Moreover, if (B′, η′) ∈ ArgmaxF , then by setting γ′ := (p0×p1)#η′ one has (B′, γ′) ∈
ArgmaxG. Vice versa, if (B′, γ′) ∈ ArgmaxG, then there is an admissible transport
η′, such that (B′, η′) ∈ ArgmaxF .
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Proof. With the use of Proposition 3.5, we get from (3.9) that whenever η ∈
Eopt(B), we have F̂ (B, η) ≤ Ĝ(B, (p0×p1)#η) and hence, recalling that (p0×p1)#η ∈
Γopt(B) by Proposition 3.2, we get

F̂ (B, η) ≤ sup{Ĝ(B, γ) : γ ∈ Γopt(B)}.(3.11)

On the other hand, for a transport plan γ, the proof of Proposition 3.5 provides
the existence of an admissible transport ηγ such that

F̂ (B, ηγ) ≥ Ĝ(B, γ).(3.12)

It is immediate to verify by construction of ηγ that ηγ ∈ Eopt(B) whenever γ ∈
Γopt(B), because the map q̂B,γ is a selector of the multivalued map QB . Now, (3.11)
and (3.12) together show the statement.

3.4. Game theoretic interpretation. Problem 2 admits also an obvious game
theoretic interpretation. Namely, consider a game between two players: the “popula-
tion” P (users of the transportation network) and the “service provider” S (the owner
of the network). The set of strategies of the former is the set of admissible transport
plans γ (equivalently, the set of all admissible transports η), while the set of strate-
gies of the latter is B. The payoff function of the population KP is given by the
formula KP (B, γ) := −IB(γ) or, equivalently, KP (B, η) := −C(B)(η), while the pay-
off function of the service provider KS is given by KS(B, γ) := G(B, γ) (equivalently,
KS(B, η) := F (B, η)). It is immediate to observe that when (B, γ) is a maximizing
pair of the functional G (equivalently, (B, η) is a maximizing pair of the functional F ),
so that B solves Problem 2, then (B, γ) (equivalently, (B, η)) is a Nash equilibrium
point of the above game (i.e., a pair of strategies, one for each player, such that no
player has incentive to unilaterally change his action); moreover, it is an equilibrium
point which is “most convenient” for the owner of the transportation network.

4. Auxiliary lemmata. In this section we collect a couple of auxiliary state-
ments to be used in what follows.

We start with the following simple assertion.
Lemma 4.1. Let μ ∈ M+(Ω) be a finite Borel measure, and for the sequence of

compact sets {Kν}, Kν ⊂ Ω one has Kν → K in the sense of Hausdorff for some
K ⊂ Ω. Then μ(K) ≥ lim supν μ(Kν). In particular, if Σ ⊂ Ω is a Borel set satisfying
H1(Σ) < ∞, then putting μ := H1 Σ one obtains

H1(K ∩ Σ) ≥ lim sup
ν

H1(Kν ∩ Σ).

Proof. For a ε > 0 let Ūε stand for the closed ε-neighborhood of K. One has then
Kν ⊂ Uε for all sufficiently large ν, and hence

lim supμ(Kν) ≤ μ(Ūε).

Passing to a limit in the above relationship as ε → 0+ and minding that in this case
μ(Ūε) → μ(K), one gets the desired result.

We will also need the following general property of Γ-convergence, which is pro-
vided in a slightly weaker form by Theorem 7.2 [3].

Proposition 4.2. Let fν , f : X → R̄ be functionals defined over a metric space
X, and suppose that infX fν = infX′ fν for all ν ∈ N and for some compact X ′ ⊂ X.
Then the following assertions hold.
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(i) If f(x) ≤ lim infν fν(xν) whenever {xν} ⊂ X ′, xν → x in X ′ as ν → ∞, then

inf
X

f ≤ lim inf
ν

inf
X

fν .

(ii) If, in addition to (i), for every x ∈ X ′ there is a sequence {x̃ν} ⊂ X such that
lim supν fν(x̃ν) ≤ f(x) (in particular, this holds when Γ− lim supν fν ≤ f),
then infX fν → infX f as ν → ∞, and whenever xν ∈ X ′ are such that

fν(xν) ≤ inf
X

fν + εν ,(4.1)

where εν → 0 as ν → ∞ (in particular, if xν ∈ Argmin fν) and xν → x for
an x ∈ X, then x ∈ Argmin f , i.e., f(x) = infX f .

Remark. If instead of the assumption in claim (i) one has the stronger property
f ≤ Γ− lim infν fν , then the proof shows that in fact (ii) is valid for every convergent
sequence {xν} ⊂ X (i.e., not just for sequences in X ′) satisfying (4.1).

5. Existence of solutions. The aim of this section is to show that the state-
ments of Problems 2 and 1 make sense and that both problems admit solutions.
Namely, we prove the following result.

Theorem 5.1. There is a function B ∈ B which solves Problem 2 (resp., Prob-
lem 1 with given transport plan γ).

To prove the above theorem, we need several auxiliary statements. Our main tool
will be the following Γ-convergence result.

Proposition 5.2. Assume that for a sequence of monotone nondecreasing func-
tions {Bν} one has Γ− limν Bν = B. Then the following assertions hold.

(i) δ(B, θ) ≤ lim infν δ(Bν , θν) whenever θν → θ in Θ.
(ii) Let Θ′ ⊂ Θ be an arbitrary subset of Θ of paths having uniformly bounded

length. Then, for every θ ∈ Θ′ and for a subsequence of ν (not relabeled) one
has

δ(Bν , θ) ≤ δ(B, θ) + εν

for some sequence εν → 0 independent of θ.
In particular,

Γ− lim
ν

δ(Bν , ·) = δ(B, ·).(5.1)

(iii) For every θ ∈ Θ, when xν → θ(0) and yν → θ(1) in Ω, there is a se-

quence {θ̂ν} ⊂ Θ such that θ̂ν(0) = xν , θ̂ν(1) = yν , θ̂ν → θ, and δ(B, θ) ≥
lim supν δ(Bν , θ̂ν).

Proof. The relationship (5.1) follows immediately from (i) and (ii), since (ii)
implies δ(B, θ) ≥ lim supν δ(Bν , θ̃ν).

To prove (i), assume θν → θ in Θ. Consider any subsequence of θν (not relabeled)
such that the sequence lν := L(Bν , θν) is convergent, and let l := limν lν . Since
lν ≤ H1(θν ∩ Σ), we get

0 ≤ l ≤ H1(θ ∩ Σ)

in view of Lemma 4.1. On the other hand, recalling that A is continuous and monotone
nondecreasing, B(l) ≤ lim infν Bν(lν) (by Γ−-convergence assumption) and H1(θ) ≤
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lim infν H1(θν) (by the Golab Theorem [2, Theorem 4.4.7]), we obtain

δ(B, θ) ≤ A(H1(θ) − l) + B(l)
≤ A(lim infν(H1(θν) − lν)) + lim infν Bν(lν)
≤ lim infν(A(H1(θν) − lν) + Bν(lν))
= lim infν δ(Bν , θν).

To prove (ii), choose an ε > 0 and cover [0,H1(Σ)] with a finite number of disjoint
intervals of the form Ii := (l̄i − δi, l̄i], with δi ≤ ε (possibly zero) sufficiently small
such that B(l) ≥ B(l̄i) − ε/2 for all l ∈ Ii. Such a cover exists since B is monotone
nondecreasing and l.s.c., while the interval [0,H1(Σ)] is compact. By definition of
Γ−-convergence, for each l̄i there is a sequence li,ν → l̄i such that Bν(li,ν) → B(l̄i),
so that Bν(li,ν) ≤ B(l̄i) + ε/2 for all sufficiently large ν, and hence

Bν(li,ν) ≤ B(l) + ε

for all l ∈ Ii. By the finiteness of the intervals Ii, there is a unique ν = ν(ε) such that
the above relationship is true for all i. Define the function l′ν : [0,H1(Σ)] → [0,H1(Σ)]
associating to any l ∈ Ii the number li,ν ∧ l. One has then Bν(l

′
ν) ≤ B(l) + ε and

0 ≤ l − l′ν ≤ l̄i − li,ν . Thus, possibly up to passing to a (not relabeled) subsequence
of ν, we get a sequence of functions l′ν : [0,H1(Σ)] → [0,H1(Σ)] such that

Bν(l
′
ν) ≤ B(l) + 1/ν, l′ν ≤ l, l − l′ν ≤ 1/ν.(5.2)

Now, for any θ ∈ Θ′ we write lν(θ) := l′ν(L(B, θ)), and since l′ν ≤ L(B, θ) ≤ H1(θ∩Σ)
for every ν, from (5.2) we get

A(H1(θ) − lν) + Bν(lν) ≤ A(H1(θ) − lν) + B(L(B, θ)) + 1/ν,(5.3)

where lν := lν(θ).
By the uniform continuity of A on the bounded interval [0,maxθ∈Θ′ H1(θ)], we

know that A(H1(θ)− lν) ≤ A(H1(θ)−L(B, θ))+ ε̃ν with ε̃ν → 0 as ν → ∞ and ε̃ν not
depending on θ ∈ Θ′. Therefore, (5.3) implies for each θ ∈ Θ′ the following estimate:

δ(B, θ) = A(H1(θ) − L(B, θ)) + B(L(B, θ))
≥ A(H1(θ) − lν(θ)) + Bν(lν) − 1/ν − ε̃ν
≥ δ(Bν , θ) − εν ,

(5.4)

where εν := ε̃ν + 1/ν. Therefore, (ii) follows.
Last, to prove (iii) we let αν ∈ Θ stand for the segment connecting xν with θ(0)

and βν ∈ Θ stand for the segment connecting θ(1) with yν , respectively. Now set

θ̂ν := αν ◦ θ ◦ βν ,

so that clearly θ̂ν connects xν with yν and θ̂ν → θ as ν → ∞. One has H1(θ̂ν ∩ Σ) ≥
H1(θ ∩ Σ), and hence

δ(Bν , θ̂ν) ≤ A(H1(θ̂ν) − L(Bν , θ)) + Bν(L(Bν , θ))

by (3.2). Mind that

|H1(θ) −H1(θ̂ν)| ≤ H1(αν) + H1(βν) = |xν − θ(0)| + |θ(1) − yν | → 0



840 G. BUTTAZZO, A. PRATELLI, AND E. STEPANOV

as ν → ∞. This together with the uniform continuity of A on bounded intervals
and (5.4) provides

δ(Bν , θ̂ν) ≤ δ(B, θ) + ε′ν

for some sequence ε′ν → 0 as ν → ∞, which concludes the proof.
From now on we will use the notation Θ′ and λ provided by (3.7). Defining f ′:

Θ → Θ′ by the relationship

f ′(θ) :=

{
θ, θ ∈ Θ′,
[θ(0), θ(1)], θ ∈ Θ′,

(5.5)

one clearly has for θ′ := f ′(θ) that

δ(B, θ) ≥ δ(B, θ′)(5.6)

for all θ ∈ Θ. In fact, if θ ∈ Θ′, then

H1(θ) − L(B, θ) > λ−H1(Σ) ≥ diam Ω,(5.7)

and hence δ(B, θ) ≥ A(diam Ω), while δ(B, θ′) ≤ A(H1([θ(0), θ(1)])) ≤ A(diam Ω).
We prove yet another convergence statement concerning the distance dB .
Proposition 5.3. Assume xν → x, yν → y in Ω and Γ− limν Bν = B. Then
(i) dBν (xν , yν) → dB(x, y). In particular, setting Bν := B, we get that the

function dB is continuous;
(ii) if θν ∈ Θ̃(Bν) and θν → θ in Θ, then θ ∈ Θ̃(B). In particular, setting

Bν := B, we get that QB(x, y) is closed for all (x, y) ∈ Ω × Ω and also Θ̃(B)
is closed.

Proof. Define δ̂(x, y,B, ·): Θ → R̄ by setting

δ̂(x, y,B, θ) :=

{
δ(B, θ) if θ(0) = x, θ(1) = y,
+∞ otherwise.

Proposition 5.2(i) and 5.2(iii) imply that

δ̂(x, y,B, ·) = Γ− lim
ν

δ̂(xν , yν , Bν , ·)

whenever xν → x, yν → y in Ω and Γ− limν Bν = B. According to (5.6) one has

dB(x, y) = min
Θ′

δ̂(x, y,B, ·),

where the minimum is attained since Θ′ ⊂ Θ is compact, and hence QB(x, y) =

ArgminΘ′ δ̂(x, y,B, ·) for every (x, y) ∈ Ω × Ω and for every monotone nondecreasing
B. Thus we get both (i) and (ii) as an immediate consequence of Proposition 4.2(ii)
(recalling the remark following this proposition).

Let E′ ⊂ M+(Θ′) stand for the set of all transports concentrated on Θ′ and
observe that it is compact since all the transports have the same total mass ϕ0(Ω).
We prove now the following general statement.

Lemma 5.4. For every transport η and for each B ∈ B there is a transport η′ ∈ E′

such that we have the following assertions:
(i) (p0 × p1)#η′ = (p0 × p1)#η.
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(ii) C(B)(η′) ≤ C(B)(η). In particular,

η′ ∈ Eopt(B) whenever η ∈ Eopt(B).

(iii) If η is concentrated on Θ̃(B) (in particular, when η ∈ Eopt(B)), then so is
η′, and

F̂ (B, η′) ≥ F̂ (B, η).

Remarks.

(A) The first claim of (ii) shows in fact that the infimum of C(B)(η) over all
admissible transports η coincides with that over E′. Moreover, since δ(B, ·)
is l.s.c. and E′ is compact, then as a by-product we have Eopt(B) ∩ E′ = ∅.

(B) The claim (iii) is applicable both to η ∈ Eopt(B) (such transports are con-

centrated on Θ̃(B) due to the last claim of Proposition 3.2) and to η ∈
Argmin{C(B)(η′) : (p0 × p1)#η′ = γ} with γ a given transport plan (such

transports are also concentrated on Θ̃(B), as shown in the proof of Proposi-
tion 3.5).

(C) If A is either strictly increasing or unbounded, then by the remark following

Lemma 3.3 one has H1(θ) ≤ l with l > 0 independent of B for all θ ∈ Θ̃(B).
Hence, letting Ẽ stand for the set of admissible transports concentrated on
the set of paths with length not exceeding l, we get that Eopt(B) ⊂ Ẽ for all

B ∈ B. Clearly, Ẽ is compact in ∗-weak topology of measures.

Proof. Set η′ := f ′
#η, where f ′ is defined by (5.5). Then (i) is immediate, while (ii)

follows from

C(B)(η′) =

∫
Θ

δ(B, θ) dη′ =

∫
Θ

δ(B, f ′(θ)) dη ≤
∫

Θ

δ(B, θ) dη = C(B)(η),

which in turn is a consequence of (5.6). Finally, observe that if θ ∈ Θ̃(B) \ Θ′,
then B(L(B, θ)) = 0 by Lemma 3.3. This, minding that in view of (5.6) one has

f ′(Θ̃(B)) ⊂ Θ̃(B) (which shows the first part of (iii)), implies the estimate

F̂ (B, η′) =

∫
Θ̃(B)

B(L(B, θ)) dη′ =

∫
Θ̃(B)

B(L(B, f ′(θ))) dη

≥
∫

Θ′∩Θ̃(B)

B(L(B, f ′(θ))) dη =

∫
Θ′∩Θ̃(B)

B(L(B, θ)) dη

=

∫
Θ̃(B)

B(L(B, θ)) dη = F̂ (B, η),

which concludes the proof of (iii).

We will need the following auxiliary statement which will be used in the proof of
the main existence result and of Proposition 5.6 in what follows.

Lemma 5.5. Assume that for a sequence of nonnegative Borel functions {uν}:
X → R defined over a compact metric space X one has u− = Γ− lim infν uν . Then
for any sequence of measures {ην} ⊂ M+(X) such that ην ⇀ η ∗-weakly one has∫

X

u− dη ≤ lim inf
ν

∫
X

uν dην .



842 G. BUTTAZZO, A. PRATELLI, AND E. STEPANOV

Remark. Analogously, if Γ+ lim supν uν = u+ and uν are uniformly bounded from
above, then ∫

X

u+ dη ≥ lim sup
ν

∫
X

uν dην .

Proof. It is easy to verify that

Γ− lim inf uν(x) = sup
ν∈N

τν , where τν :=

(
inf
m≥ν

um

)−
.(5.8)

Fix a j ∈ N and evaluate

lim inf
ν→∞

∫
X

uν dην ≥ lim inf
ν→∞

∫
X

(
inf
m≥j

um

)
dην

≥ lim inf
ν→∞

∫
X

(
inf
m≥j

um

)−
dην

= lim inf
ν→∞

∫
X

τj dην ≥
∫
X

τj dη.

Since this is true for any j ∈ N, by the Beppo–Levi monotone convergence theorem
and (5.8) the thesis follows.

At this moment we may claim another Γ-convergence result.
Proposition 5.6. Assume that for a sequence of nondecreasing functions {Bν}

one has Γ− limν Bν = B. Then minC(Bν) → minC(B), where both minima are
taken over the set of all admissible transports. Moreover, if ην ∈ Eopt(Bν) ∩ E′ and
ην ⇀ η ∗-weakly in the sense of measures, then η ∈ Eopt(B).

Proof. Applying the first part of Lemma 5.5 with X := Θ′, uν := δ(Bν , ·), and
u− := δ(B, ·), minding that Γ− limν uν = u− in view of Proposition 5.2, yields

C(B)(η′) ≤ lim inf
ν

C(Bν)(η
′
ν)

whenever {η′ν} ⊂ E′ and η′ν ⇀ η′ ∗-weakly in the sense of measures. On the other
hand, up to a subsequence of ν (not relabeled) one has by Proposition 5.2(ii)

δ(Bν , θ) ≤ δ(B, θ) + εν

for each θ ∈ Θ′, and for some sequence {εν} (independent of θ), εν → 0 as ν → ∞.
Hence, integrating the above relationship in arbitrary η ∈ E′, we get

lim sup
ν

C(Bν)(η) ≤ C(B)(η).

The validity of the thesis now follows directly from Proposition 4.2(ii), minding that
according to the remark following Lemma 5.4 the infimum of C(B) over all admissible
transports coincides with that over compact set E′ of the latter.

We will also need another convergence result below for the functions L(B, ·) and
for their compositions with B.

Lemma 5.7. Assume that for a sequence of monotone nondecreasing functions
{Bν} one has Γ− limν Bν = B while θν ∈ Θ̃(Bν) and θν → θ in Θ as ν → ∞. Then

lim supν L(Bν , θν) ≤ L(B, θ),
lim supν B

−
ν (L(Bν , θν)) ≤ B(L(B, θ)).
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Remark. Applied with Bν := B the above lemma proves in particular that L(B, ·)
and its composition with B are u.s.c. over Θ̃(B).

Proof. Without loss of generality we assume that lν := L(Bν , θν) → l. By
Proposition 5.3(i) one has

dB(θ(0), θ(1)) = lim
ν

dBν (θν(0), θν(1)) = lim
ν

A(H1(θν) − lν) + Bν(lν).

Recall that H1(θ) ≤ lim infν H1(θν) by the Golab theorem [2, Theorem 4.4.7], the
function A is continuous and monotone nondecreasing, while B(l) ≤ lim infν Bν(lν),
due to the Γ−-convergence assumption. We get thus from the above relationship the
estimate

lim
ν

A(H1(θν) − lν) + Bν(lν) ≥ A(H1(θ) − l) + B(l).

Since H1(θ ∩Σ) ≥ lim supH1(θν ∩Σ) ≥ l by Lemma 4.1, we get then by definition of
δ(B, ·) that

A(H1(θ) − l) + B(l) ≥ δ(B, θ) ≥ dB(θ(0), θ(1)).

Combining the above estimates, we have that all the inequalities above are in fact
equalities, and in particular

A(H1(θ) − l) + B(l) = δ(B, θ),

which implies L(B, θ) ≥ l by (3.1), hence proving the first part of the statement. As
for the second one, the above proven chain of equalities gives B(l) = limν Bν(lν), so
that the thesis follows since L(B, θ) ≥ l and B is monotone nondecreasing.

Finally, we prove the following truncation result.
Lemma 5.8. For every B ∈ B, c > A(λ), and η ∈ E′ one has

F̂ (B ∧ c, η) = F̂ (B, η).

Further, Eopt(B) ∩ E′ = Eopt(B ∧ c) ∩ E′.
Proof. For every θ ∈ Θ′ and for every B ∈ B one has δ(B, θ) ≤ A(H1(θ)) ≤ A(λ),

since H1(θ) ≤ λ. Hence, B(L(B, θ)) ≤ δ(B, θ) ≤ A(λ) < c. Setting B̄ := B ∧ c, we
have also B̄(L(B̄, θ)) < c, which implies L(B, θ) = L(B̄, θ), and

B(L(B, θ)) = B̄(L(B̄, θ)), δ(B, θ) = δ(B̄, θ).(5.9)

The first equality of (5.9) implies the first claim of the statement being proven, while
the second of the equalities in (5.9) proves the second claim because according to
Lemma 5.4(ii) the minima of C(B) and of C(B̄) are attained at E′.

Finally, we may prove Theorem 5.1.
Proof of Theorem 5.1. We provide here the proof only for Problem 2, since the

proof for Problem 1 is completely analogous. Let {Bν , ην} be a maximizing sequence
for F , and in particular, ην ∈ Eopt(Bν). By Lemma 5.4 we may suppose without
loss of generality that each ην ∈ E′. Since E′ is compact in ∗-weak topology of
measures by the remark following Lemma 5.4, then one may assume up to passing to
subsequence (not relabeled) that ην ⇀ η ∗-weakly in the sense of measures.

Let c > A(λ). In view of Lemma 5.8 we may assume without loss of generality
that 0 ≤ Bν(x) ≤ c for all x ∈ R+. Therefore, we may choose a subsequence of
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Bν (not relabeled) such that for some B: R+ → R one has Γ− limν Bν = B. By
Proposition 5.6 then η ∈ Eopt(B).

Define now for each B ∈ B the map B̃: Θ → R̄ by B̃(θ) := B(L(B, θ)). Note
that Lemma 5.7 implies Γ+ lim supν B̃ν ≤ B̃. It remains to observe that in view of
the remark following Lemma 5.5 one has

lim sup
ν

∫
Θ

Bν(L(Bν , θ)) dην(θ) = lim sup
ν

∫
Θ

B̃ν(θ) dην(θ)

≤
∫

Θ

(Γ+ lim sup
ν

B̃ν)(θ) dη(θ)

≤
∫

Θ

B̃(θ) dη(θ)

=

∫
Θ

B(L(B, θ)) dη(θ),

and hence B solves Problem 2.

6. Qualitative properties of optimal policies. The aim of this section is
to prove the existence of optimal pricing policies possessing some natural regularity
properties. For this purpose we introduce now the following natural notion of a
minimum optimal pricing policy for Problem 2 (resp., Problem 1).

Definition 6.1. Let the couple of functions {B1, B2} ∈ B be optimal pricing
policies for Problem 2 (resp., Problem 1 with given transport plan γ). We will say
that B1 dominates B2, if B1(u) ≥ B2(u) for all u ∈ R+.

A function B̂ ∈ B is called minimum optimal pricing policy for Problem 2 (resp.,
Problem 1 with given transport plan γ) if it is an optimal pricing policy for the re-
spective problem which does not dominate any other one.

We will now prove the existence of minimum optimal pricing policies.
Theorem 6.2. There exists a minimum optimal pricing policy for Problem 2

(resp., Problem 1 with given transport plan γ).
Proof. As in Theorem 5.1, we provide the proof for Problem 2, because the

proof for Problem 1 is completely analogous. Let Bopt stand for an arbitrary set of
optimal pricing policies for Problem 2 such that for every couple of different policies
{B1, B2} ∈ Bopt one pricing policy dominates the other. Define B̂: R+ → R+ by the
relationship

B̂(u) := inf {B(u) : B ∈ Bopt}

for all u ∈ R+. Let c > A(λ). According to Lemma 5.8,

B(u) = inf
{
B(u) : B ∈ B̄opt

}
, where B̄opt := {B ∧ c : B ∈ Bopt}

for all u ∈ R+, while the elements of B̄opt are still optimal pricing policies. We may
therefore obtain a sequence {Bν} ⊂ B̄opt converging to B pointwise, i.e., Bν(u) →
B̂(u) for all u ∈ R+ as ν → ∞. Up to a subsequence (not relabeled), we have that
Γ− limν Bν = B̂−. Consider a sequence of transports {ην} such that (Bν , ην) ∈
ArgmaxF , and hence, in particular, ην ∈ Eopt(Bν) for all ν ∈ N. In view of
Lemma 5.4, we may suppose without loss of generality that all ην ∈ E′ and since
E′ is compact in ∗-weak topology of measures, then again up to a subsequence (not
relabeled), one has ην ⇀ η in M+(Θ). By Proposition 5.6 one has η ∈ Eopt(B̂

−).
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Now, in a complete analogy to the proof of Theorem 5.1, we observe referring to
Lemmata 5.5 and 5.7 that

maxF = lim sup
ν

∫
Θ

Bν(L(Bν , θ)) dην(θ) ≤
∫

Θ

B̂−(L(B, θ)) dη(θ)

and thus, minding that B̂− ∈ B, one has that B̂− is an optimal pricing policy for
Problem 2. Clearly, B̂−(u) ≤ B̂(u) for all u ∈ R+ and hence does not dominate any
pricing policy from Bopt. Due to the arbitrarity of choice of Bopt, we conclude referring
to Zorn’s lemma the existence of a minimum element with respect to the domination
relation in the set of all optimal pricing policies for Problem 2. This minimum element
is in fact an optimal pricing policy.

Remark. We do not know whether in fact the minimum optimal pricing policy is
unique even for Problem 1 with fixed transport plan γ. If that were the case, then
the minimum optimal pricing policy would be necessarily the pointwise minimum
of optimal pricing policies for this problem, as one can easily deduce from the above
proof. It is worth noting that to prove the uniqueness of the minimum optimal pricing
policy it would be enough to show that B1∧B2 is an optimal pricing policy whenever
both B1 and B2 are also.

6.1. Regularity. We are able to prove now that every minimum optimal pricing
policy for Problem 2 (resp., Problem 1) is always continuous (moreover, its modulus
of continuity is determined by that of A).

Denote by ωA the modulus of continuity of A over [0, λ], where λ := diam Ω +
H1(Σ) as defined by (3.7). Namely, let

ωA(l) := sup{|A(u) −A(v)| : |u− v| ≤ l, 0 ≤ u ≤ λ, 0 ≤ v ≤ λ}

for every l ≤ λ, and set for convenience ωA(l) := ωA(λ) whenever l > λ. It is
easy to observe that ωA: R+ → R+ defined in this way is a continuous monotone
nondecreasing function.

We are able now to prove the following regularity theorem, which shows that the
modulus of continuity of every minimum optimal pricing policy B is dominated by
that of A.

Theorem 6.3. Let B be a minimum optimal pricing policy for Problem 2 (resp.,
Problem 1 with given transport plan γ). Then

B(u) −B(v) ≤ ωA(|u− v|)

for all u, v ∈ R+.
Remark. In particular, the above theorem shows that every minimum optimal

pricing policy B is Lipschitz continuous whenever A is also (and the Lipschitz constant
of B does not exceed that of A).

Proof. As usual, we provide the proof for Problem 2, since the proof for Problem 1
is completely analogous. If the claim is false, then there is a u ∈ R+ and an l > 0
such that B(u + l) > B(u) + ωA(l). Let α(v) := B(u) + ωA(v − u) and note that
α: [u,+∞) → R+ is clearly continuous since so is ωA. Because B is l.s.c. and α is
continuous, then the set {v ≥ u : B(v) > α(v)} is open, and since it contains u + l
then there is a maximum open interval (a, b) � u + l such that

B(v) > α(v) for all l ∈ (a, b).
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Note that

B(a) ≤ α(a)(6.1)

due to the maximality of (a, b). We define a l.s.c. monotone nondecreasing function
z: (a, b) → R+ by the formula

z(v) := (α(v) + B(v))/2, v ∈ (a, b).

Now set

B̄(v) :=

{
B(v), v ∈ (a, b),
z(v), v ∈ (a, b).

Clearly, B̄ ∈ B. In fact, the only nontrivial assertion to verify is that B̄ is monotone
nondecreasing, i.e., that B̄(v1) ≤ B̄(v2) whenever v1 ≤ v2. The latter claim is obvious
if both v1 ∈ (a, b) and v2 ∈ (a, b) (or both v1 ∈ (a, b) and v2 ∈ (a, b)), since z (resp.,
B) is monotone nondecreasing. If v1 ≤ a, v2 ∈ (a, b), then

B̄(v1) = B(v1) ≤ B(a) ≤ α(a) ≤ α(v2) ≤ z(v2) = B̄(v2),

the second inequality in the latter chain of estimates being true due to (6.1). Finally,
if v1 ∈ (a, b), v2 ≥ b, then

B̄(v1) = z(v1) ≤ B(v1) ≤ B(b) ≤ B(v2) = B̄(v2).

Observe now that B̄(v) < B(v) for all v ∈ (a, b) by construction. Hence, by
minimality of B, one has that B̄ cannot solve Problem 2. This means that whenever
η is such that (B, η) ∈ ArgmaxF , and η̄ ∈ Eopt(B̄), then

F̂ (B̄, η̄) < F̂ (B, η).(6.2)

On the other hand, one has for every θ ∈ Θ′ that

L(B, θ) ∈ (a, b).(6.3)

In fact, if H1(θ ∩ Σ) ≥ v for some v ∈ (a, b), then

A(H1(θ) − v) + B(v) > A(H1(θ) − v) + B(u) + ωA(v − u)
≥ A(H1(θ) − u) + B(u),

(6.4)

where in the latter relationship we used the fact that for θ ∈ Θ′ one has H1(θ) ≤ λ.
Clearly, (6.4) implies L(B, θ) = v and hence (6.3). Analogously,

L(B̄, θ) ∈ (a, b)(6.5)

for θ ∈ Θ′ since still

B̄(v) = z(v) > B(u) + ωA(v − u) = B̄(u) + ωA(v − u)

whenever v ∈ (a, b).
By Lemma 5.4 we may suppose without loss of generality that η is concentrated

over Θ′. But for every θ ∈ Θ′ one has, in view of (6.5) and the definition of B̄, that

min
l∈[0,H1(θ∩Σ)]

A(H1(θ) − l) + B̄(l) = A(H1(θ) − L(B̄, θ)) + B̄(L(B̄, θ))

= A(H1(θ) − L(B̄, θ)) + B(L(B̄, θ)),
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which implies

L(B̄, θ) = L(B, θ)(6.6)

and also

δ(B̄, θ) = δ(B, θ).

The latter relationship implies η ∈ Eopt(B̄), while from (6.6) together with (6.5) and
the definition of B̄ one gets

B̄(L(B̄, θ)) = B(L(B, θ))

for η-a.e. θ ∈ Θ, and therefore F̂ (B̄, η̄) = F̂ (B, η), contradicting (6.2). The latter
contradiction concludes the proof.

6.2. Natural bounds. We now prove that the function A (the cost of trans-
portation without the use of the transport network) gives a natural bound to solutions
of the problems being studied, i.e., to the optimal pricing policies.

Corollary 6.4. Suppose that the function A is subadditive, i.e.,

A(u + v) ≤ A(u) + A(v) for every u, v ∈ R+.

Then every minimum optimal pricing policy B for Problem 2 (resp., for Problem 1
with given transport plan γ) satisfies B(u) ≤ A(u) for all u ∈ [0,H1(Σ)].

Proof. Minding that B(0) = 0, we get

B(u) = B(u) −B(0) ≤ ωA(u)

by Theorem 6.3. Let v ∈ [0, λ] be such that ωA(u) = A(v + u) − A(v). Minding the
subadditivity of A, we get ωA(u) ≤ A(u), hence proving B(u) ≤ A(u).

We will show in Example 7.2 that in fact the condition of subadditivity of A is
inevitable for the statement of Corollary 6.4 to hold.

7. Some examples. Here we present some of the simplest examples of the op-
timal pricing policies solving Problems 2 and 1.

7.1. Single citizen. Consider the following sample two-dimensional situation
(i.e., n = 2). Let ϕ1 := δ0 be a Dirac measure concentrated in the origin of the
coordinate system and ϕ0 := δS be a Dirac measure concentrated in a point S = (l, h).
In this case the population is clearly represented by a single citizen living in S, while
the service (or working place) is unique and is located in the origin of the coordinate
system. We assume the transportation network Σ := [0, l] to be the line segment of
length l along the x-axis (see Figure 1). Recall also that we are interested only in
l.s.c. pricing policies B.

Note that in this sample situation there is only one admissible transport plan
γ = ϕ0 ⊗ ϕ1, hence every solution to Problem 2 is also a solution to Problem 1, and
vice versa.

Clearly, regardless of the cost functions A and B, for the passenger who moves
between S and O it is convenient to choose the path θt which is a union of two line
segments: a line segment connecting S with a point on Σ which has coordinates (t, 0),
t ≤ l, and another one connecting the latter to O. In this case the total cost for the
passenger is

δ(B, θt) = A
(
(h2 + (l − t)2)1/2

)
+ B(t),(7.1)
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Fig. 1. Sample transportation network Σ and the choice of the optimal path.

and hence

dB(S, 0) = min
0≤t≤l

δ(B, θt) and MK(B) = dB(S, 0).

Therefore, the scope of the “population” (the users of the transportation network)
can be understood as that of simply finding, given a pricing policy B, an optimal
t ∈ [0, l] which minimizes the cost δ(B, θt) among all t ∈ [0, l]. The optimal transports
ηopt ∈ Eopt(B) will be thus concentrated only on the paths θt with t optimal in the
above sense. Let tB be the maximum among all optimal t ∈ [0, l]. Note that all the
paths θt with t optimal provide the same cost of movement δ(B, θt) for the passenger.
It is also worth observing that the Dirac measure ηB concentrated on the optimal
path θtB is the unique transport maximizing F̂ (B, ·) among all optimal transports.

It is easy to observe therefore that under our assumption the owner of the trans-
portation network earns B(tB) and hence is interested in maximizing the latter over
all nonnegative monotone nondecreasing B satisfying B(0) = 0. In other words, Prob-
lem 2 reduces to that of maximizing the functional F̃ defined by F̃ (B) := B(tB) over
all B ∈ B. To solve this problem, we note that

dB(S, 0) ≤ A(H1([OS])) = A
(
(h2 + l2)1/2

)
.

Hence,

δ(B, θtB ) = A
(
(h2 + (l − tB)2)1/2

)
+ B(tB) ≤ A

(
(h2 + l2)1/2

)
,

which gives a bound to the maximum of B(tB): in fact,

B(tB) ≤ A
(
(h2 + l2)1/2

)
−A(h).

We claim that there is a pricing policy B such that the latter estimate is an equality.
This policy would of course provide the maximum of F̃ (and hence of F̂ ). For this
situation, one necessarily has tB = l and then

B(tB) = B(l) = A
(
(h2 + l2)1/2

)
−A (h) .(7.2)
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In this case

MK(B) = dB(S, 0) = δ(B, θtB ) = A(h) + B(l).(7.3)

On the other hand, for every t < tB = l one should have

δ(B, θt) ≥ δ(B, θtB ),

which implies, in view of (7.1) and (7.3), that

B(t) ≥ A(h) + B(l) −A
(
(h2 + (l − t)2)1/2

)
.

Plugging (7.2) into the latter estimate, we get

B(t) ≥ A
(
(h2 + l2)1/2

)
−A

(
(h2 + (l − t)2)1/2

)
, t < l.(7.4)

Summing up, we conclude that a monotone nondecreasing l.s.c. function B satisfying
B(0) = 0 and verifying simultaneously (7.2) and (7.4) solves Problem 2 in our situ-
ation. Since of course (7.2) and (7.4) can be simultaneously satisfied, we infer that
the optimal pricing policies are exactly those B ∈ B for which both (7.2) and (7.4)
hold. The minimum optimal pricing policy is therefore the function Bmin given by
the formula

Bmin(t) := A
(
(h2 + l2)1/2

)
−A

(
(h2 + (l − t)2)1/2

)
, t ∈ [0, l].

We consider now some particular cases.

Example 7.1. If A(t) = t, then a function B ∈ B solves Problem 2 if and only if

B(l) = (h2 + l2)1/2 − h,
B(t) ≥ (h2 + l2)1/2 − (h2 + (l − t)2)1/2, t < l.

The minimum optimal solution to Problem 2 is given then by the continuous concave
function (see Figure 2)

Bmin(t) := (h2 + l2)1/2 − (h2 + (l − t)2)1/2, t ≤ l.

Example 7.2. If A(t) = t2, then a function B ∈ B solves Problem 2 if and only if

B(l) = l2,
B(t) ≥ 2lt− t2, t < l.

The minimum optimal solution to Problem 2 is given in this case by the continuous
concave function (see Figure 3)

Bmin(t) := 2lt− t2, t ≤ l.

Note that in this case Bmin(t) > A(t) for all t ∈ (0, l), showing that Corollary 6.4
is sharp.
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Fig. 2. Graph of A (dotted line) and of the minimum optimal pricing policy Bmin (dashed line)
for A(t) := t and h = l = 1.
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Fig. 3. Graph of A (dotted line) and of the minimum optimal pricing policy Bmin (dashed line)
for A(t) := t2 and h = l = 1.

7.2. Two citizens. Let Ω and Σ be as in the above paragraph, while ϕ1 := 2δ0
and ϕ0 := δS1 + δS2 , where Si = (l, hi), i = 1, 2. This model corresponds to the case
of a population represented by two citizens living in S1 and S2 but having only a
single workplace (or service) O. Here, as in the single citizen case, there is only one
admissible transport plan γ = ϕ0 ⊗ ϕ1, hence every solution to Problem 2 is also a
solution to Problem 1, and vice versa.

Clearly, for a passenger moving between Si and O it is convenient to choose
the polygonal path θti consisting of a line segment connecting Si with a point on Σ
which has coordinates (ti, 0), ti ≤ l (which is the part of the itinerary in which the
passenger moves by own means), and a line segment connecting the latter point to O
(which is the part of the itinerary in which the passenger moves with the help of the
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transportation network), so that the total cost for the passenger is

δ(B, θti) = A
(
(h2

i + (l − ti)
2)1/2

)
+ B(ti).(7.5)

Therefore, each ti is chosen as the greatest number in [0, l] minimizing δ(B, θti). On
the other hand, let

Bi(t) := A
(
(h2

i + l2)1/2
)
−A

(
(h2

i + (l − t)2)1/2
)
, t ∈ [0, l],(7.6)

and mind that according to (7.4) each Bi is the minimum optimal solution for Prob-
lem 2 (and also for Problem 1) with ϕ1 = δ0 and ϕ0 = δSi

, i.e., for the single citizen
case. With this notation one has

δ(B, θti) = B(ti) −Bi(ti) + A
(
(h2

i + l2)1/2
)
,

and since the last term in the right-hand side of the above expression is independent
of ti, we get that each ti is actually chosen as the greatest real number t ∈ [0, l]
minimizing B(t) − Bi(t). This gives ti = ti(B). The income F of the owner of the
transportation network is then calculated by

F (B, t1(B), t2(B)) := B(t1(B)) + B(t2(B)).(7.7)

To simplify the calculations, assume from now on that A(t) = t. Let h1 ≤ h2, so
that a direct calculation shows B1(t) ≥ B2(t) and B′

1(t) ≥ B′
2(t) for all t ∈ [0, l]. The

first important observation is that t1 ≥ t2. In fact, otherwise one would have

B(t1) −B1(t1) < B(t2) −B1(t2), while B(t2) −B2(t2) ≤ B(t1) −B2(t1),

and hence

∫ t2

t1

B′
1(τ) dτ = B1(t2) −B1(t1) < B(t2) −B(t1)

≤ B2(t2) −B2(t1) =

∫ t2

t1

B′
2(τ) dτ,

which is impossible due to the fact that B′
1(t) ≥ B′

2(t) for all t ∈ [0, l].

Note now that if B is an optimal pricing policy, then B(t) ≥ B2(t) for all t ∈ [0, l],
since otherwise B ∨B2 would give a strictly better pricing policy. On the other hand,
one has B(t) ≤ B2(t) for all t ∈ [0, t2], since otherwise the citizen living in S2 would
not cover the distance t2 with the use of the transportation network. Therefore,
B(t) = B2(t) for all t ∈ [0, t2].

Our next observation is that t1 = l. In fact, if t1 < l, then B(t) − B1(t) >
B(t1) − B1(t1) for each t1 < t ≤ l. But then, taking instead of B the new pricing
policy B̃ defined by

B̃(t) :=

{
B(t) if 0 ≤ t ≤ t1,
B(t1) + B1(t) −B1(t1) if t1 < t ≤ l,
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the effect will be that t1(B̃) = l > t1(B) (i.e., that the citizen living in S1 will move
the maximum possible distance l with the help of the transportation network, rather
than t1(B)), while in the meantime t2(B̃) = t2(B) (i.e., the citizen living in S2 will
still move the distance t2(B) with the help of the network). Therefore, the gain of
the owner of the transportation network becomes

F (B̃, t1(B̃), t2(B̃)) = B̃(t2(B)) + B̃(l)
= B(t2(B)) + B(t1) + B1(l) −B1(t1(B))
= F (B, t1(B), t2(B)) + (B1(l) −B1(t1(B)))
> F (B, t1(B), t2(B)).

The latter contradiction with the optimality of B shows then that t1 = l.
We note now that if B is the minimum optimal pricing policy, then

B(t) = B(t2) + B1(t) −B1(t2)

for all t ∈ [t2, l]. In fact, with this choice every path θt with t ∈ [t2, l] gives the same
value of the cost δ(B, θt) to the citizen living in S1 (so that t1(B) = l only because
of our assumption that each person chooses the maximum possible distance to cover
using of the transportation network as long as the total cost for him is the same).

Summing up, we arrive at a conclusion that the minimum optimal pricing policy
in the situation we are studying is given by

B(t) =

{
B2(t) if 0 ≤ t ≤ t2,
B2(t2) + B1(t) −B1(t2) if t2 < t ≤ l.

(7.8)

According to (7.7), minding that t1(B) = l, the income of the owner of the
transportation network then becomes

F (B, t1(B), t2(B)) = 2B2(t2) + B1(l) −B1(t2).

Therefore, t2 has to maximize 2B2(t)−B1(t) among all t ∈ [0, l], and hence, by (7.6),
it maximizes the function

f(t) :=
(
h2

1 + (l − t)2
)1/2 − 2

(
h2

2 + (l − t)2
)1/2

among all t ∈ [0, l]. A straightforward computation ensures f ′(t) > 0 whenever
3(l − t)2 > h2

2 − 4h2
1, and f ′(t) < 0 in the case of the opposite inequality. One can

therefore consider three possible cases.
Case 1. 4h2

1 ≥ h2
2. Then t2 = l and hence the minimum optimal pricing policy is

B(t) = B2(t) for all t ∈ [0, l]. Both citizens therefore use the transportation network
to the full length l.

Case 2. h2
2 − 3l2 < 4h2

1 < h2
2. Then

t2 = l −
(
h2

2 − 4h2
1

3

)1/2

and the minimum optimal pricing policy B is given by (7.8) (see Figure 4).
Case 3. 4h2

1 ≤ h2
2 − 3l2. Then t2 = 0 (so that the citizen living in S2 does not

use the network) and hence the minimum optimal pricing policy is B(t) = B1(t) for
all t ∈ [0, l].
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Fig. 4. Graphs of B1 (upper dotted line), B2 (lower dotted line), and B (solid line) for l = 2,
h1 = 1/2, and h2 = 2, in which case t2 = 1.
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REFINEMENTS OF STATIONARY POINTS WITH APPLICATIONS
TO NONCOOPERATIVE GAMES AND ECONOMICS∗

GERARD VAN DER LAAN† , DOLF TALMAN‡ , AND ZAIFU YANG§

Abstract. It is well known that any continuous function f defined on a nonempty compact and
convex set X has a stationary point. In many circumstances there may exist multiple stationary
points and some of them may be undesirable from the viewpoint of stability. In this paper we
introduce a new method of eliminating those undesirable stationary points while at the same time
retaining some desirable stationary points. The main idea of refining the concept of stationary point
is to perturb simultaneously both the domain set X, by taking a sequence of sets in the (relative)
interior of X converging to X, and the solution concept, by replacing the concept of stationary
point by a coincidence point with some well-defined mapping. If a stationary point is the limit of a
sequence of coincidence points, we say that the stationary point is stable with respect to this sequence
of subsets of X and the coincidence mapping. It is shown that stable stationary points exist for a
large class of perturbations. A stable point is said to be normal-stable if we take the normal cone
as the coincidence mapping, implying that any coincidence point on a subset in the sequence is a
stationary point of f on this subset. It is shown that a normal-stable stationary point always exists
for any sequence of subsets which starts from an interior point and converges to X in a continuous
way. Special cases of normal-stability are perfect stationary points and robust stationary points. In
addition, several practical applications of these new concepts are provided.

Key words. stationary point, stability, refinement, perturbation, equilibrium
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1. Introduction. Let X be a subset of the n-dimensional Euclidean space Rn

and let f be a function from X to Rn. Then a stationary point or solution to the
variational inequality problem with respect to f is a point x∗ in X satisfying

(x∗ − x)�f(x∗) ≥ 0 for all x ∈ X.(1.1)

It is well known that a stationary point exists if f is a continuous function and X is a
nonempty convex, compact set. The concept of stationary point has many important
applications in various fields. For instance, in noncooperative game theory, economic
equilibrium theory, fixed point theory, nonlinear optimization theory and engineering,
a stationary point gives a solution to the problem under investigation. In many of
these applications the multiplicity of stationary points may ask for a refined solution
concept; see, for example, van Damme [2] and Kehoe [7]. Although the conditions
for guaranteeing the existence of a stationary point are rather weak, conditions for
guaranteeing the existence of a unique stationary point are often very demanding
and usually not satisfied. For instance, in game-theoretic and economic applications
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there can be any finite (odd) number of equilibria, being stationary points of some
specific function, and there may even exist higher-dimensional sets of equilibria. Then
a refinement may reduce the number of stationary points or equilibria considerably
by requiring additional properties to be satisfied.

Within the field of noncooperative game theory are two well known refinements of
Nash equilibria for games being mixed extensions of games with a finite number of pure
strategies: the perfect equilibria introduced by Selten [18] and the proper equilibria
of Myerson [12]. Both refinements are based on small perturbations of the strategy
space, being the Cartesian product of unit simplices. The set of perfect equilibria is
a nonempty subset of the set of Nash equilibria and the set of proper equilibria is
a nonempty subset of the set of perfect equilibria. Motivated by this study in game
theory, van der Laan, Talman, and Yang [9] and Yang [22] investigated the stability of
stationary points of functions on polytopes. They extended the concept of properness
of equilibria to that of a robust stationary point for arbitrary (continuous) functions on
polytopes and also developed a simplicial algorithm for computing robust stationary
points. By their algorithms the refined Nash equilibria, such as perfect or proper Nash
equilibria, can be efficiently computed. For further results on the stability of (Nash)
equilibria, one may refer to, e.g., Kohlberg and Mertens [8], Kajii and Morris [6], and
Ui [20].

On the other hand, in applied mathematics and operations research, stability,
semistability, and strong stability of solutions for nonlinear programming, systems of
nonlinear equations, and variational inequality problems have been studied from a
different angle; see, e.g., Pang and Ralph [15], Facchinei and Pang [4], and Robin-
son [16] and references therein. They investigate solutions that survive against certain
perturbations of the function and then identify classes of functions for which the con-
cerned problem has a stable solution. So, when applied to noncooperative games, such
a perturbation could possess other or even more desirable properties than those of
perfect or proper Nash equilibria. However, not every game or problem has a a stable
solution. For example, in van Damme [2] it is shown that essential Nash equilibria,
where the marginal payoff function is perturbed, may not exist. Also evolutionary
stable equilibria may fail to exist; see Weibull [21]. In the spirit of Selten [18] and My-
erson [12], we do not perturb the function but want to refine the concept of stationary
point in such way that the refinement always exists in the case when the function f
is continuous and its domain X is nonempty, convex, and compact.

The aim of this paper is to study the refinement of stationary points within a
general framework. We propose a general method of eliminating stationary points
that fail to survive against a sequence of specific perturbations and is such that at
least one stationary point survives. The stationary points that survive against these
perturbations will be called stable stationary points. The main idea of the refinement
is to perturb both the domain and the solution concept of stationary point. The
domain X will be perturbed by taking a sequence of sets in the (relative) interior
of X converging to X, while the concept of stationary point will be replaced by a
coincidence point. The refinement depends both on the way the sequence of subsets
of X is chosen and the way in which the coincidence mapping is defined. For both
choices there are many possibilities. The only restrictions will be that a coincidence
point exists on each subset of the sequence and that every convergent (sub)sequence of
coincidence points converges to a stationary point on X. Such a stationary point being
the limit of a sequence of coincidence points on a sequence of subsets is then called
stable with respect to the underlying sequence of subsets and the chosen coincidence
mapping. Given the way the sequence of subsets and coincidence mapping are chosen,



856 GERARD VAN DER LAAN, DOLF TALMAN, AND ZAIFU YANG

an induced stable stationary point has additional properties that other stationary
points may not. This provides the possibility of eliminating stationary points not
having certain desirable additional properties. In the case when we take as coincidence
mapping the normal cone, we call a stable stationary point a normal-stable stationary
point for the chosen sequence of subsets converging to X.

We also introduce the natural refinements of perfectness and robustness and show
that a normal-stable stationary point satisfies these respective properties when the
sequence of subsets is appropriately chosen. When applied to noncooperative games
being mixed extensions of games with a finite number of pure strategies, the set of
perfect stationary point appears to coincide with the set of perfect Nash equilib-
ria and any robust stationary point appears to yield a proper mixed strategy Nash
equilibrium. For symmetric two-player games the existence of a proper symmetric
(mixed-strategy) equilibrium follows from the existence of a robust stationary point.
We further apply the concept of stable stationary point to the replicator dynamics
in the field of evolutionary game theory. It is well known that the set of equilibria
typically is a strict subset of the set of stationary points of the replicator dynamics;
see Weibull [21]. By taking an appropriate coincidence mapping, we are able to refine
the stationary points of the replicator dynamics in such a way that every stable sta-
tionary point with respect to this coincidence mapping is an equilibrium. Moreover,
it is shown that such a stable stationary point always exists. This result is in sharp
contrast to many solution concepts in evolutionary game theory that may fail to exist
under the same conditions. In this application the coincidence mapping is not the
normal cone, and thus the stable point is not normal-stable. Finally, we apply the re-
finements of perfectness and robustness to a general equilibrium model with constant
returns to scale production technologies.

The rest of the paper is organized as follows. In section 2 we introduce the con-
cepts of stability and normal-stability and we provide existence proofs. The concepts
of perfectness and robustness are discussed in section 3. Section 4 discusses several
applications in noncooperative games, evolutionary games, and exchange economies.

2. Stable stationary points. Let X be a given nonempty compact, convex
subset of the n-dimensional Euclidean space Rn. It is well known that every contin-
uous function f from X to Rn has at least one solution to the variational inequality
problem (1.1); see Eaves [3] and Hartman and Stampacchia [5]. In the case of a
point-to-set mapping φ from X to the collection of nonempty subsets of Rn a solution
to the variational inequality problem, where in (1.1) the vector f(x∗) should be an
element of the set φ(x∗), exists if the mapping φ is upper semicontinuous and, for all
x ∈ X, φ(x) is a convex and compact subset of Rn; see Yang [23]. In this paper we
restrict ourselves to continuous functions. However, all results can also be generalized
straightforwardly to upper semicontinuous point-to-set mappings.

In what follows, Aff (X) denotes the affine hull of X. Without loss of generality
we may assume that for some integer m, 0 ≤ m ≤ n, Aff (X) is an (n−m)-dimensional
subspace of Rn and can be written as

Aff (X) = {x ∈ Rn | C�x = d},
where C is an n × m matrix having full rank m and d is an m-vector. In the case
when m is equal to 0, the set X is full-dimensional and we define Aff (X) = Rn. The
linear subspace Y denotes the set Y = {y ∈ Rn | y = Cν, ν ∈ Rm}. Notice that
Y = {0n} if m = 0, where 0n denotes the n-vector of zeros.

Given an m-dimensional compact and convex subset Z of Aff (X), let

N(Z, x) = {y ∈ Rn | y�x ≥ y�x′ for all x′ ∈ Z}
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denote the normal cone of Z at x ∈ Z. It holds that N(Z, ·) is an upper semi-
continuous mapping on Z. Moreover, for every x ∈ Z the set N(Z, x) is a closed and
convex cone containing the set Y , and N(Z, x) = Y when x lies in the relative interior
of Z. Clearly, x∗ ∈ Z is a stationary point of a function f from Z to Rn if and only
if f(x∗) ∈ N(Z, x∗). For a point-to-set mapping φ on Z the latter condition becomes
φ(x∗) ∩N(Z, x∗) �= ∅.

As discussed in the introduction, there can be more than one or even an infinite
number of solutions to the variational inequality problem (1.1). In this section we
introduce a general refinement concept, which selects a nonempty subset of the set of
stationary points, giving a certain stability property to the stationary points within
this subset. The general idea is to perturb both the set X and the concept of stationary
point in such a way that every convergent subsequence of generalized stationary points
converges to a solution of the variational inequality problem. A solution that is not the
limit of any such subsequence is not stable with respect to the chosen perturbations.
To guarantee the existence of a stable stationary point it is sufficient to assume that
a generalized stationary point exists on any perturbed subset and that there exists
a convergent subsequence of generalized stationary points converging to a stationary
point.

To describe formally the idea of refinement we introduce two mappings: X and G.
The mapping X : [0, 1] → X defines the perturbation of the set X and has to satisfy
the following two conditions, where Int A denotes the interior of a set A ⊂ X with
respect to the set Aff (X):

(X1) The mapping X : [0, 1] → X is continuous and for each ε ∈ [0, 1] the set X (ε)
is a nonempty, convex, and compact subset of X.

(X2) X (0) = X and X (ε′) ⊂ IntX (ε) for every 0 ≤ ε < ε′ ≤ 1.

For example, let X be described by the set {x ∈ Rn | h(x) ≤ 0, C�x = d}
for some convex function h from Rn to R. Notice that such a function h always
exists, since X is compact and convex. Then we may take X (ε) = {x ∈ Rn | h(x) ≤
−ωε, C�x = d}, where ω > 0 is such that X (1) �= ∅. Another possibility is to take
X (ε) = ε{v}+(1− ε)X for some point v in the relative interior of X. Notice that due
to both conditions (X1) and (X2) it holds that for every x ∈ X \ X (1) there exists a
unique ε, 0 ≤ ε < 1, such that x lies in the relative boundary of X (ε).

For a given mapping X satisfying conditions (X1) and (X2), the second mapping
G:X → Rn defines the concept of generalized stationary point on each set X (ε).
This mapping has to satisfy the following three conditions, where Bnd A denotes the
relative boundary of a set A ⊂ X with respect to Aff (X):

(G1) G is upper semicontinuous on X and for each x ∈ X the set G(x) is a convex,
closed cone in Rn containing Y .

(G2) For every x ∈ Bnd X (ε) and y ∈ N(X (ε), x) \ {0n}, 0 < ε < 1, there exists
w ∈ G(x) such that y�w > 0.

(G3) For every x ∈ Bnd X it holds that G(x) ⊆ N(X,x).

The conditions say that when x lies in the boundary of X (ε) the set G(x) is a
cone containing Y and points in the same direction as the normal cone N(X (ε), x) in
the sense that for every nonzero element of N(X (ε), x) there is an element in G(x)
making a positive angle with it. Moreover, G(x) is a subset of the normal cone if x
lies in the boundary of X.

Definition 2.1. A pair (X , G) of mappings is regular when it satisfies conditions
(X1), (X2), (G1), (G2), and (G3).
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Given a pair (X , G) and some ε, 0 ≤ ε < 1, let the mapping Gε:X (ε) → Rn be
defined by

Gε(x) =

{
Y when x ∈ Int X (ε)
G(x) when x ∈ Bnd X (ε).

For a function f from X to Rn and a pair (X , G), we now define an ε-stable stationary
point of f as follows.

Definition 2.2. Given a pair (X , G), for some ε, 0 ≤ ε < 1, a point x ∈ X is an
ε-stable stationary point of f with respect to (X , G) if x ∈ X (ε) and f(x) ∈ Gε(x).

An ε-stable stationary point x of f with respect to (X , G) is a coincidence point
of the function f with the mapping Gε and therefore either lies in the interior of X(ε)
and is a stationary point of f on X or lies in the boundary of X (ε) and f(x) is an
element of G(x). For this reason the mapping G is called a coincidence mapping.
Notice that for ε = 0 an ε-stable stationary point of f is a stationary point of f on
X, also when x lies in the boundary of X.

Definition 2.3. A stationary point x∗ of a function f from X to Rn is stable
with respect to (X , G) (abbreviated (X , G)-stable) if there exists a sequence of positive
numbers (εk)k∈N with limit 0 such that x∗ is the limit of a sequence of εk-stable
stationary points of f with respect to (X , G) for k going to infinity.

An (X , G)-stable stationary point x∗ lies either in the interior of X or in the
boundary of X and in every small neighborhood of x∗ there exists a point x in the
interior of X such that f(x) ∈ G(x). Note that the process of refining stationary
points can be naturally regarded as a dynamic process or an iterative process; see van
der Laan, Talman, and Yang [9]. See Saari [17] for iterative price mechanisms.

The next theorem states that every continuous function on X has an (X , G)-stable
stationary point when (X , G) is regular.

Theorem 2.4. Let f be a continuous function from a nonempty convex, compact
set X in Rn to Rn and let (X , G) be a regular pair of mappings. Then there exists an
(X , G)-stable stationary point of f on X.

Proof. First we prove that for every ε, 0 < ε < 1, an ε-stable stationary point
of f with respect to (X , G) exists. For some ε, 0 < ε < 1, it follows from (G1)
that the mapping Gε is upper semicontinuous and that, for any x ∈ X (ε), Gε(x) is a
nonempty, convex, and closed set. Since for all x ∈ X the set G(x) is a cone, condition
(G2) implies that for any x ∈ Bnd X (ε) and y ∈ N(X (ε), x) there exists w ∈ Gε(x)
satisfying y�w ≥ y�f(x). From Fan’s coincidence theorem applied to the mappings
{f(·)} and Gε(·) restricted to the nonempty, convex, and compact set X (ε) it follows
that there exists a coincidence point xε in X (ε) satisfying f(xε) ∈ Gε(xε). Hence,
f(xε) ∈ Y if xε ∈ Int X (ε) and f(xε) ∈ G(xε) if xε ∈ Bnd X (ε); i.e., xε is an ε-stable
stationary point of f with respect to (X , G).

Now take any sequence of positive numbers εk, k ∈ N, smaller than one, converging
to zero, and for every k ∈ N let xk be an εk-stable stationary point of f with respect
to (X , G). Since X is compact, without loss of generality we may assume that the
sequence (xk)k∈N is convergent and converges to some x∗ in X. Hence, x∗ is the
limit of a sequence of εk-stable stationary points of f with respect to (X , G) for
εk converging to zero when k goes to infinity. We still have to prove that x∗ is a
stationary point of f . If x∗ lies in the interior of X, then, because of the continuity of
X and the properties of the mapping X given in (X2), the point xk lies in the interior
of X (εk) for k large enough, which implies that f(xk) ∈ Y for k large enough, and
therefore f(x∗) ∈ Y ; i.e., x∗ is a stationary point of f . If x∗ lies in the boundary of



REFINEMENTS OF STATIONARY POINTS 859

X, we may assume without loss of generality that for every k ∈ N the point xk lies
in the boundary of X (εk). Therefore, for every k ∈ N it holds that f(xk) ∈ G(xk).
Since f is continuous, G is upper semicontinuous, and xk converges to x∗, we have
that f(x∗) ∈ G(x∗). Condition (G3) then implies that f(x∗) ∈ N(X,x∗); i.e., x∗ is a
stationary point of f .

The theorem implies that, for every given regular (X , G), any function f satisfying
the same conditions under which a stationary point is known to exist has a stationary
point being stable with respect to (X , G). Of course the reverse does not hold. Not
every stationary point needs to be a stable stationary point with respect to a chosen
pair (X , G). Notice that any interior stationary point is stable with respect to any
pair, but that the stability of a stationary point on the boundary of X depends on
the chosen pair and it even may be that a stationary point is not stable for any pair.
So, for any regular pair (X , G), the set of stable points is a nonempty subset of the
set of stationary points.

In the remainder of this section we consider the special case that the mapping G
is the normal cone mapping; i.e., for given mapping X , G(x) = N(X (ε), x) if x lies in
the boundary of X (ε) for some ε, 0 ≤ ε < 1, and G(x) = Rn when x ∈ X (1). When
G is the normal cone mapping, we say that a stable stationary point with respect
to (X , G) is normal-stable with respect to X . Observe that an ε-stable point of f
with respect to (X , G) is a stationary point of f on X (ε) when G is the normal cone
mapping.

Definition 2.5. For f :X → Rn and a pair (X , G), an (X , G)-stable point is
normal-stable with respect to X (abbreviated X normal-stable) if G is the normal cone
mapping with respect to X .

The next theorem shows the regularity of a pair (X , G) for the normal cone
mapping G.

Theorem 2.6. Let the mapping X satisfy (X1) and (X2) and let G be the normal
cone mapping with respect to X . Then the pair (X , G) is regular.

Proof. Clearly, G satisfies conditions (G2) and (G3). It remains to show that G
also satisfies condition (G1). For each x ∈ X, G(x) is a nonempty, convex, and closed
cone in Rn containing the linear subspace Y . So, we need only to show that G is
upper semicontinuous on X. By definition, G is upper semicontinuous on X (1). Take
any y ∈ X \ X (1). Let (yk)k∈N be a sequence of points in X converging to y and let
(gk)k∈N be a sequence satisfying gk ∈ G(yk) for all k ∈ N and converging to some g.
Since y /∈ X (1), we may assume without loss of generality that for all k ∈ N it holds
that yk ∈ X \ X (1). Let ε, 0 ≤ ε < 1, be such that y ∈ Bnd X (ε). Due to conditions
(X1) and (X2) on X there exists a unique sequence of nonnegative numbers (εk)k∈N

converging to ε and satisfying that yk ∈ Bnd X (εk) for all k ∈ N. To show that
g ∈ G(y), take any x in X (ε). Then, again according to conditions (X1) and (X2)
there exists a sequence (xk)k∈N satisfying xk ∈ X (εk) for all k ∈ N and converging to
x. Since xk ∈ X (εk) and gk ∈ G(yk) = N(X (εk), y

k), we have for all k ∈ N that

xk�gk ≤ yk�gk.

Taking the limits on both sides for k going to infinity, with x being the limit of xk, y
being the limit of yk, g being the limit of gk, we obtain that

x�g ≤ y�g.

Since x is an arbitrary point in X (ε), we obtain that g ∈ N(X (ε), y) = G(y), showing
that G is upper semicontinuous on X, and thus G satisfies (G1). Hence the pair
(X , G) is regular.
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The next corollary follows immediately from Theorems 2.4 and 2.6.
Corollary 2.7. Let f be a continuous function from a nonempty, convex, and

compact set X to Rn and let X : [0, 1] → X be a mapping satisfying (X1) and (X2).
Then f has an X normal-stable stationary point on X.

The corollary implies that there always exists a stationary point which is the
limit point of a sequence of stationary points restricted to X (εk), k ∈ N, with a
limk→∞ εk = 0. Of course, again it holds that the set of normal-stable points is a
subset of the set of stationary points and depends on the mapping X .

3. Perfect and robust stationary points. Two well known refinements of
Nash equilibria for games with a finite number of pure strategies are the concepts of
perfect and proper equilibria. These concepts are refinements of stationary points on
the mixed strategy space, which is the Cartesian product of several unit simplices;
see section 4. In this section we generalize these concepts to sets X of a more general
type and then show the existence by applying Corollary 2.7 for a specifically chosen
mapping X . In the following, for k ∈ N, let Ik denote the set of the first k positive
integers. In many situations the set X is of the form

X = {x ∈ Rn | max{h1(x), h2(x), . . . , hl(x)} ≤ 0, C�x = d}(3.1)

for some l ∈ N, where, for every i ∈ Il, the function hi(·) is a continuously differen-
tiable convex function on Rn, with gradient at x denoted by gi(x). In what follows in
this section we consider such sets. We assume that none of the constraints hi(x) ≤ 0,
i ∈ Il, is redundant and that X is simple, in the sense that for any I ⊆ Il it holds
that the set F (I) = {x ∈ X | hi(x) = 0, i ∈ I} is either empty or homeomorphic to
an (n −m − |I|)-dimensional convex, compact set. Notice that F (∅) = X. Then for
a point x in the boundary of X it holds that the normal cone of X at x equals

N(X,x) =

⎧⎨
⎩y ∈ Rn

∣∣∣∣∣y =
∑
i∈I

μig
i(x) +

∑
j∈Im

νjc
j , μi ≥ 0, j ∈ I, νj ∈ R, j ∈ Im

⎫⎬
⎭ ,

where I = {i ∈ Il | hi(x) = 0} and cj , j ∈ Im, is the jth column of the matrix C. Let
I be the collection of subsets I of Il satisfying that the set F (I) is nonempty. Clearly,
x ∈ X is a stationary point of a function f from X to Rn if and only if there exists
I ∈ I such that hi(x) = 0 for all i ∈ I and

f(x) =
∑
i∈I

μig
i(x) +

∑
j∈Im

νjc
j

for some μi ≥ 0 for i ∈ I and νj ∈ R for j ∈ Im.
We now define a perfect stationary point on X as the limit of a sequence of

ε-perfect points.
Definition 3.1. Let f be a function from X to Rn, where X is of the form (3.1).
(i) For ε > 0, a point x ∈ X is an ε-perfect stationary point of f if x ∈ Int X

and there exists I ∈ I satisfying f(x) =
∑

i∈I μig
i(x) +

∑
j∈Im

νjc
j for some μi > 0

for j ∈ I, νj ∈ R for j ∈ Im, and hi(x) ≥ −ε for all i ∈ I.
(ii) A point x∗ ∈ X is a perfect stationary point of f if there exists a sequence

of positive numbers (εk)k∈N with limit 0 such that x∗ is the limit of a sequence of
εk-perfect stationary points of f for k going to infinity.

The next theorem shows that a perfect stationary point always exists if f is a
continuous function by proving that a perfect stationary point is a normal-stable
stationary point when the mapping X is chosen in an appropriate way.
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Theorem 3.2. Let f be a continuous function from a nonempty, convex, and
compact set X of the form (3.1) to Rn. Then f has a perfect stationary point on X.

Proof. Define the mapping X by

X (ε) = {x ∈ Rn | max{h1(x), h2(x), . . . , hl(x)} ≤ ωε, C�x = d},

where ω > 0 is such that X (1) �= ∅, and take G to be the normal cone mapping. Since
X is simple and no constraints are redundant for X, ω can be chosen in such a way that
for every ε, 0 ≤ ε ≤ 1, the set X (ε) is simple, has no redundant constraints, and the
collection I of nonempty subsets I of Ik, satisfying that the set {x ∈ X(ε) | hi(x) = ωε
for all i ∈ I} is nonempty, is the same as for ε = 0. Clearly, for this ω, X satisfies
(X1) and (X2) and it follows from Corollary 2.7 that f has an X normal-stable point
x∗ on X. It remains to show that x∗ is a perfect stationary point of f . Since x∗ is
an X normal-stable stationary point of f , there exists a sequence (ηk)k∈N of positive
numbers smaller than one converging to zero and a sequence of ηk-stable stationary
points xk of f with respect to X such that the sequence (xk)k∈N converges to x∗.
Since xk is an ηk-stable stationary point of f with respect to X and G is the normal
cone mapping, xk is a stationary point of f on X (ηk), and so for all k ∈ N there
exists Ik ∈ I satisfying f(xk) =

∑
i∈Ik μig

i(xk) +
∑

j∈Im
νjc

j for some μi > 0 for

i ∈ Ik, νj ∈ R for j ∈ Im, and hi(x
k) = −ωηk for all i ∈ Ik. Therefore, xk is an

εk-perfect stationary point of f with εk = ωηk. Since the sequence (ηk)k∈N converges
to zero, the sequence (εk)k∈N also converges to zero, which proves that x∗ is a perfect
stationary point of f .

Observe that the definition of an ε-stable stationary point x is slightly weaker
than what is shown in the proof. In (i) of Definition 3.1 it is required only that
hi(x) ≥ −ε if μi > 0; i.e., x lies at most ε away from all the boundary constraints
hi(y) = 0 for which the gradients gi(x) generate the cone containing f(x). In the
proof we show that hi(x) = −ε if μi > 0.

Example 1. Let X be the two-dimensional unit ball B = {x ∈ R2 | ‖ x ‖2 ≤ 1}
and let the function f :B → R2 be given by (f1(x), f2(x)) = (x1 + 1, x2). Clearly,
a point x∗ ∈ Bnd B is a stationary point of f if and only if f(x∗) = λx∗ for some
λ ≥ 0. The function f has two stationary points of f and both lie in the boundary
of B: (−1, 0) with function value f(−1, 0) = (0, 0) and (1, 0) with function value
f(1, 0) = (2, 0). However, only (1, 0) is a perfect stationary point of f , since for any
ε, 0 < ε < 1, the point ((1 − ε)1/2, 0) is the unique stationary point of f on X (ε).

Example 2. In this example we consider the case that hi(x) = ai�x − bi, where
ai ∈ Rn \ {0n} and bi ∈ R, for all i ∈ Il. So, X is a polytope P in Rn described in
polyhedral form by

P = {x ∈ Rn | ai�x− bi ≤ 0 for all i ∈ Il, C�x = d}.

We assume that none of the constraints is redundant. For each subset I of Il, let

F (I) = {x ∈ P | ai�x = bi for all i ∈ I}.

Note that F (∅) = P . Then I ∈ I if and only if F (I) is not empty. It is assumed that
P is simple in the sense that for every I ∈ I the dimension of face F (I) is equal to
n−m− |I|. Finally, for I ∈ I, define

A(I) =

⎧⎨
⎩y ∈ Rn

∣∣∣∣∣y =
∑
i∈I

μia
i +

∑
j∈Im

νjc
j , μi ≥ 0 for all i ∈ I, νj ∈ R, for all j ∈ Im

⎫⎬
⎭ .
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Notice that A(∅) = Y and that A(I) = N(X,x) if x ∈ Int F (I). Hence, we have the
following straightforward but important observation that x∗ ∈ P is a stationary point
of a function f from P to Rn if and only if there exists I∗ ∈ I satisfying x∗ ∈ F (I∗)
and f(x∗) ∈ A(I∗); see, e.g., Talman and Yamamoto [19] and Burke and Moré [1].
A stationary point x∗ of f is perfect if x∗ is the limit of a sequence of points xk in
the interior of P satisfying that there exists a sequence of positive numbers (εk)k∈N

with limit 0 such that for each k ∈ N there is a set Ik ∈ I with f(xk) ∈ A(Ik) and
hi(x

k) = ai�xk ≥ bi − εk for all i ∈ Ik.

For the case of X being a unit simplex the concept of a robust stationary point
was introduced by Yang [22, 23] and was generalized for the case of a polytope by van
der Laan, Talman, and Yang [9]. Here we generalize robustness to the case of sets
X of the form (3.1). It appears that an X normal-stable stationary point is a robust
stationary point for a specifically chosen mapping X .

Definition 3.3. Let f be a function from X to Rn, where X is of the form (3.1).

(i) For ε > 0, a point x ∈ X is an ε-robust stationary point of f if x ∈ Int X
and there exists I ∈ I such that f(x) =

∑
i∈I μig

i(x) +
∑

j∈Im
νjc

j for some μi > 0
for i ∈ I and νj ∈ R for j ∈ Im satisfying hi(x) ≥ −ε for all i ∈ I and hi(x) ≥ εhj(x)
whenever μi > μj.

(ii) A point x∗ ∈ X is a robust stationary point of f if there exists a sequence
of positive numbers (εk)k∈N with limit 0 such that x∗ is the limit of a sequence of
εk-robust stationary points of f for k going to infinity.

A point x is an ε-robust stationary point of f for some ε > 0 if there exists an index
set I such that f(x) lies in the cone generated by Y and the vectors gi(x), i ∈ I, and
simultaneously x is both ε-perfect and lies at least ε times closer to the ith boundary
constraint {y | hi(y) = 0} than to the jth boundary constraint {y | hj(y) = 0}
whenever μi > μj . So, this condition strengthens the condition for perfectness, which
requires only that x is at most ε away from the ith boundary constraint when μi > 0.
Notice that the concepts of properness and perfectness coincide when l = 1.

Theorem 3.4. Let f be a continuous function from a nonempty, convex, and
compact set X of the form (3.1) to Rn. Then f has a robust stationary point on X.

Proof. Without loss of generality we assume that l ≥ 2. For I ∈ I and ε,
0 < ε ≤ 1, define the function hI and the number rI(ε) by

hI(x) =
∑
i∈I

hi(x) and rI(ε) = −ω

n∑
j=n+1−|I|

( ε

2

)j

for some ω > 0. Then define the mapping X by

X (ε) = {x ∈ Rn | hI(x) ≤ rI(ε), I ∈ I, C�x = d}, ε ∈ [0, 1].(3.2)

Since X is simple and has no redundant constraints, there exists ω > 0 such that for
every ε, 0 < ε < 1, the set X (ε) is simple, has no redundant constraints, and has
always the same collection I. Clearly, for this ω the mapping X satisfies conditions
(X1) and (X2), and thus f has an X normal-stable stationary point x∗ on X. We
will show that x∗ is a robust stationary point of f . Since x∗ is normal-stable with
respect to X , there exists a sequence (ηk)k∈N of positive numbers smaller than one
converging to zero and a sequence of ηk-stable stationary points xk of f with respect
to X and the normal cone mapping G, such that (xk)k∈N converges to x∗. Analogous
with the proof in van der Laan, Talman, and Yang [9] in case X is a polytope P , and
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by using the fact that G is the normal cone mapping, it follows from the construction
of the mapping X that for every k ∈ N there exists Ik ∈ I such that

f(xk) =
∑
i∈Ik

μig
i(xk) +

∑
j∈Im

νjc
j

for some μi > 0 for all i ∈ Ik and satisfying that

hi(x
k) ≥ −ωηk for all i ∈ Ik

and for any pair of indices i and j in Ik,

hi(x
k) ≥ ηk

2
hj(x

k) when μi > μj .

Hence, for every k ∈ N it holds that

hi(x
k) ≥ −εk when μi > 0

and

hi(x
k) ≥ εkhj(x

k) when μi > μj ,

where εk = ηk max{ω, 1
2}. Therefore, xk is an εk-robust stationary point of f for

all k ∈ N. Since the sequence (ηk)k∈N converges to zero, the sequence (εk)k∈N also
converges to zero, which proves that x∗ is a robust stationary point of f .

Example 3. Let X be the unit simplex in R3, i.e., X = {x ∈ R3 | −xj ≤ 0, j =
1, 2, 3 and x1 + x2 + x3 = 1}. Let the function f :X → R3 be given by f(x) = Ax,
where

A =

⎡
⎣ 11 10 1

10 10 3
1 3 3

⎤
⎦ .

There are three stationary points, namely the three unit vectors e1 = (1, 0, 0)�, e2 =
(0, 1, 0)�, and e3 = (0, 0, 1)�. Only the first two survive the criterion of perfectness.
Clearly, when we take x = (ε, ε, 1 − 2ε)�, then f1(x) = 1 + 19ε, f2(x) = 3 + 14ε
and f3(x) = 3 − 2ε, so that for ε small enough f(x) cannot be written as a linear
combination of g1(x) = (−1, 0, 0)�, g2(x) = (0,−1, 0)�, and c = (1, 1, 1)� with
nonnegative weights for g1(x) and g2(x), and therefore e3 is not perfect. The second
stationary point is not robust. When we take x = (ε, 1−ε−ε2, ε2)�, then f1(x) = 10+
ε−9ε2, f2(x) = 10−7ε2, and f3(x) = 3−2ε so that for ε small enough f1(x) > f2(x),
and thus f(x) cannot be written as a linear combination of g1(x) = (−1, 0, 0)�,
g3(x) = (0, 0,−1)�, and c = (1, 1, 1)� with nonnegative weights for g1(x) and g3(x),
and therefore e2 is not robust.

4. Applications.

4.1. Noncooperative games in normal form. We first consider mixed exten-
sions of noncooperative games, in which each player has a finite number of pure strate-
gies, in the following finite games. Let there be N players. Player j, j ∈ IN , can choose
from nj different actions in the set Aj . If player j, j ∈ IN , chooses action aj , then the
payoff to player i, i ∈ IN , is equal to some number ui(a), where a = (a1, . . . , aN ) is an
element of the action space A = Πj∈INAj . Each player j, j ∈ IN , can randomize the
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choice of actions by taking a strategy xj = (xj
1, . . . , x

j
nj

) in the (nj − 1)-dimensional

unit simplex Snj = {xj ∈ Rnj | xj
i ≥ 0, i ∈ Inj ,

∑nj

i=1 x
j
i = 1}, where xj

k, k ∈ Inj ,
denotes the probability with which player j chooses the kth action. The Cartesian
product of the strategy sets Snj , j ∈ IN , is the strategy set of the game and is denoted
by the simplotope S with typical element x = (x1, . . . , xN ). Clearly, S is a simple
polytope with dimension equal to n − N , where n is the total number of actions in
the game, i.e., n =

∑N
j=1 nj , and can be written as a polyhedron of the form (3.1) by

S =

{
x ∈ Rn

∣∣∣∣∣ − xj
k ≤ 0 for all j, k,

nj∑
k=1

xj
k = 1, for all j

}
.(4.1)

For x ∈ S, vj(x) denotes the expected payoff for player j, j ∈ IN , when strategy
x is being played, i.e.,

vj(x) =
∑
a∈A

Πi∈INxi
ai
uj(a),

and f j
k(x) denotes the marginal payoff for player j, j ∈ IN , when player j chooses

action k, k ∈ Aj , and the other players play according to strategy x, i.e.,

f j
k(x) =

∑
{a∈A | aj=k}

Πi 	=jx
i
ai
uj(a).

We now recall the following definitions, where (xj , x∗−j) denotes the strategy vector
x∗ with x∗j replaced by xj .

Definition 4.1.

1. (Nash [13]) A strategy x∗ ∈ S is a Nash equilibrium if for every j ∈ IN it
holds that vj(x

∗) ≥ vj(x
j , x∗−j) for all xj ∈ Snj .

2. (Selten [18]) A strategy x∗ ∈ S is a perfect (Nash) equilibrium if it is the
limit of a sequence of εk-perfect equilibria for a sequence of positive numbers
εk, k ∈ N, converging to zero, where a strategy x is an ε-perfect equilibrium
if x ∈ Int S and xj

k ≤ ε whenever f j
k(x) < maxh f

j
h(x).

3. (Myerson, [12]) A strategy x∗ ∈ S is a proper (Nash) equilibrium if it is the
limit of a sequence of εk-proper equilibria for a sequence of positive numbers
εk, k ∈ N, converging to zero, where a strategy x is an ε-proper equilibrium if
x ∈ Int S and xj

k ≤ εxj
h whenever f j

k(x) < f j
h(x).

Clearly, x ∈ S is a Nash equilibrium if and only if x is a stationary point
of the marginal payoff function f on S, i.e., with I = {(j, k)|xj

k = 0}, f(x) =∑
(j,k)∈I μj,ka

j,k +
∑N

j=1 νjc
j , where νj = maxh f

j
h(x) for all j ∈ IN and μj,k =

maxh f
j
h(x) − f j

k(x) ≥ 0 for all (j, k) ∈ I, letting for ease of notation (j, k) =∑j−1
i=1 ni + k. A perfect equilibrium x ∈ S is the limit of a sequence of completely

mixed strategies at which the nonoptimal actions are chosen with arbitrarily small
probability. So, x is a perfect equilibrium if and only if x is a perfect stationary
point of the function f . A proper equilibrium is the limit of a sequence of completely
mixed strategies at which the lower the marginal payoff of an action of a player is, the
smaller the probability should be with which this player chooses that action. Every
proper equilibrium is a perfect equilibrium and every perfect equilibrium is a Nash
equilibrium.

In the literature, properness is known to be the most refined concept of Nash
equilibrium that still exists for every noncooperative game in normal form. The
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concept of robustness, as introduced on a polytope in the previous section, requires
more than properness.

Definition 4.2. A strategy x∗ ∈ S is a robust (Nash) equilibrium if it is the
limit of a sequence of εk-robust equilibria for a sequence of positive numbers εk, k ∈ N,
converging to zero, where a strategy x is called an ε-robust equilibrium if x ∈ Int S
and xj

k < εxi
l whenever maxh f

j
h(x) − f j

k(x) > maxh f
i
h(x) − f i

l (x).

The definition implies that the worse an action in the game is, the smaller the
probability should be with which that action is chosen. So, strengthening the proper-
ness conditions, the robustness condition requires that the probability of an action
decreases by at least a factor ε if the marginal payoff becomes worse, is taken over all
players simultaneously instead of each player separately.

Theorem 4.3. Any noncooperative game in normal form has a robust equilib-
rium and every robust equilibrium is a proper Nash equilibrium.

Proof. Theorem 3.4 says that the marginal payoff function f has a robust station-
ary point x∗. Hence, x∗ is the limit of a sequence of εk-robust stationary points xk of
f for εk going to zero. Taking into account the form (4.1) of S, it follows that if xk

is an εk-robust stationary point of f , then xk is an εk-robust equilibrium. Therefore,
x∗ is a robust Nash equilibrium.

In Yang [23] a simplicial variable dimension algorithm is described to compute a
robust Nash equilibrium for finite games. Clearly, any robust equilibrium is proper.
For finite games, it is an open question whether there may exist proper equilibria that
are not robust. In fact, we conjecture that for finite games any proper equilibrium is
also robust.1 However, in the more general case of games with a continuum of strate-
gies the more general concept of robustness may be useful to eliminate undesirable
equilibria.

Next, we consider the class of symmetric finite two-player games. Such a game
can be summarized by two n×n payoff matrices A and B with B = A�, where n is the
number of pure strategies for both players 1 and 2. In the following we denote such a
symmetric bimatrix game by the matrix A. Given a mixed strategy pair (x1, x2) ∈ S,
where S = Sn×Sn, the payoff of the players is then given by v1(x

1, x2) = x1�Ax2 for
player 1 and v2(x

1, x2) = x1�A�x2 for player 2. For this class of games in particular
symmetric equilibria are of special importance. A Nash equilibrium (x1, x2) is called
symmetric if x1 = x2. A (mixed) strategy x is called an equilibrium strategy if (x, x) is
a symmetric Nash equilibrium. It is shown by Nash [14] that every symmetric bimatrix
game has a symmetric equilibrium. In the literature it is taken for granted that if a
symmetric game has an equilibrium of some kind (such as Nash, perfect, or proper,
and so on), then the game has a symmetric equilibrium of that kind. Nevertheless,
for example, the existence of a symmetric proper Nash equilibrium in a symmetric
bimatrix game has never been shown in the literature. Here we demonstrate this
result by applying Theorem 3.4. In fact we show the existence of a robust equilibrium
strategy.

Theorem 4.4. Any symmetrix bimatrix game has a symmetric proper Nash
equilibrium.

Proof. Given a symmetric bimatrix game A, we define the function f : Sn → Rn

by

f(x) = Ax.

1This conjecture was raised by one of the referees.
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For ε ∈ (0, 1), let x ∈ Sn be a completely mixed strategy such that

xk ≤ εxl if fk(x) < fl(x) for all k, l ∈ IN .

Then the pair (x, x) ∈ S is a symmetric ε-proper Nash equilibrium, since (x, x) satisfies
the conditions of an ε-proper equilibrium given in Definition 4.1 with f1 = f2 = f .

Next, take X = Sn and the mapping X as defined in formula (3.2), where the set
X is given by the polyhedral set Sn written in the form (3.1) by

X = Sn =

{
x ∈ Rn

∣∣∣∣∣ − xk ≤ 0 for all k ∈ In,

n∑
k=1

xk = 1

}
.

Then Theorem 3.4 says that f has a robust stationary point x∗. Since any stationary
point of f is an equilibrium strategy, it follows that x∗ is a robust equilibrium strategy.
Since by definition, x∗ is the limit of a sequence of εk-robust stationary points xk of
f on Sn with εk going to zero, (xk, xk) is a symmetric εk-proper Nash equilibrium
as defined in Definition 4.1 with f1 = f2 = f . Hence (x∗, x∗) is a symmetric proper
Nash equilibrium.

4.2. Replicator and price dynamics. Symmetric games have appeared to
be very important in evolutionary game theory, in which individuals are repeatedly
drawn from a large monomorphic population to play a symmetric two-player game.
In evolutionary game theory, the evolutionary stable strategy proposed by Maynard
Smith and Price [11] and Maynard Smith [10], is probably the most well-known con-
cept. A strategy x ∈ Sn is said to be an evolutionary stable strategy (ESS), if for any
strategy y �= x in Sn there exists some εy ∈ (0, 1) such that for all ε ∈ (0, εy) it holds
that

x�Aw > y�Aw where w = εy + (1 − ε)x.

Clearly this implies that x�Ax ≥ x�Ay for all y so that any ESS is an equilibrium
strategy, but not the reverse. So, the concept of ESS is a refinement of the concept
of equilibrium strategy. However, the existence of an ESS is not guaranteed for
every symmetric bimatrix game; see, e.g., van Damme [2] and Weibull [21]. In this
subsection we first introduce a new refinement of equilibrium strategy, called a sign-
stable equilibrium, and then show that every symmetric bimatrix game has such a
sign-stable equilibrium. For j = 1, . . . , n, define

zj(x) = Ajx− x�Ax, x ∈ Sn.

In evolutionary game theory, zj(x) denotes the excess fitness of action j at mixed
strategy x, being the marginal payoff of action j minus the average payoff over all
actions at strategy x, where Aj denotes the jth column of the matrix A. We assume
that z : Sn → Rn is a continuous function. Notice that for every x ∈ Sn it holds that
x�z(x) = 0. Clearly, x∗ is an equilibrium strategy if and only if x∗ is a stationary
point of z, i.e., z(x∗) ≤ 0n, and zj(x

∗) < 0 implies that x∗
j = 0.

The probability xj is interpreted to be the fraction of players using action j within
a monomorphic population of a large number of players. So, the fitness can be seen
as the difference of the (expected) payoff of a player of population j and the expected
payoff in the population as a whole. It is further assumed that players with a higher
fitness get more offspring, resulting in the so-called replicator dynamics given by

dx(t)/dt = f(x(t)), t ≥ 0,
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with f :Sn → Rn given by

fj(x) = xjzj(x), j = 1, . . . , n.

The replicator dynamics models the population dynamics. The function f has the
property that

∑n
j=1 fj(x) = 0 for any x ∈ Sn so that the solution path of the replicator

dynamics dx(t)/dt = f(x(t)) stays in Sn; see, for example, Weibull [21].
Each stationary point of z, and thus each equilibrium strategy, is a stationary

point of the corresponding function f and is even a zero point of f . However, the
reverse is not true. Not every stationary point of f is a stationary point of z. For
example, all vertices of Sn are stationary points of f , but not all of them need to be
equilibrium points. We will show that a sign-stable stationary point of the function
f is a stationary point of z and therefore an equilibrium, where x ∈ Sn is a sign-
stable stationary point of f if it is the limit of a convergent subsequence of εk-sign-
stable zero points of f for a sequence of positive real numbers (εk)k∈N with limk εk =
0. For 0 < ε < 1, a point x ∈ Int Sn is called an ε-sign-stable zero point of f
if xj ≤ ε

n when fj(x) < 0 and xj ≥ n−1 when fj(x) > 0. In the context of a
symmetric bimatrix game a sign-stable stationary point of f will be called a sign-
stable equilibrium strategy. We will prove the existence of a sign-stable equilibrium
strategy by defining the coincidence mapping G appropriately. It should be noticed
that this mapping G is not the normal cone mapping.

In the following, e(i) denotes the ith unit vector in Rn and e the n-vector of ones.
Theorem 4.5. Let z : Sn → Rn be a continuous function satisfying x�z(x) = 0

for all x ∈ Sn and let f : Sn → Rn be defined by fj(x) = xjzj(x) for all j ∈ In
and x ∈ Sn. Then a sign-stable stationary point of f exists and every sign-stable
stationary point of f is a stationary point of z.

Proof. For ε, 0 ≤ ε ≤ 1, let

X (ε) =

{
x ∈ Sn

∣∣∣∣min
j

xj ≥
ε

n

}
.

Clearly, X (·) is a continuous mapping; X (0) = Sn; for every ε, 0 ≤ ε ≤ 1, the set
X(ε) is a nonempty, compact, and convex set; X (1) = { e

n}; and X (ε′) ⊂ Int X (ε)
for every 0 ≤ ε < ε′ ≤ 1. For ε, 0 < ε ≤ 1, and I being a proper subset of the set
In = {1, . . . , n}, the face F ε(I) of X(ε) is given by F ε(I) = {x ∈ X (ε) | xi = ε

n , i ∈ I}
and the normal cone N(X (ε), x) at a point x ∈ Int F ε(I) is given by the set

A(I) =

{
y ∈ Rn

∣∣∣∣y = νe−
∑
i∈I

μie(i), ν ∈ R, μi ≥ 0, i ∈ I

}
.

For x ∈ Sn, define G(x) = Rn if x = 1
ne; otherwise

G(x) = {y ∈ Rn | y = w + λe, λ ∈ R,
∑n

i=1 wi = 0,
wi ≤ 0 if xi = minh xh,
wi ≥ 0 if xi = maxh xh,
wi = 0 otherwise}.

Clearly, G(·) satisfies condition (G1). To show that G(·) satisfies condition (G2), take
any x ∈ F ε(I) and y ∈ A(I) \ {0n} for ε, 0 < ε < 1, with I being a proper subset
of In. Thus xi = minh xh for all i ∈ I and y = νe −

∑
i∈I μie(i) for some ν ∈ R

and μi ≥ 0, i ∈ I, not all equal to zero. If μi = 0 for all i ∈ I and therefore ν �= 0,
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take z = νe; then z ∈ G(x) and z�y = nν2 > 0. If μi > 0 for some i ∈ I, take
z = e(j) − e(i) for some j with xj = maxh xh; then z ∈ G(x) and z�y = μi > 0.
Hence, G(·) satisfies condition (G2). With respect to (G3), if x is in the boundary of
Sn, then N(Sn, x) = A(I), where I = {i | xi = 0}, and so G(x) ⊂ N(Sn, x). From
Theorem 2.4 it now follows that there exists an (X , G)-stable stationary point of f
on Sn.

Hence, for every ε, 0 < ε < 1, there exists xε ∈ P (ε) satisfying f(xε) = νe for some
ν ∈ R if xε ∈ Int P(ε) and f(xε) ∈ G(xε) if xε ∈ Bnd P(ε). Since

∑n
i=1 fi(x

ε) = 0
we obtain that ν = 0 and so f(xε) = 0n if xε ∈ Int P (ε). If xε ∈ Bnd P(ε), then
there exists δ(ε) ≥ n−1 such that xε

j = ε
n if fj(x

ε) < 0, xε
j = δ(ε) if fj(x

ε) > 0,
and ε

n ≤ xε
j ≤ δ(ε) if fj(x

ε) = 0; i.e., xε is an ε-sign-stable zero point of f . Take
any convergent subsequence (xεk)k∈N of such points with limk εk = 0 and let x∗

be the limit of this subsequence. Suppose zj(x
∗) < 0 for some component j, then

for large enough k it holds that fj(x
εk) < 0 and therefore xεk = εk

n for k large
enough. Hence, after taking limits we obtain that zj(x

∗) < 0 implies x∗
j = 0. Since

n−1 ≤ δ(εk) ≤ 1 for all k ∈ N, we may assume without loss of generality that the
sequence (δ(εk))k∈N converges to some δ∗ > 0. This implies that x∗

j > 0 if zj(x
∗) > 0.

Since
∑n

j=1 fj(x
∗) = 0 we get that fj(x

∗) = 0 for all j ∈ In, and therefore zj(x
∗) = 0

if x∗
j > 0. Hence, x∗ is a stationary point of z.
The theorem says that the replicator dynamics function f always has a sign-

stable stationary point and that every sign-stable stationary point of f induces an
equilibrium for the underlying function z. As a result, we have that every symmetric
bimatrix game A has a sign-stable equilibrium strategy x.

4.3. A general equilibrium model with constant returns to scale. We
consider a general equilibrium model with constant returns to scale production tech-
nologies. The model consists of k firms, l households, and n commodities. The ag-
gregated excess demand for commodities by households at price vector p ∈ Rn

+ \ {0n}
is described by the vector z(p). The function z satisfies continuity, homogeneity of
degree zero and Walras’ law, i.e., p�z(p) = 0 for any price vector p. Each firm i ∈ Ik is
characterized by an input-output or activity vector ai(p) ∈ Rn. At price vector p the
vector ai(p) maximizes the net profit of firm i per unit of activity; i.e., πi(p) = p�ai(p)
is the net profit rate of firm i and satisfies continuity, convexity, homogeneity of degree
one, and δπi(p)/δpj = aij(p) for all j. In case the activity level of firm i is equal to

μi, the production vector at price vector p is equal to μia
i(p) and the profit is equal

to μiπ
i(p) = μip

�ai(p).
An activity vector μ∗ ∈ Rk

+ and a price vector p∗ ∈ Rn
+ \ {0n} constitute a

(Walrasian) equilibrium if z(p∗) =
∑

i∈Ik
ai(p∗)μ∗

i , p
∗�ai(p∗) ≤ 0 for all i ∈ Ik, and

μ∗
i p

∗�ai(p∗) = 0 for all i ∈ Ik. This means that in equilibrium market demand is
equal to market supply for every commodity, no firm can make a positive profit rate
(otherwise the activity level of that firm would be infinity), and firms produce only
if the profit rate is zero (profit of each firm is zero). It is well known that such an
equilibrium always exists if the assumption of no production without input holds true.

Because of the homogeneity of degree zero of both the excess demand and the
activity vectors the feasible price set can be taken to belong to the unit simplex Sn.
Since in equilibrium no firm can make a positive profit, the set of feasible prices is
given by the set X ⊂ Sn of the form (3.1) given by

X = {p ∈ Rn
+| πi(p) ≤ 0 for all i ∈ Ik, e�p = 1}.

Since there cannot be production without input and because of the properties of the
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profit functions, X is a nonempty, convex, and compact set in Rn. Suppose that X
is simple, no constraints are redundant, and X has dimension n− 1. Then it follows
immediately that (p∗, μ∗) ∈ Sn×Rk is an equilibrium if and only if p∗ is a stationary
point of the excess demand function z on the set X, satisfying z(p∗) =

∑
i∈I μ

∗
i a

i(p∗),
where I = {i ∈ Ik | πi(p

∗) = 0}. Notice that due to Walras’ law at a stationary point
the weight ν∗ of the vector e is equal to zero.

It is well known that in an economy with constant returns to scale production
technologies equilibria typically lie on the boundary of the feasible price set X and
that there can be easily multiple equilibria; see, e.g., Kehoe [7]. The set of equilibria
can be refined as described in the previous sections. For example, there exists a perfect
(Walrasian) equilibrium, being the limit of a sequence of εk-perfect equilibria for εk
converging to zero, where p is called an ε-perfect equilibrium if p lies in the interior of
X and z(p) =

∑
i∈Ik

μia
i(p) is such that μi > 0 implies πi(p) ≥ −ε. This means that

the loss (negative profit) rate of an active firm should be at most ε. Also, there exists
a robust (Walrasian) equilibrium, being the limit of a sequence of εk-robust equilibria
for εk converging to zero, where p is called an ε-robust equilibrium if p lies in the
interior of X and z(p) =

∑
i∈Ik

μia
i(p) is such that μi > μj implies πi(p) ≥ επj(p).

This means that the loss rate of a firm with a higher activity level should be at most
ε times the loss rate of a firm with a lower activity level.

Acknowledgments. The third author wishes to thank the Alexander von Hum-
boldt Foundation and the Institute of Mathematical Economics Bielefeld, for their
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Abstract. In this paper we study the approximation algorithms for a class of discrete quadratic
optimization problems in the Hermitian complex form. A special case of the problem that we
study corresponds to the max-3-cut model used in a recent paper of Goemans and Williamson
[J. Comput. System Sci., 68 (2004), pp. 442–470]. We first develop a closed-form formula to compute
the probability of a complex-valued normally distributed bivariate random vector to be in a given
angular region. This formula allows us to compute the expected value of a randomized (with a specific
rounding rule) solution based on the optimal solution of the complex semidefinite programming
relaxation problem. In particular, we present an [m2(1 − cos 2π

m
)/8π]-approximation algorithm, and

then study the limit of that model, in which the problem remains NP-hard. We show that if the
objective is to maximize a positive semidefinite Hermitian form, then the randomization-rounding
procedure guarantees a worst-case performance ratio of π/4 ≈ 0.7854, which is better than the
ratio of 2/π ≈ 0.6366 for its counterpart in the real case due to Nesterov. Furthermore, if the
objective matrix is real-valued positive semidefinite with nonpositive off-diagonal elements, then the
performance ratio improves to 0.9349.

Key words. Hermitian quadratic functions, approximation ratio, randomized algorithms, com-
plex semidefinite programming relaxation
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1. Introduction. The pioneering work of Goemans and Williamson [8] has
caused a great deal of excitement in the field of optimization, as it used a new tool,
semidefinite programming (SDP) in continuous optimization, through randomization
and probabilistic analysis, to yield an excellent approximation ratio for a classical com-
binatorial optimization problem, known as the max-cut problem. This groundbreak-
ing work has been extended in various ways since its first appearance. Among others,
Frieze and Jerrum [6] extended the method to solve the general max-k-cut problem.
Bertsimas and Ye [4] introduced another randomization scheme using normal distri-
butions, to achieve the same approximation result as in Goemans and Williamson’s
original paper [8]. The Bertsimas–Ye analysis makes use of an important result in
statistics, which states that the probability of a bivariate (2-dimensional) normally
distributed random vector to be in the first orthant can be expressed analytically
using elementary functions. This is impossible, however, for any dimension higher
than three; see [1]. Recently, Goemans and Williamson [9] proposed another novel
approach to solve the max-3-cut problem using the unit circle in the complex plane
as a key modeling ingredient. In this paper we show that it is possible to compute
the probability of the bivariate complex-valued normally distributed random vector
to be in a specific angular region in C2 (see section 2). We then consider the follow-
ing quadratic optimization problem in complex variables: maximize zHQz, subject
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to zmk = 1, k = 1, . . . , n, where zk is a complex variable and is the kth component
of the vector z, and m ≥ 2 is an integer parameter of the model. Thanks to the
new probability formula to be developed in section 2, we are able to compute the
expected quality of a particular randomized solution for solving the above quadratic
optimization model. The model of Goemans and Williamson for max-3-cut (m = 3)
turns out to be a special case of this general model. It is interesting to study the limit
of this model; that is, the case where m → ∞ and the constraints become |zk| = 1. It
turns out that the problem remains NP-hard. However, the corresponding complex
SDP relaxation yields an approximation ratio of π/4 ≈ 0.7854, whereas for its coun-
terpart in the real case the ratio is 2/π ≈ 0.6366 as shown by Nesterov [11]. If the
off-diagonal elements of the objective matrix are real-valued and nonpositive, then
the approximation ratio is actually 0.9349.

This paper is organized as follows. In section 2 we discuss the computation of
the probability for the complex-valued normal distributions. In section 3 we apply
the results developed in section 2 to solve complex-valued quadratic optimization
problems. In particular, section 3.1 discusses the Hermitian quadratic function max-
imization problem, where the complex decision variables take discrete values. Sec-
tion 3.2 presents an approximation algorithm for the problem. Section 3.3 considers
the continuous version of the problem. Section 3.4 considers a special case where a
sign restriction on the objective matrix is observed. Finally, we conclude the paper
in section 4.

Notation. Throughout, we denote by ā the conjugate of a complex number a
and by Cn the space of n-dimensional complex vectors. For a given vector z ∈
Cn, zH denotes the conjugate transpose of z. The spaces of n × n real symmetric
and complex Hermitian matrices are denoted by Sn and Hn, respectively. For a
matrix Z ∈ Hn, we write Re Z and Im Z for the real and imaginary part of Z,
respectively. Matrix Z being Hermitian implies that Re Z is symmetric and Im Z is
skew-symmetric. We denote by Sn

+ (Sn
++) and Hn

+ (Hn
++) the cones of real symmetric

positive semidefinite (positive definite) and complex Hermitian positive semidefinite
(positive definite) matrices, respectively. The notation Z � (� 0) means that Z is
positive semidefinite (positive definite). For two complex matrices Y and Z, their
inner product Y •Z = Re (tr Y HZ) = tr

[
(Re Y )T(Re Z) + (Im Y )T(Im Z)

]
, where

tr denotes the trace of a matrix and T denotes the transpose of a matrix.

2. Complex bivariate normal distribution. It is well known that the density
function of an n-dimensional real-valued multivariate normal distribution is given as
follows:

f(x) =
1

(2π)n/2
√

det Ω
exp

(
−1

2
(x− μ)TΩ−1(x− μ)

)
,

where μ ∈ 
n is the mean and Ω ∈ Sn
++ is the covariance matrix.

Let us consider a complex-valued normally distributed random variable in C, with
the mean value z0 ∈ C and variance σ2 ∈ 
+. (For more information on the complex-
valued normal distributions, we refer the reader to [2]). Similar to the real-valued
case, its density function can be written as

f(z) =
1

πσ2
exp

(
−|z − z0|2/σ2

)
, z ∈ C.

We denote the complex-valued normal distribution by Nc(z0, σ
2) with mean z0

and variance σ2.
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Using Euler’s formula, i.e., letting z − z0 = ρeiθ, we have

f(ρ, θ) =
ρ

πσ2
exp

(
− ρ2

σ2

)
, with (ρ, θ) ∈ [0,+∞) × [0, 2π),

where the variable transformation is{
Re (z − z0) = ρ cos θ,
Im (z − z0) = ρ sin θ.

As a matter of terminology, ρ is usually called the modulus of z− z0, also denoted as
|z − z0|; θ is called the argument of z − z0, denoted as Arg (z − z0).

The density of the joint (complex-valued) normal distribution z = (z1, z2, . . . , zn),
with zk ∈ C, k = 1, 2, . . . , n, has the following form:

f(z) =
1

(π)n det Ω
exp

(
−(z − μ)HΩ−1(z − μ)

)
,

where z, μ ∈ Cn, and Ω ∈ Hn
++; μ is the mean vector, and Ω is the covariance matrix.

Let us denote the above complex-valued normal distribution as Nc(μ,Ω).
The bivariate case is of particular interest to us. Consider a complex-valued, bi-

variate normal random vector. Suppose that it has zero-mean. Furthermore, suppose
that its covariance matrix is

Ω =

[
1 λ
λ̄ 1

]
� 0,

where λ̄ ∈ C denotes the conjugate of λ ∈ C. In particular, let λ = γeiα, and so

λ̄ = γe−iα. Since Ω � 0, it follows that 1 − γ2 > 0. Moreover,

Ω−1 =
1

1 − γ2

[
1 −γeiα

−γe−iα 1

]
.

Then, by letting z1 = ρ1e
iθ1 and z2 = ρ2e

iθ2 , we may rewrite the density function
as

f(ρ1, ρ2, θ1, θ2)

=
ρ1ρ2

π2(1 − γ2)
exp

⎛
⎝− 1

1 − γ2

[
ρ1e

iθ1

ρ2e
iθ2

]H [
1 −γeiα

−γe−iα 1

][
ρ1e

iθ1

ρ2e
iθ2

]⎞⎠
=

ρ1ρ2

π2(1 − γ2)
exp

(
−ρ2

1 + ρ2
2 − 2ρ1ρ2γ cos(α + θ2 − θ1)

1 − γ2

)
,

where the domain of the variables is given as

(ρ1, ρ2, θ1, θ2) ∈ [0,+∞)2 × [0, 2π)2.

Now let us further introduce a variable transformation{
ρ1 = ρ cos ξ,
ρ2 = ρ sin ξ



874 SHUZHONG ZHANG AND YONGWEI HUANG

with the domain (ρ, ξ) ∈ [0,+∞) × [0, π/2]. The density function can be further
written as

f(ρ, ξ, θ1, θ2) =
ρ3 cos ξ sin ξ

π2(1 − γ2)
exp

(
−ρ2 − 2γρ2 cos ξ sin ξ cos(α + θ2 − θ1)

1 − γ2

)

=
ρ3 sin 2ξ

2π2(1 − γ2)
exp

(
−ρ2 − ρ2γ sin 2ξ cos(α + θ2 − θ1)

1 − γ2

)
,

and the domain is (ρ, ξ, θ1, θ2) ∈ [0,+∞) × [0, π/2] × [0, 2π)2.
Consider 0 ≤ θb1 < θe1 ≤ 2π and 0 ≤ θb2 < θe2 ≤ 2π. Below we shall compute the

probability that (θ1, θ2) ∈ [θb1, θ
e
1] × [θb2, θ

e
2].

Let us denote

P : = Prob {θb1 ≤ θ1 ≤ θe1; θ
b
2 ≤ θ2 ≤ θe2}

=

∫ θe
1

θb
1

∫ θe
2

θb
2

∫ π/2

0

[∫ ∞

0

ρ3 sin 2ξ

2π2(1 − γ2)
exp

(
−ρ2 − ρ2γ sin 2ξ cos(α + θ2 − θ1)

1 − γ2

)
dρ

]
× dξdθ2dθ1.

To compute the above integration, we note the following facts.
Lemma 2.1.

(i) For a given a > 0, it holds that

∫ ∞

0

ρ3 exp(−aρ2)dρ =
1

2a2
.

(ii) Suppose that −1 < b < 1 is a given real number. Then, with respect to the
variable θ, it holds that

∫
sin θ

(1 − b sin θ)2
dθ = − cos θ

(1 − b2)(1 − b sin θ)

+
2b

(1 − b2)3/2
arctan

tan(θ/2) − b√
1 − b2

+ C.

(iii) With respect to the variable θ, it holds that

∫ [
1

1 − γ2 cos2(θ)
+

γ cos θ arccos(−γ cos θ)

(1 − γ2 cos2(θ))3/2

]
dθ

=
1

1 − γ2

(
θ +

γ sin θ arccos(−γ cos θ)√
1 − γ2 cos2(θ)

)
+ C.

(iv) With respect to the variable θ, it holds that

∫ [
γ sin(β − θ) arccos(−γ cos(θ − β))√

1 − γ2 cos2(θ − β)

]
dθ =

1

2
(arccos(−γ cos(θ − β)))

2
+ C.
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Part (i) of the lemma is straightforward, and the rest of the lemma can be readily
verified by differentiation.

Applying Lemma 2.1 (i) and (ii), we get

P =
1

4π2(1 − γ2)

∫ θe
1

θb
1

∫ θe
2

θb
2

[∫ π/2

0

sin 2ξ

(
1 − γ2

1 − γ sin 2ξ cos(α + θ2 − θ1)

)2

dξ

]
dθ2dθ1

=
1 − γ2

4π2

∫ θe
1

θb
1

∫ θe
2

θb
2

[∫ π/2

0

sin 2ξ

(1 − γ cos(α + θ2 − θ1) sin 2ξ)2
dξ

]
dθ2dθ1

=
1 − γ2

4π2

∫ θe
1

θb
1

∫ θe
2

θb
2

[
1

1 − γ2 cos2(α + θ2 − θ1)

+
γ cos(α + θ2 − θ1) arccos (−γ cos(α + θ2 − θ1))

(1 − γ2 cos2(α + θ2 − θ1))3/2

]
dθ2dθ1.

Using Lemma 2.1 (iii) we obtain

P =
1

4π2

[
(θe1 − θb1)(θ

e
2 − θb2) +

∫ θe
1

θb
1

γ sin(θe2 + α− θ1) arccos(−γ cos(θe2 + α− θ1))√
1 − γ2 cos2(θe2 + α− θ1)

dθ1

−
∫ θe

1

θb
1

γ sin(θb2 + α− θ1) arccos(−γ cos(θb2 + α− θ1))√
1 − γ2 cos2(θb2 + α− θ1)

dθ1

]
,

and then using Lemma 2.1 (iv) we have

P =
(θe1 − θb1)(θ

e
2 − θb2)

4π2
+

1

8π2

[
(arccos(−γ cos(θe1 − θe2 − α)))

2

−
(
arccos(−γ cos(θb1 − θe2 − α))

)2
+
(
arccos(−γ cos(θb1 − θb2 − α))

)2 − (
arccos(−γ cos(θe1 − θb2 − α))

)2]
.

Summarizing, we have proven the following result by a limiting argument.
Theorem 2.2. For the complex-valued bivariate normal random vector

[
z1
z2

]
∈

Nc (μ,Ω) with

μ =

[
0
0

]
and Ω =

[
1 γeiα

γe−iα 1

]
∈ H2

+,

it holds that

Prob {θb1 ≤ Arg z1 ≤ θe1; θ
b
2 ≤ Arg z2 ≤ θe2}

=
(θe1 − θb1)(θ

e
2 − θb2)

4π2
+

1

8π2

[
(arccos(−γ cos(θe1 − θe2 − α)))

2

−
(
arccos(−γ cos(θb1 − θe2 − α))

)2
+
(
arccos(−γ cos(θb1 − θb2 − α))

)2 − (
arccos(−γ cos(θe1 − θb2 − α))

)2]
.
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3. Quadratic programs and complex SDP formulations.

3.1. Discrete complex quadratic optimization. Suppose that Q is a Her-
mitian matrix. Consider the following quadratic programming problem with discrete
decision variables:

(P) max zHQz
s.t. zk ∈ {1, ω, . . . , ωm−1}, k = 1, . . . , n,

where m ≥ 2 and ω = ei
2π
m = cos 2π

m + i sin 2π
m . As we shall see later, this is an

extension of Goemans and Williamson’s model for solving the max-3-cut problem;
see [9].

Denote the optimal value of (P) to be v(P ). Consider the following complex-
valued mapping Fm:

Fm(z) :=
m(2 − ω−1 − ω)

8π2

m−1∑
j=0

ωj(arccos(−Re (ω−jz)))2.

For a Hermitian matrix Z with |Zkl| ≤ 1 for all k, l, define the componentwise
matrix function

Fm(Z) := (Fm(Zkl))n×n ∈ Hn.

It is easy to verify that Fm(z̄) = Fm(z). Therefore, if Z is Hermitian, then so is
Fm(Z).

Lemma 3.1. We have

1 =
m(2 − ω−1 − ω)

8π2

m−1∑
j=0

ωj(arccos(−Re (ω−j)))2.

Moreover, Fm(z) = z for any z ∈ {1, ω, . . . , ωm−1}.
Proof. We observe that

m(2 − ω−1 − ω)

8π2

m−1∑
j=0

ωj

(
arccos

(
− cos

(
j

m
2π

)))2

=
m(2 − ω−1 − ω)

8π2

m−1∑
j=0

ωjπ2

(
1 − 2j

m

)2

=
2 − ω−1 − ω

8m

⎛
⎝4

m−1∑
j=0

j2ωj − 4m

m−1∑
j=0

jωj

⎞
⎠ .(1)

Moreover, we have

m−1∑
j=0

j2ωj =
m2(ω − 1) − 2mω

(ω − 1)2
and

m−1∑
j=0

jωj =
m

ω − 1
.

Substituting the above equations into (1) yields the intended result.
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Suppose z = ωj0 for some j0 ∈ {0, 1, . . . ,m− 1}. Then,

m(2 − ω−1 − ω)

8π2

m−1∑
j=0

ωj(arccos(−Re (ω−jz)))2

=
m(2 − ω−1 − ω)

8π2

m−1∑
j=0

ωj

(
arccos

(
− cos

(
j0 − j

m
2π

)))2

=
m(2 − ω−1 − ω)

8π2

m−1∑
j=0

ωj

(
arccos

(
− cos

(
j − j0
m

2π

)))2

= ωj0
m(2 − ω−1 − ω)

8π2

m−1−j0∑
j=−j0

ωj

(
arccos

(
− cos

(
j

m
2π

)))2

= ωj0 = z.

This completes the proof for Lemma 3.1.
Hence we can rewrite (P) as

max Q • Fm(zzH)

s.t. zk ∈ {1, ω, . . . , ωm−1}, k = 1, . . . , n.

Consider the following nonlinear complex SDP problem:

(SP) max Q • Fm(Z)

s.t. Zkk = 1, k = 1, . . . , n,

Z � 0.

Let v(SP ) denote the optimal value of (SP).
Theorem 3.2. It holds that v(P ) = v(SP ).
Proof. Let ẑ be optimal to (P); then, by Lemma 3.1, Ẑ = ẑẑH is a feasible solution

for (SP) and Fm(Ẑ) = Ẑ. Therefore, v(SP ) ≥ Q • Fm(Ẑ) = Q • Ẑ = v(P ).
On the other hand, for every feasible solution Z of (SP), we randomly generate a

complex vector ξ such that ξ ∈ Nc(0, Z), and assign

zk = σ(ξk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if Arg ξk ∈ [0, 1
m2π),

ω if Arg ξk ∈ [ 1
m2π, 2

m2π),

...

ωj if Arg ξk ∈ [ j
m2π, j+1

m 2π),

...

ωm−1 if Arg ξk ∈ [m−1
m 2π, 2π)

(2)
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for k = 1, . . . , n. Suppose that Zkl = γeiα. Then, by Theorem 2.2 we have

Prob {zk = zlω
j , zl = ωr}

= Prob {zk = ωj+r, zl = ωr}

= Prob

{
Arg ξk ∈

[
j + r

m
2π,

j + r + 1

m
2π

)
,Arg ξl ∈

[
r

m
2π,

r + 1

m
2π

)}

=
1

m2
+

1

8π2

(
2

(
arccos

(
−γ cos

(
j

m
2π − α

)))2

−
(

arccos

(
−γ cos

(
j − 1

m
2π − α

)))2

−
(

arccos

(
−γ cos

(
j + 1

m
2π − α

)))2
)

for any j, r ∈ {0, 1, . . . ,m− 1}. Therefore, for any given k and l we have

Prob {zkz̄l = ωj}

=

m−1∑
r=0

Prob {zk = zlω
j , zl = ωr}

=
1

m
+

m

8π2

(
2

(
arccos

(
−γ cos

(
j

m
2π − α

)))2

−
(

arccos

(
−γ cos

(
j − 1

m
2π − α

)))2

−
(

arccos

(
−γ cos

(
j + 1

m
2π − α

)))2
)
.(3)

It follows that

E[zkz̄l]

=

m−1∑
j=0

ωjProb {zkz̄l = ωj}

=
m

8π2

m−1∑
j=0

ωj

(
2

(
arccos

(
−γ cos

(
j

m
2π − α

)))2

−
(

arccos

(
−γ cos

(
j − 1

m
2π − α

)))2

−
(

arccos

(
−γ cos

(
j + 1

m
2π − α

)))2
)

=
m

8π2

m−1∑
j=0

(2ωj − ωj−1 − ωj+1)

(
arccos

(
−γ cos

(
j

m
2π − α

)))2

=
m(2 − ω−1 − ω)

8π2

m−1∑
j=0

ωj

(
arccos

(
−γ cos

(
j

m
2π − α

)))2

=
m(2 − ω−1 − ω)

8π2

m−1∑
j=0

ωj(arccos(−Re (ω−jZkl)))
2.(4)
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By the linearity of mathematical expectation, we get

E[zHQz] = Q • Fm(Z).

Since the solution z so generated is feasible to (P), we have

v(P ) ≥ E[zHQz]

= Q • Z,

for every feasible solution Z of (SP). This combined with v(SP ) ≥ v(P ) yields the
desired result.

In particular, if m = 2, then one can verify that problem (P) reduces to

max xTQx
s.t. xk ∈ {±1}, k = 1, . . . , n,

and problem (SP) reduces to

max 2
πQ • arcsin(X)

s.t. Xkk = 1, k = 1, . . . , n,
X � 0,

where arcsin(X) := [arcsin(Xkl)]n×n. In that case, Theorem 3.2 specializes to Theo-
rem 2.9 in Goemans and Williamson [8] or Theorem 1 in Zhang [15]. If m = 3, then
(P) is

max zHQz
s.t. zk ∈ {1, ω, ω2}, k = 1, . . . , n,

with ω = ei
2π
3 . In fact, Goemans and Williamson ([9]) model the max-3-cut problem

as

(M3C) max
∑

1≤k<l≤n wkl(zk − zl)
H(zk − zl)

s.t. zk = {1, ω, ω2}, k = 1, . . . , n,

and they consider the following complex SDP relaxation:

max
∑

1≤k<l≤n wkl(2 − 2Re Zkl)

s.t. Zkk = 1, k = 1, . . . , n,
Re Zkl ≥ −1/2, Re ωZkl ≥ −1/2, Re ω2Zkl ≥ −1/2, 1 ≤ k < l ≤ n,
Z � 0.

Let the optimal solution of the SDP relaxation be Z∗. Then, Theorem 3.2 asserts
that the expected value of the randomized solution based on Z∗ is

∑
1≤k<l≤n

wkl(2 − 2Re F3(Z
∗
kl)),

where F3(z) = 9
8π2

[
(arccos(−Re z))2 + ω(arccos(−Re (ω2z)))2 + ω2(arccos(−Re (ωz)))2

]
.
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Since (arccos(x))2 is a convex function, it follows that

Re F3(Z
∗
kl)

=
9

8π2

[
(arccos(−Re Z∗

kl))
2 − 1

2

(
(arccos(−Re (ω2Z∗

kl)))
2 + (arccos(−Re (ωZ∗

kl)))
2
)]

≤ 9

8π2

[
(arccos(−Re Z∗

kl))
2 −

(
arccos

(
−1

2
Re

(
ωZ∗

kl + ω2Z∗
kl

)))2
]

=
9

8π2

[
(arccos(−Re Z∗

kl))
2 −

(
arccos

(
1

2
Re Z∗

kl

))2
]
.

Further noticing that

min
− 1

2≤x<1

2 + 9
4π2

[(
arccos(x2 )

)2 − (arccos(−x))
2
]

2 − 2x
= 0.8360 . . . ,

the approximation ratio of Goemans and Williamson [9] thus follows from the fact
that ∑

1≤k<l≤n

wkl(2 − 2Re F3(Z
∗
kl))

≥
∑

1≤k<l≤n

wkl

{
2 − 2 × 9

8π2

[
(arccos(−Re Z∗

kl))
2 −

(
arccos

(
1

2
Re Z∗

kl

))2
]}

≥ 0.836 ×
∑

1≤k<l≤n

wkl (2 − 2Re Z∗
kl)

≥ 0.836 × v∗(M3C).

The above analysis is due to Goemans and Williamson [9]. Therefore, in this
sense (3) is a generalization of Theorem 1 of [9] and our rounding procedure (2) is an
extension of the procedure in section 5.1 of [9].

3.2. Bounds on the approximation ratios. In this subsection, we investi-
gate approximation algorithms for (P) with positive semidefinite Q via complex SDP
relaxation.

Consider the following complex SDP relaxation for (P):

(CSDP) max Q • Z
s.t. Zkk = 1, k = 1, . . . , n,

Z � 0.

Suppose that Z∗ is an optimal solution of (CSDP). We draw a random vector
ξ ∈ Nc(0, Z

∗), and generate a feasible solution z ∈ Cn of (P) by applying the rounding
procedure (2).

In what follows, we wish to establish an approximation ratio α ∈ (0, 1] for the
approximation algorithm, i.e., an α such that

E[Q • zzH] ≥ α(Q • Z∗),

for the randomized solution z.
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To begin with, we need the following technical lemma, whose proof is given in the
appendix of this paper.

Lemma 3.3. Suppose that Z ∈ Hn is positive semidefinite. Then

F2(Z) � 1

π
(Z + ZT) =

2

π
Re Z and Fm(Z) �

m2(1 − cos 2π
m )

8π
Z for m ≥ 3.

Therefore, according to (4) and Lemma 3.3, the expectation of the objective value
of z can be estimated as

E[Q • zzH] = Q • Fm(Z∗)

≥ αm(Q • Z∗),

where

αm =

{
2
π if m = 2,
m2(1−cos 2π

m )

8π if m ≥ 3.

Hence we arrive at the approximation ratio αm for our randomized algorithm for
solving (P) (m ≥ 2). Summarizing, we have the following theorem.

Theorem 3.4. Suppose that Q � 0. Then there holds E[Q • zzH] ≥ αmv(P),
where z is obtained by the randomized algorithm and v(P) is the optimal value of
(P). In particular, α3 ≥ 0.5371, α4 ≥ 0.6366, α5 ≥ 0.6873, α10 ≥ 0.7599, and
α100 ≥ 0.7851.

In the case of m = 2, (CSDP) is actually a real SDP problem. According to
Lemma 3.3, one asserts that the real version of relaxation problem (CSDP) yields a
2
π -approximation ratio, which is in accordance with the result of Nesterov [11].

Prior to our result in this section, we learned through private communications
that So, Zhang, and Ye [12] used a very different technique based on Grothendieck’s
inequality and obtained the same approximation ratio result for the discrete complex
quadratic optimization problem (P). We believe that both techniques are interesting
and useful in their own right.

3.3. Continuous complex quadratic optimization. By taking the limit, i.e.,
m → ∞, the quadratic optimization model (P) becomes

(CP) max zHQz
s.t. |zk| = 1, k = 1, . . . , n,

where Q ∈ Hn
+. In that case, the problem is equivalent to

(SCP) max Q • F (Z)
s.t. Zkk = 1, k = 1, . . . , n,

Z � 0

with

F (z) := lim
m→∞

Fm(z)

=
1

4π

∫ 2π

0

eiθ (arccos(−γ cos(θ − α)))
2
dθ,

where γ = |z| ≤ 1 and α = Arg z.
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The applications of Hermitian quadratic optimization models such as (P) and
(CP) can be found, e.g., in Luo, Luo, and Kisialiou [10] for applications in signal
processing. Although in [10] the minimization version of the problem was considered,
from the viewpoint of optimization both formulations are equivalent (see reduction
below).

Proposition 3.5. Problem (CP) is strongly NP-hard in general.
Proof. The optimization problem in the form

max |zTAz|
s.t. zk ∈ C, |zk| ≤ 1, k = 1, . . . , n,

is called complex programming and was shown in [13] to be NP-hard in general. Prob-
lem (CP) is related to complex programming, but they are not the same: the objective
in (CP) takes the Hermitian form and is assumed to be positive semidefinite. The
proof for Proposition 3.5 to be presented below is due to Tom Luo of Minnesota
University, who sketched this proof to us in a private communication.

As a first step we shall prove that the problem

min zHQz
s.t. |zk| = 1, k = 1, . . . , n,

is NP-hard in general, where Q ∈ Hn
+.

To this end, we consider a reduction from the following NP-complete matrix
partition problem; i.e., given a matrix G = [G1, . . . , GN ] ∈ 
M×N , decide whether or
not a subset of {1, . . . , N} exists, say I, such that

∑
k∈I

Gk =
1

2

N∑
k=1

Gk.

The NP-completeness of the above problem follows from the fact that when M = 1
and all the components are positive integers the above problem reduces to the famous
partition problem, which is NP-complete (see, e.g., page 223 of [7]).

Let the decision vector be

z = (z0, z1, . . . , zN , zN+1, . . . , z2N )
T ∈ C2N+1.

Let n = 2N + 1 and

A :=

(
−eN IN IN

− 1
2GeN G 0T

N

)
∈ 
(M+N)×n,

where eN ∈ 
N is the vector of all ones. Let Q := ATA.
Next we show that a matrix partition exists if and only if there is z ∈ Cn, with

|zk| = 1 for all k, such that zHQz = 0. Clearly, zHQz = 0 is equivalent to Az = 0;
that is,

0 = −z0 + zk + zN+k, k = 1, . . . , N,(5)

0 = −1

2

(
N∑

k=1

Gk

)
z0 +

N∑
k=1

Gkzk.(6)

Let zk/z0 = eiθk for k = 1, . . . , 2N . Using (5) we have

cos θk + cos θN+k = 1,(7)

sin θk + sin θN+k = 0,(8)
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where k = 1, . . . , N . Equations (7) and (8) imply that θk ∈ {−π/3, π/3}. This in
particular means that cos θk = cos θN+k = 1/2 for k = 1, . . . , N . Since

Re

(
−1

2

(
N∑

k=1

Gk

)
+

N∑
k=1

Gkzk/z0

)
= −1

2

N∑
k=1

Gk +

N∑
k=1

Gk cos θk = 0

is always satisfied, (6) is true if and only if

Im

(
−1

2

(
N∑

k=1

Gk

)
+

N∑
k=1

Gkzk/z0

)
=

N∑
k=1

Gk sin θk = 0,

which amounts to the existence of a matrix partition.
Let λmax be the maximum eigenvalue of Q. By observing that

min zHQz
s.t. |zk| = 1, k = 1, . . . , n,

is equivalent to

max zH(λmaxI −Q)z
s.t. |zk| = 1, k = 1, . . . , n,

where λmaxI −Q ∈ Hn
+, the desired result follows.

For a given z ∈ C with z = γeiα and |z| = γ ≤ 1, we have

F (z) =
1

4π

∫ 2π

0

eiθ (arccos(−γ cos(θ − α)))
2
dθ

=
1

4π
eiα

∫ 2π

0

eiθ (arccos(−γ cos θ))
2
dθ

=
1

4π
eiα

[∫ π

0

eiθ (arccos(−γ cos θ))
2
dθ −

∫ π

0

eiθ (arccos(γ cos θ))
2
dθ

]

=
1

2
eiα

∫ π

0

eiθ
(π

2
− arccos(γ cos θ)

)
dθ

=
1

2
eiα

∫ π

0

eiθ arcsin(γ cos θ)dθ

=
1

2
eiα

∫ π

0

eiθ

(
γ cos θ +

∞∑
k=1

(2k)!

4k(k!)2(2k + 1)
(γ cos θ)2k+1

)
dθ

=
π

4
γeiα +

π

2

∞∑
k=1

((2k)!)2

24k+1(k!)4(k + 1)
γ2k+1eiα

=
π

4
z +

π

2

∞∑
k=1

((2k)!)2

24k+1(k!)4(k + 1)
|z|2kz,(9)

where the second to last step follows from the fact that∫ π

0

sin θ(cos θ)2k+1dθ = 0 and

∫ π

0

(cos θ)2k+2dθ =
(2k + 1)(2k − 1) · · · 1

(2k + 2)(2k) · · · 2 π, k = 0, 1, . . . .
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Clearly, if Z ∈ Hn
+, then ZT ∈ Hn

+. Furthermore, observe that the Hadamard
product of any two positive semidefinite Hermitian matrices remains Hermitian posi-
tive semidefinite. Denote A ◦B to be the Hadamard product of A and B, and denote
A(k) to be

k︷ ︸︸ ︷
A ◦A ◦ · · · ◦A .

It thus follows from (9) that

F (Z) =
π

4
Z +

π

2

∞∑
k=1

((2k)!)2

24k+1(k!)4(k + 1)
(ZT ◦ Z)(k) ◦ Z � π

4
Z.

Since Q � 0, we have

Q • F (Z) ≥ π

4
Q • Z.

Consider the following complex SDP relaxation for (CP):

(CSDP) max Q • Z
s.t. Zkk = 1, k = 1, . . . , n,

Z � 0.

Let the optimal value of (CP) be v∗(CP ), the optimal value of (CSDP) be
v∗(CSDP ), and Z∗ be an optimal solution. Suppose that a randomized solution

z is generated by independently setting zk = eiArgξk for each k = 1, . . . , n, and
ξ ∈ Nc(0, Z

∗). Let the expected value of the randomized solution z be v(H(C)).
Then

v(H(C)) ≥ π

4
v∗(CSDP ) ≥ π

4
v∗(CP ) ≈ 0.7854 · v∗(CP ).

Since (CP) can be viewed as the limit of (P) as m → ∞, it is interesting to observe

that the approximation ratio for (CP), π
4 , is indeed the limit of αm =

m2(1−cos 2π
m )

8π as
m → ∞. It is also interesting to compare this ratio with that of its real counterpart:

(RP) max xTQx
s.t. x2

k = 1, k = 1, . . . , n,

where Q is a real positive semidefinite matrix. Nesterov [11] showed that in this case
the randomization solution based on the SDP relaxation

(RSDP) max Q •X
s.t. Xkk = 1, k = 1, . . . , n,

X � 0,

has the following approximation ratio:

v(H(R)) ≥ 2

π
v∗(RSDP ) ≥ 2

π
v∗(RP ) ≈ 0.6366 · v∗(RP ).

Therefore, the complex SDP relaxation for the complex quadratic optimization
problem is more effective than the real SDP relaxation for its real counterpart, in the
sense that the former has a slightly better approximation ratio.
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We remark that as in the analysis of Nesterov [11], Ye [14], and Zhang [15] for the
real case, we can extend all the approximation results to the following more general
setting:

max zHQz
s.t. (|z1|2, |z2|2, . . . , |zn|2)T ∈ F ,

where F is a closed convex set in 
n. The corresponding complex and convex SDP
relaxation is

max Q • Z
s.t. diag Z ∈ F ,

Z � 0.

In particular, if F is a hypercube and Q � 0, then the above π
4 -approximation

result also follows from the matrix cube theorem of Ben-Tal, Nemirovski, and Roos [3].
However, our technique appears to be very different in nature.

It is also interesting to remark that if we regard (CP) as an equivalent real
quadratic problem

max (uT, vT)

(
Re Q −Im Q
Im Q Re Q

)(
u
v

)
s.t. u2

k + v2
k = 1, k = 1, . . . , n,

then the approximation ratio obtained that way would be 2/π instead of π/4. This
shows that the complex SDP relaxation does have an advantage in this particular
case.

3.4. Structured continuous complex quadratic optimization. In this sec-
tion, we study a special case of (CP) with a sign structure on the object matrix, which
is parallel to the original (real) max-cut model studied in [8]:

(CPS) max zHQz
s.t. |zk| = 1, k = 1, . . . , n,

where we assume that Q = [qjl]n×n ∈ Sn
+ and qjl ≤ 0 for all 1 ≤ j < l ≤ n. Using (9)

we know that the expected value of the randomized solution based on the complex
SDP relaxation is

v(H(C)) = 2
∑
j<l

qjlRe F (Z∗
jl) +

n∑
j=1

qjj

= 2
∑
j<l

qjl

(
π

4
+

π

2

∞∑
k=1

((2k)!)2

24k+1(k!)4(k + 1)
|Z∗

jl|2k
)

Re Z∗
jl

+

n∑
j=1

qjj ,(10)

where Z∗ is the optimal solution of the complex SDP relaxation. Define the following
real function on y ∈ [0, 1]:

g(y) :=
π

4
+

π

2

∞∑
k=1

((2k)!)2

24k+1(k!)4(k + 1)
y2k
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We have 0 ≤ g(y) ≤ 1 for all y ∈ [0, 1]. Suppose that x is real and |x| ≤ y ≤ 1. Then,

min
|x|≤y

1 − g(y)x

1 − x
= min

|x|≤y

(
g(y) +

1 − g(y)

1 − x

)
=

1 + g(y)y

1 + y
.

One computes that

min
0≤y≤1

1 + g(y)y

1 + y
≈ 0.9349 =: β.

Therefore,

1 − g(y)x ≥ β − βx

for all y ∈ [0, 1] and |x| ≤ y, or equivalently,

g(y)x ≤ 1 − β + βx(11)

for all y ∈ [0, 1] and |x| ≤ y. Using (11), we have(
π

4
+

π

2

∞∑
k=1

((2k)!)2

24k+1(k!)4(k + 1)
|Z∗

jl|2k
)

Re Z∗
jl ≤ 1 − β + βRe Z∗

jl.(12)

Now we apply (12) in a componentwise fashion to (10) and obtain, thanks to the sign
restriction, the following inequalities:

v(H(C)) = 2
∑
j<l

qjl

(
π

4
+

π

2

∞∑
k=1

((2k)!)2

24k+1(k!)4(k + 1)
|Z∗

jl|2k
)

Re Z∗
jl +

n∑
j=1

qjj

≥ 2
∑
j<l

qjl(1 − β + βRe Z∗
jl) +

n∑
j=1

qjj

= (1 − β)eTQe + βQ • Z∗

≥ βv∗(CSDP )

≥ βv∗(CPS).(13)

This yields an approximation ratio of 0.9349 for (CPS).

4. Concluding remarks. In this paper we discussed complex quadratic max-
imization models, denoted as (P) and (CP), in which the decision variables either
take values as unit roots of the equation zm = 1 or are assumed to have modu-
lus 1. We established approximation ratios for randomization algorithms for these
problems, based on the properties of the complex-valued normal distributions. In

particular, the approximation ratio is
m2(1−cos 2π

m )

8π for (P) when m ≥ 3, and is π/4
for (CP). If the off-diagonal elements of the objective matrix Q are nonpositive, then
the approximation ratio is improved to 0.9349. Our approach is based on a prob-
ability analysis of the complex-valued normally distributed random variables. The
same results can also be obtained by different approaches. For example, recently So,

Zhang, and Ye [12] used Grothendieck’s inequality and obtained the same
m2(1−cos 2π

m )

8π
approximation bound for (P), and Ben-Tal, Nemirovski, and Roos [3] established a
matrix cube theorem and obtained the π/4 approximation ratio for a model similar
to (CP). Moreover, Ben-Tal, Nemirovski, and Roos [3] also suggested that the π/4
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approximation ratio is a tight bound. However, it remains unknown whether or not

αm =
m2(1−cos 2π

m )

8π is a tight bound for (P). Related to our models, Charikar and
Wirth [5] discussed quadratic maximization models (the real case) in which Q is not
assumed to be positive semidefinite; instead, the diagonals of Q are assumed to be
all zeros. They proposed a randomized algorithm for such a quadratic maximization
model and established an Ω(1/ log n)-approximation ratio. We plan to extend our
analysis to such models in the future.

Appendix A. Proof of Lemma 3.3.
Consider

Fm(z) =
m(2 − ω − ω−1)

8π2

m−1∑
j=0

ωj(arccos(−Re (ω−jz)))2

=
m(1 − cos 2π

m )

4π2
eiα

m−1∑
j=0

eiθj (arccos(−γ cos θj))
2,

where z = γeiα, ω = ei
2π
m , and θj = j

m2π − α for j = 0, . . . ,m− 1.
Since arccos(−x) = π

2 − arcsin(−x), we have

Fm(z) =
m(1 − cos 2π

m )

4π2
eiα

m−1∑
j=0

eiθj
(
π2

4
+ π arcsin(γ cos θj) + (arcsin(γ cos θj))

2

)

=
m(1 − cos 2π

m )

4π2
eiα

m−1∑
j=0

(πeiθj arcsin(γ cos θj) + eiθj (arcsin(γ cos θj))
2)

=
m(1 − cos 2π

m )

4π2
eiα

m−1∑
j=0

(πeiθjγ cos θj + πeiθj (arcsin(γ cos θj) − γ cos θj)

+ eiθj (arcsin(γ cos θj))
2).

Set

I1 = γeiα
m−1∑
j=0

eiθj cos θj ,

I2 = eiα
m−1∑
j=0

eiθj (arcsin(γ cos θj) − γ cos θj),

I3 = eiα
m−1∑
j=0

eiθj (arcsin(γ cos θj))
2.

Thus, we shall have

Fm(z) =
m(1 − cos 2π

m )

4π
(I1 + I2 + I3/π) .(14)
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Let us now treat these items one by one. First, we note that

I1 = γeiα
m−1∑
j=0

eiθj cos θj

=
γeiα

2

m−1∑
j=0

eiθj (eiθj + e−iθj )

=
γeiα

2

⎛
⎝m +

m−1∑
j=0

ei
4π
m je−2iα

⎞
⎠

=

{
γeiα

2 m = mz/2 if m ≥ 3,

γeiα + γe−iα = z + z̄ if m = 2.

Let us denote an = (2n)!
22n(n!)2(2n+1) , n = 0, 1, . . . . Then we have the Taylor expan-

sion arcsin(t) =
∑∞

n=0 ant
2n+1, and so

I2 = eiα
m−1∑
j=0

eiθj
∞∑

n=1

anγ
2n+1(cos θj)

2n+1

=

∞∑
n=1

an
22n+1

γ2n+1eiα
m−1∑
j=0

eiθj
(
e−iθj + eiθj

)2n+1

=

∞∑
n=1

an
22n+1

γ2n+1eiα
m−1∑
j=0

2n+1∑
k=0

(
2n + 1

k

)
eiθj(2n+2−2k)

=

∞∑
n=1

an
22n+1

γ2n+1eiα
2n+1∑
k=0

(
2n + 1

k

)⎡
⎣m−1∑

j=0

ei
2π
m (2n+2−2k)j

⎤
⎦ e−iα(2n+2−2k).

Let us denote

bk =

m−1∑
j=0

ei
2π
m kj ,

where k is an integer number. Obviously, bk is either 0 or m. In particular, if m is
even and k is odd, then bk = 0. We further obtain that

I2 =

∞∑
n=1

an
22n+1

γ2n+1eiα
2n+1∑
k=0

(
2n + 1

k

)
b2n+2−2ke

−iα(2n+2−2k)

=

∞∑
n=1

an
22n+1

2n+1∑
k=0

(
2n + 1

k

)
b2n+2−2kz̄

2n+1−kzk.
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Similarly, we have

I3 = eiα
m−1∑
j=0

eiθj (arcsin(γ cos θj))
2

= eiα
m−1∑
j=0

eiθj
∞∑

s=0,t=0

asatγ
2s+2t+2(cos θj)

2s+2t+2

= eiα
∞∑

s=0,t=0

asat
22s+2t+2

γ2s+2t+2
2s+2t+2∑

k=0

(
2s + 2t + 2

k

)m−1∑
j=0

eiθj(2s+2t+3−2k)

= eiα
∞∑

s=0,t=0

asat
22s+2t+2

γ2s+2t+2
2s+2t+2∑

k=0

(
2s + 2t + 2

k

)
b2s+2t+3−2ke

−iα(2s+2t+3−2k)

=

∞∑
s=0,t=0

asat
22s+2t+2

2s+2t+2∑
k=0

(
2s + 2t + 2

k

)
b2s+2t+3−2kz̄

2s+2t+2−kzk.

If m is even, then I3 = 0 since b2s+2t+3−2k = 0 in each term.
Observing that the Hadamard product of any two positive semidefinite Hermitian

matrices remains Hermitian positive semidefinite, it follows from (14) that

Fm(Z)

=
m2(1 − cos 2π

m )

8π
Z +

m(1 − cos 2π
m )

4π

∞∑
n=1

[
an

22n+1

2n+1∑
k=0

(
2n + 1

k

)
b2n+2−2k

Z(k) ◦ (ZT)(2n+1−k)

]
+

m(1 − cos 2π
m )

4π2

∞∑
s=0,t=0

[
asat

22s+2t+2

2s+2t+2∑
k=0

(
2s + 2t + 2

k

)

b2s+2t+3−2kZ
(k) ◦ (ZT)(2s+2t+2−k)

]
,

for m ≥ 3; a similar expansion of F2(Z) can be obtained easily. Since Z � 0 and
ZT � 0, we get

Fm(Z) �
m2(1 − cos 2π

m )

8π
Z,

for m ≥ 3 and F2(Z) � 1
π (Z + ZT) = 2

π Re Z. This completes the proof.
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Abstract. We examine the importance of optimality measures when benchmarking a set of
solvers and show that the scale-invariance requirements we impose lead to a convergence test for
nonlinearly constrained optimization solvers that uses a mixture of absolute and relative error mea-
sures. We demonstrate that this convergence test is well behaved at any point where the constraints
satisfy the Mangasarian–Fromovitz constraint qualification and also avoids the explicit use of a com-
plementarity measure. Computational experiments explore the impact of this convergence test on
the benchmarking process with performance profiles.
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1. Introduction. Benchmarking is essential when developing numerical soft-
ware because this process reveals the strengths and weaknesses of the software. To
obtain useful information from the benchmark, attention must be given to the con-
vergence tests and tolerances used by competing solvers. In particular, a comparison
between a solver that computes a highly accurate solution and another that computes
an inaccurate solution can be misleading.

We propose a convergence test for benchmarking nonlinearly constrained opti-
mization solvers and require that the approximate solution returned by each solver
satisfies this convergence test. While we are primarily interested in convergence tests
that can be used by solvers for the constrained optimization problem

min {f(x) : l ≤ c(x) ≤ u} ,(1.1)

our remarks apply to the benchmarking of general iterative solvers.
We could introduce a uniform convergence test in the benchmarking process by

modifying all the solvers in the benchmark. This approach is not feasible, however,
unless we have access to the source codes for all the solvers. Even with this access,
adding a new convergence test requires detailed knowledge of the solver. In general,
only the developers can reliably modify their codes. Furthermore, the cost of applying
a convergence test may be significant if some of the required information is not readily
available and must be computed, resulting in a noticeable increase in the total time
taken to solve the benchmark problem.

An alternative approach is to compute and check a specific convergence test for
all the solvers a posteriori. In this approach each solver is first used with default
tolerances. If the approximate solution returned by the solver does not satisfy the
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a posteriori convergence test, then the native solver tolerances are reduced and the
problem is solved again. This process is repeated until the a posteriori convergence test
is satisfied or a time limit is exceeded. This approach guarantees that the approximate
solutions returned by all the solvers in the benchmark satisfy the same convergence
test. Moreover, this approach can be readily implemented because access to the source
code for each solver is not required.

We impose two major requirements on the convergence test. The first requirement
is that the accuracy be based only on the approximate solution returned by the solver;
all other quantities needed to assess the level of accuracy, such as multiplier estimates,
must be computed independently. The other requirement is scale invariance of the
convergence test when either the function and constraints are scaled or when the
variables are scaled.

Our convergence test for constrained optimization problems is based on the first-
order optimality conditions but uses a mixture of absolute and relative error measures.
Section 2 defines these measures and uses them to define τ -active constraints and
the associated multiplier estimates. We have used the nonstandard term τ -active
constraint because the term ε-active constraint is invariably related to absolute error
measures.

We define a convergence test in section 3 in terms of measures for feasibility and
stationarity that takes into account the relative size of the constraints. We show that
this convergence test is well behaved at any point where the constraints satisfy the
Mangasarian–Fromovitz constraint qualification, but may fail if this constraint qual-
ification does not hold. In section 4 we examine the relationship of our convergence
test to other tests commonly used in optimization software and show that our con-
vergence test is always satisfied in a neighborhood of a Karush–Kuhn–Tucker (KKT)
point.

Section 5 examines the scale-invariance properties of the convergence tests intro-
duced in section 3. We show that these convergence tests are scale invariant under
reasonable conditions. We also examine the scale-invariance properties of other con-
vergence tests.

Section 6 describes a benchmarking process based on the convergence test intro-
duced in section 3. We use performance profiles from [5] and Version 3.0 of COPS [6],
the Constrained Optimization Problem Set, to evaluate the effect of the convergence
tests. Performance profiles have been used in a wide variety of benchmarking studies
(for example, [1, 2, 13, 14]), but in almost all cases the convergence criteria have not
been specified in detail. This is certainly the case for benchmarking studies in the
AMPL or GAMS modeling environments because in these cases there is no easy ac-
cess to the source codes for the solvers. Our computational results in section 7 show
the importance of using the same convergence test for all solvers in the benchmark
because some of them have widely different notions of optimality with their default
tolerances. Our results show that the trends in the performance profiles remain the
same but that important differences arise with a uniform convergence test.

2. Approximate active sets and multipliers. Given τ in (0, 1) and an ap-
proximate solution x to the general optimization problem (1.1), we define measures
of optimality in terms of the set of τ -active constraints and associated multiplier
estimates.

The set of τ -active constraints at x consists of all constraints near the bounds l
and u as measured by τ . The measure of nearness we propose involves a mixture of
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the absolute and relative errors. Given real numbers ξ1 and ξ2, we define

δ[ξ1, ξ2] = min

{
|ξ1 − ξ2|,

|ξ1 − ξ2|
|ξ1| + |ξ2|

}
,

with δ[0, 0] = 0. We extend this definition by continuity to set δ[ξ1, ξ2] = 1 if either
ξ1 or ξ2 is infinite. Thus, δ[ξ1, ξ2] ∈ [0, 1], provided one of the arguments of δ[·, ·] is
finite. Moreover,

δ[ξ1, ξ2] ≤ τ if and only if |ξ1 − ξ2| ≤ τ max{1, |ξ1| + |ξ2|}.

In particular, δ[ξ1, ξ2] is the relative error whenever |ξ1| + |ξ2| ≥ 1.
Given x, y in Rn, we extend this definition of error to vectors by defining a vector-

valued error measure d : Rn × Rn �→ Rn by

d[x, y] = (dk[x, y]) = (δ[xk, yk])

so that d[x, y] is a vector where dk[x, y] = δ[xk, yk] for each component k. This
definition implies that d[x, y] = |x − y| for vectors of modest size, that is, ‖x‖∞ +
‖y‖∞ ≤ 1. Moreover, if ‖ · ‖ is a monotone norm (|x| ≤ |y| implies ‖x‖ ≤ ‖y‖), then

min

{
‖x− y‖, ‖x− y‖

‖x‖∞ + ‖y‖∞

}
≤ ‖d[x, y]‖ ≤ min

{
‖x− y‖,

∥∥∥∥
(

|xk − yk|
|xk| + |yk|

)∥∥∥∥
}
.

(2.1)

This inequality shows that ‖d[x, y]‖ is closely related to the absolute and relative error
between x and y.

This definition of error between vectors can be modified in various ways. In
particular, if we wish to introduce different levels of absolute and relative errors by
requiring that

|ξ1 − ξ2| ≤ τaτ or
|ξ1 − ξ2|
|ξ1| + |ξ2|

≤ τ(2.2)

for some τa ≥ 0, then we can define

δ[ξ1, ξ2] = min

{(
1

τa

)
|ξ1 − ξ2|,

|ξ1 − ξ2|
(|ξ1| + |ξ2|)

}
.(2.3)

The case where τa = 0 is equivalent to using a purely relative error test and can be
obtained as the limit of δ[ξ1, ξ2] as τa converges to zero.

If we use the definition (2.3), then the inequality δ[ξ1, ξ2] ≤ τ is equivalent to
(2.2). Moreover, we now have

δ[ξ1, ξ2] ≤ τ if and only if |ξ1 − ξ2| ≤ τ max{τa, |ξ1| + |ξ2|}.

This equivalence shows that the test δ[ξ1, ξ2] ≤ τ reduces to the relative convergence
test in (2.2), unless |ξ1| + |ξ2| ≤ τa, and then becomes the absolute convergence test
in (2.2). We can emphasize the relative error in (2.3) by choosing τa ≤ τ .

We illustrate definition (2.3) by considering two vectors with components of dif-
ferent magnitudes. Consider, for example, vectors

x =

(
α1μ
β1

)
, y =

(
α2μ
β2

)
,
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where αs and βs lie in [1, 2] for s = 1, 2. For these two vectors we want to compare
the componentwise condition ‖d[x, y]‖∞ ≤ ε with the condition

‖x− y‖∞ ≤ ε (‖x‖∞ + ‖y‖∞) .(2.4)

Note that ‖d[x, y]‖∞ ≤ ε if and only if

|α1 − α2| ≤ εmax{τa, |α1| + |α2|}, |β1 − β2| ≤ εmax{τa, |β1| + |β2|},

independent of the size of μ. On the other hand, if μ is large, then

‖x− y‖∞ ≤ ε (‖x‖∞ + ‖y‖∞) if and only if |α1 − α2| ≤ ε (|α1| + |α2|) ;

while if μ is small, then

‖x− y‖∞ ≤ ε (‖x‖∞ + ‖y‖∞) if and only if |β1 − β2| ≤ ε (|β1| + |β2|) .

Comparing ‖d[x, y]‖∞ ≤ ε with (2.4) shows that ‖d[x, y]‖∞ ≤ ε leads to restrictions
on all components, while (2.4) restricts only the larger components.

The merits of the componentwise error measure ‖d[x, y]‖∞ depend on the appli-
cation. If the user wants the same accuracy in all components, then a componentwise
error measure is preferable. However, if the user cares mainly about the larger com-
ponents, then a componentwise error measure could lead to excessive accuracy in the
small components.

Componentwise error measures have not received attention in the optimization
community but they have been used in error analysis and perturbation analysis. See,
for example, Higham [11, Chapter 7]. In this work we propose the use of component-
wise error measures for convergence tests. We show in section 5 that an advantage
of (2.3) is that it leads to the scale invariance of convergence tests based on δ[·, ·] if
τa = 0. We set τa = 1 in the remainder of this paper, but all results can be easily
modified for any τa ≥ 0.

Given τ in (0, 1) and the definition d : Rn × Rn �→ Rn of error between vectors,
we define the set of τ -active constraints at x by

Aτ (x) = {k : min{dk[c(x), l], dk[c(x), u]} ≤ τ} .(2.5)

In general, τ is related to the expected accuracy of the optimization algorithm be-
cause the set Aτ (x) contains all constraints that are nearly active as measured by τ .
Moreover, for τ sufficiently small, Aτ (x) is the set A0(x) of active constraints at x.

This definition of τ -active constraints for the optimization problem (1.1) reduces
to standard notions for optimization problems in generic form. For example, if we
consider

min {f(x) : c(x) ≤ 0} ,(2.6)

then dk[c(x), 0] = min {|ck(x)|, 1} , and thus Aτ (x) = {k : |ck(x)| ≤ τ}. The more
general definition (2.5) is needed for dealing with problems that have not been put
into this standard form.

We measure optimality by computing multiplier estimates explicitly with the
requirement that the multipliers lie in the cone Sτ (x) associated with Aτ (x), where

Sτ (x) =

⎧⎪⎪⎨
⎪⎪⎩v :

vk free if dk[c(x), l] ≤ τ, dk[c(x), u] ≤ τ,
vk ≥ 0 if dk[c(x), l] ≤ τ, dk[c(x), u] > τ,
vk ≤ 0 if dk[c(x), l] > τ, dk[c(x), u] ≤ τ,
vk = 0 if dk[c(x), l] > τ, dk[c(x), u] > τ.

(2.7)
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If the kth constraint is an equality constraint and is τ -active, then lk = uk, and thus
the kth component is free in the cone Sτ (x). Moreover, the kth component is zero if
the kth constraint is not τ -active. The following result records some useful properties
of the cone Sτ (x).

Theorem 2.1. If the cone Sτ (·) is defined by (2.7) and x∗ ∈ Rn, then the
following hold:

(a) Sτ1(x) ⊂ Sτ2(x) for τ1 ≤ τ2.
(b) If {(xk, vk, τk)} converges to (x∗, v∗, τ∗) with vk ∈ Sτk(xk), then v∗ ∈ Sτ∗(x∗).
(c) For any τ > 0 we have S0(x

∗) ⊂ Sτ (x) for x in some neighborhood N(x∗).
Proof. The proof of the first part is a consequence of the definition of the cone

Sτ (x). We prove the second part by noting that if v∗ /∈ Sτ∗(x∗), then there is an
index p such that

v∗p > 0, dp[c(x
∗), l] > τ∗ or v∗p < 0, dp[c(x

∗), u] > τ∗.

We now show that this situation is not possible. Consider only the case where v∗p > 0
since the case where v∗p < 0 is similar. If v∗p > 0, then the pth component of vk is
positive for all k sufficiently large, and since vk ∈ Sτk(xk), we have dp[c(xk), l] ≤ τk.
Hence, dp[c(x

∗), l] ≤ τ∗, a contradiction.
We turn to the proof of the last part of this result. First, note that definition

(2.7) shows that Sτ (x) is the product of closed intervals Ik(x, τ), where each interval
is associated with a constraint. For example, if dk[c(x), l] ≤ τ and dk[c(x), u] ≤ τ ,
then Ik(x, τ) = R. In general Ik(x, τ) is either R, R+, R−, or {0}. We prove that
Ik(x

∗, 0) ⊂ Ik(x, τ).
Assume, for example, that Ik(x

∗, 0) = R+. In this case, we have dk[c(x
∗), l] = 0

and dk[c(x
∗), u] > 0. Now choose N(x∗) such that dk[c(x), l] ≤ τ for all x ∈ N(x∗).

Then

Ik(x, τ) =

{
R+ if dk[c(x), l] ≤ τ, dk[c(x), u] > τ,
R if dk[c(x), l] ≤ τ, dk[c(x), u] ≤ τ.

Hence, Ik(x
∗, 0) ⊂ Ik(x, τ) as desired. The proof that Ik(x

∗, 0) ⊂ Ik(x, τ) in other
cases is similar.

We motivate the definition of multiplier estimates by first recalling that a KKT
pair (x∗, λ∗) for the optimization problem (1.1) satisfies

∇f(x∗) = ∇c(x∗)λ∗, λ∗ ∈ S0(x
∗),

where λ∗ are the multipliers. We determine multiplier estimates via the optimization
problem

min {‖∇f(x) −∇c(x)v‖ : v ∈ Sτ (x)} ,(2.8)

where ‖ · ‖ is an arbitrary norm and τ ≥ 0. Note that computing multiplier estimates
via the bound-constrained problem (2.8) has been proposed by others, at least in the
case τ = 0. See, for example, [10, page 250] and [3, page 474].

If we let λ(x, τ) be the multiplier estimates obtained by solving (2.8), then we
can measure optimality via the residual

r(x, τ) = ∇f(x) −∇c(x)λ(x, τ).(2.9)

A short computation shows that if x is feasible and τ is sufficiently small, then
r(x, τ) = 0 if and only if (x, λ(x, τ)) is a KKT pair. If we consider the special
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case of bound-constrained optimization problems where the constraints are c(x) = x,
then

r(x, τ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if dk[x, l] ≤ τ, dk[x, u] ≤ τ,
min(0, ∂kf(x)) if dk[x, l] ≤ τ, dk[x, u] > τ,
max(0, ∂kf(x)) if dk[x, l] > τ, dk[x, u] ≤ τ,
∂kf(x) if dk[x, l] > τ, dk[x, u] > τ

for any lp norm (p < ∞) in (2.8), where ∂kf(x) denotes the partial derivative of f
with respect to the kth argument. This expression shows that −r(x, 0) agrees with
the projected gradient as used, for example, by Chin and Moré [12, page 1105]. Thus,
−r(x, 0) can be interpreted as a generalization of the projected gradient to nonlinearly
constrained optimization problems.

The choice of the l2 norm in the computation of the multipliers in (2.8) leads to
a bound-constrained least squares problem. We prefer to use the l∞ norm and thus
define λ(x, τ) as a solution of

min {‖y‖∞ : y = ∇f(x) −∇c(x)v, v ∈ Sτ (x)} .(2.10)

This problem can be formulated as a linear programming problem, and thus λ(x, τ)
can be readily computed by several solvers. The solution λ(x, τ) to (2.10) is a set of
multiplier estimates for the original optimization problem.

3. Optimality measures. We define a convergence test for the optimization
problem (1.1) in terms of measures of feasibility, complementarity, and stationarity
that takes into account the relative size of the constraints. Given tolerances τ1, . . . , τp
and measures of optimality νi : Rn �→ R+, a convergence test defines a set

C(τ) = {x ∈ Rn : νi(x) ≤ τi, 1 ≤ i ≤ p}

of acceptable points. A minimal requirement on the convergence test is that C(0)
contain only KKT points.

The standard measure of feasibility for constraints of the form l ≤ c(x) ≤ u can
be written in the form

‖mid{c(x) − l, 0, c(x) − u}‖,

where mid{· , ·, ·} denotes the argument in the middle, that is, the median of the three
arguments. Thus, in particular, mid{α, β, γ} is γ if α ≤ γ ≤ β. We introduce the
relative size of the constraints by defining the feasibility measure

νf (x) = ‖v(x)‖,

where ‖ · ‖ is any norm and

vk(x) =

{
0 if lk ≤ ck(x) ≤ uk,
min(dk[c(x), l], dk[c(x), u]) otherwise.

Note that νf (x) = 0 if and only if x is feasible. Moreover, if ‖ · ‖ is a monotone norm,
then

νf (x) ≤ ‖mid{c(x) − l, 0, c(x) − u}‖,
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and thus νf (x) is bounded above by the norm of the constraint violation. We define
a vector x ∈ Rn to be τ -feasible if νf (x) ≤ τ .

In most cases we use the l∞ norm. For this norm a τ -feasible vector is precisely
a vector that satisfies

lk ≤ ck(x) ≤ uk or min{dk[c(x), l], dk[c(x), u]} ≤ τ, 1 ≤ k ≤ n.

If we consider the generic optimization problem (2.6) and any τ ∈ (0, 1), then x is
τ -feasible if and only if ‖c(x)+‖ ≤ τ . The equivalence of norms in finite dimensions
shows that these results hold for any norm, provided τ is sufficiently small. Finally,
0 ≤ νf (x) ≤ 1 with the l∞ norm.

An advantage of computing the multipliers by either (2.8) or (2.10) is that all the
multipliers of the τ -active constraints have the proper sign. Moreover, λk(x) = 0 if
the kth constraint is not τ -active. Hence, complementarity should be defined in terms
of the constraint violation for the τ -active constraints. We define

νc(x, τ) = ‖w(x, τ)‖

as a measure of complementarity, where

wk(x, τ) =

{
min(dk[c(x), l], dk[c(x), u]) k ∈ Aτ (x),
0 otherwise.

The definition of Aτ (x) implies that νc(x, τ) ≤ τ when we use the l∞ norm, and thus
the complementarity measure νc is never large.

An optimization algorithm should deliver approximate solutions that are τ -feasible,
that is, νf (x) ≤ τ . For τ -feasible vectors in the l∞ norm we have

νf (x) ≤ νc(x, τ) ≤ τ,

and thus the complementarity measure dominates for τ -feasible vectors.
The standard method for measuring stationarity uses some norm of the difference

between ∇f(x) and ∇c(x)λ(x, τ), typically with τ = 0. However, in order to take
into account the relative size of ∇f(x), we use the stationarity measure

νs(x, τ) = ‖d[∇f(x),∇c(x)λ(x, τ)]‖.

A short computation shows that if x is feasible and τ is sufficiently small, then
νs(x, τ) = 0 if and only if (x, λ(x, τ)) is a KKT pair. Also note that if ‖ · ‖ is a
monotone norm, then the definition of the function d : Rn × Rn �→ R implies that

νs(x, τ) ≤ ‖∇f(x) −∇c(x)λ(x, τ)‖

so that νs(x, τ) is bounded above by a standard measure of stationarity.
Table 3.1 summarizes all the measures of optimality for an optimization problem.

We have defined these measures in terms of an arbitrary norm, but we use the l∞
norm. We define a convergence test in terms of tolerances τf and τs by computing
multipliers via (2.10) with the τ -active set determined by (2.5) with τ = τf , and
requiring that

νf (x) ≤ τf , νs(x, τf ) ≤ τs.(3.1)

The definition of νc guarantees that νc(x, τf ) ≤ τf in the l∞ norm, and thus it is not
necessary to require a test on complementarity. This statement seems to be incorrect
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Table 3.1

Measures of optimality.

Feasibility νf (x)
Complementarity νc(x, τ)
Stationarity νs(x, τ)

at first sight but is a consequence of using a set of multipliers that are zero if the
constraint is not τ -active but otherwise have the proper sign.

The following result shows that the optimality measures in Table 3.1 behave
appropriately if we consider a sequence of tolerances that converge to zero. We assume
that we have a sequence {xk} that converges to a point x∗ and that f : Rn �→ R and
c : Rn �→ Rm are continuously differentiable in a neighborhood of x∗. We also assume
that x∗ satisfies the Mangasarian–Fromovitz constraint qualification at x∗ in the sense
that

∇c(x∗)v = 0, v ∈ S0(x
∗) =⇒ v = 0,

where S0(x
∗) is the cone (2.7) at τ = 0. This constraint qualification reduces to the

classical Mangasarian–Fromovitz constraint qualification for the generic optimization
problem (2.6).

Theorem 3.1. Assume that τa > 0 in (2.2) and that f : Rn �→ R and c : Rn �→
Rm are continuously differentiable in a neighborhood of x∗. Let {τk} be a sequence of
tolerances that converges to zero, and let {xk} be a sequence that converges to x∗. If
{νf (xk)} converges to zero, then x∗ is feasible. Moreover, if {νs(xk, τk)} converges to
zero and the constraints satisfy the Mangasarian–Fromovitz constraint qualification at
x∗, then x∗ is a KKT point of the optimization problem (1.1).

Proof. Since τa > 0, the definition (2.2) of δ[·, ·] implies that d[·, ·] preserves
convergent sequences; that is, {d[yk, y∗]} converges to zero if and only if {yk} converges
to y∗. Hence, the definition of νf shows that x∗ is feasible.

We now assume that {νs(xk, τk)} converges to zero and show that x∗ is a KKT
point of the optimization problem (1.1) if the constraints satisfy the Mangasarian–
Fromovitz constraint qualification at x∗. We first show that {λ(xk, τk)} is bounded
by noting that since Sτk(xk) is a cone,

‖∇f(xk) −∇c(xk)λ(xk, τk)‖ ≤ ‖∇f(xk)‖,

and thus, {∇c(xk)λ(xk, τk)} is bounded. Since {xk} converges to x∗ and the con-
straints satisfy the Mangasarian–Fromovitz constraint qualification at x∗, the se-
quence {λ(xk, τk)} is bounded. We also note that since λ(xk, τk) belongs to the
cone Sτk(xk), Theorem 2.1 shows that any limit point λ∗ of {λ(xk, τk)} is a valid set
of multipliers for x∗, that is, λ∗ ∈ S0(x

∗).
We have shown that {λ(xk, τk)} is bounded and that any limit point of this

sequence is a valid set of multipliers for x∗. Now note that (2.1) guarantees that there
is a constant σ > 0 such that

σ‖∇f(xk) −∇c(xk)λ(xk, τk)‖ ≤ νs(xk, τk).

Since {νs(xk, τk)} converges to zero, this inequality shows that any limit point λ∗ of
the sequence {λ(xk, τk)} satisfies ∇f(x∗) = ∇c(x∗)λ∗, and since λ∗ ∈ S0(x

∗), we have
shown that x∗ is a KKT point of the optimization problem (1.1).
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We can generalize Theorem 3.1 by noting that the proof of this result shows that
νs is lower semicontinuous, that is,

lim inf
(x,τ)→(x∗,0)

νs(x, τ) ≥ νs(x
∗, 0).

This property is of interest because simple examples show that νs is not continuous
in (x, τ), although νs(·, τ) is certainly continuous. For example, if {xk} is a sequence
that converges to a KKT point x∗ such that xk is not on the boundary of the feasible
set, then we can choose τk so that {τk} converges to zero and Sτk(xk) = {0}. In this
case {νs(xk, τk)} is bounded away from zero if ∇f(x∗) �= 0, but νs(x

∗, 0) = 0.
The assumption that the constraints satisfy the Mangasarian–Fromovitz con-

straint qualification at x∗ is essential for Theorem 3.1. Consider, for example, the
optimization problem in R,

min
{
ξ : 1

2ξ
2 ≥ 0

}
.

If {ξk} is any monotone sequence that converges to zero and τk = ξk, then the
multipliers determined by (2.10) are λ(ξ) = 1/ξ. Thus, in this case, {νs(ξk, τk)}
converges to zero, but ξ∗ = 0 is not a KKT point. Of course, in this case the
Mangasarian–Fromovitz constraint qualification fails and the multiplier estimates are
unbounded.

4. Convergence tests. We have defined the convergence test (3.1) in terms of
tolerances τf and τs. In this section we explore the relationship between the optimality
conditions in Table 3.1 and the convergence tests used in optimization solvers.

Given a set of input values (for example, an approximate solution, multiplier
estimates, tolerances, . . . ), an optimization solver generates a sequence of iterates
x0, x1, . . . , x(τ), where τ is the vector of tolerances. In some cases the tolerances are
used only to determine when to stop the iteration process and return an approximate
solution x(τ). In this case only x(τ) is dependent on the tolerances. However, the
solver could also use the input tolerances to dictate how the solver behaves in cer-
tain situations. In this case all the iterates are potentially dependent on the input
tolerances. Our discussion of convergence tests in this section applies to both kinds
of optimization algorithms.

We assume infinite-precision arithmetic in all of our discussions since a discussion
of convergence behavior under rounding error is outside the scope of this study. We
note only that rounding errors may cause the solver to fail if the tolerances are too
small or the computation of the function has too much noise.

In our benchmarking results in section 7 we study the performance of optimiza-
tion solvers as the tolerances are gradually decreased. We now show that if some
subsequence of the approximate solutions x(τ) generated by the solver converges to a
KKT point, then there is an approximate solution x(τ) that satisfies the convergence
test (3.1).

Theorem 4.1. Let τ > 0 be given, and assume that f : Rn �→ R and c : Rn �→ Rm

are continuously differentiable in a neighborhood of a KKT point x∗ of problem (1.1).
If {xk} is a sequence that converges to x∗, then {νf (xk)} and {νs(xk, τ)} converge to
zero.

Proof. If {xk} is a sequence that converges to a feasible point x∗ of the optimiza-
tion problem (1.1), then clearly {νf (xk)} converges to zero.

We now show that {νs(xk, τ)} converges to zero. We have already noted that if
‖ · ‖ is a monotone norm, then the definition of the function d : Rn ×Rn �→ R implies
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that

νs(xk, τ) ≤ ‖∇f(xk) −∇c(xk)λ(xk, τ)‖.

Moreover, the definition (2.10) of the multiplier λ(xk, τ) shows that

‖∇f(xk) −∇c(xk)λ(xk, τ)‖ ≤ ‖∇f(xk) −∇c(xk)λ‖, λ ∈ Sτ (xk).

Hence, these two inequalities show that

νs(xk, τ) ≤ ‖∇f(xk) −∇c(xk)λ‖, λ ∈ Sτ (xk).

Now note that if λ∗ is a multiplier associated with the KKT point x∗, then λ∗ ∈
S0(x

∗), and thus Theorem 2.1 guarantees that for all k sufficiently large we have
λ∗ ∈ Sτ (xk). Hence, the previous inequality implies that

νs(xk, τ) ≤ ‖∇f(xk) −∇c(xk)λ
∗‖.

Thus, since {xk} converges to x∗ and λ∗ is a multiplier associated with x∗, we must
have that {νs(xk, τ)} converges to zero as desired.

We now relate the optimality conditions in Table 3.1 to convergence tests used in
optimization algorithms. Consider, for example, the generic optimization problem

min {f(x) : c(x) ≤ 0} .

Given tolerances τf , τc, and τs, assume that the convergence tests are

ck(x) ≤ τf , πk(x) ≤ τc, |πk(x)| ≤ τc if |ck(x)| > τf(4.1)

on the approximate solution x and multiplier estimate π(x), and

‖∇f(x) −∇c(x)π(x)‖∞ ≤ τs(4.2)

on the residual (2.9). These are suitable convergence tests in the sense that if all the
tolerances are set to zero, then we recover the KKT conditions.

An important difference between these convergence tests and the optimality mea-
sures in Table 3.1 is that the multiplier estimates πk(x) are not guaranteed to be
nonpositive. However, if we define

λk(x) =

{
min(πk(x), 0) if k ∈ Aτf (x),
0 otherwise,

then λk(x) ≤ 0 are multiplier estimates with

|λk(x) − πk(x)| ≤ τc.(4.3)

This estimate holds if k ∈ Aτf (x) and πk(x) ≤ 0 because then λk(x) = πk(x). If
k /∈ Aτf (x) or πk(x) > 0, then λk(x) = 0. Moreover, in either case, (4.1) implies that
|πk(x)| ≤ τc. Hence, (4.3) also holds in this case.

The estimate (4.3) shows that the residual (2.9) is bounded in terms of the tol-
erances and the problem data. Indeed, a direct consequence of (4.2) and (4.3) is
that

‖∇f(x) −∇c(x)λ(x)‖∞ ≤ τs + ‖∇c(x)‖∞τc.
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Hence, we have shown that if the convergence tests (4.1) and (4.2) hold, then

νf (x) ≤ τf , νs(x, τf ) ≤ τs + ‖∇c(x)‖∞τc.(4.4)

This is an important observation because (4.1) and (4.2) are closely related to conver-
gence tests used by optimization solvers such as SNOPT and KNITRO. For example,
instead of (4.1), SNOPT [9] requires that

ck(x) ≤ τf , πk(x) ≤ τc, |ck(x)πk(x)| ≤ τc.(4.5)

This is a stronger convergence test than (4.1) because if (4.5) holds, then

|πk(x)| ≤ τc
|ck(x)| ,

and thus |πk(x)| will be forced to be much smaller than τc if |ck(x)| is much larger
than τf . We also note that (4.5) not only implies (4.1) but also implies a bound on the
multipliers of the τ -active constraints. Assume, for example, that the kth constraint
is τ -active with

|ck(x)| = στf , σ ∈ (0, 1).

Under this assumption, (4.5) implies that

|πk(x)| ≤ 1

σ

τc
τf

.

Thus, for problems with large multipliers, this bound shows that τf may have to be
relatively small in order to satisfy (4.5).

Similar remarks apply to the optimization solver KNITRO [18]. The convergence
test in KNITRO replaces (4.1) by

ck(x) ≤ τf , πk(x) < 0, |ck(x)πk(x)| ≤ τc.(4.6)

Thus, the only difference between the convergence test in SNOPT and KNITRO is that
KNITRO guarantees that the multipliers are negative. For the KNITRO convergence
test we can show that if

λk(x) =

{
πk(x) if k ∈ Aτf (x),
0 otherwise,

then (4.3) holds. Hence, (4.4) also holds.
The convergence tests in SNOPT and KNITRO require the user to choose toler-

ances τP and τD. SNOPT sets

τf = τP (1 + ‖x‖), τc = τs = τD(1 + ‖π(x)‖),

while KNITRO sets

τf = max {τP max(1, ‖c(x0)+‖∞), τ0} , τc = τs = max {τD max(1, ‖∇f(x)‖∞), τ0}

for some absolute tolerance τ0 ≥ 0. An important difference between these tests and
(3.1) is that there is no explicit test of the complementarity error in (3.1). Another
difference is that with (3.1) it is readily apparent when the solution is not sufficiently
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accurate because in these cases one of the measures in Table 3.1 is above the required
tolerance (but less than one). On the other hand, with tests that are not scale
invariant, large or small values for an optimality measure may not reflect the accuracy
of the approximate solution returned by the solver.

There are other convergence tests in the literature, but they invariably require
multiplier estimates. The GAMS Examiner [7], for example, checks the approximate
solution returned by solvers in the GAMS modeling language. The test implemented
requires an approximate solution and multiplier estimates. Moreover, the primal and
dual feasibility tests use absolute error measures that are not scale invariant.

5. Scale invariance. We now examine the invariance properties of convergence
tests when the general optimization problem (1.1) is transformed into an equivalent
optimization problem

min
{
f̂(x) : l̂ ≤ ĉ(x) ≤ û

}
.(5.1)

Scale invariance is a desirable attribute of a convergence test because the choice of
tolerances can be made on the basis of the desired accuracy.

We explore scale invariance under transformations (for example, x �→ Sx, where
S is a nonsingular diagonal matrix) that change the units of the problem since, in our
experience, most users want the ability to choose the units in the problem formulation
and yet retain the same behavior in the optimization algorithm. If the optimization
algorithm is scale invariant under the transformation x �→ Sx in (1.1), then the iterates
{xk} for the optimization problem (1.1) will undergo the same transformation, that is,
xk = Sx̂k, where {x̂k} are the iterates for the optimization problem (5.1). Invariance
under other transformations (for example, general affine transformations) has been
studied in the literature [4].

In the remainder of this section we restrict the discussion to the scale invariance
of convergence tests. We first consider the change of scale f̂ = αf , ĉ = βc, where f is
scaled by α > 0, and the constraints c are scaled by β > 0. With this change of scale
we must also scale the bounds l and u in the optimization problem (1.1) by β so that

l̂ = βl and û = βu. The optimization problems (1.1) and (5.1) are equivalent under
this change of scale in the sense that they have the same solutions.

We also consider the change of scale x �→ Sx in (1.1), where S is a nonsingular

diagonal matrix. In this case we have f̂(x) = f(Sx) and ĉ(x) = c(Sx) in (5.1). With
this change of scale any minimizer x∗ of the optimization problem (1.1) generates a
minimizer x̂∗ of (5.1) via x∗ = Sx̂∗. The converse of this statement also holds. Thus,
both optimization problems (1.1) and (5.1) have the same solution sets.

We explore the scale invariance of convergence tests under the assumption that
all absolute tolerances are set to zero. For the optimality measures in Table 3.1, this
means that τa = 0 in the definition (2.3) of δ[·, ·]. Under this assumption,

d[Sx, Sy] = d[x, y](5.2)

for all nonsingular diagonal matrices S and vectors x and y. If τa > 0, then (5.2)
holds if

|sk| (|xk| + |yk|) ≥ τa, 1 ≤ k ≤ n.

Hence, scale invariance of d[·, ·] holds if the scaled variables for at least one of the
vectors is above the absolute tolerance level, that is, |sk||xk| ≥ τa or |sk||yk| ≥ τa.
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The change of scale, f̂ = αf , ĉ = βc, in f and c implies that λ̂(x) = (α/β)λ(x)
for the multiplier defined by (2.10), and hence

∇f̂(x) = α∇f(x), ∇ĉ(x)λ̂(x) = α∇c(x)λ(x).

Thus, (5.2) shows that both νf (x) and νs(x) are invariant under this change of scale.
The scale-invariance properties (5.2) of d[·, ·] also show that the set of τ -active

constraints is invariant under the change of scale x �→ Sx, where S is a nonsingular
diagonal matrix. On the other hand, the multipliers λ(x) defined by (2.10) are not
invariant under this change of scale because

∇f̂(x) = S∇f(x), ∇ĉ(x) = S∇c(x).

However, if we modify the norm in (2.10) and consider

min
{
‖D−1y‖∞ : y = ∇f(x) −∇c(x)v, v ∈ Sτ (x)

}
,

where D is determined from the problem data, then we can have scale invariance. For
example, if

dk = max {|∂kf(x0)|, ‖∂kc(x0)‖} ,

then λ(x) is invariant under this change of scale. If we take into account (5.2), then
we have shown that with this modification all the optimality measures in Table 3.1
are invariant.

An important observation is that the multipliers λ(x) defined by (2.10) are scale
invariant under the change of scale x �→ Sx at any x such that ∇f(x) = ∇c(x)v for
some v ∈ Sτ (x). This holds because in this case λ(x, τ) satisfies

∇f(x) = ∇c(x)λ(x, τ),

and thus λ(x, τ) is unchanged by the change of scale x �→ Sx. Thus, we are at least
guaranteed scale invariance at KKT points.

An analysis of the scale-invariance properties of the convergence tests (4.1) and
(4.2) requires that we specify how the multiplier estimate π(x) depends on the change

of scale. If we consider the change of scale where f̂ = αf and ĉ = βc, and assume that
π̂(x) = (α/β)π(x) under this change of scale, then (4.2) shows that this convergence
test is scale invariant if the tolerances are scaled by the appropriate problem data. On
the other hand, if we consider the change of scale x �→ Sx, where S is a nonsingular
diagonal matrix, then the convergence test (4.2) is not generally scale invariant unless
(4.2) is modified to use a norm scaled by the problem data.

The scale-invariance properties of the convergence test (4.1) are shared by (4.6),
but this is not the case for (4.5). Indeed, if we consider the change of scale where

f̂ = αf and ĉ = βc, and assume that π̂(x) = (α/β)π(x), then ĉ(x)π̂(x) = αc(x)π(x).
Hence, (4.5) shows that τc must be scaled by both α/β and α. Since τc cannot absorb
two different changes of scale, the convergence test (4.5) is not scale invariant.

6. Benchmarking with COPS. We use performance profiles [5] and COPS [6]
(Version 3.0) to evaluate the effect of the optimality measures in Table 3.1. The
COPS benchmark collection provides a selection of difficult nonlinearly constrained
optimization problems from applications in optimal design, fluid dynamics, parameter
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Table 6.1

Problem data (minimum, quartiles, maximum) for the COPS benchmark.

Problem parameter min q1 q2 q3 max

Variables 98 1146 2500 4398 19241
Equality constraints 0 0 100 1995 7995
General constraints 0 0 0 41 20093

Total constraints 21 1177 2402 4001 20496

estimation, mesh smoothing, computational chemistry, and optimal control, among
others. Moreover, each application has a short description of the formulation of the
application as an optimization problem.

Version 3.0 of COPS has 22 different applications. For each of these applications
we use three to five instances of the application obtained by varying a parameter in the
application, for example, the number of grid points in a discretization. Table 6.1 gives
the quartiles for four problem parameters: the number of variables, the number of
equality and general inequality constraints (excluding bounds), and the total number
of constraints (including bounds).

Our benchmarking results are done with a set of problems and solvers. We have
used COPS, but we could have also used a selection of the engineering problems pro-
vided by Vanderbei [16]. Also note that timing data refers to a particular computing
environment (machine, compiler, libraries). Hence, our conclusions could change if
the problems, solvers, or computing environment changes. On the other hand, the
use of performance profiles tends to minimize the effect of these issues, as noted in
[5].

We also note that the solvers for constrained optimization problems invariably
have different requirements. Some of the solvers use second-order information, while
others (for example, MINOS and SNOPT) use only first-order information. The use of
second-order information can reduce the number of iterations, but the cost per itera-
tion usually increases. In addition, obtaining second-order information is more costly
and may not even be possible. Memory requirements can also play an important role.
In particular, solvers that use direct linear equation solvers are often more efficient in
terms of computing time, provided there is enough memory. Moreover, some of the
solvers are designed for problems with a modest number of degrees of freedom.

The script for generating the timing data sends a problem to each solver suc-
cessively, so as to minimize the effect of fluctuation in the machine load. The script
tracks the wall-clock time from the start of the AMPL process to the end of the solve.
Any process that runs 30 minutes is declared unsuccessful. We cycle through all the
problems, recording the wall-clock time as well as the combination of AMPL system
time (to interpret the model and compute varying amounts of derivative information
required by each solver) and solver time for each model variation. We have veri-
fied that the AMPL time results we present can be reproduced to within 10 percent
accuracy.

7. Computational experiments. We now investigate how performance pro-
files behave when the convergence test (3.1) is enforced on all the solvers. We also
describe some of the computational experiments that we have done with an analyzer
that computes the optimality measures in Table 3.1 for optimization problems in the
AMPL or GAMS modeling language.
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Fig. 7.1. Performance profiles (log2 scale) when no optimality checks are made (left) and when
the convergence test (7.1) is enforced (right).

Figure 7.1 displays performance profiles for the two experiments performed with
the COPS 3.0 test set [6]. The following solvers were used for the experiments:

KNITRO 3.0 [18], ASL (20020905) LOQO 6.02 [17], ASL (20020221)
MINOS 5.5 [15], ASL (20020614) SNOPT 6.1 [8], ASL (20020614)

All the computations were performed on an Intel Pentium 4 1.8 GHz CPU with 512
MB of RAM and a 256 KB cache, running Red Hat Linux 7.3. Furthermore, a time
limit of 30 minutes was imposed on the solvers for each problem in the test set. A
failure is reported when the time limit expires.

The first experiment does not check the optimality measures, trusting the opti-
mization solver to report optimality. In the second experiment, if the convergence
test proposed in section 3,

νf (x) ≤ τf , νs(x, τf ) ≤ τs, τf = τs = 10−6,(7.1)

is not satisfied, then the convergence tolerances used by the solvers are reduced and
the problem is solved again. This procedure is stopped when the tolerances provided
to the solver reach 10−16. The method used to reduce convergence tolerances depends
on the solver. All solvers that we tested have feasibility and optimality tolerances that
can be set by the user. However, the names and meanings of the parameters change
with the solver.

We expect that a solver will take longer to compute a solution when the termi-
nation tolerances are reduced. However, if the behavior of the solver depends on the
convergence tolerances, then the solver can take less time to compute a more accurate
solution. In particular, the iterates explored by the solver can change dramatically
when the internal tolerances are modified. The performance profiles use the time
taken to solve the given model with the tightened tolerances.

The analyzer computes the optimality measures in Table 3.1 for optimization
problems in the AMPL or GAMS modeling language. The main computational task
in determining the optimality measures is to compute multipliers by setting up and
solving the linear program (2.10) with MINOS. All the data for (2.10) are written to
a file with at least 15 digits of accuracy. The optimality and feasibility tolerances for
MINOS are set to 10−14 when computing the multipliers. In all tests, MINOS indicates
that an optimal solution to the linear program was found.
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The solvers reported optimal solutions that satisfied the convergence test (7.1) on
109 (40%) of the 272 problem instances. In two cases, one of the solvers reported that
a nonoptimal solution had been found, when in fact our optimality measures were
within the desired tolerances.

The major conclusion that can be drawn from Figure 7.1 is that performance
profiles do indeed change when a consistent convergence test is used. The trends in
the plots remain the same, but the magnitude of the differences, especially at the
beginning of the plots, can change significantly.

The effect of convergence criteria on solver performance can also be seen in Figure
7.2. In this figure we plot the performance metric

p(x) = − log10(max (νf (x), νs(x, τf )))(7.2)

for all the solvers. The white bars indicate the first experiment, where the convergence
test (7.1) is not enforced, while the black bars indicate the second experiment, where
the convergence test is enforced.

The heights of the bars in Figure 7.2 give the levels of accuracy reached. The
definition of the measures νf and νs shows that we can expect to have the performance
metric p(x) ∈ [0, 16] on computations with 16 decimal digits. Problems where p(x)
is near zero have not been solved accurately. If p(x) < 6, then the convergence test
(7.1) is not satisfied.
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Fig. 7.2. Graph of the performance metric (7.2) for KNITRO (upper left), LOQO (upper right),
MINOS (lower left), and SNOPT (lower right) when no optimality checks are made (white) and when
the convergence test (7.1) is enforced (black).
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If only a white bar is shown for a problem, the solver either satisfied the con-
vergence test with the default tolerances, and no refinement was needed, or reported
a failure. If the solver reports a failure, then the white bar will not reach a toler-
ance of τf = τs = 10−6. In these cases, the iterative reduction in the tolerances was
stopped. Those models with no bar either encountered the time limit imposed during
the testing or reported a failure.

A black bar in Figure 7.2 indicates that for the particular problem the default
tolerances had to be reduced to meet the convergence test (7.1). As can be seen,
all solvers failed to satisfy (7.1) initially in several cases but managed to satisfy the
convergence test as the tolerances were reduced.

Figure 7.2 clearly shows that the default convergence test for MINOS tends to
agree with (7.1) in most cases. This code was able to satisfy the convergence test
with the default tolerances for most of the problems. On the other hand, these results
show that KNITRO tended to perform poorly when measured with the metric (7.2).

The main reason why solvers fail to satisfy (7.1) with their default tolerances is
that, as noted at the end of section 3, solvers tend to scale τf and τs based on the size
of problem data, for example, x, the multipliers π(x), or the constraints c(x). This
scaling can increase the values of τf and τs, and thus lead to a weaker convergence
test. Assume, for example, that τP = τD = 10−6 in the convergence tests of SNOPT
and KNITRO. If ‖x‖ = 104 and ‖c(x0)+‖∞ = 104, then both solvers set τf = 10−2.
This explains why some of the white bars are below the 10−3 level.

Another reason for the large values of νf and νs obtained by the solvers with their
default tolerances is that νf and νs examine the accuracy in all of the components,
while other measures examine the accuracy in the largest components. Consider, for
example, a case where

∇f(x) =

⎛
⎜⎜⎜⎝

α
1
...
1

⎞
⎟⎟⎟⎠ , ∇c(x)π(x) =

⎛
⎜⎜⎜⎝

α(1 + τs)
1 + ατs

...
1 + ατs

⎞
⎟⎟⎟⎠

for some α ≥ 1. In this case,

‖∇f(x) −∇c(x)π(x)‖∞ ≤ τs min
{
‖∇f(x)‖∞, ‖∇c(x)π(x)‖∞

}
,

and thus the relative error between ∇f(x) and ∇c(x)π(x) is small. However, it is also
clear that the relative error between components 2, . . . , n can be large. In fact,

νs(x, τf ) =
ατs

2 + ατs
,

and thus the error measured by νs can be arbitrarily close to one.

8. Concluding remarks. We have shown that the convergence test (3.1) is
scale invariant when absolute tolerances are set to zero and behaves satisfactorily at
any point where the constraints satisfy the Mangasarian–Fromovitz constraint qualifi-
cation. We have also demonstrated that this test does not need to use the multipliers
given by (2.10), but can use the projection of any set of multipliers into the cone (2.7)
associated with Aτ (x). This approach avoids an explicit test on complementarity.

Our computational experiments have shown that the use of this convergence test
on the benchmarking process can have a significant effect on performance profiles.
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These experiments have also shown that an additional advantage of the measures
associated with this convergence test is that solutions of low accuracy will have either
νf or νs close to one, while high accuracy solutions will satisfy (7.1) for the appropriate
values of τf and τs. This is clearly seen in Figure 7.2.

Our strategy of decreasing the solver tolerances until a uniform convergence test
is satisfied or a time limit is exceeded provides a benchmarking process that forces
all solvers to satisfy the same convergence test. Our benchmarking results used a
particular set of tolerance values (τf = τs = 10−6) and did not address the issue of
how results change if these values are changed. We chose the tolerance values in (7.1)
to reflect our views of reasonable tolerances. We expect the results to remain basically
unchanged if τf and τs are chosen in the interval (10−7, 10−5), but at present this is a
conjecture. We do expect optimization solvers to behave unpredictably if tolerances
are chosen too small or too large, but we have not benchmarked solvers in these
situations.

Our computational results in section 7 noted that computing times generally
increased as tolerances were reduced, but that this was not always the case. The
increase in computing time is guaranteed if the optimization solver uses only the
tolerances to determine when to stop the iteration process and return an approximate
solution. However, if the optimization solver uses the input tolerances to dictate
how the solver behaves in certain situations, then the computing time could change
significantly if the tolerances are changed.

If computing times for a solver change significantly as tolerances are changed, then
the results of a benchmarking study that uses computing time to measure performance
could be claimed to be invalid unless an attempt is made to incorporate this variability
in computing times into the conclusions. We do not agree with this claim. Instead, we
repeat the cautions mentioned in section 6 that computing time in a benchmarking
study refers to a particular computing environment (machine, compiler, libraries) and
that the conclusions of the study may change if the problems, solvers, or computing
environment changes.
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Abstract. In the paper, the global optimization problem of a multidimensional “black-box”
function satisfying the Lipschitz condition over a hyperinterval with an unknown Lipschitz constant
is considered. A new efficient algorithm for solving this problem is presented. At each iteration of the
method a number of possible Lipschitz constants are chosen from a set of values varying from zero to
infinity. This idea is unified with an efficient diagonal partition strategy. A novel technique balancing
usage of local and global information during partitioning is proposed. A new procedure for finding
lower bounds of the objective function over hyperintervals is also considered. It is demonstrated by
extensive numerical experiments performed on more than 1600 multidimensional test functions that
the new algorithm shows a very promising performance.
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gies, diagonal approach

AMS subject classifications. 65K05, 90C26, 90C56

DOI. 10.1137/040621132

1. Introduction. Many decision-making problems arising in various fields of
human activity (technological processes, economic models, etc.) can be stated as
global optimization problems (see, e.g., [7, 26, 33]). Objective functions describing
real-life applications are very often multiextremal, nondifferentiable, and hard to eval-
uate. Numerical techniques for finding solutions to such problems have been widely
discussed in the literature (see, e.g., [5, 14, 15, 26, 33]).

In this paper, the Lipschitz global optimization problem is considered. This
type of optimization problem is sufficiently general both from theoretical and applied
points of view. In fact, it is based on a rather natural assumption that any limited
change in the parameters of the objective function yields some limited changes in
the characteristics of the object’s performance. The knowledge of a bound on the
rate of change of the objective function, expressed by the Lipschitz constant, allows
one to construct global optimization algorithms and to prove their convergence (see,
e.g., [14, 15, 26, 33]).

Mathematically, the global optimization problem considered in the paper can be
formulated as minimization of a multidimensional multiextremal “black-box” func-
tion that satisfies the Lipschitz condition over a domain D ⊂ RN with an unknown
constant L, i.e., finding the value f∗ and points x∗ such that

f∗ = f(x∗) = min
x∈D

f(x),(1.1)

|f(x′) − f(x′′)| ≤ L‖x′ − x′′‖, x′, x′′ ∈ D, 0 < L < ∞,(1.2)
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where

D = [a, b ] = {x ∈ RN : a(j) ≤ x(j) ≤ b(j), 1 ≤ j ≤ N},(1.3)

a, b are given vectors in RN , and ‖ · ‖ denotes the Euclidean norm.
The function f(x) is supposed to be nondifferentiable. Hence, optimization meth-

ods using derivatives cannot be used for solving problem (1.1)–(1.3). It is also assumed
that evaluation of the objective function at a point (also referred to as a function trial)
is a time-consuming operation.

Numerous algorithms have been proposed (see, e.g., [5, 14, 15, 18, 21, 23, 26,
27, 29, 32, 33]) for solving problem (1.1)–(1.3). One of the main questions to be
considered in this occasion is, How can the Lipschitz constant L be specified? There
are several approaches to specify the Lipschitz constant. First of all, it can be given a
priori (see, e.g., [14, 15, 23, 27, 32]). This case is very important from the theoretical
viewpoint but is not frequently encountered in practice. The more promising and
practical approaches are based on an adaptive estimation of L in the course of the
search. In such a way, algorithms can use either a global estimate of the Lipschitz
constant (see, e.g., [21, 26, 33]) valid for the whole region D from (1.3), or local
estimates Li valid only for some subregions Di ⊆ D (see, e.g., [20, 24, 29, 30, 33]).

Since the Lipschitz constant has a significant influence on the convergence speed
of the Lipschitz global optimization algorithms, the problem of its specifying is of the
great importance. In fact, accepting too high a value of L for a concrete objective
function means assuming that the function has complicated structure with sharp peaks
and narrow attraction regions of minimizers within the whole admissible region. Thus,
too high a value of L (if it does not correspond to the real behavior of the objective
function) leads to a slow convergence of the algorithm to the global minimizer.

Global optimization algorithms using in their work a global estimate of L (or some
value of L given a priori) do not take into account local information about behavior
of the objective function over every small subregion of D. As has been demonstrated
in [29, 30, 33], estimating local Lipschitz constants allows us to significantly accelerate
the global search. Naturally, balancing between local and global information must be
performed in an appropriate way to avoid the missing of the global solution.

Recently, an interesting approach unifying usage of local and global information
during the global search has been proposed in [18]. At each iteration of this new
algorithm, called DIRECT, instead of only one estimate of the Lipschitz constant a
set of possible values of L is used.

Like many Lipschitz global optimization algorithms, DIRECT tries to find the
global minimizer by partitioning the search hyperinterval D into smaller hyperinter-
vals Di using a particular partition scheme described in [18]. The objective function
is evaluated only at the central point of a hyperinterval. Each hyperinterval Di of
a current partition of D is characterized by a lower bound of the objective function
over this hyperinterval. It is calculated similarly to [27, 32] taking into account the
Lipschitz condition (1.2). A hyperinterval Di is selected for a further partitioning if
and only if for some value L̃ > 0 (which estimates the unknown constant L) it has the
smallest lower bound of f(x) with respect to the other hyperintervals. By changing L̃
from zero to infinity, at each iteration DIRECT selects several “potentially optimal”
hyperintervals (see [10, 13, 18]) in such a way that for a particular estimate of the
Lipschitz constant the objective function could have the smallest lower bound over
every potentially optimal hyperinterval.

Due to its simplicity and efficiency, DIRECT has been widely adopted in practical
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applications (see, e.g., [1, 2, 3, 4, 10, 13, 22, 35]). In fact, DIRECT is a derivative-
free deterministic algorithm which does not require multiply runs. It has only one
parameter, which is easy to set (see [18]). The center-sampling partition strategy of
DIRECT reduces the computational complexity in high-dimensional spaces, allowing
DIRECT to demonstrate good performance results (see [11, 18]).

However, some aspects which can limit the applications of DIRECT have been
pointed out by several authors (see, e.g., [4, 6, 13, 17]). First of all, it is difficult to
apply for DIRECT some meaningful stopping criterion, such as, for example, stopping
on achieving a desired accuracy in solution. This happens because DIRECT does not
use a single estimate of the Lipschitz constant but a set of possible values of L.
Although several attempts at introducing a reasonable criterion of arrest have been
made (see, e.g., [2, 4, 10, 13]), termination of the search process caused by exhaustion
of the available computing resources (such as maximal number of function trials)
remains the most interesting for practical engineering applications.

Another important observation regarding DIRECT is related to the partition and
sampling strategies adopted by the algorithm (see [18]) which simplicity turns into
some problems. As has been outlined in [4, 6, 22], DIRECT is quick to locate re-
gions of local optima but slow to converge to the global one. This can happen for
several reasons. The first one is a redundant (especially in high dimensions, see [17])
partition of hyperintervals along all longest sides. The next cause of DIRECT’s slow
convergence can be excessive partition of many small hyperintervals located in the
vicinity of local minimizers which are not global ones. Finally, DIRECT—like all
center-sampling partitioning schemes—uses relatively poor information about behav-
ior of the objective function f(x). This information is obtained by evaluating f(x)
only at one central point of each hyperinterval without considering the adjacent hy-
perintervals. Due to this fact, DIRECT can manifest slow convergence (as has been
highlighted in [16]) in cases when the global minimizer lies at the boundary of the
admissible region D from (1.3).

There are several modifications to the original DIRECT algorithm. For example,
in [17], partitioning along only one long side is suggested to accelerate convergence
in high dimensions. The problem of stagnation of DIRECT near local minimizers
(emphasized, e.g., in [6]) can be attacked by changing the parameter of the algorithm
(see [18]) preventing DIRECT from being too local in its orientation (see [6, 10, 13, 17,
18]). But in this case the algorithm becomes too sensitive to tuning such a parameter,
especially for difficult black-box global optimization problems (1.1)–(1.3). In [1, 35],
another modification to DIRECT, called “aggressive DIRECT,” has been proposed.
It subdivides all hyperintervals with the smallest function value for each hyperinterval
size. This results in more hyperintervals partitioned at every iteration, but the number
of hyperintervals to be subdivided grows significantly. In [10, 11], the opposite idea
which is more biased toward local improvement of the objective function has been
studied. Results obtained in [10, 11] demonstrate that this modification seems to be
more suitable for low-dimensional problems with a single global minimizer and a few
local minimizers.

The goal of this paper is to present a new algorithm which would be oriented
(in contrast with the algorithm from [10, 11]) on solving “difficult” multidimensional
multiextremal black-box problems (1.1)–(1.3). It uses a new technique for selection of
hyperintervals to be subdivided which is unified with a new diagonal partition strat-
egy. A new procedure for estimation of lower bounds of the objective function over
hyperintervals is combined with the idea (introduced in DIRECT) of usage of a set of
Lipschitz constants instead of a unique estimate. As demonstrated by extensive nu-
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merical results, application of the new algorithm to minimizing hard multidimensional
black-box functions leads to significant improvements.

The paper is organized as follows. In section 2, a theoretical background of
the new algorithm—a new partition strategy, a new technique for lower bound-
ing of the objective function over hyperintervals, and a procedure for selection of
“nondominated” hyperintervals for eventual partitioning—is presented. Section 3 is
dedicated to the description of the algorithm and to its convergence analysis. Finally,
section 4 contains results of numerical experiments executed on more than 1600 test
functions.

2. Theoretical background. This section consists of the following three parts.
First, a new partition strategy developed in the framework of diagonal approach is de-
scribed. The second part presents a new procedure for estimation of lower bounds of
the objective function over hyperintervals. The third part is dedicated to the descrip-
tion of a procedure for determining nondominated hyperintervals—hyperintervals that
have the smallest lower bound for some particular estimate of the Lipschitz constant.

2.1. Partition strategy. In global optimization algorithms, various techniques
for adaptive partition of the admissible region D into a set of hyperintervals Di are
used (see, e.g., [14, 18, 26, 31]) for solving (1.1)–(1.3). A current partition {Dk} of D
in the course of an iteration k ≥ 1 of an algorithm can be represented as

D = ∪m(k)+Δm(k)
i=1 Di, Di ∩Dj = δ(Di) ∩ δ(Dj), i �= j.(2.1)

Here, δ(Di) denotes the boundary of Di, m(k) is the number of hyperintervals at the
beginning of the iteration k, and Δm(k) is the current number of new hyperintervals
produced during the kth iteration. For example, if only one new hyperinterval is
generated at every iteration, then Δm(k) = 1.

Over each hyperinterval Di ∈ {Dk}, approximation of f(x) is based on results
obtained by evaluating f(x) at some points x ∈ D. For example, DIRECT [18]
involves partitioning with evaluation of f(x) at the central points of hyperintervals
(note that for DIRECT the number Δm(k) in (2.1) can be greater than 1).

In this paper, the diagonal approach proposed in [25, 26] is considered. In this
approach, the function f(x) is evaluated only at two vertices ai and bi of the main
diagonals of each hyperinterval Di independently of the problem dimension (recall
that each evaluation of f(x) is a time-consuming operation).

Among attractions of the diagonal approach there are the following two. First, the
objective function is evaluated at two points at each hyperinterval. Thus, diago-
nal algorithms obtain more complete information about the objective function than
center-sampling methods. Second, many efficient one-dimensional global optimization
algorithms can be easily extended to the multivariate case by means of the diagonal
scheme (see, e.g., [20, 21, 24, 25, 26]).

As shown in [21, 31], diagonal global optimization algorithms based on widely
used partition strategies (such as bisection or partition 2N used in [25, 26]) produce
many redundant trials of the objective function. This redundancy slows down the
algorithm execution because of high time required for the evaluations of f(x). It also
increases the computer memory allocated for storing the redundant information.

The new partition strategy proposed in [31] (see also [21]) overcomes these draw-
backs of conventional diagonal partition strategies. We start its description by a
two-dimensional example in Figure 1. In this figure, partitions of the admissible re-
gion D produced by the algorithm at the initial iterations are presented. We suppose
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Fig. 1. An example of subdivisions by a new partition strategy.

just for simplicity that at each iteration only one hyperinterval can be subdivided.
Trial points of f(x) are represented by black dots. The numbers around these dots
indicate iterations at which the objective function is evaluated at the corresponding
points. The terms “interval” and “subinterval” will be used to denote two-dimensional
rectangular domains.

In Figure 1(a) the situation after the first two iterations is presented. At the
first iteration, the objective function f(x) is evaluated at the vertices a and b of the
search domain D = [a, b]. At the next iteration, the interval D is subdivided into
three subintervals of equal area (equal volume in general case). This subdivision is
performed by two lines (hyperplanes) orthogonal to the longest edge of D and passing
through points u and v (see Figure 1(a)). The objective function is evaluated at both
points u and v.

Suppose that the interval shown in grey in Figure 1(a) is chosen for the further
partitioning. Thus, at the third iteration, three smaller subintervals appear (see
Figure 1(b)). It seems that a trial point of the third iteration is redundant for the
interval (shown in grey in Figure 1(b)) selected for the next splitting. But in reality,
Figure 1(c) demonstrates that one of the two points of the fourth iteration coincides
with the point 3 at which f(x) has already been evaluated. Therefore, there is no
need to evaluate f(x) at this point again, since the function value obtained at the
previous iteration can be used. This value can be stored in a special vertex database
and is simply retrieved when it is necessary without reevaluation of the function. For
example, Figure 1(d) illustrates the situation after 11 iterations. Among 22 points at
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which the objective function is to be evaluated, there are 5 repeated points. That is,
f(x) is evaluated 17 rather than 22 times. Note also that the number of generated
intervals (equal to 21) is greater than the number of trial points (equal to 17). Such
a difference becomes more pronounced in the course of further subdivisions (see [21]).

Let us now describe the general procedure of hyperinterval subdivision. Without
loss of generality, hereafter we assume that the admissible region D in (1.3) is an
N -dimensional hypercube. Suppose that at the beginning of an iteration k ≥ 1 of
the algorithm the current partition {Dk} of D = [a, b] consists of m(k) hyperintervals
and Δm(k) ≥ 0 new hyperintervals have been already obtained. Let a hyperinterval
Dt = [at, bt] be chosen for partitioning too. The operation of partitioning the selected
hyperinterval Dt is performed as follows (we omit the iteration index in the formulae).

Step 1. Determine points u and v by the following formulae:

u =

(
a(1), . . . , a(i− 1), a(i) +

2

3
(b(i) − a(i)), a(i + 1), . . . , a(N)

)
,(2.2)

v =

(
b(1), . . . , b(i− 1), b(i) +

2

3
(a(i) − b(i)), b(i + 1), . . . , b(N)

)
,(2.3)

where a(j) = at(j), b(j) = bt(j), 1 ≤ j ≤ N , and i is given by the equation

i = arg min max
1≤j≤N

|b(j) − a(j)|.(2.4)

Get (evaluate or read from the vertex database) the values of the objective
function f(x) at the points u and v.

Step 2. Divide the hyperinterval Dt into three hyperintervals of equal volume by two
parallel hyperplanes that are perpendicular to the longest edge i of Dt and
pass through the points u and v.
The hyperinterval Dt is thus substituted by three new hyperintervals with

indices t′ = t, m + Δm + 1, and m + Δm + 2 determined by the vertices of
their main diagonals

at′ = am+Δm+2 = u, bt′ = bm+Δm+1 = v,(2.5)

am+Δm+1 = at, bm+Δm+1 = v,(2.6)

am+Δm+2 = u, bm+Δm+2 = bt.(2.7)

Step 3. Augment the number of hyperintervals generated during the iteration k:

Δm = Δm(k) := Δm(k) + 2.(2.8)

The existence of a special indexation of hyperintervals establishing links between
hyperintervals generated at different iterations has been theoretically demonstrated
in [31]. It allows one to store information about vertices and the corresponding values
of f(x) in a special database, thereby avoiding redundant evaluations of f(x). The
objective function value at a vertex is calculated only once, stored in the database,
and read when required. The new partition strategy generates trial points in such
a way that one vertex where f(x) is evaluated can belong to several (up to 2N )
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hyperintervals (see, for example, a trial point at the 8th iteration in Figure 1(d)).
Since the time-consuming operation of evaluation of the function is replaced by a
significantly faster operation of reading (up to 2N times) the function values from the
database, the new partition strategy considerably speeds up the search and also leads
to saving computer memory. It is particularly important that the advantage of the
new scheme increases with the growth of the problem dimension (see [21, 31]).

The new strategy can be viewed also as a procedure generating a series of curves
similar to space-filling curves—adaptive diagonal curves. Each of these curves is
constructed on the main diagonals of hyperintervals obtained during subdivision of
D. The objective function is approximated over the multidimensional region D by
evaluating f(x) at the points of one-dimensional adaptive diagonal curve. The order
of partition of this curve is different within different subintervals of D. If selection
of hyperintervals for partitioning is realized appropriately in an algorithm, the curve
condenses in the vicinity of the global minimizers of f(x) (see [21, 31]).

2.2. Lower bounds. Let us suppose that at some iteration k > 1 of the global
optimization algorithm the admissible region D has been partitioned into hyperin-
tervals Di ∈ {Dk} defined by their main diagonals [ai, bi]. At least one of these
hyperintervals should be selected for further partitioning. In order to make this se-
lection, the algorithm estimates the goodness (or, in other words, characteristics) of
the generated hyperintervals with respect to the global search. The best (in some
predefined sense) characteristic obtained over some hyperinterval Dt corresponds to
a higher possibility to find the global minimizer within Dt. This hyperinterval is sub-
divided at the next iteration of the algorithm. Naturally, more than one “promising”
hyperinterval can be partitioned at every iteration.

One of the possible characteristics of a hyperinterval can be an estimate of the
lower bound of f(x) over this hyperinterval. Once all lower bounds for all hyperinter-
vals of the current partition {Dk} have been calculated, the hyperinterval with the
smallest lower bound can be selected for the further partitioning.

Different approaches to finding lower bounds of f(x) have been proposed in the
literature (see, e.g., [14, 18, 23, 26, 27, 32, 33]) for solving problem (1.1)–(1.3). For
example, given the Lipschitz constant L, in [14, 23, 27] a minorant function for f(x)
is constructed as the upper envelope of a set of N -dimensional circular cones of the
slope L. Trial points of f(x) are coordinates of the vertices of the cones. At each
iteration, the global minimizer of the minorant function is determined and chosen as a
new trial point. Finding such a point requires analyzing the intersections of all cones
and, generally, is a difficult and time-consuming task, especially in high dimensions.

If a partition of D into hyperintervals is used, each cone can be considered over
the corresponding hyperinterval, independently from the other cones. This allows one
(see, e.g., [14, 18, 20, 26]) to avoid the necessity of establishing the intersections of the
cones and to simplify the lower bound estimation. For example, the multidimensional
DIRECT algorithm [18] uses one cone with symmetry axis passed through a central
point of a hyperinterval for lower bounding f(x) over this hyperinterval. The lower
bound is obtained on the boundary of the hyperinterval. This approach is simple, but
it gives too rough an estimate of the minimum function value over the hyperinterval.

The more accurate estimate is achieved when two trial points over a hyperinterval
are used for constructing a minorant function for f(x). These points can be, for
example, the vertices ai and bi of the main diagonal of a hyperinterval Di ∈ {Dk}
(see, e.g., [20, 21, 25, 26, 31]). In this case, the objective function (due to the Lipschitz
condition (1.2)) must lie above the intersection of the N -dimensional cones C1(x, L)
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Fig. 2. Estimation of the lower bound of f(x) over an interval Di = [ai, bi].

and C2(x, L) (see the two-dimensional example in Figure 2(a)). These cones have the
slope L and are limited by the boundaries of the hyperinterval Di. The vertices of the
cones (in (N + 1)-dimensional space) are defined by the coordinates (ai, f(ai)) and
(bi, f(bi)), respectively. In such a way, the lower bound of f(x) is more precise with
respect to the center-sampling strategy. Algorithms using this approach are called
diagonal (see, e.g., [20, 21, 25, 26, 31]).

In the new diagonal algorithm proposed in this paper, the objective function is
also evaluated at two points of a hyperinterval Di = [ai, bi]. Instead of constructing
a minorant function for f(x) over the whole hyperinterval Di, we use a minorant
function for f(x) only over the one-dimensional segment [ai, bi]. This minorant func-
tion is the maximum of two linear functions K1(x, L̂) and K2(x, L̂) passing with the
slopes ±L̂ through the vertices ai and bi (see Figure 2(b)). The lower bound of f(x)
over the diagonal [ai, bi] of Di is calculated similarly to [27, 32] at the intersection of
the lines K1(x, L̂) and K2(x, L̂) and is given by the following formula (see [20, 25, 26]):

Ri = Ri(L̂) =
1

2
(f(ai) + f(bi) − L̂‖bi − ai‖), 0 < L ≤ L̂ < ∞.(2.9)

A valid estimate of the lower bound of f(x) over Di can be obtained from (2.9) if
an overestimate L̂ of the Lipschitz constant L is used. As has been proved in [25, 26],
inequality

L̂ ≥ 2L(2.10)

guarantees that the value Ri from (2.9) is the lower bound of f(x) over the whole
hyperinterval Di. Thus, the lower bound of the objective function over the whole
hyperinterval Di ⊆ D can be estimated considering f(x) only along the main diagonal
[ai, bi] of Di.

A more precise condition than (2.10) ensuring that

Ri(L̂) ≤ f(x), x ∈ Di,

is proved in the following theorem.
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Theorem 2.1. Let L be the known Lipschitz constant for f(x) from (1.2), Di =
[ai, bi] be a hyperinterval of a current partition {Dk}, and f∗

i be the minimum function
value over Di, i.e.,

f∗
i = f(x∗

i ), x∗
i = arg min

x∈Di

f(x).(2.11)

If an overestimate L̂ in (2.9) satisfies inequality

L̂ ≥
√

2L,(2.12)

then Ri(L̂) from (2.9) is the lower bound of f(x) over Di, i.e., Ri(L̂) ≤ f∗
i .

Proof. Since x∗
i from (2.11) belongs to Di and f(x) satisfies the Lipschitz condi-

tion (1.2) over Di, then the following inequalities hold:

f(ai) − f∗
i ≤ L‖ai − x∗

i ‖,

f(bi) − f∗
i ≤ L‖bi − x∗

i ‖.

By summarizing these inequalities and using from [24, Lemma 2] the result

max
x∈Di

(‖ai − x‖ + ‖bi − x‖) ≤
√

2‖bi − ai‖,

we obtain

f(ai) + f(bi) ≤ 2f∗
i + L(‖ai − x∗

i ‖ + ‖bi − x∗
i ‖)

≤ 2f∗
i + L max

x∈Di

(‖ai − x‖ + ‖bi − x‖) ≤ 2f∗
i +

√
2L‖bi − ai‖.

Then, from the last inequality and (2.12) we can deduce that the following estimate
holds for the value Ri from (2.9):

Ri(L̂) ≤ 1

2
(2f∗

i +
√

2L‖bi − ai‖ − L̂‖bi − ai‖)

= f∗
i +

1

2
(
√

2L− L̂)︸ ︷︷ ︸
≤0

‖bi − ai‖ ≤ f∗
i .

Theorem 2.1 allows us to obtain a more precise lower bound Ri with respect to
[25, 26] where estimate (2.10) is considered.

2.3. Finding nondominated hyperintervals. Let us now consider a diagonal
partition {Dk} of the admissible region D, generated by the new subdivision strategy
from section 2.1. Let a positive value L̃ be chosen as an estimate of the Lipschitz
constant L from (1.2) and lower bounds Ri(L̃) of the objective function over hyperin-
tervals Di ∈ {Dk} be calculated by formula (2.9). Using the obtained lower bounds of
f(x), the relation of domination can be established between every two hyperintervals
of a current partition {Dk} of D.

Definition 2.1. Given an estimate L̃ > 0 of the Lipschitz constant L from (1.2),
a hyperinterval Di ∈ {Dk} dominates a hyperinterval Dj ∈ {Dk} with respect to L̃ if

Ri(L̃) < Rj(L̃).
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Fig. 3. Graphical interpretation of lower bounds of f(x) over hyperintervals.

A hyperinterval Dt ∈ {Dk} is said to be nondominated with respect to L̃ > 0 if
for the chosen value L̃ there is no other hyperinterval in {Dk} which dominates Dt.

Each hyperinterval Di = [ai, bi] ∈ {Dk} can be represented by a dot in a two-
dimensional diagram (see Figure 3) similar to that used in DIRECT for representing
hyperintervals with f(x) evaluated only at one point. The horizontal coordinate di
and the vertical coordinate Fi of the dot are defined as follows:

di =
‖bi − ai‖

2
, Fi =

f(ai) + f(bi)

2
, ai �= bi.(2.13)

Note that a point (di, Fi) in the diagram can correspond to several hyperintervals
with the same length of the main diagonals and the same sum of the function values
at their vertices.

For the sake of illustration, let us consider a hyperinterval DA with the main
diagonal [aA, bA]. This hyperinterval is represented by the dot A in Figure 3. As-
suming an estimate of the Lipschitz constant equal to L̃ (such that condition (2.12)
is satisfied), a lower bound of f(x) over the hyperinterval DA is given by the value
RA(L̃) from (2.9). This value is the vertical coordinate of the intersection point of
the line passed through the point A with the slope L̃ and the vertical coordinate
axis (see Figure 3). In fact, as can be seen from (2.9), intersection of the line with
the slope L̃ passed through any dot representing a hyperinterval in the diagram of
Figure 3 and the vertical coordinate axis gives us the lower bound (2.9) of f(x) over
the corresponding hyperinterval.

Note that the points on the vertical axis (di = 0) do not represent any hyperin-
terval. The axis is used to express such values as lower bounds, the current minimum
value of the function, etc. It should be highlighted that the current best value fmin
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is always smaller than or equal to the vertical coordinate of the lowest dot (dot A in
Figure 3). Note also that the vertex at which this value has been obtained can belong
to a hyperinterval, different from that represented by the lowest dot in the diagram.

By using this graphical representation, it is easy to determine whether a hy-
perinterval dominates (with respect to a given estimate of the Lipschitz constant)
some other hyperinterval from a partition {Dk}. For example, for the estimate L̃ the
following inequalities are satisfied (see Figure 3):

RA(L̃) < RC(L̃) < RB(L̃).

Therefore, with respect to L̃ the hyperinterval DA (dot A in Figure 3) dominates
both hyperintervals DB (dot B) and DC (dot C), while DC dominates DB . If our
partition {Dk} consists only of these three hyperintervals, the hyperinterval DA is
nondominated with respect to L̃.

If a higher estimate L̂ > L̃ of the Lipschitz constant is considered (see Figure 3),
the hyperinterval DA still dominates the hyperinterval DB with respect to L̂, since
RA(L̂) < RB(L̂). But DA in its turn is dominated by the hyperinterval DC with
respect to L̂, because RA(L̂) > RC(L̂) (see Figure 3). Thus, for the chosen estimate L̂
the unique nondominated hyperinterval with respect to L̂ is DC , and not DA as
previously.

As we can see from this simple example, some hyperintervals (as the hyperinter-
val DB in Figure 3) are always dominated by another hyperintervals, independently
of the chosen estimate of the Lipschitz constant L. The following result formalizing
this fact takes place.

Lemma 2.1. Given a partition {Dk} of D and the subset {Dk}d of hyperintervals
having the main diagonals equal to d > 0, for any estimate L̃ > 0 of the Lipschitz
constant a hyperinterval Dt ∈ {Dk}d dominates a hyperinterval Dj ∈ {Dk}d if and
only if

Ft = min{Fi : Di ∈ {Dk}d } < Fj ,(2.14)

where Fi and Fj are from (2.13).
Proof. The lemma follows immediately from (2.9) since all hyperintervals under

consideration have the same length of their main diagonals, i.e., ‖bi − ai‖ = d.
There also exist hyperintervals (for example, the hyperintervals DA and DC rep-

resented in Figure 3 by the dots A and C, respectively) that are nondominated with
respect to one estimate of the Lipschitz constant L and dominated with respect to
another estimate of L. Since in practical applications the exact Lipschitz constant (or
its valid overestimate) is often unknown, the following idea inspired by DIRECT [18]
is adopted.

At each iteration k > 1 of the new algorithm, various estimates of the Lipschitz
constant L from zero to infinity are chosen for lower bounding f(x) over hyperin-
tervals. The lower bound of f(x) over a particular hyperinterval is calculated by
formula (2.9). Note that since all possible values of the Lipschitz constant are con-
sidered, condition (2.12) is automatically satisfied and no additional multipliers are
required for an estimate of the Lipschitz constant in (2.9). Examination of the set of
possible estimates of the Lipschitz constant leads us to the following definition.

Definition 2.2. A hyperinterval Dt ∈ {Dk} is called nondominated if there ex-
ists an estimate 0 < L̃ < ∞ of the Lipschitz constant L such that Dt is nondominated
with respect to L̃.
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Fig. 4. Dominated hyperintervals are represented by white dots and nondominated hyperinter-
vals are represented by black dots.

In other words, nondominated hyperintervals are hyperintervals over which f(x)
has the smallest lower bound for some particular estimate of the Lipschitz constant.
For example, in Figure 3 the hyperintervals DA and DC are nondominated.

Let us now make some observations that allow us to identify the set of non-
dominated hyperintervals. First of all, only hyperintervals Dt satisfying condition
(2.14) can be nondominated. In the two-dimensional diagram (di, Fi), where di and
Fi are from (2.13), such hyperintervals are located at the bottom of each group of
points with the same horizontal coordinate, i.e., with the same length of the main
diagonals. For example, in Figure 4 these points are designated as A (the largest
interval), B, C, E, F , G, and H (the smallest interval).

It is important to notice that not all hyperintervals satisfying (2.14) are non-
dominated. For example (see Figure 4), the hyperinterval DH is dominated (with
respect to any positive estimate of the Lipschitz constant L) by any of the hyper-
intervals DG, DF , or DE . The hyperinterval DG is dominated by DF . In fact, as
follows from (2.9), among several hyperintervals with the same sum of the function
values at their vertices, larger hyperintervals dominate smaller ones with respect to
any positive estimate of L. Finally, the hyperinterval DB is dominated either by the
hyperinterval DA (for example, with respect to L̃1 ≥ L̃AC , where L̃AC corresponds
to the slope of the line passed through the points A and C in Figure 4), or by the
hyperinterval DC (with respect to L̃2 < L̃AC).

Note that if an estimate L̃ of the Lipschitz constant is chosen, it is easy to indicate
the hyperinterval with the smallest lower bound of f(x), that is, the nondominated
hyperinterval with respect to L̃. To do this, it is sufficient to position a line with the
slope L̃ below the set of dots in the two-dimensional diagram representing hyperinter-
vals of {Dk}, and then to shift it upwards. The first dot touched by the line indicates
the desirable hyperinterval. For example, in Figure 4 the hyperinterval DF repre-
sented by the point F is a nondominated hyperinterval with respect to L̃0, since over
this hyperinterval f(x) has the smallest lower bound RF (L̃0) for the given estimate
L̃0 of the Lipschitz constant.
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Let us now examine various estimates of the Lipschitz constant L from zero to
infinity. When a small (close to zero) positive estimate of L is chosen, an almost hor-
izontal line is considered in the two-dimensional diagram representing hyperintervals
of a partition {Dk}. The dot with the smallest vertical coordinate Fmin (and the
biggest horizontal coordinate if there are several such dots) is the first to be touched
by this line (the case of the dot F in Figure 4). Therefore, the hyperinterval (or
hyperintervals) represented by this dot is nondominated with respect to the chosen
estimate of L and, consequently, nondominated in the sense of Definition 2.2. Re-
peating such a procedure with higher estimates of the Lipschitz constant (that is,
considering lines with higher slopes), all nondominated hyperintervals can be iden-
tified. In Figure 4 the hyperintervals represented by the dots F , E, C, and A are
nondominated hyperintervals.

This procedure can be formalized in terms of the algorithm known as Jarvis
march (or gift wrapping; see, e.g., [28]), which is an algorithm for identifying the
convex hull of the dots. Thus, the following result identifying the set of nondominated
hyperintervals for a given partition {Dk} has been proved.

Theorem 2.2. Let each hyperinterval Di = [ai, bi] ∈ {Dk} be represented by a
dot with horizontal coordinate di and vertical coordinate Fi defined in (2.13). Then,
hyperintervals that are nondominated in the sense of Definition 2.2 are located on the
lower-right convex hull of the set of dots representing the hyperintervals.

We conclude this theoretical consideration by the following remark. As has been
shown in [31], the lengths of the main diagonals of hyperintervals generated by the
new subdivision strategy from section 2.1 are not arbitrary, contrary to traditional
diagonal schemes (see, e.g., [20, 24, 25, 26]). They are members of a sequence of values
depending both on the size of the initial hypercube D = [a, b] and on the number of
executed subdivisions. In such a way, the hyperintervals of a current partition {Dk}
form several groups. Each group is characterized by the length of the main diagonals
of hyperintervals within the group. In the two-dimensional diagram (di, Fi), where
di and Fi are from (2.13), the hyperintervals from a group are represented by dots
with the same horizontal coordinate di. For example, in Figure 4 there are seven
different groups of hyperintervals with the horizontal coordinates equal to dA, dB ,
dC , dE , dF , dG, and dH . Note that some groups of a current partition can be empty
(see, e.g., the group with the horizontal coordinate between dH and dG in Figure 4).
These groups correspond to diagonals which are not present in the current partition
but can be created (or were created) at the successive (previous) iterations of the
algorithm.

It is possible to demonstrate (see [31]) that there exists a correspondence between
the length of the main diagonal of a hyperinterval Di ∈ {Dk} and a nonnegative inte-
ger number. This number indicates how many partitions have been performed starting
from the initial hypercube D to obtain the hyperinterval Di. At each iteration k ≥ 1
it can be considered as an index l = l(k) of the corresponding group of hyperintervals
having the same length of their main diagonals, where

0 ≤ q(k) ≤ l(k) ≤ Q(k) < +∞(2.15)

and q(k) = q and Q(k) = Q are indices corresponding to the groups of the largest
and smallest hyperintervals of {Dk}, respectively. When the algorithm starts, there
exists only one hyperinterval—the admissible region D—which belongs to the group
with the index l = 0. In this case, both indices q and Q are equal to zero. When a
hyperinterval Di ∈ {Dk} from a group l′ = l′(k) is subdivided, all three generated



GLOBAL SEARCH BASED ON DIAGONAL PARTITIONS 923

hyperintervals are placed into the group with the index l′ + 1. Thus, during the work
of the algorithm, diagonals of hyperintervals become smaller and smaller, while the
corresponding indices of groups of hyperintervals grow consecutively starting from
zero.

For example, in Figure 4 there are seven nonempty groups of hyperintervals of a
partition {Dk} and one empty group. The index q(k) (index Q(k)) corresponds to
the group of the largest (smallest) hyperintervals represented in Figure 4 by dots with
the horizontal coordinate equal to dA (dH). For Figure 4 we have Q(k) = q(k) + 7.
The empty group has the index l(k) = Q(k)−1. Suppose that the hyperintervals DA,
DH , and DG (represented in Figure 4 by the dots A, H, and G, respectively) will be
subdivided at the kth iteration. In this case, the smallest index will remain the same,
i.e., q(k + 1) = q(k), since the group of the largest hyperintervals will not be empty,
while the biggest index will increase, i.e., Q(k + 1) = Q(k) + 1, since a new group of
the smallest hyperintervals will be created. The previously empty group Q(k)−1 will
be filled up by the new hyperintervals generated by partitioning the hyperinterval DG

and will have the index l(k + 1) = Q(k + 1) − 2.

3. New algorithm. In this section, a new algorithm for solving problem (1.1)–
(1.3) is described. First, the new algorithm is presented and briefly commented on.
Then its convergence properties are analyzed.

The new algorithm is oriented on solving difficult multidimensional multiextremal
problems. To accomplish this task, a two-phase approach consisting of explicitly
defined global and local phases is proposed. It is well known that DIRECT also
balances global and local information during its work. However, the local phase is too
pronounced in this balancing. As has been already mentioned in the introduction,
DIRECT executes too many function trials in regions of local optima and, therefore,
manifests too slow convergence to the global minimizers when the objective function
has many local minimizers.

In the new algorithm, when a sufficient number of subdivisions of hyperintervals
near the current best point has been performed, the two-phase approach forces the
new algorithm to switch to the exploration of large hyperintervals that could contain
better solutions. Since many subdivisions have been executed around the current
best point, its neighborhood contains only small hyperintervals and large ones can be
located only far from it. Thus, the new algorithm balances global and local search in a
more sophisticated way trying to provide a faster convergence to the global minimizers
of difficult multiextremal functions.

Thus, the new algorithm consists of the following two phases: local improvement
of the current best function value (local phase) and examination of large unexplored
hyperintervals in pursuit of new attraction regions of deeper local minimizers (global
phase). Each of these phases can consist of several iterations. During the local phase
the algorithm tries to better explore the subregion around the current best point. This
phase finishes when the following two conditions are verified: (i) an improvement on
at least 1% of the minimal function value is not more reached and (ii) a hyperinterval
containing the current best point becomes the smallest one. After the end of the local
phase the algorithm is switched to the global phase.

The global phase consists of subdividing mainly large hyperintervals, located pos-
sibly far from the current best point. It is performed until a function value improving
the current minimal value on at least 1% is obtained. When this happens, the algo-
rithm switches to the local phase during which the obtained new solution is improved
locally. During its work the algorithm can switch many times from the local phase
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to the global one. The algorithm stops when the number of generated trial points
reaches the maximal allowed number.

We assume without loss of generality that the admissible region D = [a, b] in (1.3)
is an N -dimensional hypercube. Suppose that at the iteration k ≥ 1 of the algo-
rithm a partition {Dk} of D = [a, b] has been obtained by the partitioning procedure
from (2.1)–(2.8). Suppose also that each hyperinterval Di ∈ {Dk} is represented by a
dot in the two-dimensional diagram (di, Fi), where di and Fi are from (2.13), and the
groups of hyperintervals with the same length of their main diagonals are numerated
by indices within a range from q(k) up to Q(k) from (2.15).

To describe the algorithm formally, we need the following additional designations:
fmin(k) – the best function value (the term “record” will be also used) found

after k − 1 iterations.
xmin(k) – coordinates of fmin(k).
Dmin(k) – the hyperinterval containing the point xmin(k) (if xmin(k) is a com-

mon vertex of several—up to 2N—hyperintervals, then the smallest hyperinterval is
considered).

fprec
min – the old record. It serves to memorize the record fmin(k) at the start of the

current phase (local or global). The value of fprec
min is updated when an improvement

of the current record on at least 1% is obtained.
ξ – the parameter of the algorithm, ξ ≥ 0. It prevents the algorithm from sub-

dividing already well-explored small hyperintervals. If Dt ∈ {Dk} is a nondominated
hyperinterval with respect to an estimate L̃ of the Lipschitz constant L, then this
hyperinterval can be subdivided at the kth iteration only if the following condition is
satisfied:

Rt(L̃) ≤ fmin(k) − ξ,(3.1)

where the lower bound Rt(L̃) is calculated by formula (2.9). The value of ξ can be
set in different ways (see section 4).

Tmax – the maximal allowed number of trial points that the algorithm may gen-
erate. The algorithm stops when the number of generated trial points reaches Tmax.
During the course of the algorithm the satisfaction of this termination criterion is
verified after every subdivision of a hyperinterval.

Lcounter, Gcounter – the counters of iterations executed during the current local
and global phases, respectively.

p(k) – the index of the group the hyperinterval Dmin(k) belongs to. Notice that
the inequality q(k) ≤ p(k) ≤ Q(k) is satisfied for any iteration number k. Since both
local and global phases can embrace more than one iteration, the index p(k) (as well
as the indices q(k) and Q(k)) can change (namely, increase) during these phases. Note
also that the group p(k) can be different from the groups containing hyperintervals
with the smallest sum of the objective function values at their vertices (see two groups
of hyperintervals represented in Figure 4 by the horizontal coordinates equal to dG
and dF ). Moreover, the hyperinterval Dmin(k) is not represented necessarily by the
“lowest” point from the group p(k) in the two-dimensional diagram (di, Fi)—even if
the current best function value is obtained at a vertex of Dmin(k), the function value
at the other vertex can be too high and the sum of these two values can be greater
than the corresponding value of another hyperinterval from the group p(k).

p′ – the index of the group containing the hyperinterval Dmin(k) at the start
of the current phase (local or global). Hyperintervals from the groups with indices
greater than p′ are not considered when nondominated hyperintervals are looked for.
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Whereas the index p(k) can assume different values during the current phase, the
index p′ remains, as a rule, invariable. It is changed only when it violates the left part
of condition (2.15). This can happen when groups with the largest hyperintervals
disappear and, therefore, the index q(k) increases and becomes equal to p′. In this
case, the index p′ increases jointly with q(k).

p′′ – the index of the group immediately preceding the group p′, i.e., p′′ = p′ − 1.
This index is used within the local phase and can increase if q(k) increases during this
phase.

r′ – the index of the middle group of hyperintervals between the groups p′

and q(k), i.e., r′ = (q(k) + p′)/2�. This index is used within the global phase as
a separator between the groups of large and small hyperintervals. It can increase
if q(k) increases during this phase.

To clarify the introduced group indices, let us consider an example of a parti-
tion {Dk} represented by the two-dimensional diagram in Figure 4. Let us suppose
that the index q(k) of the group of the largest hyperintervals corresponding to the
points with the horizontal coordinate dA in Figure 4 is equal to 10. The index Q(k)
of the group of the smallest hyperintervals with the main diagonals equal to dH (see
Figure 4) is equal to Q(k) = q(k) + 7 = 17. Let us also assume that the hyperin-
terval Dmin(k) belongs to the group of hyperintervals with the main diagonals equal
to dG (see Figure 4). In this case, the index p(k) is equal to 15 and the index p′ is
equal to 15 too. The index p′′ = 15 − 1 = 14 and it corresponds to the group of
hyperintervals represented in Figure 4 by the dots with the horizontal coordinate dF .
Finally, the index r′ = (10 + 15)/2� = 13 and it corresponds to hyperintervals with
the main diagonals equal to dE . The indices p′, p′′, and r′ can change only if the
index q(k) increases. Otherwise, they remain invariable during the iterations of the
current phase (local or global). At the same time, the index p(k) can change at every
iteration, as soon as a new best function value belonging to a hyperinterval of a group
different from p(k) is obtained.

Now we are ready to present a formal scheme of the new algorithm.

Step 1: Initialization. Set the current iteration number k := 1, the current record
fmin(k) := min{f(a), f(b)}, where a and b are from (1.3). Set group indices
q(k) := Q(k) := p(k) := 0.

Step 2: Local Phase. Memorize the current record fprec
min := fmin(k) and perform

the following steps:
Step 2.1. Set Lcounter := 1 and fix the group index p′ := p(k).
Step 2.2. Set p′′ := max{p′ − 1, q(k)}.
Step 2.3. Determine nondominated hyperintervals considering only groups

of hyperintervals with the indices from q(k) up to p′′. Subdivide those
nondominated hyperintervals which satisfy inequality (3.1). Set k :=
k + 1.

Step 2.4. Set Lcounter := Lcounter + 1 and check whether Lcounter ≤ N .
If this is the case, then go to Step 2.2. Otherwise, go to Step 2.5.

Step 2.5. Set p′ = max{p′, q(k)}. Determine nondominated hyperintervals
considering only groups of hyperintervals with the indices from q(k)
up to p′. Subdivide those nondominated hyperintervals which satisfy
inequality (3.1). Set k := k + 1.

Step 3: Switch. If condition

fmin(k) ≤ fprec
min − 0.01|fprec

min |(3.2)
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is satisfied, then go to Step 2 and repeat the local phase with the new obtained
value of the record fmin(k). Otherwise, if the hyperinterval Dmin(k) is not
the smallest one, or the current partition of D consists only of hyperintervals
with equal diagonals (i.e., p(k) < Q(k) or q(k) = Q(k)), then go to Step 2.1
and repeat the local phase with the old record fprec

min .
If the obtained improvement of the best function value is not sufficient to
satisfy (3.2) and Dmin(k) is the smallest hyperinterval of the current partition
(i.e., all the following inequalities—(3.2), p(k) < Q(k), and q(k) = Q(k)—
fail), then go to Step 4 and perform the global phase.

Step 4: Global Phase. Memorize the current record fprec
min := fmin(k) and perform

the following steps:
Step 4.1. Set Gcounter := 1 and fix the group index p′ := p(k).
Step 4.2. Set p′ = max{p′, q(k)} and calculate the “middle” group index

r′ = (q(k) + p′)/2�.
Step 4.3. Determine nondominated hyperintervals considering only groups

of hyperintervals with the indices from q(k) up to r′. Subdivide those
nondominated hyperintervals which satisfy inequality (3.1). Set k :=
k + 1.

Step 4.4. If condition (3.2) is satisfied, then go to Step 2 and perform the lo-
cal phase with the new obtained value of the record fmin(k). Otherwise,
go to Step 4.5.

Step 4.5. Set Gcounter := Gcounter + 1; check whether Gcounter ≤ 2N+1.
If this is the case, then go to Step 4.2. Otherwise, go to Step 4.6.

Step 4.6. Set p′ = max{p′, q(k)}. Determine nondominated hyperintervals
considering only groups of hyperintervals with the indices from q(k)
up to p′. Subdivide those nondominated hyperintervals which satisfy
inequality (3.1). Set k := k + 1.

Step 4.7. If condition (3.2) is satisfied, then go to Step 2 and perform the
local phase with the new obtained value of the record fmin(k). Other-
wise, go to Step 4.1: update the value of the group index p′ and repeat
the global phase with the old record fprec

min .

Let us give a few comments on the introduced algorithm. It starts from the local
phase. In the course of this phase, it subdivides nondominated hyperintervals with the
main diagonals greater than the main diagonal of Dmin(k) (i.e., from the groups with
the indices from q(k) up to p′; see Steps 2.1–2.4). This operation is repeated N times,
where N is the problem dimension from (1.3). Recall that during each subdivision of
a hyperinterval by the scheme (2.1)–(2.8) only one side of the hyperinterval (namely,
the longest side given by formula (2.4)) is partitioned. Thus, performing N iterations
of the local phase eventually subdivides all N sides of hyperintervals around the
current best point. At the last, (N + 1)th, iteration of the local phase (see Step 2.5)
hyperintervals with the main diagonal equal to Dmin(k) are considered too. In such
a way, the hyperinterval containing the current best point can be partitioned too.

Thus, either the current record is improved or the hyperinterval providing this
record becomes smaller. If the conditions of switching to the global phase (see Step 3)
are not satisfied, the local phase is repeated. Otherwise, the algorithm switches to the
global phase, avoiding unnecessary evaluations of f(x) within already well-explored
subregions.

During the global phase the algorithm searches for better new minimizers. It
performs a series of loops (see Steps 4.1–4.7) while a nontrivial improvement of the
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best function value is not obtained, i.e., condition (3.2) is not satisfied. Within a loop
of the global phase the algorithm performs a substantial number of subdivisions of
large hyperintervals located far from the current best point, namely, hyperintervals
from the groups with the indices from q(k) up to r′ (see Steps 4.2–4.5). Since each
trial point can belong up to 2N hyperintervals, the number of subdivisions should not
be smaller than 2N . The value of this number equal to 2N+1 has been chosen because
it provided a good performance of the algorithm in our numerical experiments.

Note that the situation when the current best function value is improved but the
amount of this improvement is not sufficient to satisfy (3.2) can be verified at the end
of a loop of the global phase (see Step 4.7). In this case, the algorithm is not switched
to the local phase. It proceeds with the next loop of the global phase, eventually
updating the index p′ (see Step 4.1) but not updating the old record fprec

min .
Let us now study convergence properties of the new algorithm during minimiza-

tion of the function f(x) from (1.1)–(1.3) when the maximal allowed number of gen-
erated trial points Tmax is equal to infinity. In this case, the algorithm does not
stop (the number of iterations k goes to infinity) and an infinite sequence of trial
points {xj(k)} is generated. The following theorem establishes the so-called every-
where dense convergence of the new algorithm.

Theorem 3.1. For any point x ∈ D and any δ > 0 there exist an iteration
number k(δ) ≥ 1 and a point x′ ∈ {xj(k)}, k > k(δ), such that ‖x− x′‖ < δ.

Proof. Trial points generated by the new algorithm are vertices of the main
diagonals of hyperintervals. Due to (2.1)–(2.8), every subdivision of a hyperinterval
produces three new hyperintervals with the volume equal to a third of the volume of
the subdivided hyperinterval and the proportionally smaller main diagonals. Thus,
having fixed a positive value of δ, it is sufficient to prove that after a finite number
of iterations k(δ) the largest hyperinterval of the current partition of D will have the
main diagonal smaller than δ. In such a case, in δ-neighborhood of any point of D
there will exist at least one trial point generated by the algorithm.

To see this, let us fix an iteration number k′ and consider the group q(k′) of
the largest hyperintervals of a partition {Dk′}. As can be seen from the scheme of
the algorithm, for any k′ ≥ 1 this group is taken into account when nondominated
hyperintervals are looked for. Moreover, a hyperinterval Dt ∈ {Dk′} from this group
having the smallest sum of the objective function values at its vertices is partitioned
at each iteration k ≥ 1 of the algorithm. This happens because there always exists
a sufficiently large estimate L∞ of the Lipschitz constant L such that the hyperin-
terval Dt is a nondominated hyperinterval with respect to L∞ and condition (3.1)
is satisfied for the lower bound Rt(L∞) (see Figure 4). Three new hyperintervals
generated during the subdivision of Dt by using the strategy (2.1)–(2.8) are inserted
into the group with the index q(k′) + 1. Hyperintervals of the group q(k′) + 1 have
the volume equal to a third of the volume of hyperintervals of the group q(k′).

Since each group contains only finite number of hyperintervals, after a sufficiently
large number of iterations k > k′ all hyperintervals of the group q(k′) will be subdi-
vided. The group q(k′) will become empty and the index of the group of the largest
hyperintervals will increase, i.e., q(k) = q(k′) + 1. Such a procedure will be repeated
with a new group of the largest hyperintervals. So, when the number of iterations
grows, the index q(k) increases and due to (2.15) the index Q(k) increases too. This
means that there exists a finite number of iterations k(δ) such that after perform-
ing k(δ) iterations of the algorithm the largest hyperinterval of the current partition
{Dk(δ)} will have the main diagonal smaller than δ.
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4. Numerical results. In this section, we present results performed to com-
pare the new algorithm with two methods belonging to the same class: the origi-
nal DIRECT algorithm from [18] and its locally biased modification DIRECTl from
[10, 11]. The implementation of these two methods described in [8, 10] and down-
loadable from [9] has been used in all the experiments.

To execute a numerical comparison, we need to define the parameter ξ of the
algorithm from (3.1). This parameter can be set either independently from the current
record fmin(k) or in a relation with it. Since the objective function f(x) is supposed
to be black box, it is not possible to know a priori which of these two ways is better.

In DIRECT [18], where a similar parameter is used, a value ξ related to the
current minimal function value fmin(k) is fixed as follows:

ξ = ε|fmin(k)|, ε ≥ 0.(4.1)

The choice of ε between 10−3 and 10−7 has demonstrated good results for DI-
RECT on a set of test functions (see [18]). Later formula (4.1) has been used by many
authors (see, e.g., [3, 6, 10, 11, 13]) and also has been realized in the implementation
of DIRECT (see [8, 10]) taken for numerical comparison with the new algorithm.
Since the value of ε = 10−4 recommended in [18] has produced the most robust re-
sults for DIRECT (see, e.g., [10, 11, 13, 18]), exactly this value was used in (4.1)
for DIRECT in our numerical experiments. In order to have comparable results, the
same formula (4.1) and ε = 10−4 were used in the new algorithm too.

The global minimizer x∗ ∈ D was considered to be found when an algorithm gen-
erated a trial point x′ inside a hyperinterval with a vertex x∗ and the volume smaller
than the volume of the initial hyperinterval D = [a, b] multiplied by an accuracy
coefficient Δ, 0 < Δ ≤ 1, i.e.,

|x′(i) − x∗(i)| ≤ N
√

Δ(b(i) − a(i)), 1 ≤ i ≤ N,(4.2)

where N is from (1.3). This condition means that, given Δ, a point x′ satisfies (4.2) if
the hyperinterval with the main diagonal [x′, x∗] and the sides proportional to the sides
of the initial hyperinterval D = [a, b] has a volume at least Δ−1 times smaller than the
volume of D. Note that if in (4.2) the value of Δ is fixed and the problem dimension N
increases, the length of the diagonal of the hyperinterval [x′, x∗] increases too. In order
to avoid this undesirable growth, the value of Δ was progressively decreased when the
problem dimension increased.

We stopped the algorithm either when the maximal number of trials Tmax was
reached or when condition (4.2) was satisfied. Note that such a type of stopping
criterion is acceptable only when the global minimizer x∗ is known, i.e., for the case
of test functions. When a real black-box objective function is minimized and global
minimization algorithms have an internal stopping criterion, they execute a number
of iterations (that can be very high) after a “good” estimate of f∗ has been obtained
in order to demonstrate a “goodness” of the found solution (see, e.g., [14, 26, 33]).

In the first series of experiments, test functions from [5] and [36] were used because
in [10, 11, 18] DIRECT and DIRECTl have been tested on these functions. It can
be seen from Table 1 that both methods DIRECT and DIRECTl have executed a
very small amount of trials until they generated a point in a neighborhood (4.2) of a
global minimizer. For example, condition (4.2) was satisfied for the six-dimensional
Hartman’s function after 78 (144) trials performed by DIRECTl (DIRECT). Such a
small number of trials is explained by a simple structure of the function. We observe,
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Table 1

Number of trial points for test functions used in [18].

Function N D = [a, b] Δ DIRECT DIRECTl New

Shekel 5 4 [0, 10]4 10−6 57 53 208
Shekel 7 4 [0, 10]4 10−6 53 45 1465
Shekel 10 4 [0, 10]4 10−6 53 45 1449
Hartman 3 3 [0, 1]3 10−6 113 79 137
Hartman 6 6 [0, 1]6 10−7 144 78 4169

Branin RCOS 2 [−5, 10] × [0, 15] 10−4 41 31 76
Goldstein and Price 2 [−2, 2]2 10−4 37 29 99
Six-Hump Camel 2 [−3, 3] × [−2, 2] 10−4 105 127 128

Shubert 2 [−8, 10]2 10−4 19 15 59

in accordance with [34], that the test functions from [5] used in [18] are not suitable
for testing global optimization methods. These functions are characterized by a small
chance to miss the region of attraction of the global minimizer (see [34]). Usually,
when a real difficult black-box function of high dimension is minimized, the number
of trials that it is necessary to execute to place a trial point in the neighborhood of
the global minimizer is significantly higher. The algorithm proposed in this paper is
oriented on such a type of functions. It tries to perform a good examination of the
admissible region in order to reduce the risk of missing the global solution. Therefore,
for simple test functions of Table 1 and the stopping rule (4.2) it generated more trial
points than DIRECT or DIRECTl.

Hence, more sophisticated test problems are required for carrying out numerical
comparison among global optimization algorithms (see also the related discussion
in [19]).

Many difficult global optimization tests can be taken from real-life applications
(see, e.g., [7] and bibliographic references within it). But the lack of comprehensive
information (such as number of local minima, their locations, attraction regions, local
and global values, etc.) describing these tests creates an obstacle in verifying efficiency
of the algorithms. Very frequently it is also difficult to fix properly many correlated
parameters determining some test functions because often the sense of these param-
eters is not intuitive, especially in high dimensions. Moreover, tests may differ too
much one from another and as a result it is not possible to have many test func-
tions with similar properties. Therefore, the use of randomly generated classes of
test functions having similar properties can be a reasonable solution for a satisfactory
comparison.

Thus, in our numerical experiments we used the GKLS-generator described in [12]
(and downloadable for free from http://wwwinfo.deis.unical.it/∼yaro/GKLS.html).
It generates classes of multidimensional and multiextremal test functions with known
local and global minima. The procedure of generation consists of defining a convex
quadratic function (paraboloid) systematically distorted by polynomials. Each test
class provided by the generator includes 100 functions and is defined only by the
following five parameters:

N – problem dimension;

M – number of local minima;

f∗ – value of the global minimum;

ρ∗ – radius of the attraction region of the global minimizer;

r∗ – distance from the global minimizer to the vertex of the paraboloid.
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Fig. 5. An example of the two-dimensional function from the GKLS test class.

The other necessary parameters are chosen randomly by the generator for each
test function of the class. Note that the generator always produces the same test
classes for a given set of the user-defined parameters, allowing one to perform repeat-
able numerical experiments.

By changing the user-defined parameters, classes with different properties can be
created. For example, given fixed dimension of the functions and number of local min-
ima, a more difficult class can be created either by shrinking the attraction region of
the global minimizer or by moving the global minimizer far away from the paraboloid
vertex.

For conducting numerical experiments, we used eight GKLS classes of continu-
ously differentiable test functions of dimensions N = 2, 3, 4, and 5. The number of
local minima M was equal to 10 and the global minimum value f∗ was equal to −1.0
for all classes (these values are default settings of the generator). For each particular
problem dimension N we considered two test classes: a simple class and a difficult
one. The difficulty of a class was increased either by decreasing the radius ρ∗ of the
attraction region of the global minimizer (as for two- and five-dimensional classes), or
by increasing the distance r∗ from the global minimizer x∗ to the paraboloid vertex P
(three- and four-dimensional classes).

In Figure 5, an example of a test function from the following continuously dif-
ferentiable GKLS class is given: N = 2, M = 10, f∗ = −1, ρ∗ = 0.10, and
r∗ = 0.90. This function is defined over the region D = [−1, 1]2 and its number
is 87 in the given test class. The randomly generated global minimizer of this func-
tion is x∗ = (−0.767,−0.076) and the coordinates of P are (−0.489, 0.780). Results
for the whole class to which the function from Figure 5 belongs are given in Tables 2
and 3 on the second line.
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We stopped algorithms either when the maximal number of trials Tmax equal
to 1 000 000 was reached, or when condition (4.2) was satisfied. To describe experi-
ments, we introduce the following designations:

Ts – the number of trials performed by the method under consideration to solve
the problem number s, 1 ≤ s ≤ 100, of a fixed test class. If the method was not able
to solve a problem j in less than Tmax function evaluations, Tj equal to Tmax was
taken.

ms – the number of hyperintervals generated to solve the problem s.
The following four criteria were used to compare the methods.

Criterion C1. Number of trials Ts∗ required for a method to satisfy condition (4.2)
for all 100 functions of a particular test class, i.e.,

Ts∗ = max
1≤s≤100

Ts, s∗ = arg max
1≤s≤100

Ts.(4.3)

Criterion C2. The corresponding number of hyperintervals, ms∗ , generated by
the method, where s∗ is from (4.3).

Criterion C3. Average number of trials Tavg performed by the method during
minimization of all 100 functions from a particular test class, i.e.,

Tavg =
1

100

100∑
s=1

Ts.(4.4)

Criterion C4. Number p (number q) of functions from a class for which DIRECT
or DIRECTl executed less (more) function evaluations than the new algorithm. If Ts

is the number of trials performed by the new algorithm and T ′
s is the corresponding

number of trials performed by a competing method, p and q are evaluated as follows:

p =
100∑
s=1

δ′s, δ′s =

{
1, T ′

s < Ts,
0 otherwise;

(4.5)

q =
100∑
s=1

δs, δs =

{
1, Ts < T ′

s,
0 otherwise.

(4.6)

If p+ q < 100, then both the methods under consideration solve the remaining (100−
p− q) problems with the same number of function evaluations.

Note that results based on Criteria C1 and C2 are mainly influenced by minimiza-
tion of the most difficult functions of a class. Criteria C3 and C4 deal with average
data of a class.

Criterion C1 is of fundamental importance for the methods comparison on the
whole test class because it shows how many trials it is necessary to execute to solve
all the problems of a class. Thus, it represents the worst case results of the given
method on the fixed class.

At the same time, the number of generated hyperintervals (Criterion C2) pro-
vides an important characteristic of any partition algorithm for solving (1.1)–(1.3). It
reflects indirectly the degree of qualitative examination of D during the search for a
global minimum. The greater the number, the more information about the admissible
domain is available and, therefore, the smaller the risk should be of missing the global
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Table 2

Number of trial points for GKLS test functions (Criterion C1).

N Δ Class 50% 100%

r∗ ρ∗ DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 .90 .20 111 152 166 1159 2318 403

2 10−4 .90 .10 1062 1328 613 3201 3414 1809

3 10−6 .66 .20 386 591 615 12507 13309 2506

3 10−6 .90 .20 1749 1967 1743 >1000000 (4) 29233 6006

4 10−6 .66 .20 4805 7194 4098 >1000000 (4) 118744 14520

4 10−6 .90 .20 16114 33147 15064 >1000000 (7) 287857 42649

5 10−7 .66 .30 1660 9246 3854 >1000000 (1) 178217 33533

5 10−7 .66 .20 55092 126304 24616 >1000000 (16) >1000000 (4) 93745

Table 3

Number of hyperintervals for GKLS test functions (Criterion C2).

N Δ Class 50% 100%

r∗ ρ∗ DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 .90 .20 111 152 269 1159 2318 685

2 10−4 .90 .10 1062 1328 1075 3201 3414 3307

3 10−6 .66 .20 386 591 1545 12507 13309 6815

3 10−6 .90 .20 1749 1967 5005 >1000000 29233 17555

4 10−6 .66 .20 4805 7194 15145 >1000000 118744 73037

4 10−6 .90 .20 16114 33147 68111 >1000000 287857 211973

5 10−7 .66 .30 1660 9246 21377 >1000000 178217 206323

5 10−7 .66 .20 55092 126304 177927 >1000000 >1000000 735945

minimizer. However, algorithms should not generate many redundant hyperintervals
since this slows down the search and is therefore a disadvantage of the method.

Let us first compare the three methods on Criteria C1 and C2. Results of nu-
merical experiments with eight GKLS tests classes are shown in Tables 2 and 3. The
accuracy coefficient Δ from (4.2) is given in the second column of the tables. Ta-
ble 2 reports the maximal number of trials required for satisfying condition (4.2) for
half of the functions of a particular class (columns “50%”) and for all 100 function
of the class (columns “100%”). The notation “> 1 000 000 (j)” means that after
1 000 000 function evaluations the method under consideration was not able to solve j
problems. The corresponding numbers of generated hyperintervals are indicated in
Table 3. Since DIRECT and DIRECTl use during their work the center-sampling
partition strategy, the number of generated trial points and the number of generated
hyperintervals coincide for these methods.

Note that on half of the test functions from each class (which were the most simple
for each method with respect to the other functions of the class) the new algorithm
manifested a good performance with respect to DIRECT and DIRECTl in terms of the
number of generated trial points (see columns “50%” in Table 2). When all the func-
tions were taken in consideration (and, consequently, difficult functions of the class
were considered too), the number of trials produced by the new algorithm was much
fewer in comparison with two other methods (see columns “100%” in Table 2), ensur-
ing at the same time a substantial examination of the admissible domain (see Table 3).

In our opinion, the impossibility of DIRECT to determine global minimizers of
several test functions is related to the following fact. DIRECT found quickly the
vertex of the paraboloid (at which the function value is set by default equal to 0)
used for determining GKLS test functions. Hence, the parameter ξ was very close
to zero (due to (4.1)) and condition similar to (3.1) was satisfied for almost all small
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Table 4

Number of trial points for shifted GKLS test functions (Criterion C1).

N Δ Class 50% 100%

r∗ ρ∗ DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 .90 .20 111 146 165 1087 1567 403

2 10−4 .90 .10 911 1140 508 2973 2547 1767

3 10−6 .66 .20 364 458 606 6292 10202 1912

3 10−6 .90 .20 1485 1268 1515 14807 28759 4190

4 10−6 .66 .20 4193 4197 3462 37036 95887 14514

4 10−6 .90 .20 14042 24948 11357 251801 281013 32822

5 10−7 .66 .30 1568 3818 3011 102869 170709 15343

5 10−7 .66 .20 32926 116025 15071 454925 > 1000000(1) 77981

Table 5

Number of hyperintervals for shifted GKLS test functions (Criterion C2).

N Δ Class 50% 100%

r∗ ρ∗ DIRECT DIRECTl New DIRECT DIRECTl New

2 10−4 .90 .20 111 146 281 1087 1567 685

2 10−4 .90 .10 911 1140 905 2973 2547 3227

3 10−6 .66 .20 364 458 1585 6292 10202 5337

3 10−6 .90 .20 1485 1268 4431 14807 28759 12949

4 10−6 .66 .20 4193 4197 14961 37036 95887 73049

4 10−6 .90 .20 14042 24948 57111 251801 281013 181631

5 10−7 .66 .30 1568 3818 17541 102869 170709 106359

5 10−7 .66 .20 32926 116025 108939 454925 > 1000000 685173

hyperintervals. Moreover, many small hyperintervals around the paraboloid vertex
with function values close to one another and to the current minimal value were
created. In such a situation, DIRECT subdivided many of these hyperintervals. Thus,
at each iteration DIRECT partitioned a large number of small hyperintervals and,
therefore, was not able to go out from the attraction region of the paraboloid vertex.

Since DIRECTl at each iteration subdivides only one hyperinterval among all
hyperintervals with the same function value, it was able to determine some other local
minimizers (and the global minimizer too) in the given maximal number of trials Tmax.
Thus, DIRECTl overcame the stagnation of the search around the paraboloid vertex.
But due to the locally biased character of DIRECTl, it spent too many trials exploring
various local minimizers which were not global. For this reason, DIRECTl was unable
to find the global minimizers of four difficult five-dimensional functions.

In order to avoid stagnation of DIRECT near the paraboloid vertex and to put
DIRECT and DIRECTl in a more advantageous situation, we shifted all generated
functions, adding to their values the constant 2. In such a way the value of each
function at the paraboloid vertex became equal to 2 (and the global minimum value f∗

was increased by 2, i.e., became equal to 1). Results of numerical experiments with
shifted GKLS classes (defined in the rest by the same parameters) are reported in
Tables 4 and 5. Note that in this case DIRECT has found the global solutions of
all problems. DIRECTl has not found the global minimizer of one five-dimensional
function. It can be seen from Tables 4 and 5 that also on these test classes the new
algorithm has manifested its superiority with respect to DIRECT and DIRECTl in
terms of the number of generated trial points (Criterion C1).

Table 6 summarizes (based on the data from Tables 2–5) results (in terms of
Criterion C1) of numerical experiments performed on 1600 test functions from GKLS
and shifted GKLS continuously differentiable classes. It represents the ratio between
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Table 6

Improvement obtained by the new algorithm in terms of Criterion C1.

N Δ Class GKLS Shifted GKLS

r∗ ρ∗ DIRECT/New DIRECTl/New DIRECT/New DIRECTl/New

2 10−4 .90 .20 2.88 5.75 2.70 3.89

2 10−4 .90 .10 1.77 1.89 1.68 1.44

3 10−6 .66 .20 4.99 5.31 3.29 5.34

3 10−6 .90 .20 >166.50 4.87 3.53 6.86

4 10−6 .66 .20 >68.87 8.18 2.55 6.61

4 10−6 .90 .20 >23.45 6.75 7.67 8.56

5 10−7 .66 .30 >29.82 5.31 6.70 11.13

5 10−7 .66 .20 >10.67 >10.67 5.83 >12.82

the maximal number of trials performed by DIRECT and DIRECTl with respect to
the corresponding number of trials performed by the new algorithm. It can be seen
from Table 6 that the new method outperforms both competitors significantly on the
given test classes when Criteria C1 and C2 are considered.

Let us now compare the three methods using Criteria C3 and C4. Tables 7 and 8
report the average number of trials performed during minimization of all 100 functions
from the same GKLS and shifted GKLS classes, respectively (Criterion C3). The “Im-
provement” columns in these tables represent the ratios between the average numbers
of trials performed by DIRECT and DIRECTl with respect to the corresponding num-
bers of trials performed by the new algorithm. The symbol “>” reflects the situation
when not all functions of a class were successfully minimized by the method under
consideration in the sense of condition (4.2). This means that the method stopped
when Tmax trials had been executed during minimization of several functions of this
particular test class. In these cases, the value of Tmax equal to 1 000 000 was used in
calculations of the average value in (4.4), providing in such a way a lower estimate
of the average. As can be seen from Tables 7 and 8, the new method outperforms
DIRECT and DIRECTl also on Criterion C3.

Finally, results of comparison between the new algorithm and its two competitors
in terms of Criterion C4 are reported in Table 9. This table shows how often the
new algorithm was able to minimize each of 100 functions of a class with a smaller
number of trials with respect to DIRECT or DIRECTl. The notation “p : q” means
that among 100 functions of a particular test class there are p functions for which
DIRECT (or DIRECTl) spent fewer function trials than the new algorithm and q
functions for which the new algorithm generated fewer trial points with respect to
DIRECT (or DIRECTl) (p and q are from (4.5) and (4.6), respectively). For example,
let us compare the new method with DIRECTl on the GKLS two-dimensional class
with parameters r∗ = 0.90, ρ∗ = 0.20 (see Table 9, the cell “52 : 47” in the first line).
We can see that DIRECTl was better (was worse) than the new method on p = 52
(q = 47) functions of this class, and one problem was solved by the two methods with
the same number of trials.

It can be seen from Table 9 that DIRECT and DIRECTl behave better than
the new algorithm with respect to Criterion C4 when simple functions are minimized
(we recall that for each problem dimension the first class is simpler than the second
one). For example, for the difficult GKLS two-dimensional class and DIRECTl we
have 23 : 77 instead of 52 : 47 for the simple class. If a more difficult test class is
taken, the new method outperforms its two competitors (see the second—difficult—
classes of the dimensions N = 2, 4, and 5 in Table 9). For the three-dimensional
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Table 7

Average number of trial points for GKLS test functions (Criterion C3).

N Δ Class DIRECT DIRECTl New Improvement

r∗ ρ∗ DIRECT/New DIRECTl/New

2 10−4 .90 .20 198.89 292.79 176.25 1.13 1.66

2 10−4 .90 .10 1063.78 1267.07 675.74 1.57 1.88

3 10−6 .66 .20 1117.70 1785.73 735.76 1.52 2.43

3 10−6 .90 .20 >42322.65 4858.93 2006.82 >21.09 2.42

4 10−6 .66 .20 >47282.89 18983.55 5014.13 >9.43 3.79

4 10−6 .90 .20 >95708.25 68754.02 16473.02 >5.81 4.17

5 10−7 .66 .30 >16057.46 16758.44 5129.85 >3.13 3.27

5 10−7 .66 .20 >217215.58 >269064.35 30471.83 >7.13 >8.83

Table 8

Average number of trial points for shifted GKLS test functions (Criterion C3).

N Δ Class DIRECT DIRECTl New Improvement

r∗ ρ∗ DIRECT/New DIRECTl/New

2 10−4 .90 .20 185.83 249.25 173.43 1.07 1.44

2 10−4 .90 .10 953.34 1088.13 609.36 1.56 1.79

3 10−6 .66 .20 951.04 1434.33 683.73 1.39 2.10

3 10−6 .90 .20 2226.36 3707.85 1729.55 1.29 2.14

4 10−6 .66 .20 7110.72 14523.45 4388.22 1.62 3.31

4 10−6 .90 .20 24443.60 56689.06 12336.56 1.98 4.60

5 10−7 .66 .30 5876.99 10487.80 4048.31 1.45 2.59

5 10−7 .66 .20 59834.38 >182385.59 19109.20 3.13 >9.54

Table 9

Comparison between the new algorithm and DIRECT and DIRECTl in terms of Criterion C4.

N Δ Class GKLS Shifted GKLS

r∗ ρ∗ DIRECT :New DIRECTl : New DIRECT :New DIRECTl : New

2 10−4 .90 .20 61 : 39 52 : 47 61 : 38 54 : 46

2 10−4 .90 .10 36 : 64 23 : 77 37 : 63 23 : 77

3 10−6 .66 .20 66 : 34 54 : 46 65 : 35 62 : 38

3 10−6 .90 .20 58 : 42 51 : 49 56 : 44 54 : 46

4 10−6 .66 .20 51 : 49 37 : 63 50 : 50 44 : 56

4 10−6 .90 .20 47 : 53 42 : 58 46 : 54 43 : 57

5 10−7 .66 .30 66 : 34 26 : 74 67 : 33 42 : 58

5 10−7 .66 .20 34 : 66 27 : 73 32 : 68 32 : 68

classes DIRECT and DIRECTl were better than the new method (see Table 9). This
happens because the second three-dimensional class (even being more difficult than
the first one because the number q has increased in all the cases) continues to be too
simple. Thus, since the new method is oriented on solving difficult multidimensional
multiextremal problems, the more hard objective functions are presented in a test
class, the more pronounced is the advantage of the new algorithm.

5. A brief conclusion. The problem of global minimization of a multidimen-
sional “black-box” function satisfying the Lipschitz condition over a hyperinterval
with an unknown Lipschitz constant has been considered in this paper. A new al-
gorithm developed in the framework of diagonal approach for solving the Lipschitz
global optimization problems has been presented. In the algorithm, the partition of
the admissible region into a set of smaller hyperintervals is performed by a new effi-
cient diagonal partition strategy. This strategy allows one to accelerate significantly
the search procedure in terms of function evaluations with respect to the traditional
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diagonal partition strategies. A new technique balancing usage of the local and global
information has also been incorporated in the new method.

In order to calculate the lower bounds of f(x) over hyperintervals, possible esti-
mates of the Lipschitz constant varying from zero to infinity are considered at each
iteration of the algorithm. The procedure of estimating the Lipschitz constant evolves
the ideas of the popular method DIRECT from [18] to the case of diagonal algo-
rithms. The everywhere dense convergence of the new algorithm has been estab-
lished. Extensive numerical experiments executed on more than 1600 test functions
have demonstrated a quite satisfactory performance of the new algorithm with re-
spect to DIRECT [18] and DIRECTl [10, 11] when hard multidimensional functions
are minimized.
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Abstract. We present a new semidefinite programming formulation of sum-of-squares repre-
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1. Introduction. We discuss fast algorithms for semidefinite programs (SDPs)
derived from weighted sum-of-squares representations of polynomials, cosine polyno-
mials, and trigonometric polynomials of one variable.

Several well-known theorems state that a (generalized) polynomial f : R → R is
nonnegative on an interval or a union of intervals I,

f(t) ≥ 0, t ∈ I,(1)

if and only if it can be expressed as a weighted sum of squares

f(t) =
r∑

k=1

wk(t)(y
T
k q(t))

2,(2)

where wk(t) ≥ 0 on I. (For trigonometric polynomials, q and yk are complex-valued,
and we replace (yT

k q)
2 with |yH

k q|2, where yH
k denotes the complex conjugate transpose

of yk.) The weight functions wk, the required number of terms r, and the vector of
basis functions q depend on I and the class of functions f under consideration. Specific
examples of sum-of-squares theorems are given in sections 3.1, 4.1, and 5.1.

It is also well known that the weighted sum-of-squares property (2) can be ex-
pressed as a set of linear equations and linear matrix inequalities (LMIs) in the co-
efficients of f and a number of auxiliary matrix variables. In other words, (2) is
equivalent to a convex constraint of the form

x =

s∑
i=1

Hi(Xi), Xi � 0, i = 1, . . . , s,(3)

where x is the vector of coefficients of f with respect to some basis, Hi is a linear map-
ping, and s ≤ r [24, 25, 21]. Combining these results, we can cast the constraint (1),
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which is an infinite number of linear inequalities in the coefficients x, as a finite num-
ber of linear equations and linear matrix inequalities. Thus, we can solve a wide
variety of optimization problems over polynomials, subject to piecewise-polynomial
upper and lower bounds, as SDPs. Numerous applications of this idea can be found
in signal processing and control [26, 23, 27, 11, 34, 4, 8, 9, 18].

In this paper we propose a specific choice for the mappings Hi in (3). We show
that the weighted sum-of-squares property can be expressed in the following common
form or its complex-valued counterpart:

x =

s∑
i=1

Ai diag
(
CiXiC

T
i

)
, Xi � 0, i = 1, . . . , s,(4)

where diag(CiXiC
T
i ) denotes the vector of diagonal elements of CiXiC

T
i , and the

matrices Ai and Ci are defined in terms of discrete orthogonal transforms and their
inverses. This unified parametrization offers several advantages. First, we will see
that SDPs with constraints of the form (4), in which x and the matrices Xi are
variables, can be solved very efficiently by taking advantage of some simple prop-
erties of the diag operator. This allows one to develop a single solver that solves
SDPs derived from weighted sum-of-squares representations much more quickly than
general-purpose codes. Second, in many cases additional savings are possible by using
fast discrete transform algorithms for the multiplications with Ai and Ci. Third, the
matrices Ci can be chosen to be orthogonal, while Ai is generally a product of an
orthogonal and a diagonal matrix. These orthogonality properties are attractive from
a numerical stability viewpoint.

Our interest in numerical methods for SDPs derived from sum-of-squares represen-
tations is motivated by several recent papers. Nesterov in [24] pointed out the connec-
tions between sum-of-squares representations, semidefinite programming, and classical
results in moment theory. He also described a straightforward method for convert-
ing weighted sum-of-squares representations (2) into constraints of the form (3). We
explain the method for the case with wi(t) = 1. Let q : R → Rm+1. Suppose pi(t),
i = 0, . . . , n, are basis functions whose span contains all products qk(t)ql(t), so there
exist matrices Fi ∈ Sm+1 such that

q(t)q(t)T =

n∑
i=0

pi(t)Fi.

A function f can be expressed as a sum of squares f(t) =
∑r

k=1(y
T
k q(t))

2 for some r
and yk if and only if

f(t) =

r∑
k=1

(yT
k q(t))

2 = tr(q(t)q(t)TX) =

n∑
i=0

tr(FiX)pi(t),

where X =
∑r

k=1 yky
T
k . We see that f is a sum of squares if and only if f(t) =

x0p0(t) + · · · + xnpn(t), where

xi = tr(FiX), i = 0, . . . , n, X � 0,(5)

for some X ∈ Sm+1. Therefore, (3) holds with H1(X) = (tr(F0X), . . . , tr(FnX)),
and s = 1.
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As an example, it is well known that a nonnegative polynomial of even degree

f(t) = x0 + x1t + · · · + x2mt2m

can be expressed as a sum of squares of two polynomials of degree m or less. To derive
equivalent LMI conditions, we take q(t) = (1, t, . . . , tm), and note that

q(t)q(t)T =

2m∑
i=0

tiFi, Fi,kl =

{
1, k + l = i,
0, otherwise.

For this choice of Fi, (5) reduces to

xi =
∑

k+l=i

Xkl, i = 0, . . . , 2m, X � 0.(6)

We can conclude that f(t) is nonnegative if and only if there exists an X ∈ Sm+1 such
that (6) holds. We refer to Nesterov [24] and Faybusovich [12, 13] for more examples
and extensions of Nesterov’s approach.

SDPs derived from sum-of-squares representations involve auxiliary matrix vari-
ables and are often large scale and difficult to solve using general-purpose solvers. This
has spurred research into specialized implementations of interior-point methods. The
most successful approaches have been based on dual barrier methods [14, 16, 4] and ex-
ploit properties of the logarithmic barrier function for the dual constraints associated
with (3). Genin et al. [14] consider problems involving matrix-valued polynomials
that are nonnegative on the unit circle, the real axis, or the imaginary axis. They
note that the dual variables have low displacement rank (for example, due to Toeplitz
or Hankel structure) and use this property to reduce the cost of computing the gradi-
ent and Hessian of the dual barrier function. This results in a substantial reduction of
the complexity per iteration, as compared to a general-purpose solver. In [4] similar
gains are achieved for a more specific class of problems, involving nonnegative scalar
trigonometric polynomials. As in the method of [14], the basic idea is to evaluate
the gradient and Hessian of the dual barrier function fast. In [4] this is accomplished
by using the discrete Fourier transform (DFT) of triangular factors of the inverses of
the dual variables. The techniques discussed in this paper can be interpreted as an
extension of the DFT method of [4] to a much wider class of problems and to gen-
eral interior-point methods (primal, dual, or primal-dual). Several of the key ideas
in this paper also extend to SDPs derived from sum-of-squares characterizations of
multivariate polynomials. In this context, our techniques are related to recent work
by Löfberg and Parrilo on improving the efficiency of SDP solvers for sum-of-squares
programming (see [22], which appeared after the first submission of this paper).

Notation. The set of real symmetric n × n matrices is denoted Sn; the set of
Hermitian n × n matrices is denoted Hn. A � 0 means A is positive semidefinite;
A � 0 means A is positive definite. tr(A) is the trace of A. For a square matrix
A, diag(A) is the vector of diagonal elements of A. For an n-vector a, diag(a) is
the diagonal matrix with the elements of a on its diagonal. AT is the transpose of
the matrix A, Ā is the complex conjugate, and AH = (Ā)T is the complex conju-
gate transpose. A ◦ B denotes the Hadamard product of two matrices A and B of
the same dimensions, i.e., the matrix with elements (A ◦ B)ik = AikBik. The same
notation is used for vectors: (x ◦ y)i = xiyi. For real matrices, sqr(A) = A ◦ A;
for complex matrices, sqr(A) = A ◦ Ā. We use the notation (x0, x1, . . . , xn) for
the (column) vector [x0 x1 · · · xn]T. 1 is the vector with all components one with
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dimension determined from the context. Throughout the paper the symbol j is re-
served for the number

√
−1. We use deg(f) to denote the degree of a polynomial,

cosine polynomial, or trigonometric polynomial f . For a trigonometric polynomial
f(ω) = x0 + 2
(x1e

−jω + · · · + xne
−jnω), we define deg(f) = n if xn �= 0.

2. A class of structured SDPs. Suppose the matrices Fi in the standard form
SDP

minimize tr(DX)
subject to tr(FiX) = bi, i = 1, . . . ,m,

X � 0
(7)

can be factored as

Fi = CT diag(ai)C, i = 1, . . . ,m,(8)

where C ∈ Rq×n and ai ∈ Rq. In other words, the matrices Fi can be written as
different linear combinations of q rank-one matrices cic

T
i , where cTi is the ith row of

C. Substituting (8) in (7) we obtain

minimize tr(DX)
subject to Adiag(CXCT) = b,

X � 0,
(9)

where A ∈ Rm×q has rows aT
i . In this section we will see that if q � mn, the SDP (9)

can be solved very efficiently by taking advantage of the structure in the constraints.
In sections 3–5 we will then show that this type of structure arises in SDPs derived
from sum-of-squares representations of nonnegative polynomials.

Note that a factorization of the form (8) always exists. For example, one can use
the eigenvalue decomposition to factor Fi as Fi = Vi diag(λi)V

T
i with Vi ∈ Rn×ri ,

λi ∈ Rri , where ri = rank(Fi), and then take q =
∑

i ri,

C =

⎡
⎢⎢⎢⎣
V T

1

V T
2
...

V T
m

⎤
⎥⎥⎥⎦ , a1 =

⎡
⎢⎢⎢⎣
λ1

0
...
0

⎤
⎥⎥⎥⎦ , a2 =

⎡
⎢⎢⎢⎣

0
λ2

...
0

⎤
⎥⎥⎥⎦ , . . . , am =

⎡
⎢⎢⎢⎣

0
0
...

λm

⎤
⎥⎥⎥⎦ .(10)

For general dense matrices, with ri = n and q = mn, there is no advantage in
expressing the SDP as (9). If the matrices Fi are all low rank (ri � n), then (10)
provides a factorization (8) with q � mn. In this case our techniques are similar to
known methods for exploiting low-rank structure [6]. Our focus in this paper, however,
is on more general types of structure in which the matrices Fi are not low-rank.

2.1. Solution via interior-point methods. It will be convenient in later sec-
tions to use the problem format

minimize tr(DX) + cTy
subject to Adiag(CXCT) + By = b,

X � 0,
(11)

which includes a vector variable y ∈ Rp. The problem parameters are c ∈ Rp, D ∈ Sn,
b ∈ Rm, A ∈ Rm×q, B ∈ Rm×p, and C ∈ Rq×n. The corresponding dual SDP is

maximize bTz
subject to CT diag(ATz)C  D,

BTz = c
(12)
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with variable z ∈ Rm.
Interior-point methods for solving the pair of SDPs (11) and (12) typically require

the solution of one or two sets of linear equations of the form

−T−1ΔXT−1 + CT diag(ATΔz)C = R,(13)

Adiag(CΔXCT) + BΔy = r1,(14)

BTΔz = r2(15)

at each iteration. The variables are Δy, Δz, ΔX; the matrix T � 0 and the right-
hand sides R ∈ Sn, r1 ∈ Rm, and r2 ∈ Rp are given. We refer to these equations as
Newton equations, because they can be obtained by linearizing nonlinear equations
that characterize the central path. The matrices T and the right-hand sides R, r1, r2
change at each iteration and depend on the particular method used. In some methods
(for example, dual barrier methods) the matrix T may have additional structure that
can be exploited [5, 14, 4]. In this paper, however, we will make no assumption about
T , other than positive definiteness. The technique outlined below, therefore, applies
to a wide variety of interior-point methods, including primal methods, dual methods,
and primal-dual methods based on the Nesterov–Todd scaling [30]. Other primal-dual
methods (in particular, the methods in [3, 17, 19]) involve Newton equations with a
closely related structure.

It is well known that the number of iterations in an interior-point method is
typically in the range 10–50, almost independent of the problem dimensions, and that
the overall cost is dominated by the cost of solving the Newton equations. An efficient
method that takes advantage of the structure in the Newton equations (13)–(15) is
as follows. We first eliminate ΔX from the first equation to get

Adiag(CTCT diag(ATΔz)CTCT) + BΔy = r3,(16)

BTΔz = r2,(17)

where r3 = r1 + Adiag(CTRTCT). The 1,1-block can be written in matrix-vector
form by using the identity diag(P diag(u)QT) = (P ◦Q)u:

Adiag
(
CTCT diag(ATΔz)CTCT

)
= A

(
(CTCT) ◦ (CTCT)

)
ATΔz

= A sqr(CTCT)ATΔz.

Equations (16) and (17), therefore, reduce to m + p equations in m + p variables:[
A sqr(CTCT)AT B

BT 0

] [
Δz
Δy

]
=

[
r3
r2

]
.(18)

From the solution Δz, Δy, we find ΔX by solving (13).
To justify this approach, we can contrast it with the calculations used in common

general-purpose implementations (such as Sedumi [28] or SDPT3 [31]). In a general-
purpose code the Newton equations are also solved by eliminating ΔX and solving
the reduced Newton equations (18). The difference lies in the way the 1, 1-block
H = A sqr(CTCT)AT is assembled. In a general-purpose algorithm the linear map-
ping CT diag(ATz)C is represented in the canonical form

CT diag(ATz)C =

m∑
i=1

ziFi,
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where Fi = CT diag(ai)C and aT
i is the ith row of A. The matrix H is computed as

Hik = tr(TFiTFk), i, k = 1, . . . ,m.

These computations can be arranged in different ways, for example, by first computing
the m matrices TFi and then forming the m(m+1)/2 inner products tr(TFiTFk). If
we assume that the matrices Fi are dense and full-rank and that the problem dimen-
sions m, n, p are of the same order, this yields an O(n4) method for constructing the
coefficient matrix in (18), which can then be solved in O(n3) operations. The direct
formula H = A sqr(CTCT)AT is faster, because it requires O(n3) operations (again
assuming that all problem dimensions are of the same order). Moreover, in the appli-
cations that we describe below, the matrices A and C represent discrete transforms
or inverse discrete transforms, so fast methods often exist for multiplications with A
and C.

2.2. Extension to complex data and variables. In applications involving
trigonometric polynomials we will encounter SDPs in which some of the data and
variables are complex numbers. It is, therefore, of interest to consider the complex
counterpart of (11) and (12),

minimize tr(DX) + cTy
subject to Adiag(CXCH) + By = b,

X � 0,
(19)

maximize 
(bHz)
subject to CH diag

(

(AHz)

)
C  D,


(BHz) = c.

The primal variables are X ∈ Hn and y ∈ Rp. The dual variable is z ∈ Cm. The
problem parameters are D ∈ Hn, c ∈ Rp, A ∈ Cm×q, C ∈ Cq×n, B ∈ Cm×p, and
b ∈ Cm.

The Newton equations for (19) can be written as

−T−1ΔXT−1 + CH diag
(

(AHΔz)

)
C = R,

Adiag(CΔXCH) + BΔy = r1,


(BHΔz) = r2.

Eliminating ΔX from the first equation gives

Adiag
(
CTCH diag(
(AHΔz))CTCH

)
+ BΔy = r3,(20)


(BHΔz) = r2,(21)

where r3 = r1 + Adiag(CTRTCH). Again using the identity diag(P diag(u)QT) =
(P ◦Q)u, we can write the 1,1-block as

Adiag
(
CTCH diag(
(AHΔz))CTCH

)
= A

(
(CTCH) ◦ (CTCH)T

)

(AHΔz)

= A sqr(CTCH)
(AHΔz).

Plugging this in (20) and (21) and expanding complex data and variables in their real
and imaginary parts (A = Ar + jAi, etc.), we obtain⎡

⎣Ar sqr(CTCH)AT
r Ar sqr(CTCH)AT

i Br

Ai sqr(CTCH)AT
r Ai sqr(CTCH)AT

i Bi

BT
r BT

i 0

⎤
⎦
⎡
⎣Δzr

Δzi

Δy

⎤
⎦ =

⎡
⎣r3,rr3,i
r2

⎤
⎦ .(22)
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The extension to the case where only some of the rows of A and B (and the corre-
sponding elements of Δz) in (20) and (21) are complex is straightforward: in (22) we
simply delete the equations and variables corresponding to the zero rows in Ai and
Δzi.

3. Trigonometric polynomials. Let f be a trigonometric polynomial of degree
n or less, i.e., a function of the form

f(ω) = x̄ne
jnω + · · · + x̄1e

jω + x0 + x1e
−jω + · · · + xne

−jnω(23)

= x0 + 2
(x1e
−jω + · · · + xne

−jnω),

where x = (x0, . . . , xn) ∈ R × Cn. In this section we show that f is nonnegative on
a subinterval of [0, 2π] if and only if it satisfies an SDP constraint of the form

x =

r∑
k=1

Ak diag
(
CkXkC

H
k

)
, Xk � 0, k = 1, . . . , r,

with r = 1 or r = 2. This result follows by reformulating classical sum-of-squares
characterizations of nonnegative trigonometric polynomials via the discrete Fourier
transform.

3.1. Sum-of-squares characterizations. If the trigonometric polynomial (23)
is nonnegative and of degree n (i.e., xn �= 0), then it can be expressed as

f(ω) = |g(e−jω)|2,

where g(s) = u0 +u1s+ · · · +uns
n is a polynomial of degree n with (in general)

complex coefficients uk. This is known as the Riesz–Fejér theorem or the spectral fac-
torization theorem [29, p. 3], [20, p. 60]. Several efficient methods exist for computing
g from x; see, for example, [32, Appendix D].

The following generalization of the Riesz–Fejér theorem can be found in [2, p. 133],
[20, p. 294], [8, Theorem 2], [16, p. 44], [12, 13]. If f is nonnegative on [α− β, α+ β],
where 0 < β < π, then it can be expressed as

f(ω) = |g(e−jω)|2 + (cos(ω − α) − cosβ) |h(e−jω)|2,

where g and h are polynomials with deg(g) ≤ n and deg(h) ≤ n− 1. In other words,
f is the sum of two nonnegative trigonometric polynomials. The first trigonometric
polynomial |g(e−jω)|2 is nonnegative everywhere; the second term is the product of a
nonnegative trigonometric polynomial |h(e−jω)|2 with the trigonometric polynomial
cos(ω − α) − cosβ, which is nonnegative on [α− β, α + β].

3.2. Discrete Fourier transform. The discrete Fourier transform (DFT) offers
a convenient way to map the coefficients of a pseudopolynomial

F (s) = x−ns
−n + · · · + x−1s

−1 + x0 + x1s + · · · + xns
n(24)

to its values at equidistant points on the unit circle, and vice versa. Let WDFT ∈
CN×N be the length-N DFT matrix with N ≥ 2n + 1:

WDFT =
[
w0 w1 · · · wN−1

]
,

where

wk = (1, e−jkωN , e−j2kωN , . . . , e−j(N−1)kωN ), ωN = 2π/N.
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For the pseudopolynomial F given by (24), define

x̃ = (x0, x1, . . . , xn, 0, . . . , 0, x−n, . . . , x−1) ∈ CN ,

y =
(
F (1), F (e−jωN ), . . . , F

(
e−j(N−1)ωN

))
∈ CN .

Then it is easily verified that

y = WDFTx̃, x̃ =
1

N
WH

DFTy.

In other words, the DFT maps the coefficients of F to the values of F at N equidistant
points on the unit circle; the inverse DFT maps these sample values back to the
coefficients.

If x−k = x̄k, then F (e−jω) is the trigonometric polynomial

F (e−jω) = f(ω) = x0 + 2
(x1e
−jω + · · · + xne

−jnω)

and the relation between x = (x0, x1, . . . , xn) and y = (f(0), f(ωN ), . . . , f((N−1)ωN ))
simplifies to

x =
1

N
WHy,

where the columns of W are the first n + 1 columns of WDFT:

W =
[
w0 w1 · · · wn

]
∈ CN×(n+1).(25)

3.3. Semidefinite representations. We now combine the observations in the
previous two paragraphs to obtain SDP characterizations of nonnegative trigonometric
polynomials. Let f be the trigonometric polynomial (23). Suppose N ≥ 2n + 1, W
is defined as in (25), and W1 ∈ CN×n is the matrix formed by the first n columns of
WDFT.

Theorem 1. f is nonnegative everywhere if and only if there exists an X ∈ Hn+1

such that

x = WH diag(WXWH), X � 0.(26)

The result follows directly from the following fact: two vectors x ∈ R × Cn and
u ∈ Cn+1 satisfy

x0 + 2
(x1e
−jω + · · · + xne

−jnω) = |u0 + u1e
−jω + · · · + une

−jnω|2(27)

for all ω if and only if

x =
1

N
WH diag(WuuHWH).(28)

To see this, we simply note that the elements of diag(WuuHWH) are the right-hand
side of (27) evaluated at ω = 2πk/N for k = 0, 1, . . . , N − 1. As we observed in sec-
tion 3.2, the inverse DFT of this vector gives the (unique) coefficients of the trigono-
metric polynomial that assumes those specified values. Therefore, the coefficients x
defined in (27) are given by (28). Since every nonnegative trigonometric polynomial
can be expressed as (27), (26) holds with X = (1/N)uuH.
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Conversely, if (26) holds, then by factoring X as X = (1/N)
∑n

k=0 uku
H
k , with

uk = (uk0, uk1, . . . , ukn), we express f in the form

f(ω) =

n∑
k=0

|uk0 + uk1e
−jω + · · · + ukne

−jnω|2,

which shows f(ω) ≥ 0. This completes the proof of Theorem 1.
Theorem 2. f is nonnegative on [α− β, α + β], where 0 < β < π if and only if

there exist X1 ∈ Hn+1, X2 ∈ Hn such that

x = WH
(
diag

(
WX1W

H
)

+ d ◦ diag
(
W1X2W

H
1

))
, X1 � 0, X2 � 0,(29)

where d ∈ RN has elements dk = cos(2πk/N − α) − cosβ for k = 0, . . . , N − 1.
The proof of this theorem is similar to the proof of Theorem 1. We have

x0 + 2
(x1e
−jω + · · · + xne

−jnω)

=

∣∣∣∣∣
n∑

k=0

uke
−jkω

∣∣∣∣∣
2

+ (cos(ω − α) − cosβ)

∣∣∣∣∣
n−1∑
k=0

vke
−jkω

∣∣∣∣∣
2

(30)

for all ω if and only if

x =
1

N
WH

(
diag(WuuHWH) + d ◦ diag

(
W1vv

HWH
1

))
.

According to the extension of the Riesz–Fejér theorem mentioned in section 3.1, if f
is nonnegative on [α−β, α+β], then it can be represented as (30), so (29) holds with
X1 = (1/N)uuH, X2 = (1/N)vvH. Conversely, if (29) holds, then f can be expressed
as a sum of functions of the form (30), so it is clearly nonnegative on [α− β, α + β].
This proves Theorem 2.

The constraint (26) is better known in a different form [14, 4, 11]. Let Ei be the

ith “shift” matrix, i.e., Ei ∈ R(n+1)×(n+1) with elements

Ei,kl =

{
1, k − l = i,
0, otherwise.

It is easily seen that Ei = (1/N)WH diag(wi)W , where W and wi are defined in (25)
with N ≥ 2n + 1. Therefore, (26) holds if and only if

xi = wH
i diag(WXWH) = tr

(
diag(wi)

HWXWH
)

= N tr
(
ET

i X
)

= N
∑

k−l=i

Xkl.

Hence the linear mapping H : Hn+1 → R × Cn defined by

H(X) =
1

N
WH diag(WXWH)(31)

can also be expressed as

H(X) =
(
tr

(
ET

0 X
)
, tr

(
ET

1 X
)
, . . . , tr

(
ET

nX
))
.(32)

We obtain the well-known result that f(ω) ≥ 0 if and only if there exists an X � 0
such that xi =

∑
k−l=i Xkl for i = 0, . . . , n.
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The adjoint of H (with respect to the inner products 
(xHz) on R × Cn and
tr(XZ) on Hn+1) can be derived using either one of the two expressions for H.
From (32),

Hadj(z) =
1

2

⎡
⎢⎢⎢⎣

2z0 z̄1 · · · z̄n
z1 2z0 · · · z̄n−1

...
...

. . .
...

zn zn−1 · · · 2z0

⎤
⎥⎥⎥⎦ ,(33)

the Hermitian Toeplitz matrix with first column (z0, z1/2, . . . , zn/2). From (31),


(zHH(X)) =
1

N

(zHWH diag(WXWH))

=
1

N


(
tr

(
diag(Wz)HWXWH

))
=

1

N
tr((WH diag(
(Wz))W )X),

so

Hadj(z) =
1

N
WH diag(
(Wz))W.

Although it is not immediately clear that this is equal to the Toeplitz matrix (33), it
is sufficient to note that the convolution of z with an arbitrary y ∈ Cn+1 is given by

1

N
WH((Wz) ◦ (Wy)) =

1

N
WH diag(Wz)Wy.

The matrix (1/N)WH diag(Wz)W is, therefore, the lower triangular Toeplitz matrix
with (z0, z1, . . . , zn) as its first column. Adding the complex conjugate transpose and
dividing by 2 gives

1

2N
WH

(
diag(Wz) + diag(Wz)H

)
W =

1

N
WH diag(
(Wz))W,

so this is indeed the Hermitian Toeplitz matrix with first column (z0, z1/2, . . . , zn/2).

4. Cosine polynomials. In this section we consider semidefinite formulations
of the constraint

f(ω) = x0 + x1 cosω + · · · + xn cosnω ≥ 0, ω ∈ [α, β],

where x ∈ Rn+1 and 0 ≤ α < β ≤ π. This is in fact a special case of the constraints
considered in the previous section, since f is a trigonometric polynomial with real
coefficients. For example, using Theorem 1, we can say that f(ω) ≥ 0 for all ω if and
only if

(x0, x1/2, . . . , xn/2) = WH diag(WXWH)

for some X � 0, where N ≥ 2n+ 1 and W is formed by the first n+ 1 columns of the
length-N DFT matrix. The purpose of this section is to show that simpler semidefinite
parametrizations, using smaller matrices, can be obtained for cosine polynomials.
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4.1. Sum-of-squares characterizations. Let f be a cosine polynomial of de-
gree n, i.e.,

f(ω) = x0 + x1 cosω + · · · + xn cosnω,(34)

with x ∈ Rn+1 and xn �= 0. If f is nonnegative on [α, β], where 0 ≤ α < β ≤ π, then
it can be expressed as

f(ω) =

{
g(ω)2 + (cosω − cosβ)(cosα− cosω)h(ω)2, n even,
(cosω − cosβ)g(ω)2 + (cosα− cosω)h(ω)2, n odd,

where g and h are cosine polynomials with deg(g) ≤ �n/2�, deg(h) ≤ �(n − 1)/2�.
This result can be derived from the characterization of nonnegative polynomials on
[−1, 1] (see section 5.1) by making a change of variables t = cosω.

If α = 0, β = π, i.e., f is nonnegative everywhere, these expressions can be
simplified. If n = 2m, we have

f(ω) = g(ω)2 + (1 − cos2 ω)h(ω)2

= g(ω)2 + (sinω)2h(ω)2

= g(ω)2 + h̃(ω)2,(35)

where h̃ is of the form h̃(ω) = v1 sinω+ v2 sin 2ω+ · · ·+ vm sinmω. This follows from
the fact that the function sin kω/ sinω is a cosine polynomial of degree k − 1.

If n = 2m + 1, we have

f(ω) = (cosω + 1)g(ω)2 + (1 − cosω)h(ω)2

= 2(cos(ω/2))2g(ω)2 + 2(sin(ω/2))2h(ω)2

= g̃(ω)2 + h̃(ω)2,(36)

where g̃ and h̃ have the form

g̃(ω) =

m∑
k=0

uk cos((k + 1/2)ω), h̃(ω) =

m∑
k=0

vk sin((k + 1/2)ω).

This follows from the fact that cos((k+1/2)ω)/ cos(ω/2) and sin((k+1/2)ω)/ sin(ω/2)
are cosine polynomials of degree k.

4.2. Discrete cosine transform. The matrices

VDCT =

⎡
⎢⎢⎢⎢⎢⎣

1 1 · · · 1 1
1 cos(π/N) · · · cos((N − 1)π/N) cos(π)
1 cos(2π/N) · · · cos(2(N − 1)π/N) cos(2π)
...

...
...

...
1 cos(π) · · · cos((N − 1)π) cos(Nπ)

⎤
⎥⎥⎥⎥⎥⎦ ∈ SN+1

and

WDCT =
2

N
DVDCTD,

where D = diag(1/2, 1, 1, . . . , 1, 1, 1/2), are inverses:

WDCTVDCT = I(37)
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(see, for example, [7, p. 124]). The mapping VDCTDu is sometimes referred as the
discrete cosine transform (DCT) of u.

Suppose N ≥ n, and let W and V be the matrices formed by taking the first
n + 1 columns of WDCT and VDCT, respectively. These matrices satisfy WTV = I as
a consequence of (37) and the symmetry of WDCT. The matrix V maps the coefficients
x0, . . . , xn of the cosine polynomial (34) to its values at ω = kπ/N , k = 0, . . . , N .
Multiplying with WT maps these sample values to the coefficients. In other words, if
y = (f(0), f(π/N), . . . , f((N − 1)π/N), f(π)), then

y = V x, x = WTy.

4.3. Semidefinite representations. We now use the DCT and the sum-of-
squares theorems in section 4.1 to express constraints on a cosine polynomial

f(ω) = x0 + x1 cosω + · · · + xn cosnω

in semidefinite form. Assume N ≥ n and define ωN = π/N . As in section 4.2,

W ∈ R(N+1)×(n+1) denotes the matrix formed with the first n+ 1 columns of WDCT.
Theorem 3. f(ω) ≥ 0 on [α, β] if and only if there exist X1 ∈ Sm1+1 and

X2 ∈ Sm2+1 such that

x = WT
(
d1 ◦ diag

(
V1X1V

T
1

)
+ d2 ◦ diag

(
V2X2V

T
2

))
, X1 � 0, X2 � 0,(38)

where m1 = �n/2�, m2 = �(n− 1)/2�, and d1, d2 ∈ RN+1 are defined as

d1,k =

{
1, n even,
cos kωN − cosβ, n odd,

d2,k =

{
(cos kωN − cosβ)(cosα− cos kωN ), n even,
cosα− cos kωN , n odd

for k = 0, . . . , N . The columns of V1 ∈ R(N+1)×(m1+1) and V2 ∈ R(N+1)×(m2+1) are
the first m1 + 1, respectively, m2 + 1, columns of VDCT.

We prove the theorem for n even (n = 2m). By the sum-of-squares characteriza-
tion in section 4.1, if f is nonnegative on [α, β], then it can be expressed as

f(ω) = g(ω)2 + (cosω − cosβ)(cosα− cosω)h(ω)2(39)

for some cosine polynomials

g(ω) =

m∑
k=0

uk cos kω, h(ω) =

m−1∑
k=0

vk cos kω.

From section 4.2, we can express the right-hand side of (39) as a cosine polynomial
by computing the values at ω = kπ/N , k = 0, . . . , N , which gives the vectors

d1 ◦ diag
(
V1uu

TV T
1

)
+ d2 ◦ diag

(
V2vv

TV T
2

)
,

and then multiplying on the left with WT. In other words, (39) is equivalent to

x = WT
(
d1 ◦ diag

(
V1uu

TV T
1

)
+ d2 ◦ diag

(
V2vv

TV T
2

))
.
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Therefore, (38) holds with X1 = uuT and X2 = vvT. Conversely, if (38) holds, with
X1 and X2 of rank greater than 2, then f is a sum of cosine polynomials that are
nonnegative on [α, β], so it is also nonnegative.

If α = 0 and β = π, we can start from (35) and (36) and express the semidefinite
constraints in a slightly simpler form.

Theorem 4. f(ω) ≥ 0 everywhere if and only if there exist X1 ∈ Sm1+1, X2 ∈
Sm2+1 such that

x = WT
(
diag

(
V1X1V

T
1

)
+ diag

(
V2X2V

T
2

))
, X1 � 0, X2 � 0,(40)

where m1 = �n/2�, m2 = �(n− 1)/2�. If n is even, we define V1 ∈ R(N+1)×(m1+1) as
the matrix formed by the first m1 + 1 columns of VDCT and

V2 =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0
sin(ωN ) sin(2ωN ) · · · sin(mωN )
sin(2ωN ) sin(4ωN ) · · · sin(2mωN )

...
...

...
sin(NωN ) sin(2NωN ) · · · sin(mNωN )

⎤
⎥⎥⎥⎥⎥⎦ ∈ R(N+1)×(m2+1).

If n is odd, we define V1 and V2 as

V1 =

⎡
⎢⎢⎢⎢⎢⎣

1 · · · 1
cos(ωN/2) · · · cos((m + 1/2)ωN )
cos(ωN ) · · · cos(2(m + 1/2)ωN )

...
...

cos(NωN/2) · · · cos(N(m + 1/2)ωN )

⎤
⎥⎥⎥⎥⎥⎦ ∈ R(N+1)×(m1+1),

V2 =

⎡
⎢⎢⎢⎢⎢⎣

0 · · · 0
sin(ωN/2) · · · sin((m + 1/2)ωN )
sin(ωN ) · · · sin(2(m + 1/2)ωN )

...
...

sin(NωN/2) · · · sin(N(m + 1/2)ωN )

⎤
⎥⎥⎥⎥⎥⎦ ∈ R(N+1)×(m2+1).

Note that the matrices X1 and X2 in the constraints (38) and (40) have dimension
roughly n/2, as opposed to the constraints for general trigonometric polynomials
of degree n given in section 3, which involve matrix variables of size n. It is also
interesting to note that the matrices V1, V2, and W are orthogonal or nearly orthogonal
(i.e., have a condition number close to 1).

4.4. Example: Linear-phase Nyquist filter. We consider the lowpass filter
design problem

minimize t
subject to −t ≤ H(ω) ≤ t, ωs ≤ ω ≤ π,

(41)

in which H is the frequency response of a linear-phase Nyquist-M filter [32, sec-
tion 4.6]:

H(ω) = h0 + h1 cosω + · · · + hn cosnω

with

h0 = 1/M, hkM = 0, k = 1, 2, . . . , �n/M�.(42)
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Fig. 1. Frequency response of a linear-phase Nyquist-5 filter of length 51 and stopband edge
ωs = 1.1π/5 = 0.69.

The variables in (41) are t and the n−�n/M� coefficients hi that are not determined
by (42). Since H is a cosine polynomial, we can apply Theorem 3 to formulate this
problem as an SDP,

minimize t
subject to h + te0 = WT

(
d1 ◦ diag

(
V1X1V

T
1

)
+ d2 ◦ diag

(
V2X2V

T
2

))
,

−h + te0 = WT
(
d1 ◦ diag 1

(
V1X3V

T
1

)
+ d2 ◦ diag

(
V2X4V

T
2

))
,

X1 � 0, X2 � 0, X3 � 0, X4 � 0,

(43)

where e0 = (1, 0, . . . , 0) ∈ Rn+1 and W , d1, d2, V1, V2 are defined as in Theorem 3
with α = ωs, β = π. The variables are t, the n − �n/M� unknown entries of h =
(h0, h1, . . . , hn), and four symmetric matrices Xi, which have dimension roughly n/2.
Figure 1 shows an example with n = 50, M = 5, ωs = 1.1π/M .

5. Real polynomials.

5.1. Sum-of-squares characterizations. Let f be a polynomial of degree n
with real coefficients. If f is nonnegative on R, then n is even and f can be expressed
as

f(t) = g(t)2 + h(t)2,(44)

where deg(g) ≤ n/2 and deg(h) ≤ n/2. If f is nonnegative on [a,∞), then f can be
expressed as

f(t) = g(t)2 + (t− a)h(t)2,

where deg(g) ≤ �n/2� and deg(h) ≤ �(n− 1)/2�. Finally, if f is nonnegative on [a, b],
where a < b, then it can be expressed as

f(t) =

{
g(t)2 + (t− a)(b− t)h(t)2, n even,
(t− a)g(t)2 + (b− t)h(t)2, n odd,

(45)

where g and h are polynomials with deg(g) ≤ �n/2� and deg(h) ≤ �(n− 1)/2�. This
last result is known as the Markov–Lukács theorem [29, section 1.21], [20, section 3.2].
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5.2. Discrete polynomial transforms. Let pk(t), k = 0, 1, . . ., be a system of
orthogonal and normalized polynomials on a bounded or unbounded interval I ⊆ R
with respect to a nonnegative weight function w(t):∫

I

pk(t)pl(t)w(t) dt =

{
0, k �= l,
1, k = l.

The kth polynomial pk has degree k with a positive leading coefficient ak. It is well
known that orthogonal polynomials satisfy a three-term recursion

pk+1(t) = (αkt− βk)pk(t) − γkpk−1(t),(46)

where we define p−1(t) = 0. The coefficients αk, γk are positive and satisfy

αk =
ak+1

ak
> 0,

αkγk+1

αk+1
= 1.(47)

The recursion (46) for k = 0, . . . , N can be written in matrix-vector form as

tp(t) = Jp(t) + (1/αN )pN+1(t)eN ,(48)

where p(t) = (p0(t), p1(t), . . . , pN (t)), eN = (0, 0, . . . , 0, 1) ∈ RN+1, and

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

β0/α0 1/α0 0 · · · 0 0
γ1/α1 β1/α1 1/α1 · · · 0 0

0 γ2/α2 β2/α2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · βN−1/αN−1 1/αN−1

0 0 0 · · · γN/αN βN/αN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

It follows from (47) that J is symmetric. Another well-known property of orthogonal
polynomials is that pk has exactly k distinct roots in the interior of I [10, p. 236].
From (48) we see that this implies

λip(λi) = Jp(λi), i = 0, . . . , N,

where λ0, λ1, . . . , λN are the roots of pN+1. In other words p(λi) is an eigenvector
of J with eigenvalue λi [15].

These properties provide an efficient method for computing the matrix

VDPT =

⎡
⎢⎢⎢⎣
p0(λ0) p1(λ0) · · · pN (λ0)
p0(λ1) p1(λ1) · · · pN (λ1)

...
...

...
p0(λN ) p1(λN ) · · · pN (λN )

⎤
⎥⎥⎥⎦ ∈ R(N+1)×(N+1)

directly from the coefficients αk, βk, γk in the recursion (46). Let

J = Qdiag(λ)QT

be the eigenvalue decomposition of J with normalized eigenvectors (QQT = QTQ = I)
and the signs in the first row of Q chosen to be positive. The ith column of Q is then
a positive multiple of p(λi), and therefore

VDPT = DQT
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with D positive diagonal. The matrix D is easily determined by dividing the first
column of VDPT, which is a constant p0(t) = (

∫
w(t) dt)−1/2, by the elements in the

first row qT
1 of Q: D = p0(t)diag(q1)

−1. It follows that

V T
DPTD

−2VDPT = I,

so the matrix

WDPT = D−1QT = D−2VDPT(49)

satisfies WT
DPTVDPT = I. The matrices VDPT and WDPT thus define a pair of forward

and inverse “discrete polynomial transforms” [7, section 8.5].
Now suppose N ≥ n, and let W and V be the matrices formed by the first n + 1

columns of WDPT and VDPT. Since VDPT and WT
DPT are inverses, we have WTV = I.

The linear transformations V x and WTy map the coefficients of the polynomial

f(t) = x0p0(t) + x1p1(t) + · · · + xnpn(t)

to N + 1 values at λ0, . . . , λN and vice versa: If

y = (f(λ0), f(λ1), . . . , f(λN )),

then y = V x and x = WTy.

5.3. Semidefinite representations. We can apply the discrete transform asso-
ciated with the orthogonal polynomials pk, combined with the sum-of-squares results
in section 5.1, to derive LMI conditions for nonnegativity of the polynomial

f(t) = x0p0(t) + x1p1(t) + · · · + xnpn(t).

Assume N ≥ n. Let W ∈ R(N+1)×(n+1) be the matrix formed by the first n + 1
columns of WDPT in (49), and let λ = (λ0, λ1, . . . , λN ) be the vector of zeros of pN+1.

Theorem 5. f(t) ≥ 0 for t ∈ R if and only if n is even and there exists an

X ∈ Sn/2+1 such that

x = WT diag
(
V1XV T

1

)
, X � 0.

Here V1 is the matrix formed by the first n/2 + 1 columns of VDPT.
Theorem 6. f(t) ≥ 0 on [a,∞) if and only if there exist X1 ∈ Sm1+1 and

X2 ∈ Sm2+1 such that

x = WT
(
diag

(
V1X1V

T
1

)
+ (λ− a) ◦ diag

(
V2X2V

T
2

))
, X1 � 0, X2 � 0.

Here m1 = �n/2�, m2 = �(n − 1)/2�, and V1 and V2 are the matrices formed by the
first m1 + 1, respectively, m2 + 1, columns of VDPT.

Theorem 7. f(t) ≥ 0 on [a, b] if and only if there exist X1 ∈ Sm1+1, X2 ∈ Sm2+1

such that

x = WT
(
d1 ◦ diag(V1X1V

T
1 ) + d2 ◦ diag(V2X2V

T
2 )

)
, X1 � 0, X2 � 0.

Here m1 = �n/2�, m2 = �(n − 1)/2�, and V1 and V2 are the matrices formed by the
first m1 + 1, respectively, m2 + 1, columns of VDPT. The vectors d1, d2 ∈ RN+1 are
defined as

d1 =

{
1, n even,
λ− a1, n odd,

d2 =

{
(λ− a1) ◦ (b1 − λ), n even,
b1 − λ, n odd.
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Fig. 2. Minimax magnitude fit of a rational transfer function to 25 data points.

The proofs follow exactly the same pattern as in sections 3.3 and 4.3, and are
omitted.

There exist several other interesting choices for the matrices V1, V2, and W . First,
we can define V1 and V2 as the first columns of the matrix QT (instead of the first
columns of VDPT = DQT) if we change the definition of W accordingly and construct
W from the first columns of DQT. With this choice, V1 and V2 are orthogonal.
Alternatively, we can define W to be the first columns of the matrix QT, and redefine
V1 and V2 as the first columns of D1/2QT. With this choice W is orthogonal.

Second, we can note that the basis polynomials used in the definitions of V1 and
V2 need not be the same as in the definition of W . This follows from the fact that
in (44)–(45), we can use a different basis to represent the polynomials f , g, and h.
We could, therefore, define V1 and V2 as generalized Vandermonde matrices with k, l
elements ql(tk), where tk are the zeros of pN , and q0, q1, . . . is any polynomial basis.
This is equivalent to replacing the matrices Vk by VkTk, where Tk is nonsingular. In
particular, we can replace V1 and V2 with orthogonal matrices that have the same
column spaces.

5.4. Example: Minimax magnitude fit of rational transfer function. We
consider the problem of fitting the magnitude of a rational transfer function

G(s) =
a0 + a1s + · · · + ans

n

b0 + b1s + · · · + bmsm

to data points, i.e., choosing the (real) coefficients ai, bi so that |G(jωk)|2 ≈ γk for
k = 1, . . . ,K, where ωk and γk are given. Using a minimax criterion and introducing
an auxiliary variable δ we can formulate this problem as

minimize δ
subject to −δ ≤ |G(jωk)|2 − γk ≤ δ, k = 1, . . . ,K.

Figure 2 shows an example with n = 6, m = 8, and K = 25.
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This problem can be posed as a quasi-convex optimization problem. We first
express the magnitude squared of the transfer function as

|G(jω)|2 =
f1(ω

2)

f2(ω2)
,

where f1 and f2 are the real polynomials,

f1(t) = ae(t)
2 + tao(t)

2, f2(t) = be(t)
2 + tbo(t)

2(50)

with

ae(t) =

�n/2�∑
k=0

a2k(−t)k, ao(t) =

�(n−1)/2�∑
k=0

a2k+1(−t)k,

be(t) =

�m/2�∑
k=0

b2k(−t)k, bo(t) =

�(m−1)/2�∑
k=0

b2k+1(−t)k.

Clearly f1(t) ≥ 0 and f2(t) ≥ 0 for t ≥ 0. Conversely, if f1 and f2 are nonnegative
on the nonnegative real axis, then by the result mentioned in section 5.1, they can be
expressed as (50). The fitting problem is therefore equivalent to

minimize δ
subject to (γk − δ)f2(ω

2
k) ≤ f1(ω

2
k) ≤ (γk + δ)f2(ω

2
k), k = 1, . . . ,K,

f1(t) ≥ 0, f2(t) ≥ 0 for t ≥ 0.
(51)

The variables are δ and the coefficients of the polynomials

f1(t) = x0p0(t) + x1p1(t) + · · ·+ xnpn(t), f2(t) = p0(t) + y1p1(t) + · · ·+ ympm(t)

for some choice of orthogonal basis polynomials pk(t). We normalize the first coeffi-
cient of f2 to rule out the trivial solution f1(t) = f2(t) = 0. (Alternatively, one might
prefer to replace f2(t) ≥ 0 with f2(t) ≥ ε for some small positive ε, which would also
ensure that there are no poles on the imaginary axis.)

Problem (51) can be solved via bisection on δ. In each bisection step we fix δ and
determine whether the constraints are feasible or not. This feasibility problem can be
cast as an SDP feasibility problem,

(γk − δ)f2(ω
2
k) ≤ f1(ω

2
k) ≤ (γk + δ)f2(ωk)

2, k = 1, . . . ,K,

x = WT
(
diag

(
V1X1V

T
1

)
+ λ ◦ diag

(
V2X2V

T
2

))
,

y = W̃T
(
diag

(
Ṽ1X̃1Ṽ

T
1

)
+ λ̃ ◦ diag

(
Ṽ2X̃2Ṽ

T
2

))
,

X1 � 0, X2 � 0, X̃1 � 0, X̃2 � 0,

(52)

where x = (x0, x1, . . . , xn) and y = (1, y1, . . . , ym). The variables are xk, yk and the
matrices Xi and X̃i. The matrices W , V1, V2 and the vector λ are defined as in
Theorem 6 with a = 0. The matrices W̃ , Ṽ1, Ṽ2 and λ̃ are defined similarly but with
n replaced by m.
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6. Numerical examples. The SDP characterizations of nonnegative polynomi-
als derived in the previous sections can be expressed in the following common form. A
(trigonometric, cosine, real) polynomial with coefficients x is nonnegative on a given
interval if and only if there exist Hermitian matrices Xk such that

x =

s∑
k=1

Ak diag(CkXkC
H
k ), Xk � 0, k = 1, . . . , s.

In the case of cosine polynomials or real polynomials, the matrices Ak, Ck and the
variables x and Xk are real. This representation allows us to formulate a wide variety
of optimization problems involving polynomials as SDPs of the form

minimize cTy

subject to

si∑
k=1

Aik diag(CikXikC
H
ik) + Biy = bi, i = 1, . . . , L,

Xik � 0, k = 1, . . . , si, i = 1, . . . , L.

(53)

The variables are y ∈ Rp and the Hermitian matrices Xik. Each of the L constraints
expresses a nonnegativity condition on a polynomial with coefficients bi −Biy.

The SDP (53) is a special case of (11) or (19) if we interpret X as a block-diagonal
matrix with diagonal blocks Xik, and define A, C, and B as block matrices constructed
from Aik, Cik, and Bi. In this section we present numerical results for a primal-dual
interior-point method that uses the fast method for solving the Newton equations
described in section 2.1. We first provide some details of the implementation.

6.1. Implementation. All examples are instances of the SDP (53) with real
data and variables. Applying the method of section 2.1 to an SDP with block-diagonal
structure (53) leads to a reduced Newton system (18),⎡

⎢⎢⎢⎢⎢⎣

H1 0 · · · 0 B1

0 H2 · · · 0 B2

...
...

. . .
...

...
0 0 · · · HL BL

BT
1 BT

2 · · · BT
L 0

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

Δz1

Δz2

...
ΔzL
Δy

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

r3,1
r3,2
...

r3,L
r2

⎤
⎥⎥⎥⎥⎥⎦ ,(54)

where

Hi =

si∑
k=1

Aik sqr
(
CikTikC

T
ik

)
AT

ik.

When solving (54), we can exploit the “block-arrow” structure by first eliminating
the variables Δzi and then solving a positive definite set of linear equations in the
variables Δy: (

L∑
i=1

BT
i H

−1
i Bi

)
Δy =

L∑
i=1

BT
i H

−1
i r3,i − r2.(55)

From the solution Δy we obtain Δzi by solving HiΔzi = r3,i −BiΔy.
In the numerical experiments described below we implemented this idea as follows.

We compute the Hadamard products sqr(CikTikC
T
ik) and factor them as

sqr
(
CikTikC

T
ik

)
= VikV

T
ik .
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The eigenvalue decomposition is used for this purpose, since the matrix sqr(CikTikC
T
ik)

is often rank-deficient. We then factor the matrices

Hi =

si∑
k=1

AikVikV
T
ikA

T
ik

as Hi = RT
i Ri via QR factorizations of the matrices

[
Ai1Vi1 Ai2Vi2 · · · AiriViri

]T
= QiRi.

This is more stable than using a Cholesky factorization of Hi, since it allows us to
compute the triangular factors Ri without explicitly forming Hi. Equation (55) now
reduces to (

L∑
i=1

BT
i R

−1
i R−T

i Bi

)
Δy =

L∑
i=1

BT
i R

−1
i R−T

i r3,i − r2.

To improve the numerical stability, we again avoid forming the coefficient matrix and
use a QR factorization[

BT
1 R

−1
1 BT

2 R
−1
2 · · · BT

LR
−1
L

]T
= QR

instead. Given Q and R we can find Δy by solving

RΔy = QTr̃3 −R−T r2,

where

r̃3 =
[(
R−T

1 r3,1
)T (

R−T
2 r3,2

)T · · ·
(
R−T

L r3,L
)T]T

.

Except for the algorithm used for solving the Newton equations, the code is
a rudimentary implementation of an SDPT3-style path-following method [30, 31],
following the outline given in the appendix of [33]. Infeasible starting points are used:
we take y = 0, Xik = I in the primal problem; in the dual problem

maximize
L∑

i=1

bTi zi

subject to CT
ik diag

(
AT

ikzi
)
Cik + Zik = 0, Zi � 0, k = 1, . . . , si, i = 1, . . . , L,

L∑
i=1

BT
i zi = c

we take Zik = I and for zi the least-norm solution of the last equality constraint. The
stopping criterion is based on the following quantities.

• The duality gap

ηabs =

L∑
i=1

si∑
k=1

tr(XikZik).

(This is only truly the duality gap when the primal and dual iterates are
feasible.)
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Fig. 3. Progress of the primal-dual method for the design of a lowpass Nyquist-5 filter. The left
plot shows the duality gap versus iteration number. The right plot shows the primal residual (solid
line) and the dual residual (dashed line).

• The relative duality gap

ηrel =

⎧⎪⎨
⎪⎩
−ηabs/c

Ty, cTy < 0,

ηabs/
∑

i b
T
i zi,

∑
i b

T
i zi > 0,

∞, otherwise.

• The primal residual

rpri = max
i=1,...,L

‖bi −Biy −
∑si

k=1 Aik diag
(
CikXikC

T
ik

)
‖2

max{1, ‖bi‖2}
.

• The dual residual

rdu = max

{
‖c−

∑L
i=1 B

T
i zi‖2

max{1, ‖c‖2}
, max

i,k
‖Sik + CT

ik diag
(
AT

ikzi
)
Cik‖2

}
.

In these expressions, ‖ · ‖2 denotes the Euclidean norm for vectors and the matrix
norm (maximum singular value norm) for matrices. The algorithm terminates if

rpri ≤ εfeas and rdu ≤ εfeas and (ηabs ≤ εgap or ηrel ≤ εgap) ,

where εfeas = 10−7 and εgap = 10−8. The code was implemented in MATLAB ver-
sion 6.5.1 on a 2.4 GHz Pentium IV PC with 1 GB of memory.

6.2. Linear-phase FIR filter design. We first illustrate the behavior of the
algorithm with the example problem of section 4.4. Figure 3 shows the progress of
the algorithm applied to the SDP (43) with the same parameters as used for Figure 1.
The algorithm terminates after 19 iterations with a CPU time of 0.05 s per iteration.

6.3. Minimax magnitude fit of transfer function. The example in sec-
tion 5.4 was solved by bisection on δ. The optimal value of δ was computed with an
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Fig. 4. Progress of the primal-dual method applied to the phase-I problem in the last bisection
step for computing the function in Figure 2. The left plot shows the duality gap versus iteration
number. The right plot shows the primal residual (solid line) and the dual residual (dashed line).

absolute accuracy of 10−5. We used the basis of Laguerre polynomials to construct the
SDP constraints (52). The feasibility problems (for fixed δ) were solved by applying
the interior-point method to the “phase-I” problem

minimize u
subject to (γk − δ)f2

(
ω2
k

)
− u ≤ f1(ω

2
k) ≤ (γk + δ)f2(ωk)

2 + u, k = 1, . . . ,K,

x = WT
(
diag(V1X1V

T
1 ) + λ ◦ diag

(
V2X2V

T
2

))
,

y = W̃T
(
diag

(
Ṽ1X̃1Ṽ

T
1

)
+ λ̃ ◦ diag

(
Ṽ2X̃2Ṽ

T
2

))
,

X1 � 0, X2 � 0, X̃1 � 0, X̃2 � 0

(56)

with variables u, x, y, Xi, and X̃i.

Figure 4 shows the convergence of the primal-dual path-following method applied
to the SDP (56) in the final bisection step. Although a primal feasible point for
problem (56) is known, the algorithm was started at the default infeasible starting
points. Instead of using the stopping criterion based on the duality gap described
in section 6.1, we terminated the interior-point algorithm as soon as the sign of the
optimal value of (56) was known.

We observed that the convergence of the algorithm for this example problem was
much more sensitive to the choice of problem parameters than for the other numerical
examples. Although the stability of our interior-point implementation certainly leaves
room for improvement, optimization problems over real polynomials on unbounded
intervals appear to be much more difficult to solve than problems with cosine poly-
nomials.

6.4. Magnitude FIR filter design. The next example is a family of a lowpass
filter design problem similar to examples described in [1] and [8]. The design variables
are the (real) filter coefficients hi of an FIR filter of length n+1 with transfer function

H(ω) = h0 +

n∑
k=0

hke
−jkω.
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Fig. 5. Frequency response of lowpass filter with length 102. The filter minimizes the stopband
energy subject to the upper and lower bounds shown in dashed lines.

The objective is to minimize the stopband energy∫ π

ωs

|H(ω)|2 dω.

The constraints include upper and lower bounds on the filter magnitude |H(ω)| in the
passband, and an upper bound on the magnitude in the stopband:

1/δp ≤ |H(ω)|2 ≤ δp, 0 ≤ ω ≤ ωp, |H(ω)|2 ≤ δs, ωs ≤ ω ≤ π.

This problem can be formulated as a convex problem by expressing the constraints in
terms of Y (ω) = |H(ω)|2, which is a cosine polynomial

Y (ω) = y0 + y1 cosω + · · · + yn cosnω.

The resulting problem is

minimize

∫ π

ωs

Y (ω) dω

subject to 1/δp ≤ Y (ω) ≤ δp, 0 ≤ ω ≤ ωp,
Y (ω) ≤ δs, ωs ≤ ω ≤ π,
Y (ω) ≥ 0, 0 ≤ ω ≤ π,

(57)

with variables y ∈ Rn+1. From the optimal y, the filter coefficients hk can be com-
puted via spectral factorization [34].

Since Y is a cosine polynomial, problem (57) can be cast as an SDP of the
form (53) as explained in section 4. The problem dimensions are L = 4 and si = 2
for i = 1, . . . , L. The primal variables are the n + 1-vector y, and eight symmetric
matrices Xik of size �n/2� or �(n− 1)/2�.

We first consider an instance with parameters

n = 101, δp = 1.05, δs = 0.001, ωp = 0.2π, ωs = 0.23π.

Figure 5 shows the specifications and the optimal filter magnitude. Figure 6 shows the
duality gap and the relative primal and dual residuals versus the iteration number.
The code terminates after 20 iterations and requires 0.41 s per iteration.
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Fig. 6. Progress of a primal-dual method for the lowpass filter design problem. The left plot
shows the duality gap versus iteration number. The right plot shows the primal residual (solid line)
and the dual residual (dashed line).

Table 1

Numerical results for a family of magnitude filter design problems. The first three columns
specify the design parameters. The last two columns show the CPU time per iteration in seconds for
a special-purpose interior-point implementation that exploits problem structure and for the general-
purpose solver SDPT3.

Design parameters Time per iteration (s)
n ωs δs Fast impl. SDPT3

25 0.300π 5.62 × 10−3 0.04 0.17
50 0.280π 3.16 × 10−3 0.10 1.81
75 0.270π 1.00 × 10−3 0.21 5.78
100 0.260π 1.00 × 10−3 0.41 14.2
125 0.255π 1.00 × 10−3 0.71 29.0
150 0.250π 1.00 × 10−3 1.15 55.7
175 0.248π 1.00 × 10−3 1.77 86.5
200 0.248π 3.16 × 10−4 2.46 137
225 0.244π 2.24 × 10−4 3.50 203
250 0.244π 1.78 × 10−4 4.79 302
275 0.244π 1.78 × 10−4 6.57
300 0.244π 1.78 × 10−4 8.56

Table 1 show the solution times for 12 filter design problems from the same
family with ωp = 0.23π and δp = 1.1 and n ranging from 25 to 300. The stopband
parameters ωs and δs are modified to tighten the specifications as n increases. The
last two columns show the CPU time per iteration for the specialized interior-point
implementation and for the general-purpose solver SDPT3, applied to the primal
problem (53). (To express this problem as a standard form SDP, we split the y variable
as a difference of two nonnegative vectors before passing it to SDPT3.) Figure 7
shows a graph of the CPU time versus n. The results clearly illustrate the benefits of
exploiting problem structure when solving the Newton equations.

7. Conclusion. We have described a new SDP formulation of sum-of-squares
theorems of nonnegative polynomials, cosine polynomials, and trigonometric polyno-
mials. The formulation results in structured SDPs that can be solved very efficiently
by taking advantage of simple properties of the diag operator.

The SDP parametrizations involve discrete transform matrices that are often
orthogonal, or products of orthogonal and diagonal matrices. This should benefit
the numerical stability of interior-point algorithms based on the parametrization.
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Fig. 7. CPU time per iteration versus problem dimension for the results in Table 1.

Although we have not analyzed the numerical properties, the numerical experiments
are encouraging. In particular, the FIR filter examples that we solved successfully
are much larger than those reported with other fast implementations of interior-point
methods [16, 4].
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1. Introduction. This paper is concerned with the consistency or inconsistency
of a linear system of the form

find x ∈ Zn such that Ax ≤ b,(1)

where A is an m by n real matrix, b is an m-dimensional real vector, and Z denotes
the set of integer numbers. The problem is to know whether a real polyhedron con-
tains or does not contain a lattice point. This problem is the basis for the entire
area of integer programming. Because of that, we also consider the corresponding
optimization variant:

max{cTx : Ax ≤ b, x ∈ Zn}.(2)

A more general problem is usually studied in which x is required to belong to a
general lattice. We are restricting the analysis to the special case of the integer lattice,
but any other case could be analyzed by reduction to the integer lattice through a
linear transformation (see, for instance, Lovász [15]). Through several decades, many
connected problems have been analyzed by a large number of researchers, inspired
by the fact that the lattice problem is much harder than the usual linear problem,
which is solvable in polynomial time in the context of the bit complexity theory; see
Schrijver [25]. In that context, the above problems are NP-complete, and although
several algorithms exist for them, all have exponential worst case complexity. The
practice of integer programming and combinatorial optimization, however, has shown
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that there is a great variability on the actual difficulty of a real problem. Practitioners
are used to applying known techniques that can significantly speed up the operation
of algorithms like branch and bound algorithms; see Wolsey [32]. For instance, it is
common knowledge that the availability of good upper and lower bounds is crucial
for speed, as well as a “clever” selection of the branching variables. A practical
observation is that problem instances of the same size (and roughly the same “bit
length”) might result in very different actual difficulty. There are effects which are
not fully captured by the current complexity analysis based on the bit complexity
model.

Those characteristics have also been observed in the continuous optimization set-
ting, for instance for linear programming. In that context, alternative complexity
analysis has been developed based on the notion of “condition measures” for a prob-
lem instances. These measures attempt to recover some “intrinsic” difficulty of the
problem instance. The developments in this line, initiated by Renegar [21], have led
to complexity analysis in which the running time of algorithms depends strongly on
the condition measures.

In this paper we present some potential extensions of this condition based com-
plexity to the area of integer programming. The purpose of going into this line of
research is to search for factors affecting the complexity of combinatorial algorithms,
which might be related to intrinsic properties of the problem instances. As mentioned
already, a condition based complexity theory has been studied in convex optimization,
producing interesting results. Our hypothesis is that some conditioning effects are also
present in the discrete setting and that they can be adequately studied. Specifically,
we present here bounds on the lattice width of a polyhedron, a measure which affects
complexity of integer programming algorithms. We revise the complexity analysis of
Lenstra’s algorithm for integer programming, in which the combined effect of geomet-
ric factors as well as conditioning properties of the associated polyhedron appear. We
also analyze implications for branch-and-bound-type algorithms. Our results might
be the initial steps toward the construction of a condition based complexity theory in
the area of discrete optimization, in which intrinsic effects associated to the data of
the problem can be taken into consideration.

The structure of this paper is as follows. Section 2 gives a summary of the notion
of conditioning as developed for continuous optimization. This is necessary not only
for the relevant background but also because the continuous notion will prove useful in
the discrete context. Section 3 considers the basis of Lenstra’s algorithm for integer
programming, specifically the flatness theorem, and the revision of the complexity
analysis. In section 4 we develop the complexity analysis for Lenstra’s algorithm as
well as for branch and bound algorithms, and in section 5 we suggest a comparison of
the presented bounds with the ones existing in the literature of combinatorial origin.
This analysis is based on recent probabilistic analysis of condition measures.

2. The concept of ill-posedness in optimization and condition measures.
In this section we present a brief review of the notion of conditioning and how it has
been applied in optimization. This will serve the purpose of motivating our attempt
of further extending those notions to the context of lattice problems.

The concept of conditioning is used in numerical analysis to characterize some
properties of problem instances with regard to numerical stability, sensitivity of so-
lutions, etc. The notion has been well studied in numerical linear algebra (there are
many references on this, but a good one is Golub and Van Loan [8], which also contains
many references), where the concept of condition number of a matrix A is defined as
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κ(A) = ‖A‖‖A−1‖ for a specific norm. This number is known to affect sensitivity of
solutions to linear systems with respect to changes on the data as well as numerical
precision requirements. Another interesting property of this concept is that if A is
regular, then κ(A) is inversely proportional to the distance from A to the set of sin-
gular matrices (in the 2-norm), a measure we call the “distance to ill-posedness” for
A. A vast research has been developed to extend this kind of notion to the context of
mathematical programming, but the research of interest to us is that developed by J.
Renegar, who defines a notion of condition measure for convex optimization problems
with analogous properties as the matrix conditioning. The measure defined is also
connected to a notion of continuous complexity of algorithms, as has been motivated
by Smale [26] (see also Blum et al. [2]).

The specific notion of condition measure for mathematical programming which is
of interest to us is briefly reviewed next. Consider the problem

z(d) = min{〈c, x〉 : b−Ax ∈ CY , x ∈ CX},

where X and Y are finite dimensional linear spaces, CX ⊂ X,CY ⊂ Y are convex
cones, A is a linear operator, b ∈ Y , and c is a linear functional. 〈·, ·〉 denotes an
inner product. This is a very general setting which includes several important prob-
lems, like linear programming itself and semidefinite programming, which has found
much attention in recent times (see, for example, Wolkowicz, Saigal, and Vanden-
berghe [31]). Suppose the instance d = (A, b, c) corresponds to a feasible problem.
Let F = {d : P (d) has a finite solution}. Let ρ(d) = dist(d,FC) be the distance
(in an appropriate norm) to the set of instances corresponding to problems which are
either infeasible or unbounded. This is the distance to ill-posedness for the purpose
of computing a solution to the problem. We define

C(d) =
‖d‖
ρ(d)

as the condition measure for instance d. The relevance of the concept of distance to
ill-posedness was considered for linear programming by Renegar [21, 22] and by Vera
[28, 29]. It is shown in those references that C(d) is connected to measures of sensitiv-
ity of solutions with respect to changes on the data. The effect of condition measures
in the performance of interior point methods for linear programming has been consid-
ered by Renegar [23, 24], where it is concluded that the number of iterations needed to
approximate a solution is proportional, among other factors, to logC(d). The analysis
uses a very general characterization of the convergence of Newton’s method, which is
an extension of the analysis of Nesterov and Nemirovskii [18] based on the property of
self-concordance of the barrier function. Vera [30] considers the effect of conditioning
on the numerical precision requirements of interior point algorithms. Further char-
acterizations of the distance to ill-posedness for a conic linear program are given in
Freund and Vera [5, 7]. Freund and Vera [6] have also considered complexity questions
regarding the ellipsoidal algorithm. Further references to current work on the subject
are Nuñez and Freund [19], Epelman and Freund [4], and Peña [20].

3. Flatness of polyhedra and condition measures. In this section we review
some results regarding the geometry of convex bodies and their connection with integer
programming questions. The starting point is the so-called the “flatness theorem.”
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3.1. Preliminaries. Let K be a convex body in Rn. We define the lattice width
of K as

wL(K) = min
v∈Zn,v �=0

w(v,K),

where

w(v,K) = max{vTx : x ∈ K} − min{vTx : x ∈ K}.

If we restrict the vectors v to the set of unitary vectors in the euclidean space, we
obtain the usual “coordinate” width of the body, which is finite if K is bounded. In
our specific setup we will assume that K (later a polyhedron) is a bounded set. The
lattice width is an interesting measure if we ask the question of its value when K does
not contain an integral point. Intuition tells us that in this case K cannot be very
large in all directions and, hence, has to be either small or large but “flat” in some
direction. Khintchine [13] showed that there exists a universal function f(n) such that
wL(K) ≤ f(n) if K does not contain an integer point. The specific form of f(n) has
been a subject of study for several years and is very important in the formulation of
Lenstra’s algorithm to decide consistency of (1). The algorithm developed by Lenstra
[14] is based on the following general kind of result, which is known as the flatness
theorem.

Theorem 3.1. Given a convex body K, there exists a function f(n) such that we
can achieve one of the following:

1. find an integral vector in K, or
2. find an integral vector u such that

w(u,K) ≤ f(n).

Lenstra’s estimate for f(n) is in the order of cn
2

0 , where c0 is a constant, and
the construction can be done in polynomial time. Groetschel, Lovász, and Schrijver
[9] improve the bound, still with a polynomial time construction. If the result of
the theorem is applied recursively, we can construct an algorithm which slices the
polyhedron into lower dimensional ones until it finds an integral point or concludes
that none exists.

Theorem 3.2. For every fixed n, given a bounded convex body K, there exists
a polynomial time algorithm which can find an integral point in K or can assert that
none exists.

A detailed analysis of these two results, together with the proofs, can be found in
Lovász [15] and in Groetschel, Lovász, and Schrijver [9]. A significant improvement
in the estimate of f(n) can be achieved if we relax our requirement of polynomial
time constructibility. For instance, Kannan and Lovász [11] have improved the value
to c0n

2, where c0 is a numerical constant.
In the existing results, the estimates for f(n) are all of a certain combinatorial

nature and do not directly take into consideration information about the “shape”
and orientation of the convex body, which might be favorable or unfavorable to the
existence of lattice points. Some research on characterizing the shape of polyhedra
in connection with the flatness theorem has been done by Kannan, Lovász, and Scarf
[12] and by Bárány, Scarf, and Shallcross [1].

3.2. Condition measures and the flatness theorem. In the following sub-
sections we state the results we have obtained which introduce condition measures
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into the estimates of the flatness theorem. For the purpose of the presentation we
work with a bounded polyhedron given by a system of linear inequalities Ax ≤ b.
More specifically, we denote by d = (A, b) ∈ Rm×n+m the data corresponding to this
specific instance of the problem. We then denote by P (d) the corresponding polyhe-
dron {x : Ax ≤ b}. We will denote by α1, . . . , αm the row vectors of A. We need to
measure norms in the data space. There are several alternatives for this, depending
on the norms used for vectors and matrices. For this work, unless specified otherwise,
we use the 2-norm in the Rn and Rm spaces, to measure size of vectors, and the
2-norm for matrices, that is,

‖A‖2 = max
‖u‖2=1

‖Au‖2.

Hence, we define the norm of the data as ‖d‖ = max{‖b‖2, ‖A‖2} for an instance
d = (A, b). The selection of this norm is functional to the analysis, as it simplifies
some of the expressions. As different matrix norms are equivalent, others can be used
and corresponding transformation factors will be introduced in the result.

Our analysis is a revision of the flatness theorem, obtaining a bound which de-
pends on other factors besides dimensional information. As in some of the traditional
analysis of the flatness theorem, the basis for the estimate is a “rounding” of the
polyhedron using inscribed and circumscribed ellipses. This construction is, some-
how, arbitrary. The only relevant parameters will be the ratio of the diameters of
the ellipses and some indicator of their shape. In any event, we expect the ellipses to
interpret the shape of the polyhedron accurately.

So, suppose we can construct a pair of ellipses, with common center x0, of the
form

E = {x ∈ Rn : (x− x0)TQ(x− x0) ≤ 1}

and

E′ = {x ∈ Rn : (x− x0)TQ(x− x0) ≤ γ2},

such that

E ⊂ P (d) ⊂ E′,(3)

where Q is an appropriate positive definite matrix.
There are different possibilities for the definition of such a pair of ellipses, giving

different values for the parameter γ. A well-known result of John [10] states the
existence of optimal ellipses in the sense that E′ has minimum volume. In this case,
γ = n, but the computation is a hard problem. A polynomial time approximation to
the so-called Lowner–John pair can be constructed using the shallow cuts ellipsoidal
algorithm (see, for instance, Groetschel, Lovász, and Schrijver [9]).

The approach we follow here is based on a construction common in the anal-
ysis of interior point methods in convex optimization. Suppose that we know a
self-concordant barrier function, Φ, for the convex body, with parameter ϑ (see, for
instance, Nesterov and Nemirovskii [18] for an extended discussion). Then let

x0 = argmin{Φ(x) : x ∈ intP (d)}.

Let Q = ∇2Φ(x0) and E be the corresponding ellipse of unit radius. This is called
the Dikin ellipse. Then we can take γ = ϑ+ 1. For instance, if we use the traditional
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logarithmic barrier function, Φ(x) = −
∑m

i=1 log(bi − αT
i x), then ϑ = m. Nesterov

and Nemirovskii [18] have shown that there exists a universal barrier with the best
possible parameter, ϑ = n. The problem is that the evaluation of this universal barrier
is complicated.

In this setup, the point x0 is called the analytic center of P (d), and the matrix
Q is given by

Q = ATD(x0)−2A with D(x) = diag(b1 − αT
1 x, . . . , bm − αT

mx),

where diag() denotes a diagonal matrix constructed with the corresponding elements.
The selection of this ellipse construction is justified by the fact that the matrix Q
will connect naturally, as we will see, with condition properties of the corresponding
polyhedron. The following result follows easily from the geometry of the ellipses.

Lemma 3.3. Let Q be a symmetric positive definite real matrix defining a pair of
ellipses as in (3). Let u ∈ Rn, u 	= 0. Then

w(u, P (d)) ≤ 2(m + 1)
√

uTQ−1u.

Proof. It follows by upper bounding w(u, P (d)) in terms of w(u,E′) and solving
the corresponding optimization problems.

Corollary 3.4. Let Q be a symmetric positive definite real matrix defining a
pair of ellipses as in (3). Then

wL(P (d)) ≤ 2(m + 1)
√

min{uTQ−1u : u ∈ Zn, u 	= 0}.

To obtain the best possible bound in this form we need to solve the problem

min{uTQ−1u : u ∈ Zn, u 	= 0}.(4)

This is a version of the well-known “shortest vector” problem, which is known to be
a hard problem; see Micciancio [17]. We show an upper bound on the optimal value
of (4), which will capture some aspects of the original problem which contribute to
the relative difficulty of a particular instance.

Proposition 3.5. Let v1,. . . ,vn be the orthonormal eigenvectors of the positive
definite matrix Q, and let λmin be the smallest eigenvalue of Q. Then, for any u ∈ Rn,

uTQ−1u ≤
(

1

λmin

) n∑
i=1

(vTi u)2.

Proof. As Q is symmetric positive definite, the result follows from the fact that

Q−1 =

n∑
i=1

(
1

λi

)
viv

T
i ,

where λi is the ith eigenvalue of Q, corresponding to the eigenvector vi.
The next result relates eigenvalues of the matrix Q with other elements of the

data. It will be needed in the analysis.
Lemma 3.6. Let Q = ATD−2A, where D = diag(d1, . . . , dn), di > 0, i = 1, . . . , n.

Let λmin and λmax be the smallest and largest eigenvalue of Q, respectively, and let
μmin and μmax be the smallest and largest eigenvalue of ATA, respectively. Then

λmin ≥ μmind
−2
max, λmax ≤ μmaxd

−2
min,
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where dmax = max{d1, . . . , dn} and dmin = min{d1, . . . , dn}.
Proof. This is Proposition 4.1 of [30].
Let us define the following set in the space of instances for the problem:

F = {(A, b) : the set P (d) is bounded}.

This set is important for the purpose of determining whether P (d) contains a lattice
point or not. In fact, if d = (A, b) is in the interior of F , then it is certainly possible
for P (d) to have no lattice points. However, if P (d) is an unbounded set such that
the recession cone is nondegenerate (with nonempty interior), then we can be sure
that P (d) does have lattice points and, furthermore, wL(P (d)) = ∞. It is in this
sense that we can think of the set FC as the set of ill-posed instances for the prob-
lem of estimating wL(P (d)) (and, furthermore, bounding the complexity of Lenstra’s
algorithm). For d ∈ F let us define

ρU (d) = inf{‖Δd‖ : P (d + Δd) ∈ FC}.

This can be thought of as the distance to ill-posedness for this specific problem setting.
Lemma 3.7. Let d = (A, b) ∈ F . Let μmin be the smallest eigenvalue of ATA.

Then

ρ2
U (d) ≤ μmin.

Proof. The set defined by Ax ≤ b is bounded if and only if the homogenous system
Au ≤ 0, u 	= 0, is inconsistent. Let E be a perturbation of the matrix A such that
the matrix A + E is rank deficient. Then there exists v 	= 0 such that (A + E)v = 0.
This implies that

ρU (d) ≤ ‖E‖2

for any matrix E with this property. Let us choose E to be the matrix of minimum
distance to rank deficiency. We know that in this case ‖E‖2 equals the smallest
singular value of A, which is equal to

√
μmin. From this the result follows.

With this, we are ready to prove our first main result.
Theorem 3.8. Let λi and vi denote the ith eigenvalue and eigenvector, respec-

tively, of the matrix Q, i = 1, . . . , n. Let u be a feasible solution to (4). Define

C̄I(u, P (d)) =

(
n∑

i=1

(vTi u)2

)1/2

.

Then

w(u, P (d)) ≤ 2(m + 1)C̄I(u, P (d))

(
‖b−Ax0‖∞

ρU (d)

)
.

Proof. We first observe from Lemma 3.3 that

w(u, P (d)) ≤ 2(m + 1)
√
uTQ−1u.

Using Proposition 3.5 now we have

uTQ−1u ≤ 1

λmin

n∑
i=1

(vTi u)2

≤ 1

λmin
C̄I(u, P (d))2.
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Now, from Lemma 3.7

1

μmin
≤ 1

ρU (d)2
.

Using this bound together with Lemma 3.6 we have

1

λmin
≤

(
dmax

ρU (d)

)2

.

We then have

w(u, P (d)) ≤ 2(m + 1)
√

uTQ−1u

≤ 2(m + 1)
1√
λmin

C̄I(u, P (d))

≤ 2(m + 1)C̄I(u, P (d))

(
dmax

ρU (d)

)
,

which proves the result, as dmax = ‖b−Ax0‖∞.
We observe that the theorem gives a bound which is valid for any direction u.

The actual size of the bound will depend on the combined effect of C̄I(u, P (d)) and
ρU (d). To interpret the result of the theorem, consider a polyhedron which is small
in volume. Then ‖b − Ax0‖∞ will be small and the bound is small. In fact, in this
case the width of that polyhedron in any direction will be small. On the other hand,
consider a polyhedron which is very thin. In this case, a small perturbation of the
constraints can make the polyhedron unbounded. Hence, ρU (d) is small. Now, the
vector of minimum lattice width does not need to coincide with the vector defining the
thinnest direction of the polyhedron (recall that it has to have integral components).
Due to the “elongated” shape of the polyhedron, the lattice width could be achieved
at points far apart, giving a large value for the number. The bound incorporates
both effects simultaneously. The term in parentheses has to do with the shape of
the polyhedron, and the term C̄I(u, P (d)) summarizes the relative orientation of the
polyhedron with respect to the vector u, in which direction flatness is being measured.
Now, a small value for C̄I(u, P (d)) is obtained when u is one of the unit coordinate
vectors and one of the vectors vi is parallel to it. This situation corresponds to the
case when the polyhedron is parallel to the coordinate axis.

4. Consequences for integer programming algorithms. The flatness theo-
rem is the central stone on Lenstra’s construction of a polynomial time algorithm for
integer programming in fixed dimension. We elaborate in this section on the implica-
tions on the complexity bound of the algorithm if we use the above presented version
of the lattice width estimates.

The algorithm will make use of the flatness theorem and the construction we
have presented. The complexity will be evaluated using the bounds presented in the
previous sections. We recall that the construction, as well as the complexity estimates,
depend on a given vector u in which we evaluate flatness. The next result shows that
a good enough bound is obtained by taking any u with unit ∞-norm. This allows us
to make the results independent of a hard to compute vector u.

Lemma 4.1. Suppose that u is such that ‖u‖∞ ≤ 1. Then

C̄I(u, P (d)) ≤
√
n.
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Proof. As vi, i = 1, . . . , n, are eigenvectors of Q, they form an orthonormal basis.
Let γi, i = 1, . . . , n, be such that u =

∑n
i=1 γivi. Then

C̄I(u, P (d)) =

(
n∑

i=1

(vTi u)2

)1/2

=

(
n∑

i=1

(γi)
2

)1/2

= ‖u‖2 ≤
√
n,

as we wanted to prove.

4.1. The algorithm. Lenstra’s algorithm is well known; it is based on the cen-
tral idea of the flatness theorem. We develop here a specific description of the pro-
cedure, adopting the use of ellipses based on the logarithmic barrier function for the
polyhedron. Our description defines several subroutines which are used by the algo-
rithm. The algorithm can operate in two modes: In feasibility mode, the algorithm
executes the subroutine FEAS recursively on the original instance d = (A, b). In
optimization mode, the algorithm uses the main subroutine OPTIM to perform the
optimization.

The following routine basically applies the flatness theorem to the problem of
deciding consistency of a system of the form Ax ≤ b.

Subroutine FLAT(A, b).
Input: A polyhedron P (d) = {x : Ax ≤ b}.
Output: ŷ integer such that Aŷ ≤ b; OR ŵ integer, approximate flatness direction;
OR the conclusion that P (d) is empty.

1. If P (d) is empty, STOP(return: “P (d) is inconsistent”).
2. Compute x0 the analytic center of P (d).
3. Let Q be the matrix of the Dikin ellipse centered on x0.
4. Let ŷ = round(x0).
5. If Aŷ ≤ b, STOP(return ŷ).
6. If not, select ŵ ∈ Rn such that ‖ŵ‖∞ = 1 as a flatness direction.
7. STOP with ŵ as an approximate direction in which the polyhedron is flat.

This subroutine is essentially the implementation of the algorithmic implications
of the flatness theorem. In the combinatorial analysis, the determination of a potential
integral point in the polyhedron is done using a basis reduction procedure (see Lovász
[15]), which runs in polynomial time in the bit complexity model. The rounding of
the polyhedron is done using the ellipsoidal algorithm. In our case, the operation
is different: step 1 of the procedure, the construction of the rounding, requires the
solution of a convex optimization problem. However, it suffices with an approximation
to the analytic center, and this approximation can be computed efficiently with a
small number of Newton iterations, as we discuss later. Step 4 searches for a potential
integral point in P (d) using a very naive approach: just look for the closest point with
integral components. Step 6 provides an integral vector to estimate the lattice width
by just taking any w with 0, 1,−1 coordinates. This is consistent with the bound in
Lemma 4.1 but also allow us to simplify the computation of the whole procedure. A
more precise approach will be to solve in step 6 the problem

min wTQ−1w
s.t.
w ∈ Zn

‖w‖∞ = 1,

giving a better flatness direction. However, as we stated before, this is an NP-hard
problem. From a more practical point of view, one might conceive to approximate
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a solution to the above problem using some kind of heuristic global optimization
procedure. The worst case bound, however, is still the one we present in the following.

The next step of the algorithm is to apply this routine recursively through a
range of values. Let r+ = max{wTx : Ax ≤ b} and r− = min{wTx : Ax ≤ b}. The
search will proceed by considering the lower dimension polyhedrons Ax ≤ b, wTx = γ,
with r− ≤ γ ≤ r+. The problem, then, reduces to deciding lattice feasibility of
Ax ≤ b, wTx = γ. The next proposition shows that this is equivalent to determining
lattice feasibility of a corresponding inequality system in lower dimension.

Proposition 4.2. Let u be an integral vector such that ‖u‖∞ = 1, and suppose
that there exists a coordinate uk 	= 0 and that γ is integer. The system Ax ≤ b, uTx =
γ is lattice feasible if and only if the system Ãx ≤ b̃ is lattice feasible, where

Ã = AN − 1

uk
A·ku

T
N , 2b̃ = b− 1

uk
A·kγ,

with AN being the matrix with n− 1 columns corresponding to A with the kth column
removed and uN being the corresponding part of the vector u.

Proof. It is easy to see that Ã and b̃ result from A and b by eliminating the kth
variable, using the equation uTx = γ. Now, Let x̃ be an integral point in Rn−1 such
that b̃− Ãx̃ ≥ 0. We have that

b̃− Ãx̃ = b− 1

uk
A·kγ −

(
AN − 1

uk
A·ku

T
N

)
x̃

= b−AN x̃−A·k

(
1

uk
γ − uT

N x̃

uk

)
= b−Ax̄,

where x̄ ∈ Rn is defined using all components of x̃ in all positions, except the kth,
which is equal to 1

uk
(γ−uT

N x̃). Now, γ and uT
N x̃ are integers, so γ−uT

N x̃ is an integer.

Furthermore, given that u is chosen such that ‖u‖∞ = 1 (and, hence, uk ∈ {1,−1}),
1
uk

∈ {−1, 1} and x̄k is an integer.

Reciprocally, if x̄ is an integer vector in Rn such that Ax̄ ≤ b, uT x̄ = γ, it is easy
to see that x̃ defined as the vector consisting of all components of x̄ but the kth is
feasible for Ã and b̃.

The next subroutine applies FLAT to check feasibility of a polyhedron.
Subroutine FEAS(A, b).

Input: A polyhedron P (d) = {x : Ax ≤ b}.
Output: ŷ integer such that Aŷ ≤ b; OR the conclusion that P (d) is lattice free with
ŵ, an approximate flatness direction; OR the conclusion that P (d) is empty.

1. Apply FLAT(A, b).
2. If the output is an integral ŷ ∈ P (d), STOP(return ŷ).
3. If the output is “inconsistent,” STOP(return “P (d) is inconsistent”).
4. If the output is a flatness direction w then
5. let r+ = max{wTx : Ax ≤ b} and r− = min{wTx : Ax ≤ b}.
6. Repeat for all integers γ, r− ≤ γ ≤ r+, the following until stopping or until

covering the whole range:
(a) Consider the system Ax ≤ b, wTx = γ. Transform the system as spec-

ified in Proposition 4.2 into a system in n − 1 variables of the form
Ãv ≤ b̃.

(b) Call FEAS(Ã, b̃).
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(c) If the output is an integral x̃ ∈ Rn−1,
• reconstruct the corresponding point x̄ associated to the change of

variable, as specified in Proposition 4.2. x̄ is an integer;
• STOP(return x̄);
• if not (FEAS returns lattice infeasibility), continue with the next
γ.

7. If the whole range of γ was covered and no integral point was detected,
STOP(return P (d) is lattice free).

It can be noticed that the call is defined recursively. The correctness of the above
procedure depends on the fact that for each “slice” of the polyhedron, the feasibility
problem is reduced to one in less dimensions. Observe that, due to the constraint
imposed to the selection of w, the reconstructed point in step (6c) is always guaranteed
to be an integer, as specified in Proposition 4.2.

The following routine is the main optimizer.
Subroutine OPTIM(A, b, c).

Input: An integer program of the form max{cTx : Ax ≤ b, x ∈ Zn}, with c integral.
Output: An integral point in P (d), the solution to the optimization problem, or the
assertion that P (d) is lattice free.

1. Let R+ = max{cTx : Ax ≤ b} and R− = min{cTx : Ax ≤ b}.
2. For all integers β, with R− ≤ β ≤ R+, from R+ down to R− and until the

answer is YES, do the following:
(a) Consider the system Ax ≤ b, cTx ≥ β. Let

Ā =

[
A
−c

]
, b̄ =

[
b
−β

]
.

(b) Call FEAS(Ā, b̄).
(c) If the answer is an integral x̄ ∈ Rn, STOP(return x̄, optimal solu-

tion).
(d) If not, continue with the next β.

3. If the whole range of β was covered and no integral point was detected,
STOP(return “P (d) is lattice free”).

It is worth pointing out that our main optimization routine begins by searching
for an integral point in subsets of the original polyhedron, restricted by the constraint
cTx ≥ β. Unlike FEAS these polyhedrons are of the same dimension as Ax ≤ b.
Subsequent calls will slice them into lower dimensional objects.

4.2. Complexity of Lenstra’s algorithm in feasibility mode. In this sub-
section and the following we analyze the computational effort of the above algorithm,
using the estimates of section 3 for the lattice width of the polyhedron. First we con-
sider the complexity of Lenstra’s algorithm in “feasibility mode,” that is, when it is
used to decide lattice feasibility of a closed polyhedron. The reasoning is just the cus-
tomary for Lenstra’s algorithm: We observe that the main procedure FEAS applies
FLAT to the whole set P (d) first, using a direction u to evaluate flatness, and then
applies itself recursively on the sets P (d̃), where d̃ is the instance in Rm×(n−1)+m

obtained by eliminating one variable, as in Proposition 4.2. Each call requires the
application of FLAT. The total number of calls can be bounded by the lattice width
of P (d) in the direction u, and for each one of those, there are w(u, P (d̃)) calls in a
polyhedron with one less dimension. Let N be the total number of calls to FLAT,
and let Nk be an upper bound on the number of calls in the k-dimensional problems.
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Then

N ≤ Nn ×Nn−1 ×Nn−2 × · · · ,(5)

where, for an instance d̃ in the space of dimension k ≤ n, using Theorem 3.8 we can
put a bound Nk ≤ w(u, P (d̃)). So, the whole analysis reduces to bounding w(u, P (d))
for instances in different dimensions. First, we introduce some additional notation
and some results which relate elements in the bounds for one problem to the bounds
in the reduced ones. The results are valid for any norm. Let

σ̄ = max
x∈P (d)

‖b−Ax‖∞.(6)

We observe that ‖b−Ax0‖∞ ≤ σ̄.
Recall that Ã and b̃ correspond to the transformed problem data in n− 1 dimen-

sions, obtained from A and b.
Lemma 4.3. Let x̃ be such that x̃ ∈ P (d̃). Then

‖b̃− Ãx̃‖∞ ≤ σ̄.

Proof. Let x̃ be such that b̃−Ax̃ ≥ 0. From Proposition 4.2,

b̃− Ãx̃ = b− 1

uk
A·kγ −

(
AN − 1

uk
A·ku

T
N

)
x̃

= b−AN x̃−A·k

(
1

uk
γ − uT

N x̃

uk

)
= b−Ax̄,

where x̄ is defined using all components of x̃ in all positions, except the kth, which is

equal to 1
uk

γ − uT
N x̃
uk

. Hence, x̄ ∈ P (d) and

‖b̃− Ãx̃‖∞ ≤ max
x∈P (d)

‖b−Ax‖∞ = σ̄

and the result follows.
We point out that, although the definition of σ̄ uses the infinity norm, we could

have used any other norm, and the result of Lemma 4.3 is still valid. The following
result establishes a relation between ρU (d) and ρU (d̃) for the lower dimensional poly-
hedrons generated in the algorithm. Notice that these are distances to ill-posedness
in different data spaces.

Lemma 4.4. Let ρU (d̃) be the distance to ill-posedness for the data d̃ = (Ã, b̃) as
generated in step 6(a) of routine FEAS. Then ρU (d) ≤ ρU (d̃).

Proof. Consider the instance d̃ = (Ã, b̃) and suppose that the polyhedron P (d̃) is
bounded. Let Δd̃ = (Ẽ, ẽ) be such that d̃+Δd̃ is ill posed and ρU (d̃) = ‖Δd̃‖ ≥ ‖Ẽ‖2.
Then there exists ṽ ∈ Rn−1, ṽ 	= 0, such that (Ã + Ẽ)ṽ ≤ 0, implying that the
perturbed polyhedron is ill-posed, that is, unbounded. Hence,(

AN − 1

uk
A·ku

T
N + Ẽ

)
ṽ ≤ 0 =⇒ (AN + Ẽ)ṽ + A·k

(
− 1

uk
uT
N ṽ

)
≤ 0.

Let x̄ ∈ Rn be defined as follows: All components except the kth are equal to the
corresponding components of ṽ, and the kth component is equal to − 1

uk
uT
N ṽ. Then



CONDITION MEASURES IN COMBINATORIAL OPTIMIZATION 977

x̄ 	= 0. Let E ∈ Rm×n be a matrix equal to Ẽ in all columns except the kth, which
is zero. We have then that (A + E)x̄ ≤ 0. This implies that

ρU (d) ≤ ‖E‖2 = ‖Ẽ‖2 ≤ ρU (d̃),

as we wanted to prove.
The next result establishes an upper bound for w(u, P (d̃)) for any d̃ generated.
Proposition 4.5. For any u ∈ Zn−1 such that ‖u‖∞ = 1

w(u, P (d̃)) ≤ 2(m + 1)
√
n− 1

(
σ̄

ρU (d)

)

for all instances d̃ generated in step 6(a) of subroutine FEAS.
Proof. We first observe from Theorem 3.8 that

w(u, P (d)) ≤ 2(m + 1)C̄I(u, P (d))

(
‖b−Ax0‖∞

ρU (d)

)
.

Now, from Lemma 4.1, we have that C̄I(u, P (d)) ≤
√
n for a u such that ‖u‖∞ = 1.

Then if v0 is the center of the ellipse for the problem Ãx ≤ b̃, we have

w(u, P (d̃)) ≤ 2(m + 1)
√
n− 1

(
‖b̃− Ãv0‖∞

ρU (d̃)

)

≤ 2(m + 1)
√
n− 1

(
σ̄

ρU (d)

)
,

where the last inequality follows from Lemmas 4.3 and 4.4.
These results allow us to prove the following theorem.
Theorem 4.6. Lenstra’s algorithm will detect an integral point in P (d) or certify

that none exists in at most

2n(m + 1)n(n!)1/2
(

σ̄

ρU (d)

)n

calls to subroutine FLAT.
Proof. This follows from repeated application of Proposition 4.5 to relation

(5).
The theorem gives an upper bound on the number of calls to subroutine FLAT.

The actual effective complexity for a specific problem instance might be much smaller.
If we recall Theorem 3.8, we presented a bound in which the spatial orientation of the
polyhedron might favor a better estimate for w(u, P (d)). Moreover, if the algorithm
uses a good approximation to the shortest vector problem as the slicing direction, the
overall search procedure might be sped up significantly.

It is also worth pointing out here that if P (d) is lattice free, the algorithm will have
to examine all slices A ≤ b, uTx = γ, where γ is within the range of the lattice width.
On the other hand, if the polyhedron is in fact lattice feasible, Lenstra’s algorithm
might be fortunate enough to find an integral point fairly earlier. This illustrates a
certain asymmetry in both problems, although they have the same “hard” complexity.
Proving lattice infeasibility might be, in general, harder than proving lattice feasibility,
at least using these algorithms as a proving tool.
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4.3. Complexity of Lenstra’s algorithm in optimization mode. Lenstra’s
algorithm in optimization mode uses the routine OPTIM as main control, searching
first in the direction of the objective vector c. To complete the analysis we recall the
following definition.

Definition 4.7. δ = max{cTx : Ax ≤ b}−max{cTx : Ax ≤ b, x ∈ Zn} is known
as the integrality gap of the integer problem.

In the first level, this subroutine will call FEAS a maximum of �δ� times, where
δ is the integrality gap of the problem, which is the difference between the optimal
value of the integer program and the optimal value of the associated linear relaxation.
Each time, FEAS is called with the system Ax ≤ b, cTx ≥ β for some β as an
argument. Let as assume that β1, β2, . . . , βp are the values of β generated, and let
N(β) be the number of iterations (calls to FLAT) required by FEAS on the system
Ax ≤ b, cTx ≥ β. Then the total number of iterations required to optimize is

N(β1) ×N(β2) × · · · ×N(βp).

We need to compute an upper bound to N(β).
Lemma 4.8. Let ρU (d) be the distance to ill-posedness for the polyhedron defined

by Ax ≤ b. Let d = (A, b) denote the corresponding data. Let d̄ = (Ā, b̄) be the data
corresponding to the system Ax ≤ b, cTx ≥ β, where

Ā =

[
A

−cT

]
, b̄ =

[
b
−β

]
.

Let ρU (d̄) be the distance to ill-posedness for (Ā, b̄). Then

ρU (d) ≤ ρU (d̄).

Proof. Let (Ē, ē) be a perturbation of the data d̄ such that (Ā, b̄) + (Ē, ē) is ill-
posed and ρU (d̄) = ‖(Ē, ē)‖. That is, the polyhedron defined by the system (Ā+Ē)x ≤
(b̄ + ē) is unbounded. This means that there exists u 	= 0 such that (Ā + Ē)u ≤ 0.
Let E be the first m rows of Ē. Then (A+E)u ≤ 0. This means that the polyhedron
defined by the data (A + E, b) is unbounded. Hence,

ρU (d) ≤ ‖E‖ ≤ ‖(Ē, ē)‖ = ρU (d̄)

as we wanted to prove.
Proposition 4.9. Let d̄ = (Ā, b̄) be the data corresponding to the system Ax ≤

b, cTx ≥ β. Let u be an integral vector such that ‖u‖∞ = 1. Then

w(u, P (d̄)) ≤ 2(m + 2)
√
n

(
σ̃

ρU (d)

)
,

where

σ̃ = max
x∈P (d̄)

‖b̄− Āx‖∞.

Proof. This follows immediately from Theorem 3.8 and Lemmas 4.1 and 4.8.
With these results we can prove the following theorem.
Theorem 4.10. Consider the application of the modified Lenstra algorithm to

the integer programming problem

max{cTx : Ax ≤ b, x ∈ Zn}.
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Let δ be the integrality gap of the problem. Assume that the polyhedron K = {x :
Ax ≤ b} is nonempty and contains an integral point (this can be checked in feasibility
mode). Then the procedure will find an optimal solution in at most

�δ�2n(m + 2)n(n!)1/2
(

max{σ̄, �δ� + 1}
ρU (d)

)n

calls to subroutine FLAT, where σ̄ is defined as in (6).
Proof. In the first level, the subroutine performs at most w(u, P (d̄)) calls to

FEAS if an integral point is not detected immediately. Now, each one of those calls
corresponds to the application of the subroutine to a polyhedron in n − 1 variables,
and we can use the bound in Theorem 4.6, with σ̃ instead of σ̄, as now FEAS receives
d̄ as imput. Hence, for all possible i,

N(βi) ≤ 2(m + 2)
√
n

(
σ̃

ρU (d)

)
× 2n−1(m + 2)n−1((n− 1)!)1/2

(
σ̃

ρU (d)

)n−1

.(7)

Now, we obtain a bound for σ̃. We have that

σ̃ = max
x∈P (d̄)

‖b̄− Āx‖∞.

From the definition of (Ā, b̄) we have that

‖b̄− Āx‖∞ ≤ max{σ̄, max
x∈P (d̄)

|β − cTx|}.

Now, when the procedure stops, it will be after detecting an integral point in the
polyhedron defined by the system Ax ≤ b, cTx ≥ β. This means that the polyhedron
defined by Ax ≤ b, cTx ≥ β + 1 was lattice infeasible, and as β decreases by one unit
on each iteration, we can be sure that |cTx− β| ≤ �δ� + 1 for all x ∈ P (d̄). Hence,

σ̃ ≤ max{σ̄, �δ� + 1}

and replacing in (7) we have

N(βi) ≤ 2n(m + 2)n(n!)1/2
(

max{σ̄, �δ� + 1}
ρU (d)

)n

.

As there are at most δ values βi, the bound follows.
Notice that this result assumes the existence of integer solutions to the prob-

lem; otherwise, δ is not defined. However, the existence of integral solutions can be
checked with one single call to FEAS before calling OPTIM. Both in this case and
in feasibility mode, we are giving an estimate of the computational effort in terms of
calls to the subroutine FLAT. This routine is where the main effort is incurred. The
computation of an approximate analytic center requires the application of the New-
ton method to the minimization of a barrier function, although this can be carried
out efficiently. Actually, the effort is similar to the one incurred by an interior point
algorithm to approximately solve an optimization problem.

4.4. The impact on the complexity of the branch and bound algorithm.
The standard algorithm to solve integer programming problems is the well-known
branch and bound procedure. In this section we give some ideas regarding possible
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implications of the previous results on the actual complexity of the branch and bound
algorithm. Practitioners know very well that in the worst case the procedure will have
an exponential behavior, but they also know that some cleverly chosen branching rules
might have a considerable impact on the actual performance.

We now give a worst case estimate for the complexity of the branch and bound
algorithm. This estimate is similar to others presented, for instance, in Schrijver [25].

Proposition 4.11. Consider the integer programming problem

min{cTx : x ∈ P (d), x ∈ Zn},

where P (d) is a bounded polyhedron and c is an integer vector. Let e1, . . . , en be
the unitary coordinate directions. Let w(ei, P (d)) be the integer width range of P
measured along the objective function ei. Then the number of nodes to be examined
by the branch and bound procedure can be bounded by

n∏
i=1

(w(ei, P (d)) + 1) ≤ (max
i

w(ei, P (d)) + 1)n.(8)

Proof. This estimate is based on the fact that in the worst case, the procedure
will branch on all integer values available per each coordinate, and that number is
clearly bounded by the above expression.

An easy bound on w(ei, P (d)) can be obtained from all our previous development,
and an overall bound is the following.

Theorem 4.12. The worst case complexity of the branch and bound algorithm
can be bounded by

2n(m + 1)nnn/2

(
σ̄

ρU (d)

)n

.

Proof. This follows by using Theorem 3.8 and Lemma 4.1 with u = ei, bounding
C̄I(u, P (d)) by

√
n, as ‖u‖∞ = 1, and using the definition of σ̄ in the bound.

It is tempting to compare this worst case bound with the one obtained for
Lenstra’s algorithm in the previous subsection. There is no indication of the tightness
of the bounds, so no precise comparison is possible. However, one can still argue on the
order of the size of the elements which enter in the bounds (5) and (8). First, notice
that although we bounded each of the terms wL(P (d̃)), they will tend to be smaller
for lower dimensional problems d̃ and also even smaller if a good approximation is
used in the shortest vector problem. On the other hand, the terms w(ei, P (d)) in the
branch and bound estimate might all be of roughly the same size. This implies that
Lenstra’s algorithm might be favored by the fact that the slices are taken precisely
in the direction of minimum lattice width. The branch and bound algorithm, on the
other hand, will be favored if the orientation of the polyhedron tends to make the
minimum lattice width vector coincide with one of the coordinate directions. More-
over, if the objective function happens to coincide with the minimum width direction,
this will certainly improve the running time.

5. An expected value comparison with a combinatorial analysis. The
results obtained so far present a different approach to bounding the lattice width of a
polyhedron and hence provide some alternative bound on complexity. As mentioned
in section 3, the flatness theorem has been extensively investigated, and there are
several bounds of a combinatorial nature. All bounds associated to a polynomial time
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calculation are of the form

w(u, P (d)) ≤ nβ2n,

where β is a numerical constant independent of the problem data. The bound shown
in this work depends on very different parameters, which are instance dependent.
So, for fixed dimensions n and m, our bound will give different values. How does it
compare with the above? This is a difficult question, but one possibility is to perform
some kind of mean value analysis of the factors entering in the definition of the bounds
of section 3. We do this now by relaying a recent analysis of average performance of
condition measures presented by Dunagan, Spielman, and Teng [27].

Let us consider for this purpose the polyhedron defined by d = (A, b). In the
previously cited work, the authors analyze several condition measures for linear pro-
gramming formats, including the problem of finding a nontrivial solution to the sys-
tem Ax ≤ 0, x 	= 0. The format of the problem under consideration here is Ax ≤ b,
but as the cited authors point out, this can be reduced to the homogeneous case
Ax− x0b ≤ 0, x0 > 0, preserving distances to ill-posedness. Moreover, in our specific
case, the system Ax ≤ b is unbounded if and only if the system Ax ≤ 0, x 	= 0, is
infeasible. This allows us to translate the results to our format. Let

CU (d) =
‖d‖
ρU (d)

.

The smoothed analysis presented by Dunagan, Spielman, and Teng is a “local” anal-
ysis of expected values. Suppose that ‖(Ā, b̄)‖F ≤ 1 in the Frobenius norm. We also
assume that (A, b) are samples of independent Gaussian random variables of variance
σ2, centered at (Ā, b̄). The results allows us to claim that with probability 1 − ν,

CU (d) = O

(
n2m2

σ2ν

[
n2m2

σ2ν

]O(1)
)
.(9)

This result says that the condition number CU (d) of a particular instance, on average,
around a neighborhood of some instance is not exponentially large.

To use this result in our bounds we need to introduce CU (d) explicitly. We can
do that with the following.

Lemma 5.1. Let x ∈ P (d). Then ‖x‖2 ≤ CU (d).
Proof. We have that Ax ≤ b. If x = 0, the bound holds trivially. Hence, we

assume x 	= 0. Let ē be such that ‖ē‖2 = 1 and ‖x‖2 = ēTx. Let ΔA = −bēT /‖x‖2.
Then (A + ΔA)x ≤ 0. This means that the instance could be made unbounded with
an arbitrarily small perturbation, and hence

ρU (d) ≤ ‖ΔA‖2 ≤ ‖b‖2‖ē‖2/‖x‖2.

This implies that

‖x‖2 ≤ ‖b‖2

ρU (d)
≤ ‖d‖

ρU (d)
= CU (d),

as we wanted to prove.
We now consider the term σ̄ which appears in the complexity estimate.
Lemma 5.2.

σ̄ ≤ 2‖d‖CU (d).
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Proof. This follows by observing that if x̄ is the point where the value of σ̄ is
attained, then

σ̄ = ‖b−Ax̄‖2 ≤ ‖b‖2 + ‖Ax̄‖2 ≤ ‖b‖2 + ‖A‖2‖x̄‖2.

From Lemma 5.1, the definition of ‖d‖, and the fact that CU (d) ≥ 1 (as an appro-
priate perturbation of size ‖d‖ will make the instance unbounded for sure), the result
follows.

Combining Lemmas 5.1 and 5.2 with Theorem 3.8 we have the following.
Proposition 5.3.

wL(P (d)) ≤ 4(m + 1)
√
nCU (d)2.

Now, based on the smoothed analysis discussed, we can estimate CU (d) for a fixed
probability ν by a number of the form

β
(mn

σ

)O(1)

,

where β is a numerical constant (recall that σ is the standard deviation of the data).
This gives an approximate estimate for wL(P (d)) in the order of

β2

(
n3m3

σ2

)O(1)

.

This value is much smaller than the worst case one and the ones obtained by the
combinatorial analysis. This is, of course, only a vague indication of the possible
average impact of the conditioning of the polyhedron into the real actual complexity
of algorithms.

6. Conclusions and further discussion. In this paper we have presented sev-
eral results which correspond to an alternative analysis of the complexity of an integer
programming algorithm, namely Lenstra’s algorithm. We also gave some suggestions
on the implications for branch and bound procedures. The main result of the paper
gives a bound on the lattice width of a polyhedron which depends on some specific
properties of the data related to the conditioning of the polyhedron. This bound is
used to derive a bound on the running time of the algorithms. The fact that the
data instance is close to defining an unbounded polyhedron affects the estimate of the
lattice width.

We now address various topics regarding the assumptions of the analysis, its
limitations, and potential extensions.

The use of barrier functions. The analyses of the flatness theorem found in
the literature, in general, make use of the idea of rounding the polyhedron by using
appropriate ellipses. We are doing the same, but the difference is that we have used
the Dikin ellipse constructed from the logarithmic barrier function of the polyhedron.
This has the advantage of connecting easily with continuous condition measures. It
has the disadvantage that for the proper operation of the algorithm, the knowledge
of a strict interior point is required, something which might be considered restrictive.
Also, the ellipses will be affected if the formulation of the problem contains redundant
constraints, although the shape of the polyhedron will still be the same. In [5] it is
shown that the condition measures of polyhedra are also connected to inscribed and
circumscribed ellipses generated by the ellipsoidal algorithm. This relation could be
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used to reformulate our algorithms and obtain possibly similar bounds to the one
presented here but using the ellipsoidal algorithms as a driving machine instead.
This analysis will be closer to other existing ones for the flatness theorem in the
combinatorial optimization literature (see Lovász [15] and Groetschel, Lovász, and
Schrijver [9]).

Tightness and computability of the bounds. One might ask, how tight are
the bounds, and it is easy to realize that they are not tight. First, they are based on a
rounding of a polyhedron using ellipses, a fact which already introduces a difference.
Also, the exact bound might not be achievable as they require the computation of
a shortest integral vector, a hard problem. For the purpose of the algorithm, the
problem in step 6 of subroutine FLAT could be approximated by any practical and
fast procedure or just evaluated on the coordinate unitary vectors, which gives the
bound of Lemma 4.1.

Analytic center computation and complexity in terms of the Newton
method. The conceptual algorithm requires the computation of the analytic center,
but it suffices with an approximation. We suggest now how the analysis could be
extended to exhibit a complexity bound depending on Newton iterations used to
approximate the analytical center. As a main tool, we can make use of the following
well-known result from the interior point literature (see Renegar [23]).

Proposition 6.1. Let K = {x : Ax ≤ b} and assume that K is consistent and
has nonempty interior. Let x0 be such that Ax0 < b. Let ε > 0 be given. Then an
approximation x̃ to x0 such that ‖x̃− x̂‖Q ≤ ε can be computed after at most

O

(√
n log

1

εdist(x0, ∂K)

)

iterations of the Newton method, where ‖u‖Q =
√
uTQu and dist(x0, ∂K) denotes the

distance from x0 to the boundary of the K.
To use this result we must assume that we know in advance a point x0 in the

interior of P (d) = {x : Ax ≤ b}. Following the construction in Proposition 4.2, we
will also need to argue that from x0 it is possible to construct a point x̃ in the interior
of any polyhedron Ãx ≤ b̃ generated during the successive slicing of the original
polyhedron. This can be achieved as follows: Consider the system Ax ≤ b, uTx = γ,
as in Proposition 4.2. Solve the optimization problem max{uTx : Ax ≤ b}, and
let x′ be an optimal solution. Let x̄ be the point in the line segment between x0

and x′ contained in the hyperplane uTx = γ. Using the arguments in the proof of
Proposition 4.2, one can show that the point x̃ obtained from x̄ by eliminating the kth
component satisfies Ax̃ < b̃. Now we will need to argue that there exists a constant
η such that η ≥ dist(x̃, ∂P (d̃)) for all polyhedrons P (d̃) generated, where x̃ is the
suitably chosen starting interior point. Under those assumptions, we can choose, for
instance, ε = 1/3, as has been customary in the interior point methods literature,
and modify subroutine FLAT to compute only an ε approximation to the analytic
center. Then the complexity estimates in Theorem 4.6 and 4.10 will be modified only
by the factor (m+1+1/3), as we are shifting the interior reference point by a relative
distance of 1/3, in the norm of the matrix Q. We can then combine those theorems
with Proposition 6.1 to claim an overall bound on the number of Newton iterations
of the form

O

(
2n(m + 2)n(n!)1/2

√
n log

(
3

η

)(
σ̄

ρU (d)

)n)
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for the feasibility problem. A similarly extended bound will follow from Theorem 4.10.
In both cases, the analysis and the bound depend on the existence of an appropriate
lower bound η.

In the combinatorial analysis, a polynomial time result is given for the applica-
tion of the flatness theorem, based on the ellipsoidal algorithm and the basis reduction
algorithm, which run in polynomial time. We are not presenting here a formal poly-
nomial time result, but the meaning of efficiency is more of a continuous nature in
the sense that only a finite number of Newton iterations are required, as in the above
bound.

Potential extensions. The approach presented here suggests that information
from the lattice width of a polyhedron could be used to solve integer programs more
efficiently. We are conducting research on selection rules for branch and bound based
on this information; see [3]. Also Mehrotra, Sheng, and Li [16] have implemented
Lenstra’s algorithm using disjunctive cuts originating on information from the round-
ing of the polyhedron. Our results could also be used to analyze the complexity of
that implementation.
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FAST ALGORITHMS FOR PROJECTION ON AN ELLIPSOID∗
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Abstract. Several fast algorithms are proposed for the problem of projecting a point onto a
general ellipsoid. To avoid the direct estimation of the spectral radius in the Lin–Han algorithm, we
provide the maximal 2-dimensional inside ball algorithm and the sequential 2-dimensional projection
algorithm. However, we find that the solution procedure of the former algorithm may tend to generate
some 2-dimensional reduced ellipsoids, and the latter algorithm may produce zigzags. Therefore we
investigate the hybrid use of the two algorithms. Our numerical experiments show that all the
algorithms, even the hybrid algorithms, are suitable for large-scale problems and much faster than
the Lin–Han algorithm. Linear convergence of the algorithms is established. Possible extensions of
the algorithms are also discussed.
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1. Introduction. The problem of projection on a general convex set

min d(a,x)
s.t. x ∈ C,(1.1)

where d(·, ·) is some distance function and C is some convex set in Rn, is one of the
fundamental problems in convex analysis. It is also an important inertia of projection
methods for nonlinear programming, variational inequality problems, etc. For exam-
ple, Birgin, Mart́inez, and Raydan [1] established efficient spectral projected gradient
algorithms for optimization over convex sets. Evidently, the performance of their al-
gorithms is very related to the subprojection algorithm on the convex set. Although
the problem (1.1) has been well studied in theory, little is known about how to solve
the problem except when C is some special set such as a ball, a box, a box with a
singly linear constraint (for example, see [12, 2]), or an order simplex (for example,
see [6]).

In this paper, we consider the following problem of projecting a point onto a
general ellipsoid:

min d(a,x) = ‖x − a‖
s.t. x ∈ E := {x ∈ Rn : q(x) ≤ α},(1.2)

where a ∈ Rn is a point to be projected, q(x) = xTAx+2bTx, A is a positive definite
matrix in Rn×n, and ‖ · ‖ means the 2-norm. Note that the convex set C can usually
be written as

C =
m⋂
i=1

{x ∈ Rn : gi(x) ≤ 0},(1.3)
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where m is some positive integer and gi(x) (i = 1, . . . ,m) is some concave function
in Rn. Since a suitable local approximation to a nonlinear function is a quadratic
function, the problem (1.2) is fundamental in solving the problem (1.1) with C given
by (1.3). If the problem with m = 1 is well solved, one can then use methods such as
those in [4] and [7] to solve the general problem with any m. The problem (1.2) with
b = 0 is also related to the trust region subproblem in nonlinear optimization.

To solve the problem (1.2), Lin and Han [9] proposed a simple and geometric
algorithm for the problem (1.2) with b = 0 with attractive convergence properties.
Suppose that the current iteration is xk that belongs to the boundary of E . The
basic idea of their algorithm is to construct an n-dimensional ball that lies inside the
ellipsoid E and is tangent to the boundary of E at xk, and then take xk+1 to be the
intersection of the boundary of E and the line segment connecting a and the center of
the ball ck. Consequently, they have to estimate the spectral radius of A in some way.
As analyzed in section 3, however, a lower estimate of this quantity may deteriorate
the performance of the algorithm greatly. Nevertheless, if we consider the choice of
xk+1 on the 2-dimensional linear manifold Sk = xk + Span{a − xk, Axk + b}, then
much faster algorithms can be obtained.

The rest of this paper is organized as follows. In the next section, we present a
general framework for all the algorithms considered in this paper. In section 3, a nu-
merical analysis of the Lin–Han algorithm is provided. Two new algorithms, namely,
a maximal 2-dimensional inside ball algorithm and a sequential 2-dimensional pro-
jection algorithm, are proposed in sections 4 and 5, respectively. In section 6, we
investigate the hybrid use of the two algorithms and propose the simple hybrid pro-
jection algorithm and the general hybrid projection algorithm. A linear convergence
result is established in section 7 for the general hybrid projection algorithm, which
has the Lin–Han algorithm, maximal 2-dimensional inside ellipsoid algorithm, and
sequential 2-dimensional projection algorithm as its special cases. Numerical results
with the algorithms are reported in section 8. Discussion is given in the last section.

2. The general algorithm. Throughout this paper, we assume that q(a) > α,
because otherwise the projection of a on the ellipsoid E is itself. We also assume that

α > min{q(x) : x ∈ Rn} = −bTA−1b,(2.1)

so that E exists and is not a singleton. In this section, we describe a general algorithm
whose diagram is shown in Figure 1. This algorithm requires a feasible initial point
x0 and generates a sequence {xk} ⊂ Ω(E), where Ω(E) is the boundary of E ,

Ω(E) = {x ∈ Rn : q(x) = α}.(2.2)

Suppose that a feasible point xk is obtained at the kth iteration. Denote uk =
∇q(xk)/2 = Axk + b. The algorithm calculates an intermediate point ck along the
negative gradient of q at xk:

ck = xk − γkuk,(2.3)

where γk > 0 is so chosen that ck ∈ E , namely, q(ck) ≤ α. For any x, y ∈ Rn with
x �= y, denote by L(x,y) the line segment connecting x and y,

L(x,y) = {x + η (y − x) : η ∈ [0, 1]}.(2.4)

The algorithm takes xk+1 as the minimizer of the distance ‖x−a‖ on the set L(a, ck)∩
E . Equivalently, defining wk = ck − a, the algorithm calculates

xk+1 = a + ηk wk,(2.5)
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Fig. 1. Diagram of the general algorithm

where ηk ∈ (0, 1) is such that xk+1 ∈ Ω(E). The above procedure is then repeated
until some convergence criterion is satisfied.

Let us denote ga = ∇q(a)/2 = Aa + b; the requirement xk+1 ∈ Ω(Ek) asks ηk to
satisfy

α = q(xk+1) = q(a + ηkwk) = (wT
k Awk) η

2
k + 2 (gT

a wk) ηk + q(a) := ψ(ηk).(2.6)

Notice that ψ(0) = q(a) > α, ψ(1) = q(a + wk) = q(ck) ≤ α, and ψ(η) → +∞ as
η → +∞. Therefore the quadratic equation ψ(η) = α has one root in (0, 1) and one
root in (1,+∞). The smaller one is taken for ηk, namely,

ηk = − gT
a wk

wT
k Awk

−

√(
gT
a wk

wT
k Awk

)2

− q(a) − α

wT
k Awk

.(2.7)

Define vk = a − xk. The following criterion is used for the termination of the
algorithm:

1 − uT
k vk

‖uk‖ ‖vk‖
≤ ε,(2.8)

where ε > 0 is some tolerance error. Now we provide a detailed description of the
general algorithm.

General Algorithm.

1. Given a starting point x0 ∈ Ω(E) and ε > 0. Set k := 0.
2. Calculate γk in some way, uk = Axk + b, and ck by (2.3).
3. Calculate wk = ck − a and xk+1 by (2.5) and (2.7).
4. If (2.8) does not hold, set k := k + 1 and go to step 2.

As will be seen, all the algorithms in this paper are special cases of the above
general algorithm, but differ on the choice of γk.

3. A numerical analysis of the Lin–Han algorithm. The algorithm by Lin
and Han [9], which consists of constructing a ball that lies inside the ellipsoid E
and intersects Ω(E) at the point xk, is a special case of the General Algorithm. More
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Table 1

Performances of the Lin-Han algorithm with γk = 0.01 ζ.

ζ 1 0.5 0.2 0.1 0.05 0.02 0.01
#iter 142 284 710 1420 2839 7098 14197

exactly, their algorithm aims to find a positive number γk such that the n-dimensional
inside ball

B(γk) = {‖x − ck‖ ≤ γk‖uk‖ : x ∈ Rn} ⊂ E .(3.1)

Consequently, Lin and Han require the choice of γk to satisfy the condition

τ ≤ γk ≤ (ρ(A))−1,(3.2)

where τ is some small positive constant and ρ(A) is the spectral radius of A.
As analyzed in [9], the first inequality can provide a sufficient decrease of d(a,xk),

and hence the global convergence of the algorithm can be established. The function of
the second inequality is to guarantee that the n-dimensional ball B(γk) lies inside the
ellipsoid E . For this purpose, the authors need to estimate some matrix norm |||A||| ≥
ρ(A), and the 1-norm or ∞-norm is suggested. As will be shown, the numerical
performance of their algorithm heavily relies on the estimation of the spectral radius
ρ(A) and an underestimation of this quantity may deteriorate the algorithm greatly.

Consider the following 10-dimensional example.
Example 1. E = {x ∈ R10 : q(x) :=

∑10
i=1 i

2x2
i = 385}, a = (ai) with ai =

10i2 + 1 (i = 1, . . . , 10). The initial point is x0 =
√

385
q(a)

a. In this example, the

projection x∗ of a on E is x∗ = (1, 1, . . . , 1)T .
Since in this example A = diag(1, 4, . . . , 100), we have that ρ(A) = 100. We

tested the Lin–Han algorithm using γk = ζ (ρ(A))−1 = 0.01 ζ with different values of
ζ ≤ 1. The tolerance error ε in (2.8) was set to 10−6. Table 1 lists the numbers of
iterations required by the algorithm with different values of ζ.

From Table 1, we see that the number of iterations required by the Lin–Han algo-
rithm is almost linearly dependent on the value ζ. A good estimation of the spectral
radius ρ(A) may accelerate the algorithm significantly. This example even suggests
that it is worthwhile to do so before the projection calculations if a good approxima-
tion can be obtained with relatively low cost. As will be seen in the following sections,
however, this estimation procedure is not necessary, and algorithms much faster than
the Lin–Han algorithm even with γk = (ρ(A))−1 can be obtained.

4. Maximal 2-dimensional inside ball algorithm. Our new algorithms are
based on the following observation: all the points a, xk, ck, and xk+1 lie in the
2-dimensional linear manifold

Sk = {xk + (uk,vk) r : r ∈ R2},(4.1)

where (uk,vk) stands for a matrix whose columns are uk and vk. Thus at the kth
iteration we may consider just the 2-dimensional linear manifold Sk instead of the
whole space Rn.

Define Ek = E ∩ Sk to be the 2-dimensional reduced ellipsoid of E and Ω(Ek) =
Ω(E) ∩ Sk to be the boundary of Ek. A direct extension of the Lin–Han algorithm is
to construct a 2-dimensional inside ball

B2(γk) = {‖x − ck‖ ≤ γk‖uk‖ : x ∈ Sk} ⊂ Ek.(4.2)
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In addition, the numerical analysis of the Lin–Han algorithm in the previous section
suggests that the larger γk, the more efficient the algorithm. Therefore it is natural
for us to choose the maximum 2-dimensional inside ball and propose the following
algorithm.

Algorithm 1 (maximal 2-dimensional inside ball algorithm). At step 2 of the
General Algorithm, calculate the maximal γk such that (4.2) holds.

Since the dimension of the ellipsoid Ek is only two, we can directly calculate the
radius of the maximum inside ball of Ek at xk and then decide the value of γk in the
above algorithm. To do this, we orthonormalize the vectors vk and uk as follows:

pk =
vk

‖vk‖
, qk =

zk
‖zk‖

,(4.3)

where zk = uk − uT
k vk

vT
k
vk

vk. Denote

Hk = (pk,qk) ∈ Rn×2,(4.4)

which satisfies HT
k Hk = I. The linear manifold Sk in (4.1) can be expressed by

Sk = {xk + Hkl : l ∈ R2}.(4.5)

Consequently, the 2-dimensional reduced ellipsoid Ek can be expressed in the vector l
as follows:

E(l)
k = {l ∈ R2 : lTAkl + 2bT

k l ≤ 0},(4.6)

where

Ak = HT
k AHk =

⎛
⎝ vT

k Avk

‖vk‖2

vT
k Azk

‖vk‖ ‖zk‖
zT
k Avk

‖vk‖ ‖zk‖
zT
k Azk

‖zk‖2

⎞
⎠, bk = HT

k uk =

⎛
⎝ uT

k vk

‖vk‖
uT

k zk

‖zk‖

⎞
⎠.(4.7)

At the same time, xk corresponds to the origin in the l subspace. Our problem is

then to compute the radius rk of the maximal inside ball of the ellipsoid E(l)
k at the

origin.
To this aim, for any t > 0 we consider the ball

B(l)
2 (t) = {l ∈ R2 : ‖l + tbk‖ ≤ t‖bk‖}

that is tangent with the boundary of E(l)
k at the origin. For any l on the boundary of

B(l)
2 (t), we have that ‖l + tbk‖2 = t2‖bk‖2 and hence

lT l + 2tbT
k l = 0.(4.8)

If t ≤ (ρ(Ak))
−1, we can get by this, (4.8), and (4.6) that

lTAkl + 2bT
k l = lTAkl − t−1 lT l ≤ lTAkl − ρ(Ak)l

T l ≤ 0,

which means l ∈ E(l)
k and hence rk ≥ (ρ(Ak))

−1‖bk‖. On the other hand, for any
t > (ρ(Ak))

−1, consider the point

l̄ = −2t(bT
k ū)ū,
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where ū is one unit eigenvector of the matrix Ak corresponding to ρ(Ak). By direct
check, we know that

l̄ ∈ B(l)
2 (t) but l̄ /∈ Ek.

Hence we also have that rk ≤ (ρ(Ak))
−1‖bk‖. To sum up, rk = (ρ(Ak))

−1‖bk‖ is

exactly the radius of the maximal inside ball of B(l)
2 (r) of Ek at xk.

By direct calculations, we know that the spectral radius of the matrix Ak is

ρ(Ak) =
1

2

⎡
⎣vT

k Avk

vT
k vk

+
zTkAzk
zTk zk

+

√(
vT
k Avk

vT
k vk

− zTkAzk

zTk zk

)2

+
4 (vT

k Azk)2

vT
k vk zTk zk

⎤
⎦.(4.9)

On the other hand, we have by HT
k Hk = I that ‖bk‖ = ‖HT

k uk‖ = ‖uk‖. Thus the
spectral radius of the maximal 2-dimensional inside ball of Ek at xk is (ρ(Ak))

−1 ‖uk‖,
and the value of γk in Algorithm 1 is

γk = (ρ(Ak))
−1.(4.10)

In the implementation of Algorithm 1, we need not store and compute the vectors
pk and qk since only the value ρ(Ak) is required. We counted that Algorithm 1 re-
quires 1 matrix-vector multiplication and 12 vector-vector operations or scalar-vector
multiplications. (Here note that to calculate ρ(Ak) by (4.9), we can obtain Azk and
Avk by Auk and uk and hence only require one matrix-vector multiplication, that
is Auk, at each iteration.) Comparing with the Lin–Han algorithm, Algorithm 1 re-
quires only 1 more vector-vector operation. However, Algorithm 1 avoids the direct
estimate of the spectral radius ρ(A). Even if ρ(A) is available, we may expect that
Algorithm 1 is better than the Lin–Han algorithm with γk = (ρ(A))−1 because it
follows from Ak = HT

k AHk and HT
k Hk = I that

ρ(Ak)
−1 ≥ ρ(A)−1.(4.11)

Example 1 in section 3 has been used for a quick check, and it is found that Algorithm
1 requires only 111 iterations to achieve a solution with the same precision. More
numerical comparisons will be provided in section 8.

5. Sequential 2-dimensional projection algorithm. A numerical drawback
of Algorithm 1 is that, even in the case of two dimensions, if the ellipsoid E is flat and
the point a to be projected is close to the sharp area, the algorithm may take a large
number of iterations. Consider the following example.

Example 2. E = {x ∈ R2 : x2
1 + 10000x2

2 = 2}, a = (1, 100.01)T . The initial
point x0 is either (

√
2, 0)T or (−1, 0.01)T . The exact projection of a onto E is

x∗ = (1, 0.01)T .
If x0 = (

√
2, 0)T , Algorithm 1 takes 7361 iterations to reach the stopping condi-

tion (2.8) with ε = 10−6. If x0 = (−1, 0.01)T , Algorithm 1 requires 12,858 iterations
to find a satisfactory point. In this example, we have that γk ≡ 10−4. This drawback
of Algorithm 1 still exists in the higher-dimensional case. Take the 10-dimensional
example in section 3 as an instance. Denoting by Mk the matrix with columns formed

by ek+i = xk+i−x∗

‖xk+i−x∗‖ (i = 0, 1, 2), we found that the determinant of MT
k Mk eventu-

ally tends to zero, which means that the solution procedure of Algorithm 1 tends to
some 2-dimensional reduced ellipsoid. At the same time, the γk tends monotonically
increasingly to some value, which is approximately 1.2804e−2.
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To overcome the above drawback of Algorithm 1, we propose another algorithm
that consists of calculating the exact projection of a onto the 2-dimensional ellip-
soid Ek at each iteration. The following lemma, together with the invariance of the
projection under orthogonal transformations, indicates that the projection onto any
2-dimensional ellipsoid can be obtained via a quartic equation.

Lemma 1. Consider the 2-dimensional ellipsoid

E(h) = {h ∈ R2 : hTDh ≤ β},(5.1)

where β > 0 and D = diag(λ1, λ2) with λ1, λ2 > 0. For any h = (h1, h2)
T with

hTDh > β, denote by h∗ = (h∗
1, h

∗
2)

T the projection of h onto E(h). Then

h∗
2 =

λ1h2

(λ1 − λ2)h∗
1 + λ2h1

h∗
1,(5.2)

where h∗
1 satisfies the quartic equation

[(λ1 − λ2)h
∗
1 + λ2h1]

2 [λ1(h
∗
1)

2 − β] + λ2
1λ2h

2
2(h

∗
1)

2 = 0.(5.3)

Proof. By the Karush–Kuhn–Tucker condition (for example, see Fletcher [5]),
there exists some μ > 0 such that h − h∗ = μDh∗, or equivalently,{

h1 − h∗
1 = μλ1h

∗
1,

h2 − h∗
2 = μλ2h

∗
2.

(5.4)

It follows that

λ1h
∗
1(h2 − h∗

2) = λ2h
∗
2(h1 − h∗

1),(5.5)

which implies the truth of (5.2). In addition, by the feasibility condition,

λ1(h
∗
1)

2 + λ2(h
∗
2)

2 = β.(5.6)

Substituting (5.2) into (5.6), we then know that h∗
1 satisfies (5.3).

The quartic equation (5.3) can be solved in an analytical way or easily by some
numerical methods (in our implementation with MATLAB, we use the function roots).
From (5.4) and the positiveness of the multiplier μ, we can get that

μ =
h1 − h∗

1

λ1h∗
1

=
h2 − h∗

2

λ2h∗
2

> 0.(5.7)

The above relations and (5.2) can help us to pick up the correct value for h∗
1 among

the four roots of (5.3). The h∗
2 is then determined by (5.2).

Note that the computational burden of projecting a point onto a 2-dimensional
ellipsoid is negligible when n is relatively large. We propose the following algorithm
for projecting onto an n-dimensional ellipsoid.

Algorithm 2 (sequential 2-dimensional projection algorithm). At the kth iter-
ation, having xk ∈ Ω(E), we take the projection of a on the 2-dimensional reduced
ellipsoid Ek = E ∩ Sk to be xk+1.

Now we describe how to calculate xk+1 in Algorithm 2. Notice that the linear
manifold Sk in (4.1) can be expressed by (4.5), where Ak and bk are still given by (4.7),
(4.4), and (4.3). Also notice that the point a in Rn corresponds to al = (‖vk‖, 0)T
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in the l space. Due to the invariance property of the projection under orthogonal
transformations and the fact that HT

k Hk = I, if the projection a∗
l of al onto the

ellipsoid E(l)
k in (4.6) is obtained, the xk+1 in Algorithm 2 is given by

xk+1 = xk + Hka
∗
l .(5.8)

Therefore our calculation of xk+1 in Algorithm 2 can be divided into two steps: the

first step is to compute the projection a∗
l of al = (‖vk‖, 0)T onto E(l)

k in (4.6), and
the second step is to calculate xk+1 from a∗

l .
At the first step, to compute a∗

l , we assume that the eigendecomposition of the
2 × 2 matrix Ak in (4.7) is

Ak = QTDQ, where D is diagonal and QTQ = I.(5.9)

Under the orthogonal transformation l → h = Ql + D−1Qb, the ellipsoid E(l)
k can be

expressed in the form (5.1) with β = (Qbk)
TD−1(Qbk). The point al in the l space

corresponds to ah = Qal + D−1Qbk in the h space. Denote by a∗
h the projection of

ah onto E(h); we also have that a∗
h = Qa∗

l + D−1Qbk. Consequently, we have that

a∗
l = QT (a∗

h −D−1Qbk).(5.10)

By Lemma 1, the projection a∗
h of ah onto E(h) can be obtained via a quartic equation.

Therefore after Ak and bk have been obtained, the computational work to obtain the

projection a∗
l of al onto the 2-dimensional ellipsoid E(l)

k is again negligible when n is
relatively large.

At the second step, we may calculate xk+1 from a∗
l directly by (5.8). To avoid the

explicit storage of Hk, however, we express xk+1 in the form (2.5) and treat Algorithm
2 as a special case of the General Algorithm described in section 3. Assume that
a∗
l = (a∗l,1, a

∗
l,2)

T . It follows from (5.8), the definition of Hk, and (4.3) that

xk+1 = xk + a∗l,1pk + a∗l,2qk = xk +
a∗l,2
‖zk‖

uk +

[
a∗l,1
‖vk‖

− uT
k vk

vT
k vk

a∗l,2
‖zk‖

]
vk.(5.11)

On the other hand, the definitions of wk, ck, and vk in section 2 indicate that

wk = ck − a = xk − γk uk − a = −γk uk − vk.(5.12)

By (5.12) and the definition of vk, the xk+1 in (2.5) can be expressed as

xk+1 = xk + vk + ηk wk = xk − ηk γk uk + (1 − ηk)vk.(5.13)

Comparing (5.11) and (5.13), we can then calculate xk+1 by (2.5) and (5.12) with

ηk = 1 −
a∗l,1
‖vk‖

+
uT
k vk

vT
k vk

a∗l,2
‖zk‖

(5.14)

and

γk = −
a∗l,2
‖zk‖

1

ηk
.(5.15)

The above equivalent treatment also facilitates us in designing a safeguard for Al-
gorithm 2. If the γk in (5.15) is negative or tiny (this is sometimes the case in our
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Fig. 2. The {γk} by Algorithm 2.

numerical experiments, although seldom), we can turn to using (4.10) and carry out
one step by the maximal 2-dimensional inside ball algorithm.

Using (4.4) and (4.3), the matrix Ak and bk in the expression of E(l)
k can be also

calculated without the explicit storage of Hk. If we do not consider the difference in
the calculation of γk, the computation amount of Algorithm 2 and that of Algorithm
1 are identical since they require the same vector operations; namely, both of them
require only 1 matrix-vector multiplication and 12 vector-vector operations or scalar-
vector multiplications. Due to the minimal property, however, Algorithm 2 is expected
to perform better than 1. When we use Algorithm 2 to solve the example in section
3, a solution with the same precision is achieved at the 79th iteration.

6. Hybrid projection algorithms. Algorithms 1 and 2 avoid the direct esti-
mate to the spectral radius ρ(A) and are more efficient than the Lin–Han algorithm.
Algorithm 2 seems to be optimal since the distance function d(a,x) achieves the
maximal decrease in the 2-dimensional ellipsoid Sk at every iteration. However, the
following example shows that Algorithm 2 produces some kind of zigzags. Consider
the 3-dimensional example that follows.

Example 3. E = {x ∈ R3 : x2
1+100x2

2+10000x2
3 = 1.0101}, a = (2, 1.01, 1.0001)T .

The initial point is x0 = (0.01, 0.01, 0.01)T . The exact projection of a onto E is
x∗ = (1, 0.01, 0.0001)T .

Even for this 3-dimensional example, Algorithm 2 takes 113 iterations to reach
the stopping condition (2.8) with ε = 10−6. Denote again ek = xk−x∗

‖xk−x∗‖ and the
matrices

M̄k = [e2k, e2k+2, e2k+4], M̃k = [e2k+1, e2k+3, e2k+5].

We found that both the determinants of M̄k and M̃k tend to zero as k increases. This
shows that the iterations generalized by Algorithm 2 tend to two 2-dimensional re-
duced ellipsoids alternately. Meanwhile, the sequence {γk} also tends to two different
values, as shown in Figure 2. The same phenomenon is observed for Algorithm 2 in
Example 1 in section 3.

Instead of establishing strict theoretical results for the above observations, we are
interested in this paper in finding more efficient algorithms. A naive idea to avoid
the zigzagging phenomenon of Algorithm 2 is to use one iteration of Algorithm 1
after every two iterations of Algorithm 2. We then obtain the following simple hybrid

projection algorithm, where for some given xk, γ
(1)
k and γ

(2)
k stand for the values of
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Fig. 3. The {γk} by Algorithm 3.

γk given by Algorithm 1 and Algorithm 2, respectively.
Algorithm 3 (simple hybrid projection algorithm). At step 2 in the General

Algorithm, set γ3k+i = γ
(2)
3k+i for i = 0, 1 and γ3k+2 = γ

(1)
3k+2.

Although its basic idea is simple, our numerical experiments on a collection of test
problems showed that Algorithm 3 is much more efficient than Algorithms 1 and 2.
For instance, to solve Example 3 with the same precision, Algorithm 3 requires only
49 iterations, which is significantly smaller than the number required by Algorithm 2.
To solve Example 1 in section 3, Algorithm 3 takes only 27 iterations. At the same
time, we notice that the value of γk changes frequently in Algorithm 3 (see Figure 3
for {γk} in Example 3).

A possible explanation for the success of Algorithm 3 is that the inexactness in the
projection of a on the 2-dimensional reduced ellipsoid E3k+2 introduced by Algorithm
1 can make E3k+3 and E3k+4 be much different from E3k and E3k+1, and hence help
Algorithm 2 continuously achieve big decreases in the distance function d(a,xk). It is
interesting to note that a similar idea has been used in the steepest descent method
and leads to significant numerical improvement (see [3]).

The degree of inexactness in Algorithm 3 depends on the values of γ
(1)
3k+2 and

γ
(2)
3k+2. If γ

(1)
3k+2 ≈ γ

(2)
3k+2, Algorithm 3 fails to bring enough inexactness. On the other

hand, we see that there are many other ways to control the inexactness (for example,

by multiplying γ
(2)
k by some positive constant less than 1). In addition, from Figure 3

we have some worry that the sequences {γk} and {ek} in Algorithm 3 may also sink
into some type of cycle. Therefore we propose the following general hybrid projection
algorithm.

Algorithm 4 (general hybrid projection algorithm). At step 2 of the General

Algorithm, compute γk by some positive function ψ(γ
(1)
k , γ

(2)
k ) of γ

(1)
k and γ

(2)
k .

The above algorithm includes Algorithms 1, 2, and 3 as its components. Now
we discuss how to choose the function ψ. To guarantee the existence of xk+1 and
d(a,xk+1) < d(a,xk), we impose the following condition:

γk ≤ max(γ
(1)
k , γ

(2)
k ).(6.1)

If this relation holds, it is easy to know by continuity that the line segment connecting
a and ck = xk − γkuk must have an intersection point with Ω(Ek). By (6.1) and the
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positivity of ψ, we can express γk as

γk = c
(1)
k γ

(1)
k + c

(2)
k γ

(2)
k ,(6.2)

where c
(1)
k and c

(2)
k are such that

c
(1)
k ≥ 0, c

(2)
k ≥ 0, c

(1)
k + c

(2)
k ≤ 1.(6.3)

To ensure the convergence of the algorithm, we require that

c
(1)
k + c

(2)
k ≥ τ for some τ ∈ (0, 1] and all k.(6.4)

Under these requirements on c
(1)
k and c

(2)
k , we will show in the next section that the

algorithm is globally convergent and the convergence is linear.
In this paper, we are particularly interested in the following 4-parameter family

of hybrid projection algorithms:

γk =

{
γ

(2)
k if mod(k,m1 + m2) < m1,

c1γ
(1)
k + c2γ

(2)
k otherwise,

(6.5)

where m1 ≥ 1 and m2 ≥ 1 are integers and c1 and c2 are nonnegative constants
satisfying 0 < c1 + c2 ≤ 1. The formula (6.5) indicates that the algorithm will carry
out m2 inexact 2-dimensional projection steps after every m1 steps of Algorithm 2. In
section 8, we will find that some methods in the family (6.5) are more efficient than
the simple hybrid projection algorithm. Here we would like to note that Algorithm
(6.5) with the choice (8.2) requires only 23 iterations for Example 1.

7. Linear convergence. Lin and Han [9] proved global convergence for their
algorithm under the condition (3.2) on γk. In the following we will establish the
linear convergence of the general hybrid projection algorithm with γk given by (6.2)

under the assumptions (6.3) and (6.4) on c
(k)
1 and c

(k)
2 . Consequently, the Lin–Han

algorithm and Algorithms 1–3 are all linearly convergent.
For any nonzero vectors x and y in Rn, define the angle between x and y as

θ(x,y) = arccos

(
xTy

‖x‖‖y‖

)
, 0 ≤ θ(x,y) ≤ π.(7.1)

For any xk ∈ S(a, E), we denote the angles

νk = θ(a − xk, Axk + b), θk = θ(a − xk,x
∗ − a),(7.2)

where x∗ is the projection of a on E as before. In the following, Lemmas 2 and 3 aim to
provide a lower bound for the decrease d(a,xk)− d(a,xk+1) by the angle νk. Lemma
5, which calls Lemma 4, estimates the upper bound for the distance d(a,xk)−d(a,x∗)
by the angle θk. Then using the relation νk ≥ θk, as shown in Lemma 6, we establish
the linear convergence of the general hybrid projection algorithm in Theorem 7.

Denote by κ and λmin(A) the condition number and the minimal eigenvalue of
A, respectively. Define

ᾱ = α + bTA−1b.(7.3)

Under the transformation x → y = x + A−1b, we can express Ω(E) as

Ω̄ = {y ∈ Rn : yTAy = ᾱ}.(7.4)
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Fig. 4. Diagram of the proof of Lemma 2.

Then we can obtain

min
x∈Ω(E)

‖Ax + b‖ = min
y∈Ω̄

‖Ay‖ = min
y∈Ω̄

√
(A

1
2 y)TA(A

1
2 y)

= min
y∈Ω̄

√
λmin(A) ‖A 1

2 y‖ =
√
λmin(A) ᾱ.(7.5)

Lemma 2. For Algorithm 1, there exists some positive constant c3 such that

d(a,xk) − d(a,xk+1) ≥ c3 sin2 νk
2

for all k,(7.6)

where

c3 =
2 d(a, x∗)

1 + c4 d(a, x∗)
and c4 =

(
ρ(A)

ᾱ

) 1
2

κ
1
2 .(7.7)

Proof. Denote by xs the intersection of the line segment L(a, ck) and the boundary
of the 2-dimensional ball B2(γk) in (4.2) (see Figure 4). Then we have that ‖xs−ck‖ =
‖xk − ck‖ = γk ‖uk‖. Noting that B2(γk) ⊂ Ek and considering the triangle formed
by the points a, ck, and xk, we can get that

d(a,xk) − d(a,xk+1) = [d(a,xk) + ‖xk − ck‖] − [d(a,xk+1) + ‖xs − ck‖]
≥ [d(a,xk) + ‖xk − ck‖] − ‖a − ck‖

≥ [d(a,xk) + ‖xk − ck‖]2 − ‖a − ck‖2

2 [d(a,xk) + ‖xk − ck‖]

=
d(a,xk) ‖xk − ck‖ [1 − cos(π − νk)]

d(a,xk) + ‖xk − ck‖

=
2 sin2 νk

2

[d(a,xk)]−1 + [γk‖uk‖]−1
.(7.8)

From the above relation, (4.10), (4.11), the definition of uk, and (7.5), we know that
(7.6) holds.

Lemma 3. Consider Algorithm 4 with γk given by (6.2). If c
(k)
1 and c

(k)
2 satisfy

(6.3) and (6.4), we have that

d(a,xk) − d(a,xk+1) ≥ c3 τ sin2 νk
2

for all k.(7.9)
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Fig. 5. Diagram of proof of Lemma 3.

Proof. For any fixed xk, denote by x
(1)
k+1 and x

(2)
k+1 the points generated by Al-

gorithms 1 and 2, respectively. Noting that d(a,x
(2)
k+1) = min{d(a,x) : x ∈ Ek} ≤

d(a,x
(1)
k+1), we have by this and Lemma 2 that

d(a,xk) − d(a,x
(i)
k+1) ≥ c3 sin2 νk

2
for i = 1, 2 and all k.(7.10)

The relations (6.2) and (6.3) imply that γk ≤ max(γ
(1)
k , γ

(2)
k ). Define xk+1(γ) =

L(a,xk−γuk)∩Ω(Ek). Since γ
(2)
k is the unique minimizer of the function d(a,xk+1(γ))

such that xk+1(γ) ⊂ Ω(Ek), we know that d(a,xk+1(γ)) is monotonically decreasing

as γ moves from γ
(1)
k to γ

(2)
k . Consequently, if

γk ≥ min(γ
(1)
k , γ

(2)
k ),(7.11)

we have that d(a,xk+1) ≤ d(a,x
(1)
k+1) and hence (7.9) is true.

If (7.11) does not hold, we have by (6.2) and (6.3) that

τ γ
(i0)
k ≤ γk ≤ γ

(i0)
k ,(7.12)

where i0 ∈ {0, 1} is such that γ
(i0)
k = min (γ

(1)
k , γ

(2)
k ). Equivalently, we have that

τ ‖c(i0)
k − xk‖ ≤ ‖ck − xk‖ ≤ ‖c(i0)

k − xk‖,(7.13)

where c
(i0)
k = xk − γ

(i0)
k uk. Denote again by xs the intersection of L(a, ck) and the

line segment connecting xk and x
(i0)
k+1 (see Figure 5). Due to the convexity of Ω(Ek),

we know that xs belongs to the interior of Ek and hence

d(a,xk+1) < d(a,xs).(7.14)

For convenience, for any given vectors z1, z2, and z3, we denote by � z1z2z3 the

angle between z1 − z2 and z3 − z2. Note that � ackxk > � ac
(i0)
k xk. If introducing a

supplementary point s ⊂ L(xk,x
(i0)
k+1) such that L(s, ck) is parallel to L(x

(i0)
k+1, c

(i0)
k ),

we can see that

‖xs − xk‖
‖x(i0)

k+1 − xk‖
>

‖ck − xk‖
‖c(i0)

k − xk‖
.(7.15)
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Now we introduce a supplementary point s1 ⊂ L(a,xk) such that ‖a − s1‖ = ‖a −
x

(i0)
k+1‖. Then we have that

� ax
(i0)
k+1s1 = � as1x

(i0)
k+1 = � s1x

(i0)
k+1xk + � axkx

(i0)
k+1,(7.16)

� ax
(i0)
k+1s1 + � as1x

(i0)
k+1 + � xkax

(i0)
k+1 = π.(7.17)

Substituting (7.16) into (7.17), we get that

2� s1x
(i0)
k+1xk = (π − 2 � axkx

(i0)
k+1) − � xkax

(i0)
k+1.(7.18)

Similarly, if we introduce another supplementary point s2 ⊂ L(a,xk) such that ‖a −
s2‖ = ‖a − xs‖, we have that

2 � s2x
(i0)
k+1xk = (π − 2 � axkx

(i0)
k+1) − � xkaxs.(7.19)

The relations (7.18), (7.19), and � xkaxs < � xkax
(i))

k+1 imply that � s2x
(i0)
k+1xk >

� s1x
(i0)
k+1xk. Similarly to (7.15), we can prove that

‖s2 − xk‖
‖s1 − xk‖

>
‖xs − xk‖

‖x(i0)
k+1 − xk‖

.(7.20)

Therefore by (7.14), (7.20), (7.15), and (7.12), we obtain

d(a,xk) − d(a,xk+1)

d(a,xk) − d(a,x
(i0)
k+1)

>
d(a,xk) − d(a,xs)

d(a,xk) − d(a,x
(i0)
k+1)

=
‖s2 − xk‖
‖s1 − xk‖

>
‖xs − xk‖

‖x(i0)
k+1 − xk‖

>
‖ck − xk‖
‖c(i0)

k − xk‖
≥ τ,(7.21)

which, with (7.10), indicates the truth of (7.9).
To estimate the distance between d(a,xk) and d(a,x∗), we require the following

lemma.
Lemma 4. Consider the n-dimensional ellipsoid E in (1.2). For any x, y ∈ Ω(E)

with x �= y, we have that

cos θ(Ax + b,x − y) ≤ 1

2
c4‖x − y‖,(7.22)

where c4 is given in (7.7).
Proof. Without loss of generality, we assume that n = 2; otherwise consider

the reduced ellipsoid of E restricted to the 2-dimensional linear manifold {x + (Ax +
b,x − y) r : r ∈ R2}. Further, by making the transformation x → x + A−1b and
some orthogonal transformation, we assume that

E = {x ∈ R2 : xTAx ≤ ᾱ}, where A = diag(β2, δ2) with 0 < β ≤ δ,(7.23)

and ᾱ is still given in (7.3). Let � = ᾱ
1
2β−1δ−1. Then we can express any x, y ⊂ Ω(E)

as

x = �

(
δ cosα1,
β sinα1

)
, y = �

(
δ cosα2,
β sinα2

)
.
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Denoting α3 = α1+α2

2 and α4 = α1−α2

2 , we have by direct calculations that

‖x − y‖2 = �2 [δ2(cosα1 − cosα2)
2 + β2(sinα1 − sinα2)

2]

= 4�2 sin2 α4(δ
2 cos2 α3 + β2 sin2 α3)(7.24)

≥ 4�2β2 sin2 α4

and

(x − y)TAx = �2β2δ2[cosα1(cosα1 − cosα2) + sinα1(sinα1 − sinα2)]

= �2β2δ2[1 − (cosα1 cosα2 + sinα1 sinα2)]

= �2β2δ2[1 − cos(α1 + α2)](7.25)

= 2�2β2δ2 sin2 α4.

In addition, we can get that

‖Ax‖ = �βδ

√
β2 cos2 α1 + δ2 sin2 α1 ≥ �β2δ.(7.26)

Thus by (7.1), b = 0, (7.24)–(7.26), and the definition of �, we obtain

cos θ(Ax + b,x − y) =
(x − y)TAx

‖x − y‖2 ‖Ax‖ ‖x − y‖ ≤ δ

2�β2
‖x − y‖ ≤ δ2

2ᾱ
1
2β

‖x − y‖.

If n = 2, we have that δ =
√
ρ(A) and β =

√
λmin(A). If n ≥ 3, in which case a

2-dimensional reduced ellipsoid is considered, we have similarly to (7.16) that δ ≤√
ρ(A) and β ≥

√
λmin(A). Consequently, (7.22) is always true.

With the help of Lemma 3, we can now estimate the distance between d(a,xk)
and d(a,x∗) by the angle θk in (7.2).

Lemma 5. Denote S(a, E) = {x ∈ Ω(E) : θ(a−x, Ax+b) ≤ π
2 }. If xk ∈ S(a, E),

there exists some positive constant c5 such that

d(a,xk) − d(a,x∗) ≤ c5 sin2 θk
2
.(7.27)

Proof. Define

φ(x) =

{
θ(a − x∗,x − x∗) if x �= x∗,
π
2 if x = x∗.

It is easy to see that φ∗ := max{φ(x) : x ∈ S(a, E)} ≥ π
2 since x∗ ⊂ S(a, E). In

addition, notice that the point x̄ in E satisfying θ(a−x∗, x̄−x∗) = π does not belong
to S(a, E). Then we have by the compactness of S(a, E) that φ∗ < π. Further,
denote σk = θ(a − x∗, xk − x∗) (see Figure 6). In a similar way, we can show that
π
2 ≥ π − (θk + σk) ≥ ξ∗. It follows that for any xk ∈ S(a, E),

sinσk ≥ sinφ∗ and sin(θk + σk) ≥ sin ξ∗.(7.28)

From the triangle formed by a, x∗, and xk, we have that

‖x∗ − xk‖
sin θk

=
d(a,xk)

sinσk
=

d(a,x∗)

sin(θk + σk)
.(7.29)
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Fig. 6. Diagram of proof of Lemmas 5 and 6.

Noting that a − x∗ is parallel to Ax∗ + b, we have by Lemma 4 and the fact that
a − x∗ is parallel to Ax∗ + b that

− cosσk = cos(π − σk) ≤ c4‖x∗ − xk‖.(7.30)

Now, by (7.29), (7.30), and (7.28), we can obtain

d(a,xk) − d(a,x∗)

d(a,x∗)
=

sinσk − sin(θk + σk)

sin(θk + σk)

=
sinσk(1 − cos θk) − cosσk sin θk

sin(θk + σk)

≤
2 sinσk sin2 θk

2 + 1
2c4‖x∗ − xk‖ sin θk

sin(θk + σk)

=
2 sin2 σk sin2 θk

2 + 1
2c4 d(a,xk) sin2 θk

sin(θk + σk) sinσk

=
2 sin2 σk + 2c4 d(a,xk) cos2 θk

2

sin(θk + σk) sinσk
sin2 θk

2

≤ 2(1 + c4dmax)

sin ξ∗ sinφ∗ sin2 θk
2
.(7.31)

In the above, dmax = maxx∈E d(a,x) < +∞. Therefore (7.27) holds with

c5 =
2(1 + c4dmax) d(a,x

∗)

sin ξ∗ sinφ∗ ,(7.32)

which completes the proof.
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To establish the linear convergence of the algorithm, we now need a relation
between the angle νk and θk. As in the proof of Theorem 3.8 in [9], we can show
that νk ≥ θk. In the following, we present a geometrical proof of this result (see also
Figure 6 for the diagram of the proof).

Lemma 6. For any xk ∈ S(a, E) with xk �= x∗, we have that νk ≥ θk.
Proof. Denote ξk = θ(x∗−xk, uk). Since uk is the normal direction of q at xk, we

know that ξk > π
2 . Denote by S̄k the 2-dimensional linear manifold including a, x∗,

and xk. Note that the direction uk does not necessarily lie in S̄k. We then introduce a
supplementary direction us ∈ S̄k such that the angle θ(x∗−xk, us) has the same size
as ξk. Meanwhile, we denote by C̄k the cone xk ∪{y �= xk : θ(x∗ −xk, y−xk) = ξk}.
Then we can see that

νs
.
= θ(a − xk, us) = min{θ(a − xk, y − xk) : y ∈ C̄k\{xk}} ≤ νk.(7.33)

On the other hand, since x∗ is the projection of a on the ellipsoid, we have that
θ(a − x∗,xk − x∗) > π

2 . Consequently, the straight line passing a and x∗ and the
other one {xk + tus : t ∈ R1} must cross at some point, still say xs. From the
triangle formed by a, xs, and xk, we can get that

νs ≥ θk.(7.34)

Combining (7.33) and (7.34), we know the truth of this lemma.
Now we are able to give the main theorem.

Theorem 7. Consider Algorithm 4 with γk given by (6.2). If c
(1)
k and c

(2)
k satisfy

(6.3) and (6.4), there exists some positive constant c6 < 1 such that

d(a,xk+1) − d(a,x∗)

d(a,xk) − d(a,x∗)
≤ 1 − c6.(7.35)

Proof. By Lemmas 3, 5, and 6, we have that

d(a,xk+1) − d(a,x∗)

d(a,xk) − d(a,x∗)
= 1 − d(a,xk) − d(a,xk+1)

d(a,xk) − d(a,x∗)
≤ 1 − c3τ

c5
.(7.36)

Substituting the values of ci, we know that (7.35) holds with

c6 =
c3τ

c5
=

τ sin ξ∗ sinσ∗[
1 + (ρ(A)/ᾱ)

1
2 κ

1
2 d(a,x∗)

] [
1 + (ρ(A)/ᾱ)

1
2 κ

1
2 dmax

] .(7.37)

The proof is then complete.
When xk → x∗, we have that σk → π

2 , θk + σk → π
2 , and d(a,xk) → d(a,x∗).

Consequently, from the proof of Lemma 5, the linear convergence constant in (7.35)
can be approximated by 1 − c̄6, where

c̄6 =
τ[

1 + (ρ(A)/ᾱ)
1
2 κ

1
2 d(a,x∗)

]2 .(7.38)

The relation (7.38) indicates that the convergence becomes slower when the condition
number of A becomes larger or the point a to be projected is farther from the ellipsoid.
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8. Numerical experiments. A 10-dimensional example has been used before
to show the efficiency of new projection algorithms. Now we provide some numerical
results for higher-dimensional problems. To facilitate our observation, we assume that

the matrix A is diagonal and that its diagonal entries are given by aii = 10
i−1
n−1ncond

(i = 1, . . . , n) and ncond controls the condition number of the matrix A. The vector
b is set to 0 in our tests, although the algorithms can apply to the case of nonzero b.
In case of nonzero b, we need to find a feasible initial point in E . We set c = 0 and
α = 1 so that the ellipsoid E lies in the unit ball at the origin. Equivalently, given n
and ncond, the ellipsoid used in our test is

E =

{
x ∈ Rn :

n∑
i=1

10
i−1
n−1ncondx2

i = 1

}
.

For the choice of a, we first generate a point ã = (ãi) by

ãi = a−ω
ii ,(8.1)

where ω ≥ 0 is some parameter. Then we ask x∗ = (ãTAã)−
1
2 ã to be the projection

of a in the ellipsoid E . It is easy to see that the larger ω is, the more x∗ tends to an
eigenvector of the matrix A corresponding to its small eigenvalue. For each x∗, we
choose different ϑ’s for a such that ‖a‖ = ϑ. Given the size ϑ of a, the point a can
be calculated by

a = x∗ +
ϑ2 − ‖x∗‖2

1 +
√

1 + ‖Ax∗‖2 [ϑ2 − ‖x∗‖2]
Ax∗.

The above strategy enables us not only to control both the size and the direction of
a (by the parameters ω and ϑ) but also to know its exact projection x∗. To sum up,
the construction of our test problems depends on the four parameters n, ncond, ω,
and ϑ. In our tests, we fix n = 104 and vary the other parameters:

ncond ∈ {2, 3, 4, 5}, ω ∈
{

0,
1

8
,

1

4
,

1

2

}
, ϑ ∈ {2, 5, 10, 50}.

We tested the Lin–Han algorithm and Algorithms 1–4 with the MATLAB lan-
guage (version 6.5.0). For all cases, the initial point is set to x0 = ϑ− 1

2 a. The
stopping condition is (2.8) with ε = 10−6. For the Lin–Han algorithm, we set
γk = (ρ(A))−1 = 10−ncond. As analyzed in section 3, this choice of γk favors the
comparison of the Lin–Han algorithm since any underestimation of this value may
deteriorate the performance of the algorithm. The parameters in Algorithm 4 are
chosen as follows:

m1 = 1, m2 = 1, c1 = 0.1, c2 = 0.8.(8.2)

Nevertheless, good numerical results are obtained with other values of (m1, m2, c1, c2),
for example (1, 1, 0.05, 0.9). Generally, if m1 = m2 = 1 are fixed, the suggested ar-
rangements for c1 and c2 are that

c2 ∈ [0.7, 0.9], c1 ∈ [0, 0.95 − c2].

The iteration numbers required by the algorithms for each case are noted in Table
2, where LH and Ai stand for the Lin–Han algorithm and Algorithm i, respectively.
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Table 2

Numerical comparisons of five projection algorithms.

ncond = 2 ncond = 3
LH A1 A2 A3 A4 ω ϑ LH A1 A2 A3 A4
72 49 40 19 17 0 2 209 141 118 44 43

110 74 62 25 25 0 5 316 212 184 62 57
134 90 76 29 29 0 10 382 256 231 77 65
163 109 94 35 31 0 50 434 290 280 86 77
82 54 45 19 19 1/8 2 269 173 148 52 41

127 82 70 26 29 1/8 5 435 278 246 83 48
157 101 88 32 31 1/8 10 559 357 324 104 51
194 124 110 40 35 1/8 50 716 456 440 137 87
94 58 50 22 21 1/4 2 344 208 186 65 49

146 89 80 31 31 1/4 5 580 349 322 104 64
181 110 100 37 33 1/4 10 773 465 436 137 121
225 136 126 43 39 1/4 50 1076 647 630 193 97
121 63 64 37 27 1/2 2 579 293 304 136 62
187 96 100 52 35 1/2 5 994 501 534 223 115
228 117 124 62 37 1/2 10 1337 672 728 295 166
278 142 152 73 43 1/2 50 1899 953 1052 409 165

ncond = 4 ncond = 5
LH A1 A2 A3 A4 ω ϑ LH A1 A2 A3 A4
479 321 282 92 75 0 2 809 541 529 158 77
621 415 396 125 85 0 5 697 466 529 137 82
623 416 429 125 88 0 10 580 388 440 116 70
524 350 377 104 74 0 50 506 338 364 104 69
734 469 414 128 70 1/8 2 1732 1104 1018 290 141

1136 724 672 200 97 1/8 5 2255 1437 1466 386 141
1362 868 854 239 101 1/8 10 2069 1318 1546 362 126
1298 828 932 236 105 1/8 50 1299 828 1008 236 94
1068 643 586 188 76 1/4 2 3020 1815 1684 509 151
1834 1102 1036 311 120 1/4 5 5015 3012 2920 833 175
2485 1493 1452 425 173 1/4 10 6430 3862 3972 1058 247
3261 1959 2122 557 197 1/4 50 5404 3245 4288 899 203
2357 1183 1246 535 171 1/2 2 8700 4357 4622 1858 429
4352 2181 2354 937 253 1/2 5 16715 8367 9074 3415 546
6352 3182 3488 1312 379 1/2 10 25653 12839 14178 5071 775

10769 5391 6128 2119 360 1/2 50 49765 24902 29210 9349 800

Since the number of calculations per iteration required by each algorithm is similar, the
algorithmic performance can basically be evaluated by the required iteration numbers.
From Table 2, we make the following comments.

Regarding influence of ncond, ω, and ϑ. In general, we see that the problem
becomes more difficult as ncond and ω increase. In other words, when the ellipsoid
becomes more flat, it is more difficult to project those points close to the flat part of
the ellipsoid. The influence of ϑ, namely the size of a, is different. If ncond and ω are
fixed, the increase of ϑ leads to more projection iterations in most cases. However, for
quite many cases such as ncond = 4, ω ∈ {0, 1/8}, and ncond = 5, ω ∈ {0, 1/8, 1/4},
the iterations required for ϑ = 50 are generally fewer than those for ϑ = 10. It seems
to us that for each case of ncond and ω, the problem becomes eventually more difficult
as a gets farther away from the ellipsoid and then eventually easier after a exceeds
some distance.

Regarding efficiency of the five projection algorithms. It is evident that the Lin–
Han algorithm is the worst and Algorithm 4 is the best. Further, we see that the
gain achieved by Algorithm 4 is bigger as the problem becomes more difficult. In the
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most difficult case, when ncond = 5, ω = 1/2, and ϑ = 50, the iteration numbers
required by Algorithm 4 are only about one sixty-third of the number required by the
Lin–Han algorithm. In other words, Algorithm 4 is less influenced by the difficulty of
the problem. Algorithm 3 is the second best among the five algorithms. Comparing
Algorithms 1 and 2, we see that in easy cases, Algorithm 2 is better than Algorithm
1, whereas Algorithm 1 requires fewer iterations than Algorithm 2 in difficult cases.

9. Discussion. In this paper we have proposed several new algorithms for pro-
jection on a general ellipsoid by considering the 2-dimensional reduced ellipsoid at each
iteration. To avoid the direct estimation of the spectral radius ρ(A) in the Lin–Han
algorithm, we provided the maximal 2-dimensional inside ball algorithm (Algorithm
1) and the sequential 2-dimensional projection algorithm (Algorithm 2). However,
we found that the solution procedure of Algorithm 1 tends to some 2-dimensional
reduced ellipsoid. For Algorithm 2, the iterations tend to two 2-dimensional reduced
ellipsoids alternately. Therefore we investigated the hybrid use of the two algorithms
and proposed the simple hybrid projection algorithm (Algorithm 3) and the general
hybrid projection algorithm (Algorithm 4). Our numerical experiments show that
Algorithms 1–4, even Algorithm 4, are much faster than the Lin–Han algorithm even
when the spectral radius ρ(A) is exactly known. To further improve Algorithm 4,
we feel that one possible approach is to impose some conjugacy on the 2-dimensional
reduced ellipsoids {Ek}.

One disadvantage of the algorithms of this paper is that they require a feasible
point of the ellipsoid E . Assume that a feasible point, xf say, has been found. Then
one can choose the intersection of E and the line segment L(a,xf ) as an initial point.
If the right-hand-side term b = 0, a feasible point can be easily found in E . However,
this is not always the case with nonzero b. In that case, to find a feasible point of
E and use the algorithms, one might need to reduce the function q(x) from some
infeasible point with the help of some minimization algorithm. Therefore it may be
interesting to find some infeasible projection algorithms in which a feasible point is
not necessary.

It is obvious that the maximal 2-dimensional inside ball algorithm can be extended
to the problem of calculating the distance between two ellipsoids considered in Lin
and Han [10],

min ‖x − y‖
s.t. x ∈ E , y ∈ Ē .

Hence the similar disadvantage of estimating the spectral radius of some ellipsoid in
their algorithm can be avoided. Some kind of extension of the sequential 2-dimensional
ellipsoid projection algorithm to such a problem is also possible. For example, assum-
ing that xk ∈ E and yk ∈ Ē have been obtained at the kth iteration, we can construct
a maximal 2-dimensional inside ball of E at xk. Define the center of this ball to
be ck. Then we can take yk+1 ∈ Ē to be the projection of ck on Ē and then let
xk+1 = Ω(E)∩L(ck,yk+1). Therefore faster algorithms for the above problem should
also be able to be obtained. Nevertheless, it still remains to study how to design the
most efficient algorithms. In addition, it may be also interesting to investigate how
to extend the idea of the algorithms proposed in this paper to solve the projection
problem on a general convex set. More recent work on this aspect can be seen in Lin
[8] and Lin and Han [11].
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Abstract. We give a proximal bundle method for minimizing a convex function f over a closed
convex set. It only requires evaluating f and its subgradients with an accuracy ε > 0, which is fixed
but possibly unknown. It asymptotically finds points that are ε-optimal. When applied to Lagrangian
relaxation, it allows for ε-accurate solutions of Lagrangian subproblems and finds ε-optimal solutions
of convex programs.
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1. Introduction. We consider the convex constrained minimization problem

f∗ := inf{ f(x) : x ∈ S },(1.1)

where S is a nonempty closed convex set in the Euclidean space Rn with inner product
〈·, ·〉 and norm | · |, and f : Rn → R is a convex function. We assume that for fixed
accuracy tolerances εf ≥ 0 and εg ≥ 0, for each y ∈ S we can find an approximate value
fy and an approximate subgradient gy of f that produce the approximate linearization
of f :

f̄y(·) := fy + 〈gy, · − y〉 ≤ f(·) + εg with f̄y(y) = fy ≥ f(y) − εf .(1.2)

Thus fy ∈ [f(y)−εf , f(y)+εg] estimates f(y), while gy ∈ ∂εf(y) for the total accuracy
tolerance ε := εf + εg; i.e., gy is a member of the ε-subdifferential of f at y,

∂εf(y) := { g : f(·) ≥ f(y) − ε + 〈g, · − y〉 } .

The above assumption is realistic in many applications. For instance, if f is a
max-type function of the form

f(y) := sup {Fz(y) : z ∈ Z } ,(1.3)

where each Fz : Rn → R is convex and Z is an infinite set, then it may be impossible
to calculate f(y). However, we may still consider the following two cases. In the first
case of controllable accuracy, for each positive ε̃ one can find an ε̃-maximizer of (1.3),
i.e., an element zy ∈ Z satisfying Fzy (y) ≥ f(y) − ε̃; in the second case, this may be
possible only for some fixed (and possibly unknown) ε̃ < ∞. In both cases we may set
fy := Fzy (y) and take gy as any subgradient of Fzy at y to satisfy (1.2) with εf := ε̃,
εg := 0; then ε = ε̃.
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A special case of (1.3) arises in Lagrangian relaxation [Ber99, section 5.5.3],
[HUL93, Chap. XII], where problem (1.1) with S := Rn

+ is the Lagrangian dual of the
primal problem

sup ψ0(z) s.t. ψj(z) ≥ 0, j = 1: n, z ∈ Z,(1.4)

with Fz(y) := ψ0(z) + 〈y, ψ(z)〉 for ψ := (ψ1, . . . , ψn). Then, for each multiplier
y ≥ 0, we need only find zy ∈ Z such that fy := Fzy (y) ≥ f(y) − ε in (1.3) to use
gy := ψ(zy). For instance, if (1.4) is a semidefinite program with each ψj affine and
Z the set of symmetric positive semidefinite matrices of order m with unit trace, then
f(y) is the maximum eigenvalue of a symmetric matrix M(y) depending affinely on y
[Tod01, section 6.3], and zy can be found by computing an approximate eigenvector
corresponding to the maximum eigenvalue of M(y) via the Lanczos method [HeK02],
[HeR00].

This paper extends the proximal bundle method of [Kiw90] and its variants
[Hin01], [ScZ92], [HUL93, section XV.3] to the inexact setting of (1.2) with unknown
εf and εg. Our extension is natural and simple: the original method is run as if the
linearizations were exact until a predicted descent test discovers their inaccuracy; then
the method is restarted with a decreased proximity weight. Since our descent test
(or a similar one) is employed as a stopping criterion by the existing implementations
of proximal bundle methods, our analysis also sheds light on the implementations’
behavior in the inexact case (cf. section 4.5).

We show that our method asymptotically estimates the optimal value f∗ of (1.1)
with accuracy ε and finds ε-optimal points. In Lagrangian relaxation, under standard
convexity and compactness assumptions on problem (1.4) (see section 5), it finds
ε-optimal primal solutions by combining partial Lagrangian solutions, even when La-
grange multipliers don’t exist. This seems to be the first such result on primal recovery
in Lagrangian relaxation.

We now comment briefly on other relations with the literature.
The setting of (1.2) subsumes those in [Hin01], [Kiw85], [Kiw95a]. Indeed, sup-

pose that for some nonnegative tolerances ε̃−f , ε̃+f , and ε̃g, for each y ∈ S we can find
some

fy ∈
[
f(y) − ε̃−f , f(y) + ε̃+f

]
and gy ∈ ∂ε̃gf(y).(1.5)

Then (1.2) holds with εf := ε̃−f and εg := ε̃+f + ε̃g. We add that ε̃−f = ε̃+f = ε̃g in

[Kiw85], [Hin01] uses ε̃−f = ε̃+f = 0, i.e., exact values fy = f(y), whereas [Kiw95a]

employs (1.2) with εg = 0 (corresponding to ε̃−f := ε̃g := εf = ε and ε̃+f := 0 in (1.5)).
First, our method is more widely applicable than those in [Hin01], [Kiw85],

[Kiw95a], since [Kiw85], [Kiw95a] assume that the ε̃-tolerances in (1.5) are controllable
and can be driven to 0, whereas [Hin01] needs exact f -values. Thus only our method
can handle Lagrangian relaxation with subproblem solutions of unknown accuracy.
Second, our convergence results are stronger than those in [Hin01], since they handle
constraints and practicable stopping criteria (cf. section 4.2). Third, our method is
much simpler than that of [Hin01].

Finally, the method of [Sol03] works in the setting of (1.2) with εg = 0 and
known (possibly varying) tolerances εf employed in its stopping criterion and the
descent test. If the tolerances are below a fraction of a stopping threshold Δ > 0, the
method terminates, ensuring that the traditional stopping criterion of bundle methods
is met for this Δ. In turn, the framework of [Mil01, section 4.5] is related to those in
[Kiw85], [Kiw95a].
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The paper is organized as follows. In section 2 we present our proximal bundle
method. Its convergence is analyzed in section 3. Several modifications are given in
section 4. Applications to Lagrangian relaxation of convex and nonconvex programs
are studied in section 5.

2. The inexact proximal bundle method. We may regard (1.1) as an un-
constrained problem f∗ = min fS with the essential objective

fS := f + iS ,(2.1)

where iS is the indicator function of S (iS(x) = 0 if x ∈ S, ∞ if x /∈ S).
Our method generates a sequence of trial points {yk}∞k=1 ⊂ S for evaluating the

approximate values fk
y := fyk , subgradients gk := gyk , and linearizations fk := f̄yk

such that

fk(·) = fk
y + 〈gk, · − yk〉 ≤ f(·) + εg with fk(y

k) = fk
y ≥ f(yk) − εf ,(2.2)

as stipulated in (1.2). Iteration k uses the polyhedral cutting-plane model of f

f̌k(·) := max
j∈Jk

fj(·) with k ∈ Jk ⊂ {1, . . . , k}(2.3)

for finding

yk+1 := arg min
{
φk(·) := f̌k(·) + iS(·) + 1

2tk
| · −xk|2

}
,(2.4)

where tk > 0 is a stepsize that controls the size of |yk+1 − xk| and the prox center

xk := yk(l) has the value fk
x := f

k(l)
y for some k(l) ≤ k (usually fk

x = mink
j=1 f

j
y ).

Note that, by (2.2),

f(xk) − εf ≤ fk
x ≤ f(xk) + εg.(2.5)

However, we may have fk
x < f̌k(x

k) = φk(x
k) in (2.4), in which case the predicted

descent

vk := fk
x − f̌k(y

k+1)(2.6)

may be nonpositive; then tk is increased and yk+1 is recomputed to decrease f̌k(y
k+1)

until vk > 0 (specific tests on vk for increasing tk are discussed below and in section
4.3). A descent step to xk+1 := yk+1 with fk+1

x := fk+1
y occurs if fk+1

y ≤ fk
x −κvk for

a fixed κ ∈ (0, 1). Otherwise, a null step xk+1 := xk improves the next model f̌k+1

with fk+1 (cf. (2.3)).
For choosing Jk+1, note that by the optimality condition 0 ∈ ∂φk(y

k+1) for (2.4),

∃pkf ∈ ∂f̌k(y
k+1) such that pkS := −(yk+1 − xk)/tk − pkf ∈ ∂iS(yk+1)(2.7)

and there are multipliers νkj , j ∈ Jk, also known as convex weights, such that

pkf =
∑
j∈Jk

νkj g
j ,

∑
j∈Jk

νkj = 1, νkj ≥ 0, νkj
[
f̌k(y

k+1) − fj(y
k+1)

]
= 0, j ∈ Jk.(2.8)

Let Ĵk := {j ∈ Jk : νkj �= 0}. To save storage without impairing convergence, it

suffices to choose Jk+1 ⊃ Ĵk ∪ {k + 1} (i.e., we may drop inactive linearizations fj
with νkj = 0 that do not contribute to the trial point yk+1).
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The subgradient relations in (2.7) enable us to derive an optimality estimate
from the following aggregate linearizations of f̌k and f , iS , f̌k

S := f̌k + iS and fS ,
respectively:

f̄k(·) := f̌k(y
k+1) + 〈pkf , · − yk+1〉 ≤ f̌k(·) ≤ f(·) + εg,(2.9)

ı̄kS(·) := 〈pkS , · − yk+1〉 ≤ iS(·),(2.10)

f̄k
S(·) := f̄k(·) + ı̄kS(·) ≤ f̌k

S(·) := f̌k(·) + iS(·) ≤ fS(·) + εg,(2.11)

where the final inequalities follow from (2.1)–(2.3). Adding (2.9)–(2.10) and using
(2.11) and the linearity of

f̄k
S(·) = f̌k(y

k+1) + 〈pkf + pkS , · − yk+1〉,(2.12)

we get

fk
x + 〈pk, · − xk〉 − αk = f̄k

S(·) ≤ f̌k
S(·) ≤ fS(·) + εg,(2.13)

where

pk := pkf + pkS = (xk − yk+1)/tk and αk := fk
x − f̄k

S(xk)(2.14)

are the aggregate subgradient (cf. (2.7)) and the aggregate linearization error, respec-
tively. The aggregate subgradient inequality (2.13) yields the optimality estimate

fk
x ≤ f(x) + εg + |pk||x− xk| + αk for all x ∈ S.(2.15)

Combined with f(xk) − εf ≤ fk
x (cf. (2.5)), the optimality estimate (2.15) says that

the point xk is ε-optimal (i.e., f(xk) − f∗ ≤ ε := εf + εg) if the optimality measure

Vk := max
{
|pk|, αk

}
(2.16)

is zero; xk is approximately ε-optimal if Vk is small.
Thus we would like Vk to vanish asymptotically. Hence it is crucial to bound Vk

via the predicted descent vk, since normally bundling and descent steps drive vk to
0. To this end, we first highlight some elementary properties of αk and vk; see Figure
2.1.

In other words, (2.13) and (2.5) mean that the model f̌k
S and its linearization f̄k

S

may overshoot the objective fS by at most εg, whereas fk
x may underestimate f(xk)

by at most εf . Hence the linearization error αk of (2.14) may drop below 0 by no
more than ε := εf + εg:

αk ≥ fk
x − f̌k

S(xk) ≥ fk
x − f(xk) − εg ≥ −εf − εg = −ε.(2.17)

The predicted descent vk (cf. (2.6)) may be expressed in terms of pk and αk as

vk = tk|pk|2 + αk = |dk|2/tk + αk with dk := yk+1 − xk = −tkp
k(2.18)

being the search direction. Indeed, |yk+1 − xk|2/tk = tk|pk|2 by (2.14), whereas by
(2.12)

f̌k(y
k+1) = f̄k

S(yk+1) = f̄k
S(xk) + 〈pk, yk+1 − xk〉 = f̄k

S(xk) − |yk+1 − xk|2/tk,
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Fig. 2.1. Predicted descent domination: vk ≥ −αk ⇔ 1
2
tk|pk|2 ≥ −αk ⇔ vk ≥ 1

2
tk|pk|2.

so vk := fk
x − f̌k(y

k+1) = αk + tk|pk|2 by (2.14). Note that vk ≥ αk.
Since Vk := max{|pk|, αk}, vk = tk|pk|2 +αk, and −αk ≤ ε (cf. (2.16)–(2.18)), we

have

Vk = max
{

[(vk − αk)/tk]
1/2

, αk

}
,(2.19)

Vk ≤ max
{

(2vk/tk)
1/2, vk

}
if vk ≥ −αk,(2.20)

Vk < (−2αk/tk)
1/2 ≤ (2ε/tk)

1/2 if vk < −αk.(2.21)

The bound (2.21) will imply that if xk isn’t ε-optimal (so that Vk can’t vanish as tk
increases), then vk ≥ −αk and the bound (2.20) hold for tk large enough; on the other
hand, the bound (2.20) suggests that tk shouldn’t decrease unless Vk is small enough.

We now have the necessary ingredients to state our method in detail.
Algorithm 2.1.

Step 0 (initialization). Select x1 ∈ S, a descent parameter κ ∈ (0, 1), a stepsize
bound T1 > 0, and a stepsize t1 ∈ (0, T1]. Set y1 := x1, f1

x := f1
y (cf. (2.2)), g1 := gy1 ,

J1 := {1}, i1t := 0, k := k(0) := 1, l := 0 (k(l) − 1 will denote the iteration of the lth
descent step).

Step 1 (trial point finding). Find yk+1 and multipliers νkj such that (2.7)–(2.8)
hold.

Step 2 (stopping criterion). If Vk = 0 (cf. (2.15)–(2.16)), stop (fk
x ≤ f∗ + εg).

Step 3 (stepsize correction). If vk < −αk, set tk := 10tk, Tk := max{Tk, tk},
ikt := k and loop back to Step 1; else set Tk+1 := Tk.

Step 4 (descent test). Evaluate fk+1
y and gk+1 (cf. (2.2)). If the descent test

holds:

fk+1
y ≤ fk

x − κvk,(2.22)

set xk+1 := yk+1, fk+1
x := fk+1

y , ik+1
t := 0, k(l + 1) := k + 1 and increase l by 1

(descent step); else set xk+1 := xk, fk+1
x := fk

x , and ik+1
t := ikt (null step).

Step 5 (bundle selection). Choose Jk+1 ⊃ Ĵk ∪ {k + 1}, where Ĵk := {j ∈ Jk :
νkj �= 0}.
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Step 6 (stepsize updating). If k(l) = k + 1 (i.e., after a descent step), select
tk+1 ∈ [tk, Tk+1]; otherwise, either set tk+1 := tk, or choose tk+1 ∈ [0.1tk, tk] if
ik+1
t = 0 and

fk
x − fk+1(x

k) ≥ Vk := max
{
|pk|, αk

}
.(2.23)

Step 7 (loop). Increase k by 1 and go to Step 1.
A few comments on the method are in order.
Remark 2.2.

(i) When the feasible set S is polyhedral, Step 1 may use the quadratic pro-
gramming (QP) method of [Kiw94], which can efficiently solve sequences of related
subproblems (2.4).

(ii) Step 2 may also use the test fk
x ≤ inf f̌k

S (cf. Lemma 2.3(i)); more practicable
stopping criteria are discussed in section 4.2.

(iii) In the case of exact evaluations (ε = 0), we have vk ≥ αk ≥ 0 (cf. (2.17)–
(2.18)), Step 3 is redundant, and Algorithm 2.1 becomes essentially that of [Kiw90].

(iv) To see the need for increasing tk at Step 3, suppose n = 1, f(x) = −x,
S = R, x1 = 0, t1 = ε = 1, f1

x = g1 = −1, f2(x) = −x. If Step 3 were omitted
and null steps were taken when vk ≤ 0, the method would jam with yk+1 = 1 for
k ≥ 1. Also note that decreasing tk would not help. In fact decreasing tk at Step
6 aims at collecting more local information about f at null steps, whereas in such
cases tk must be increased to produce descent or confirm that xk is ε-optimal (let
f(x) = max{−x, x−2} above). Hence whenever tk is increased at Step 3, the stepsize
indicator ikt �= 0 prevents Step 6 from decreasing tk after null steps until the next
descent step occurs (cf. Step 4).

(v) At Step 5, one may let Jk+1 := Jk ∪ {k + 1} and then, if necessary, drop
from Jk+1 an index j ∈ Jk \ Ĵk with the smallest fj(x

k) to keep |Jk+1| ≤ M for some
M ≥ n + 2.

(vi) Step 6 may use the procedure of [Kiw90, section 2] for updating the prox-
imity weight uk := 1/tk, with obvious modifications.

We now show that the loop between Steps 1 and 3 is infinite iff fk
x ≤ inf f̌k

S <
f̌k(x

k), in which case the current iterate xk is already ε-optimal.
Lemma 2.3.

(i) If fk
x ≤ inf f̌k

S , then f(xk) − εf ≤ fk
x ≤ f∗ + εg and f(xk) ≤ f∗ + ε.

(ii) Step 2 terminates, i.e., Vk := max{|pk|, αk} = 0, iff fk
x ≤ min f̌k

S = f̌k
S(xk).

(iii) If the loop between Steps 1 and 3 is infinite, then fk
x ≤ inf f̌k

S (< f̌k
S(xk);

cf. (ii)). Moreover, in this case we have f̌k
S(yk+1) ↓ inf f̌k

S as tk ↑ ∞.
(iv) If fk

x ≤ inf f̌k
S at Step 1 and Step 2 does not terminate (i.e., inf f̌k

S < f̌k
S(xk);

cf. (ii)), then an infinite loop between Steps 3 and 1 occurs.
Proof. (i) Combine f∗ = inf fS (cf. (1.1), (2.1)) with inf f̌k

S ≤ inf fS + εg (cf.
(2.13)) and f(xk)− εf ≤ fk

x (cf. (2.5)), and use ε := εf + εg for the second inequality.
(ii) “⇒”: Since |pk| = 0 ≥ αk, (2.13)–(2.14) yield f̄k

S(xk) ≤ f̌k
S(·), yk+1 = xk, and

fk
x ≤ f̄k

S(xk), whereas by (2.12), f̄k
S(xk) = f̌k(y

k+1) = f̌k
S(xk). “⇐”: Since f̌k

S(xk) =
min f̌k

S , using φk(x
k) = min f̌k

S ≤ φk(y
k+1) ≤ φk(x

k) in (2.4) gives yk+1 = xk, so
again f̄k

S(xk) = f̌k
S(xk) by (2.12), and (2.14) yields pk = 0 and αk = fk

x − f̌k
S(xk) ≤ 0.

(iii) At Step 3 during the loop the facts Vk < (2ε/tk)
1/2 (cf. (2.21)) and tk ↑ ∞ give

max{|pk|, αk} =: Vk → 0, so (2.13) yields fk
x ≤ inf f̌k

S . The fact that f̌k
S(yk+1) ↓ inf f̌k

S

as tk ↑ ∞ in (2.4) is well known; see, e.g., [Kiw95b, Lem. 2.1].
(iv) By (2.11), f̌k(y

k+1) = f̌k
S(yk+1) ≥ inf f̌k

S . Thus (cf. (2.6)) vk ≤ fk
x−inf f̌k

S ≤ 0
and (cf. (2.18)) vk = tk|pk|2 + αk yield αk ≤ −tk|pk|2 at Step 3 with pk �= 0 (since
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max{|pk|, αk} =: Vk > 0 at Step 2). Hence αk < − tk
2 |pk|2, so (cf. (2.18)) vk < −αk

and Step 3 loops back to Step 1, after which Step 2 can’t terminate due to (ii).
Remark 2.4. By Lemma 2.3, the algorithm may terminate if fk

x ≤ inf f̌k
S . When

S is polyhedral, then either inf f̌k
S = −∞, or there is ťk such that f̌k

S(yk+1) = min f̌k
S

whenever tk ≥ ťk; either case may be discovered by a parametric QP method [Kiw95b],
and the algorithm may stop if fk

x ≤ min f̌k
S , thus forestalling an infinite loop in Steps

1 through 3.

3. Convergence. In view of Lemma 2.3, we may suppose that the algorithm
neither terminates nor loops infinitely between Steps 1 and 3 (otherwise xk is ε-
optimal). At Step 4, yk+1 ∈ S and vk > 0 (by (2.20), since Vk > 0 at Step 2), so
xk+1 ∈ S and fk+1

x ≤ fk
x for all k.

Let f∞
x := limk f

k
x . We shall show that f∞

x ≤ f∗ + εg. Because the proof is quite
complex, it is broken into a series of lemmas, starting with the following two simple
results. To handle loops, let V ′

k denote the minimum value of Vk at each iteration k.
Lemma 3.1. If limk V

′
k = 0 (e.g., limk Vk = 0) and {xk} is bounded, then

f∞
x ≤ f∗ + εg.

Proof. Pick K ⊂ {1, 2, . . . } such that V ′
k

K−→ 0. Fix x ∈ S. Letting k ∈ K tend
to infinity in (2.15)–(2.16) with Vk = V ′

k yields f∞
x ≤ f(x)+ εg, so f∞

x ≤ infS f + εg =
f∗ + εg.

Lemma 3.2. Let T∞ := limk Tk at Step 4. If T∞ = ∞, then limk V
′
k = 0.

Proof. Let K ⊂ {1, 2, . . . } index iterations k that increase Tk at Step 3. For
k ∈ K, at Step 3 on the last loop to Step 1 we have Vk < (2ε/tk)

1/2 (cf. (2.21)) with

tk such that 10tk becomes the final Tk, so the facts 0 ≤ V ′
k ≤ Vk and Tk

K−→ ∞ give

V ′
k

K−→ 0.
In view of Lemmas 3.1–3.2, we may assume that T∞ < ∞ when {xk} is bounded,

e.g., only finitely many descent steps occur. This case is analyzed below.
Lemma 3.3. Suppose there exists k̄ such that for all k ≥ k̄, Step 3 doesn’t increase

tk and only null steps occur with tk+1 ≤ tk determined by Step 6. Then vk → 0.
Proof. Fix k ≥ k̄. We first show that f̌k+1

S ≥ f̄k
S . Let f̂k := maxj∈Ĵk fj . Since

Ĵk := {j ∈ Jk : νkj �= 0} and gj = ∇fj , f̂k ≤ maxj∈Jk fj =: f̌k and (2.8) yield

f̂k(y
k+1) = f̌k(y

k+1) and pkf ∈ ∂f̂k(y
k+1). Thus f̄k ≤ f̂k by (2.9), so f̂k ≤ f̌k+1 (Ĵk ⊂

Jk+1) gives f̄k ≤ f̌k+1. Hence (2.10)–(2.11) yield f̄k
S := f̄k + ı̄kS ≤ f̌k+1 + iS =: f̌k+1

S .
Next, consider the following partial linearization of the objective φk of (2.4):

φ̄k(·) := f̄k
S(·) + 1

2tk
| · −xk|2.(3.1)

We have ∇φ̄k(y
k+1) = 0 from ∇f̄k

S = pk = (xk − yk+1)/tk (cf. (2.13)–(2.14)), and
f̄k
S(yk+1) = f̌k(y

k+1) by (2.12), so φ̄k(y
k+1) = φk(y

k+1) (cf. (2.4)) and by Taylor’s
expansion,

φ̄k(·) = φk(y
k+1) + 1

2tk
| · −yk+1|2.(3.2)

By (3.1) and (2.11), we have φ̄k(x
k) = f̄k

S(xk) ≤ f(xk) + εg (using xk ∈ S); hence by
(3.2),

φk(y
k+1) + 1

2tk
|yk+1 − xk|2 = φ̄k(x

k) ≤ f(xk) + εg.(3.3)

Now, using xk+1 = xk, tk+1 ≤ tk, and f̌k+1
S ≥ f̄k

S in (2.4) and (3.1) gives φk+1 ≥ φ̄k,
so

φk(y
k+1) + 1

2tk
|yk+2 − yk+1|2 ≤ φk+1(y

k+2)(3.4)
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by (3.2). Since xk = xk̄ and tk ≤ tk̄ for k ≥ k̄, by (3.3)–(3.4) there exists φ∞ ≤
f(xk̄) + εg such that

φk(y
k+1) ↑ φ∞, yk+2 − yk+1 → 0,(3.5)

and {yk+1} is bounded. Then {gk} is bounded as well, since gk ∈ ∂εf(yk) with
ε := εf + εg by (2.2), whereas ∂εf is locally bounded [HUL93, section XI.4.1].

We now show that the approximation error ε̌k := fk+1
y − f̌k(y

k+1) vanishes.

Using the form (2.2) of fk+1, the bound fk+1 ≤ f̌k+1 (cf. (2.3)), the Cauchy–Schwarz
inequality, and (2.4) with xk = xk̄ and tk+1 ≤ tk for k ≥ k̄, we estimate

ε̌k := fk+1
y − f̌k(y

k+1) = fk+1(y
k+2) − f̌k(y

k+1) + 〈gk+1, yk+1 − yk+2〉
≤ f̌k+1(y

k+2) − f̌k(y
k+1) + |gk+1||yk+1 − yk+2|

= φk+1(y
k+2) − φk(y

k+1) + |gk+1||yk+1 − yk+2|
− 1

2tk+1
|yk+2 − xk̄|2 + 1

2tk
|yk+1 − xk̄|2

≤ φk+1(y
k+2) − φk(y

k+1) + |gk+1||yk+1 − yk+2| + Δk,(3.6)

where

Δk := 1
2tk

(
|yk+1 − xk̄|2 − |yk+2 − xk̄|2

)
≤ 1

2tk

(
|yk+1 − yk+2|2 + 2|yk+2 − yk+1||yk+2 − xk̄|

)
≤ 1

2tk
|yk+1 − yk+2|2 +

(
1
tk
|yk+1 − yk+2|2 1

tk+1
|yk+2 − xk̄|2

)1/2

.

We have limk Δk ≤ 0, since 1
2tk

|yk+1−yk+2|2 → 0 by (3.4)–(3.5), whereas 1
tk+1

|yk+2−
xk̄|2 is bounded by (3.3). Hence using (3.5) and the boundedness of {gk+1} in (3.6)
yields limk ε̌k ≤ 0. On the other hand, the null step condition fk+1

y > fk
x − κvk for

k ≥ k̄ gives

ε̌k =
[
fk+1
y − fk

x

]
+
[
fk
x − f̌k(y

k+1)
]
> −κvk + vk = (1 − κ)vk ≥ 0,

where κ < 1 by Step 0; thus ε̌k → 0 and vk → 0.
Using (2.18) we may relate the descent vk := fk

x − f̌k(y
k+1) predicted by f̌k with

the descent predicted by the augmented model φk in subproblem (2.4):

wk := fk
x − φk(y

k+1) = vk − 1
2 tk|p

k|2(3.7a)

= 1
2 tk|p

k|2 + αk = 1
2 |d

k|2/tk + αk.(3.7b)

The above relations are convenient in showing that |dk| = O(t
1/2
k ) during a series of

null steps that decrease tk; this will be useful when limk tk = 0.
Lemma 3.4. If Step 4 is entered with ikt = 0, then |dk|2 ≤

(
tk(l)|gk(l)|2 + 2ε

)
tk.

Proof. First, suppose k = k(l). Then (cf. Steps 0 and 4) xk = yk and fk
x = fk

y , so

using the bound f̌k ≥ fk (cf. (2.3)) in subproblem (2.4) and the form (2.2) of fk gives

φk(y
k+1) ≥ min

{
fk(·) + 1

2tk
| · −xk|2

}
= fk

x − tk
2 |g

k|2.

Thus wk(l) ≤
tk(l)

2 |gk(l)|2 by (3.7a). Next, suppose k > k(l). Then (cf. Steps 3, 4, 6)

xj+1 = xk(l) and tj+1 ≤ tj for j = k(l) : k− 1 due to ikt = 0, and hence wj+1 ≤ wj by
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(3.4) and (3.7a). Thus wk ≤ wk(l), and by (3.7b) and (2.17), 1
2tk

|dk|2 = wk − αk ≤
wk(l) + ε.

We now use the safeguard (2.23) for analyzing the case of diminishing stepsizes.
Lemma 3.5. Suppose limk tk = 0 at Step 6 and either only finitely many descent

steps occur, or supl tk(l) < ∞ and {xk} is bounded. Then limk Vk = 0 at Step 6.

Proof. Let C be the supremum of tk(l)|gk(l)|2 + 2ε over the generated values of

l. Note that C < ∞ since, if l is unbounded, then {gk(l)} is bounded because for
k = k(l) we have xk = yk and gk ∈ ∂εf(yk) with ε := εf + εg by (2.2), whereas ∂εf is
locally bounded.

Since limk tk = 0, there is K ⊂ {1, 2, . . . } such that tk+1
K−→ 0 at Step 6 with

tk+1 < tk for all k ∈ K; thus tk
K−→ 0, since tk ≤ 10tk+1 at Step 6. For k ∈ K, at Step

6 we have (2.23), and at Step 4 we have fk+1
y > fk

x − κvk and ikt = 0. Using ikt = 0,

the definition of C and tk
K−→ 0 in Lemma 3.4 yields |dk|2 ≤ Ctk

K−→ 0, i.e., dk
K−→ 0.

Thus, since {xk} is bounded, so are {yk+1 = xk+dk}k∈K and {gk+1 ∈ ∂εf(yk+1)}k∈K

because ∂εf is locally bounded.
Let k ∈ K at Step 6. Since fk+1

y > fk
x − κvk and yk+1 = xk + dk, using (2.2)

gives

fk
x − fk+1(x

k) = fk
x − fk+1

y − 〈gk+1, xk − yk+1〉 ≤ κvk + |gk+1||dk|.(3.8)

Now, (2.23), (3.8), and the fact vk = |dk||pk| + αk (cf. (2.18)) imply

Vk := max
{
|pk|, αk

}
≤ fk

x − fk+1(x
k) ≤ κ

(
|dk||pk| + αk

)
+ |gk+1||dk|

≤ κ(1 + |dk|) max
{
|pk|, αk

}
+ |gk+1||dk| = κ(1 + |dk|)Vk + |gk+1||dk|.(3.9)

Therefore, since κ < 1, dk
K−→ 0, and {gk+1}k∈K is bounded, for large k ∈ K,

0 ≤ Vk ≤ |gk+1||dk|/
[
1 − κ(1 + |dk|)

] K−→ 0.

Thus limk∈K Vk = 0.
We may now finish the case of infinitely many consecutive null steps.
Lemma 3.6. Suppose there exists k̄ such that only null steps occur for all k ≥ k̄.

Then either T∞ = ∞ and limk V
′
k = 0, or T∞ < ∞ and limk Vk = 0 at Step 4.

Proof. If limk tk = 0 at Step 6, then limk Vk = 0 by Lemma 3.5, so assume
limk tk > 0. Next, if T∞ = ∞, then limk V

′
k = 0 by Lemma 3.2, so assume T∞ < ∞.

If Step 3 increases tk for some k = k′ ≥ k̄, then tk ≥ 10tk−1 and ikt �= 0, whereas
for k ≥ k′ Step 4 keeps ik+1

t = ikt �= 0 and Step 6 sets tk+1 = tk, so the number of such
increases must be finite (otherwise tk → ∞ and T∞ = ∞, a contradiction). Hence we
may assume that Step 3 doesn’t increase tk for k ≥ k̄. Then Lemma 3.3 gives vk → 0.
Since (cf. (2.20)) Vk ≤ max{(2vk/tk)1/2, vk} and limk tk > 0, we get Vk → 0.

For analyzing the remaining case of infinitely many descent steps, we shall use
the descent indicator ik defined by ik := 1 if (2.22) holds and use ik := 0 otherwise.

Lemma 3.7.

(i) If f∞
x > −∞, then ikvk → 0 at Step 4.

(ii) If f∞
x > f∗ + εg, then {xk} is bounded.

Proof. (i) At Step 4, 0 ≤ κikvk ≤ fk
x − fk+1

x , so
∑

k ikvk ≤ (f1
x − f∞

x )/κ < ∞.
(ii) Pick x ∈ S and γ > 0 such that fk

x > f(x)+εg+γ for all k. Since 〈pk, x−xk〉 ≤
αk − γ by (2.13), xk+1 − xk = −iktkp

k and vk = tk|pk|2 + αk by (2.18), we deduce
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that

|xk+1 − x|2 = |xk − x|2 + 2〈xk+1 − xk, xk − x〉 + |xk+1 − xk|2

≤ |xk − x|2 + 2iktk(αk − γ) + 2ikt
2
k|pk|2

= |xk − x|2 + 2iktk(vk − γ).

Since ikvk → 0 by (i), there is kγ such that for all k ≥ kγ , ik(vk − γ) ≤ 0 above, and
hence |xk+1 − x| ≤ |xk − x|. Thus {xk} is bounded.

Lemma 3.8. If infinitely many descent steps occur, then f∞
x ≤ f∗ + εg.

Proof. Suppose for contradiction f∞
x > f∗ + εg. By Lemma 3.7(ii), {xk} is

bounded. Further, T∞ < ∞, since otherwise Lemmas 3.1 and 3.2 would yield f∞
x ≤

f∗ + εg, a contradiction. Similarly, limk tk > 0, since otherwise Lemmas 3.1 and 3.5

would yield a contradiction. Let K := {k : ik = 1}. Using limk tk > 0 and vk
K−→ 0

(cf. Lemma 3.7(i)) in the bound Vk ≤ max{(2vk/tk)1/2, vk} (cf. (2.20)) yields Vk
K−→ 0.

Hence limk Vk = 0, and Lemma 3.1 again gives a contradiction.
We may now prove our principal result. Note that fk

x ↓ f∞
x ≥ f∗ − εf by (2.5).

Theorem 3.9. We have fk
x ↓ f∞

x ≤ f∗ + εg. Moreover, limk f(xk) ≤ f∗ + ε
for ε := εf + εg so that each cluster point x∗ of {xk} (if any) satisfies x∗ ∈ S and
f(x∗) ≤ f∗ + ε.

Proof. To get f∞
x ≤ f∗+εg, invoke Lemmas 3.1 and 3.6 in the case of finitely many

descent steps, and invoke Lemma 3.8 otherwise. By (2.5), limk f(xk) ≤ limk f
k
x +εf ≤

f∗ + εf + εg. The final assertion follows from the fact {xk} ⊂ S and the closedness of
S and f .

It is instructive to examine the assumptions of the preceding results.
Remark 3.10.

(i) Inspection of the proofs of Lemmas 3.3 and 3.5 reveals that Lemmas 3.3–
3.8 and Theorem 3.9 require only convexity, finiteness, and closedness of f on S and
local boundedness of the approximate subgradient mapping g· on S. In particular, it
suffices to assume that f is finite convex on a neighborhood of S, since g· ∈ ∂εf(·).

(ii) For Lemma 3.5, it suffices to assume boundedness of {gk} instead of local
boundedness of g· and boundedness of {xk}. Note that {xk} is bounded if fS is
coercive, since then the level set {x ∈ S : f(x) ≤ f1

x + εf} is bounded and contains
{xk} by (2.5).

The next result will justify the stopping criteria of section 4.2.
Lemma 3.11. Suppose f∗ > −∞, and either {gk} is bounded, or g· is locally

bounded and {xk} is bounded (e.g., fS is coercive). Then limk V
′
k = 0.

Proof. If only finitely many descent steps occur, then the proofs of Lemma 3.6
and Remark 3.10 yield limk V

′
k = 0. Hence suppose for contradiction that limk V

′
k > 0

for infinitely many descent steps.
We have T∞ < ∞, since otherwise Lemma 3.2 would yield limk V

′
k = 0. Similarly,

limk tk > 0, since otherwise Lemma 3.5 and Remark 3.10(ii) would imply limk Vk = 0.
Next, fk

x ≥ f(xk) − εf ≥ f∗ − εf > −∞ (cf. (2.5)) gives f∞
x > −∞. Let K :=

{k : ik = 1}. Using limk tk > 0 and vk
K−→ 0 (cf. Lemma 3.7(i)) in the bound

Vk ≤ max{(2vk/tk)1/2, vk} (cf. (2.20)) yields Vk
K−→ 0 and hence limk V

′
k = 0, a

contradiction.

4. Modifications.

4.1. Subgradient aggregation. To trade off storage and work per iteration for
speed of convergence, one may replace subgradient selection with aggregation as in
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[Kiw90] so that only M ≥ 2 subgradients are stored. To this end, we note that the
preceding results remain valid if, for each k, f̌k+1 is a closed convex function such
that ∂(f̌k+1 + iS) = ∂f̌k+1 + ∂iS (cf. (2.7)) and

max
{
f̄k(x), fk+1(x)

}
≤ f̌k+1(x) ≤ f(x) + εg for all x ∈ S.(4.1)

Examples include f̌k+1 = max{f̄k, fk+1}, or f̌k+1 = max{f̄k, fj : j ∈ Jk+1} with
k + 1 ∈ Jk+1 ⊂ {1: k + 1}, and possibly some fj replaced by f̄j for j ≤ k. In fact the
aggregate linearization f̄k may be omitted in (4.1) after a descent step.

4.2. Optimality measures and stopping criteria. In practice Step 2 may
use the stopping criterion Vk ≤ εopt, where εopt > 0 is an optimality tolerance. Then
any loop between Steps 1 and 3 is finite (cf. the proof of Lemma 2.3(iii)), whereas
Lemma 3.11 gives conditions that ensure finite termination.

It may be more appropriate to replace Vk by the modified optimality measure

V̂k := R|pk| + α+
k with α+

k := max{αk, 0},(4.2)

where R > 0 is the “radius of the picture” [HUL93, Note XIV.3.4.36], because the
optimality estimate (2.15) combined with f(xk) ≤ fk

x + εf (cf. (2.5)) gives the bounds

f(xk) − min
|x−xk|≤R

fS(x) − ε ≤ fk
x − min

|x−xk|≤R
fS(x) − εg ≤ R|pk| + αk.(4.3)

Since min{R, 1}Vk ≤ V̂k ≤ (R + 1)Vk by (2.16) and (4.2), the preceding results hold
with Vk replaced by V̂k, also in the safeguard (2.23) of Step 6, since (3.9) may be
replaced by

V̂k := R|pk| + α+
k ≤ fk

x − fk+1(x
k) ≤ κ

(
|dk||pk| + αk

)
+ |gk+1||dk|

≤ κ(1 + |dk|/R)(R|pk| + α+
k ) + |gk+1||dk| = κ(1 + |dk|/R)V̂k + |gk+1||dk|.(4.4)

In view of (4.3), another optimality measure V̄k := R|pk|+αk may replace Vk both in
the stopping criterion (since V̄k ≤ V̂k ≤ (R+1)Vk) and in the safeguard (2.23), which
becomes

fk
x − fk+1(x

k) ≥ V̄k := R|pk| + αk.(4.5)

Lemma 4.1. Suppose Step 6 employs the safeguard (4.5) instead of (2.23). Then
Lemma 3.5, Remark 3.10, and Lemma 3.11 remain true.

Proof. We give only two replacements for (3.9). First, for k ∈ K+ := {k ∈ K :

αk ≥ 0}, we have V̄k = V̂k in (4.5), so (4.4) holds. Hence if K+ is infinite, then V̂k
K+−→ 0

by the previous argument, and thus Vk
K+−→ 0 because Vk ≤ V̂k/min{R, 1}. Otherwise

K− := {k ∈ K : αk < 0} is infinite. Let k ∈ K−. Then Vk := max{|pk|, αk} = |pk|,
whereas vk ≥ −αk and (2.18) yield αk ≥ − 1

2 tk|pk|2 = − 1
2 |dk||pk|, so V̄k := R|pk| +

αk ≥ (R− 1
2 |dk|)Vk. Hence using (4.5) we may replace (3.9) by

(R− 1
2 |d

k|)Vk ≤ fk
x − fk+1(x

k) ≤ κ|dk||pk| + |gk+1||dk| = κ|dk|Vk + |gk+1||dk|

to get Vk
K−−→ 0 as before.
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4.3. Tests for stepsize expansion and descent. Consider replacing the test
vk ≥ −αk of Step 3 by the stronger test κvvk ≥ −αk with a fixed coefficient κv ∈ (0, 1).
The preceding results are not impaired, since (2.20)–(2.21) are replaced by

Vk ≤ max
{

[(1 + κv)vk/tk]
1/2, vk

}
if κvvk ≥ −αk,

Vk < [−(1 + κ−1
v )αk/tk]

1/2 ≤ [(1 + κ−1
v )ε/tk]

1/2 if κvvk < −αk.

Further, the facts that vk = tk|pk|2 + αk (cf. (2.18)), wk = 1
2 tk|pk|2 + αk (cf.

(3.7b)), and κvvk ≥ −αk at Step 4 yield the bounds

wk ≤ vk ≤ 2
1−κv

wk.(4.6)

These bounds allow us to replace vk by wk in the descent test (2.22), thus bringing it
closer to those of [HUL93, Alg. XV.3.1.4] and [Kiw90, section 5]. Again the preceding
results extend easily (in the proof of Lemma 3.3, fk+1

y > fk
x − κwk implies fk+1

y >

fk
x − κvk, whereas in the proof of Lemma 3.7(i),

∑
k ikvk ≤ 2

1−κv

∑
k ikwk < ∞).

For κv = 1
3 , we have wk ≤ vk ≤ 3wk by (4.6), whereas the test κvvk ≥ −αk is

equivalent to wk ≥ −αk. Note that wk ≥ 0 is equivalent to the original test vk ≥ −αk.

4.4. Zigzag searches. Our analysis may accommodate zigzag searches (cf.
[HUL93, section XV.3.3], [Hin01], [Kiw96], [ScZ92]), which amount to trying pos-
sibly more than one value of tk at each iteration.

We first consider stepsize expansion at descent steps. Suppose that the descent
test (2.22) holds, but tk < Tk and some other tests, e.g., fk+1

y ≤ fk
x − κ̄vk or

〈gk+1, dk〉 < −κ̄vk with κ̄ ∈ (κ, 1), indicate that larger descent might occur if tk
were increased. Letting tk := tk, we may choose a larger tk ∈ (tk, Tk] and go back to
Step 1. If (2.22) fails when Step 4 is reentered, then a descent step must be made
with tk reset to tk. Otherwise, either a descent step with the current tk is accepted,
or a larger stepsize may be tested as above.

One may use simple safeguards, such as 1.1tk ≤ Tk and tk ≥ 1.1tk, to ensure
finiteness of the loop between Steps 1 and 4. (If Step 3 drove tk and Tk to ∞, the
conclusions of Lemma 2.3(iii) would hold by its proof, so a cycle between Steps 1 and
3 would occur by Lemma 2.3(iv).) In effect, the preceding results are not affected by
such modifications.

To enable zigzag searches at null steps, it suffices to redefine f̌k+1 after Step 6 as

f̌k+1 := f̌k if tk+1 ≤ 0.9tk.(4.7)

Then “tk+1 ≤ tk” in Lemma 3.3 must be replaced by “0.9tk < tk+1 ≤ tk,” but this is
enough for the proof of Lemma 3.6, since if limk tk > 0 and tk+1 ≤ tk for k ≥ k̄, then
tk+1 > 0.9tk for all large k. The remaining results are not affected.

4.5. Ad hoc modification. Our analysis also sheds light on the behavior of
the original proximal bundle method [Kiw90], [HUL93, section XV.3] in the inexact
case.

Consider the following crippled version of Algorithm 2.1 with the safeguard (2.23)
replaced by (4.5). Suppose Step 2 employs any of the stopping criteria of section 4.2
with a positive optimality tolerance εopt, whereas Step 3 is replaced by

Step 3′ (inaccuracy detection). If wk < 0, then stop; else set Tk+1 := Tk.
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This version is an ad hoc modification of the method of [Kiw90] that employs
only the additional stopping criterion wk < 0; in fact most existing implementations
use this criterion anyway (to detect QP inaccuracy or erroneous subgradients).

As for convergence of this modification, there are three cases. First, if no termi-
nation occurs, then the results of section 3 apply (with T∞ = T1); in view of Lemma
3.11, this case is quite unlikely. Second, termination at Step 2 means a satisfactory
solution has been found. Third, termination at Step 3′ implies Vk < (2ε/tk)

1/2 (cf.
(2.21)); thus xk is a satisfactory solution if tk is “large enough”; otherwise a failure
occurs.

The above analysis suggests that the existing bundle codes may behave reasonably
well in the inexact case, provided large enough stepsizes are used (most codes allow
the user to choose the initial stepsize and its updating strategies). Of course, in case of
failure, the user may choose a larger stepsize, disallow stepsize decreases, and restart
the algorithm at Step 1; such a “natural” strategy reinvents Algorithm 2.1! Finally,
note that the existing codes won’t face any trouble until the predicted descent vk falls
below the oracle’s error ε (since wk < 0 implies vk < −αk ≤ ε by (3.7b), (2.18), and
(2.17)).

5. Lagrangian relaxation. In this section we consider the special case where
problem (1.1) with S := Rn

+ is the Lagrangian dual problem of the primal convex
optimization problem

ψmax
0 := max ψ0(z) s.t. ψj(z) ≥ 0, j = 1: n, z ∈ Z,(5.1)

where ∅ �= Z ⊂ Rm̄ is compact and convex, and each ψj is concave and closed
(upper semicontinuous) with domψj ⊃ Z. The Lagrangian of (5.1) has the form
ψ0(z) + 〈y, ψ(z)〉, where ψ := (ψ1, . . . , ψn) and y is a multiplier. Suppose that, at
each y ∈ S, the dual function

f(y) := max {ψ0(z) + 〈y, ψ(z)〉 : z ∈ Z }(5.2)

can be evaluated with accuracy ε ≥ 0 by finding a partial Lagrangian ε-solution

z(y) ∈ Z such that fy := ψ0(z(y)) + 〈y, ψ(z(y))〉 ≥ f(y) − ε.(5.3)

Thus f is finite convex and has an ε-subgradient mapping g· := ψ(z(·)) on S. In view
of Remark 3.10(i), we suppose that ψ(z(·)) is locally bounded on S (e.g., ψ(z(S))
is bounded if infZ minn

j=1 ψj > −∞, or ψ is continuous on Z). Finally, we assume
that fS is coercive, i.e., Arg minS f is nonempty and bounded (e.g., Slater’s condition
holds: ψ(ž) > 0 for some ž ∈ Z).

In effect, assuming k → ∞, the results of section 3 hold with εf := ε and εg := 0,
f∗ > −∞, {xk} is bounded (cf. Remark 3.10(ii)), and Lemma 3.11 yields limk V

′
k =

0. In particular, the partial Lagrangian solutions zk := z(yk) (cf. (5.3)) and their
constraint values gk := ψ(zk) determine the linearizations (2.2) as Lagrangian pieces
of f in (5.2):

fk(·) = ψ0(z
k) + 〈·, ψ(zk)〉.(5.4)

Using their weights {νkj }j∈Jk (cf. (2.8)), we may estimate solutions to (5.1) via ag-
gregate primal solutions

z̃k :=
∑
j∈Jk

νkj z
j .(5.5)
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We now derive useful bounds on ψ0(z̃
k) and ψ(z̃k) as in [Kiw95a, Lem. 4.1].

Lemma 5.1. z̃k ∈ Z, ψ0(z̃
k) ≥ fk

x − αk − 〈pk, xk〉, ψ(z̃k) ≥ pkf ≥ pk.

Proof. We have (cf. (2.8))
∑

j∈Jk νkj = 1 with νkj ≥ 0. Hence z̃k ∈ co{zj}j∈Jk ⊂
Z, ψ0(z̃

k) ≥
∑

j ν
k
j ψ0(z

j), ψ(z̃k) ≥
∑

j ν
k
j ψ(zj) by convexity of Z and concavity of ψ0,

ψ. Since (cf. (2.7)) pkS ∈ ∂iS(yk+1) with S := Rn
+, we have pkS ≤ 0 and 〈pkS , yk+1〉 = 0,

so (cf. (2.14)) pkf = pk − pkS ≥ pk. Next, using (2.8) and (5.4) with ψ(zj) =: gj , we

get
∑

j ν
k
j ψ(zj) =

∑
j ν

k
j g

j = pkf and

f̌k(y
k+1) =

∑
j
νkj fj(y

k+1) =
∑

j
νkj

[
ψ0(z

j) + 〈yk+1, ψ(zj)〉
]

=
∑

j
νkj ψ0(z

j) + 〈yk+1, pkf 〉.

Rearranging and using 〈pkS , yk+1〉 = 0, pk := pkf + pkS (cf. (2.14)), (2.12), and (2.13)
gives ∑

j
νkj ψ0(z

j) = f̌k(y
k+1) − 〈pkf + pkS , y

k+1〉 = f̄k
S(0) = fk

x − αk − 〈pk, xk〉.

Combining the preceding relations yields the conclusion.
The bounds of Lemma 5.1 are expressed in terms of the primal-dual optimality

measure

V̆k := max

{
max
j=1: n

[−pkf ]j , αk + 〈pk, xk〉
}

(5.6)

as ψ0(z̃
k) ≥ fk

x − V̆k, minn
j=1 ψj(z̃

k) ≥ −V̆k. Hence we may generate record measures

V̆ ∗
k and primal solutions z̃k∗ as follows. At Step 0, set V̆ ∗

1 := ∞. At Step 1, if V̆k < V̆ ∗
k ,

set V̆ ∗
k := V̆k, z̃

k
∗ := z̃k. At Step 4 set V̆ ∗

k+1 := V̆ ∗
k , z̃k+1

∗ := z̃k∗ . In effect, V̆ ∗
k (the

current minimum of V̆j for j ≤ k) measures the quality of the primal iterate

z̃k∗ ∈ Z with ψ0(z̃
k
∗ ) ≥ fk

x − V̆ ∗
k , ψj(z̃

k
∗ ) ≥ −V̆ ∗

k , j = 1: n.(5.7)

We now show that {z̃k∗} converges to the set of ε-optimal primal solutions of (5.1)

Zε := { z ∈ Z : ψ0(z) ≥ ψmax
0 − ε, ψ(z) ≥ 0 } .(5.8)

Theorem 5.2.

(i) {z̃k∗} is bounded and all its cluster points lie in Z.
(ii) limk f

k
x =: f∞

x ≥ f∗ − ε and limk V̆
∗
k ≤ 0.

(iii) Let z̃∞∗ be a cluster point of {z̃k∗}. Then z̃∞∗ ∈ Zε.
(iv) dZε

(z̃k∗ ) := infz∈Zε
|z̃k∗ − z| → 0 as k → ∞.

Proof. (i) By (5.7), {z̃k∗} lies in the set Z, which is compact by our assumption.
(ii) By (2.5), fk

x ≥ f(xk)− εf with εf := ε gives f∞
x ≥ f∗− ε. Next, since pkf ≥ pk

(cf. Lemma 5.1) implies maxj [−pkf ]j ≤ |pk|, using (5.6) and (2.16) yields

V̆k ≤ max
{
|pk|, αk + 〈pk, xk〉

}
≤ max

{
|pk|, αk

}
+ |pk||xk| ≤ Vk

(
1 + |xk|

)
;(5.9)

hence by construction V̆ ∗
k ≤ mink

j=1 V
′
j (1 + |xj |). Recall that under our assumptions

on (5.1), limk V
′
k = 0 and {xk} is bounded. Therefore, limk V̆

∗
k ≤ 0 by monotonicity.

(iii) By (i), z̃∞∗ ∈ Z. Using (ii) in (5.7) gives ψ0(z̃
∞
∗ ) ≥ f∞

x , ψ(z̃∞∗ ) ≥ 0 by
closedness of ψ0, ψ. Since f∞

x ≥ f∗ − ε by (ii), where f∗ ≥ ψmax
0 by weak duality (cf.

(1.1), (5.1), (5.2)), we have ψ0(z̃
∞
∗ ) ≥ ψmax

0 − ε. Thus z̃∞∗ ∈ Zε by the definition (5.8).
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(iv) This follows from (i), (iii), and the continuity of the distance function
dZε .

Remark 5.3.

(i) By the proofs of Lemma 2.3(iii) and Theorem 5.2, if an infinite loop between
Steps 1 and 3 occurs, then Vk → 0 yields max{V̆k, 0} → 0 and dZε(z̃

k) → 0. Similarly,
if Step 2 terminates with Vk = 0, then V̆k ≤ 0 and z̃k ∈ Zε.

(ii) Theorem 5.2 holds for {z̃k∗} replaced by {z̃k}k∈K for any K ⊂ {1, 2, . . . }
such that limk∈K max{V̆k, 0} = 0; i.e., other selections could be considered.

(iii) Given a tolerance εtol > 0, the method may stop if

ψ0(z̃
k) ≥ fk

x − εtol and ψj(z̃
k) ≥ −εtol, j = 1: n.

Then ψ0(z̃
k) ≥ ψmax

0 − ε − εtol from fk
x ≥ f∗ − ε (cf. (2.5)) and f∗ ≥ ψmax

0 (weak
duality), so z̃k ∈ Z is an approximate solution of (5.1). This stopping criterion will
be satisfied for some k (cf. (5.7) and Theorem 5.2(ii)).

No longer assuming coercivity of fS , we still have the following.
Theorem 5.4. Theorem 5.2 holds if f∗ > −∞ and tk ≥ tmin > 0 for all k.
Proof. In view of the proof of Theorem 5.2, we need only to show that limk V̆

∗
k ≤ 0

when infinitely many descent steps occur (since otherwise {xk} is bounded, whereas
limk V

′
k = 0 by Lemma 3.11).

Let K := {k : ik = 1}. Since vk
K−→ 0 (cf. Lemma 3.7(i)) with vk = tk|pk|2 + αk

(cf. (2.18)) and vk ≥ |αk| at Step 4, we have αk
K−→ 0 and tk|pk|2

K−→ 0. By (2.18),
xk+1 − xk = −iktkp

k, so

|xk+1|2 − |xk|2 = iktk
{
tk|pk|2 − 2〈pk, xk〉

}
.

Sum up and use the fact
∑

k iktk ≥
∑

k∈K tmin = ∞ to get

lim
k∈K

{
tk|pk|2 − 2〈pk, xk〉

}
≥ 0

(since otherwise |xk+1|2 → −∞, which is impossible). Combining this with tk|pk|2
K−→

0 yields limk∈K〈pk, xk〉 ≤ 0, as well as |pk|2 K−→ 0 by using the fact tk ≥ tmin. Since

also αk
K−→ 0, we have limk∈K V̆k ≤ 0 by (5.9). Then the fact V̆ ∗

k ≤ V̆k implies

limk V̆
∗
k ≤ 0.

Remark 5.5.

(i) For Theorem 5.4, we may impose a lower bound tmin > 0 on tk+1 at Step
6, whereas f∗ > −∞ if problem (5.1) is feasible (by weak duality). Thus, in contrast
with [FeK00], [Kiw95a], our primal recovery works even if (5.1) has no Lagrange
multipliers.

(ii) Remark 5.3 remains valid under the assumptions of Theorem 5.4.
In the remainder of this section we allow the primal problem (5.1) to be non-

convex. As before, our standing assumptions are that {ψj}nj=0 are finite and upper
semicontinuous on the compact set Z, ψ(z(·)) is locally bounded on S, and either fS
is coercive or f∗ > −∞ and tk ≥ tmin > 0 as in Theorem 5.4 (cf. Remark 5.5(i)).

Since problem (5.1) may be nonconvex, consider its relaxed convexified version

ψrel
0 := max

(νj ,zj)Mj=1

M∑
j=1

νjψ0(z
j) s.t.

M∑
j=1

νjψ(zj) ≥ 0,

M∑
j=1

νj = 1, zj ∈ Z, νj ≥ 0,

(5.10)
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where M := n + 1. Both (5.1) and (5.10) have the same dual (1.1) with f∗ = ψrel
0 ≥

ψmax
0 ; see [FeK00], [LeR01], [MSW76]. Similarly to (5.8), let Z̃ε denote the set of

ε-optimal solutions of (5.10). Such solutions may be estimated by (νkj , z
j)j∈Ĵk with

Ĵk := {j ∈ Jk : νkj �= 0} as follows. Since the QP routine of [Kiw94] delivers

|Ĵk| ≤ M , whereas any (νkj , z
j) can be split into two elements (νkj /2, z

j), we may

assume |Ĵk| = M . Denoting (νkj , z
j)j∈Ĵk as (ν̂kj , ẑ

jk)Mj=1, the proof of Lemma 5.1
yields

M∑
j=1

ν̂kj ψ0(ẑ
jk) = fk

x − αk − 〈pk, xk〉 and

M∑
j=1

ν̂kj ψ(ẑjk) = pkf ≥ pk.(5.11)

The record solutions (ν̃kj , z̃
jk)Mj=1 are generated just like z̃k∗ by setting (ν̃kj , z̃

jk)Mj=1 :=

(ν̂kj , ẑ
jk)Mj=1 at Step 1 if V̆k < V̆ ∗

k , and (ν̃k+1
j , z̃j,k+1)Mj=1 := (ν̃kj , z̃

jk)Mj=1 at Step 4. We

now show that (ν̃kj , z̃
jk)Mj=1 converges to Z̃ε, thus extending [FeK00, Thm. 6.2].

Theorem 5.6.

(i) {(ν̃kj , z̃jk)Mj=1} lies in a compact set.

(ii) limk f
k
x =: f∞

x ≥ f∗ − ε and limk V̆
∗
k ≤ 0.

(iii) Let (ν̃j , z̃
j)Mj=1 be a cluster point of {(ν̃kj , z̃jk)Mj=1}. Then (ν̃j , z̃

j)Mj=1 ∈ Z̃ε.

(iv) dZ̃ε
((ν̃kj , z̃

jk)Mj=1) → 0 as k → ∞.

Proof. (i) By construction (cf. (2.8)),
∑

j ν̃
k
j = 1, ν̃kj > 0, z̃jk ∈ Z, a compact set.

(ii) The proofs of Theorems 5.2(ii) and 5.4 remain valid.
(iii) By (i),

∑
j ν̃j = 1, ν̃j ≥ 0, z̃j ∈ Z, j = 1: M . Next, using (ii) with V̆ ∗

k = V̆k

(cf. (5.6)) for k such that (ν̂kj , ẑ
jk) = (ν̃kj , z̃

jk) in (5.11) and the upper semicontinuity
of ψ0, ψ gives

M∑
j=1

ν̃jψ0(z̃
j) ≥ f∞

x ≥ f∗ − ε and

M∑
j=1

ν̃jψ(z̃j) ≥ 0.

Since (ν̃j , z̃
j)Mj=1 is feasible in (5.10) and f∗ ≥ ψrel

0 by weak duality (cf. (1.1), (5.2),

(5.10)), we have
∑M

j=1 ν̃jψ0(z̃
j) ≥ ψrel

0 − ε; i.e., (ν̃j , z̃
j)Mj=1 is an ε-optimal solution of

(5.10).
(iv) This follows from (i), (iii), and the continuity of dZ̃ε

.
Extensions to separable problems are easily developed as in [FeK00, section 6].

Acknowledgments. I would like to thank the associate editor and the two
anonymous referees for helpful comments.
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Abstract. We study various partially ordered spaces of probability measures and we deter-
mine which of them are lattices. This has important consequences for optimization problems with
stochastic dominance constraints. In particular we show that the space of probability measures on
R is a lattice under most of the known partial orders, whereas the space of probability measures on
Rd typically is not. Nevertheless, some subsets of this space, defined by imposing strong conditions
on the dependence structure of the measures, are lattices.
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1. Introduction. A partially ordered set is called a lattice if every pair of ele-
ments has a supremum and an infimum. A great deal of literature has appeared in
recent decades about ordered sets of probability measures (see, for instance, [34] and
[25] for the state of the art), but surprisingly little attention has been given to the
lattice structure of these sets. To the best of our knowledge the only exceptions are
[19], [17], [7], [11], and [20], [21].

Lattice structures of ordered sets of probability measures have important implica-
tions for optimization problems in which ordered sets of probability measures occur as
constraint sets. As a concrete example of an application in which a lattice structure is
very helpful we consider optimization problems with stochastic dominance constraints
as considered, e.g., in [5]. There, optimization problems of the form

max f(X)(1.1)

subject to X ≤∗ Yi, i = 1, . . . , n,(1.2)

X ∈ C(1.3)

are considered, where f is some real valued functional, C is a set of random variables,
and ≤∗ is some stochastic order relation. If the stochastic order relation ≤∗ leads to a
lattice, then the problem with multiple stochastic dominance constraints is equivalent
to the problem

max f(X)

subject to X ≤∗ Y1 ∧∗ · · · ∧∗ Yn,

X ∈ C
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with only one constraint, which is much easier to solve. Similar optimization problems
can be found in [8] and [16].

In several other fields of research it is also often useful to resort to classes of
distributions rather than one single distribution. This happens, for instance, in robust
Bayesian statistics, where one considers families of prior distributions such as the so-
called ε-contamination classes (see, e.g., [2], [3], and [28]).

Whereas in decision theory à la Savage the decision maker maximizes her expected
utility with respect to her subjective probability measure, more recent developments
in the field have led to paradigms of choice that involve a whole class of probability
measures rather than a single probability. This allows us to incorporate in the model
the idea of ambiguity (see, e.g., [12] and the subsequent literature).

An interesting area in which the concepts of robustness and ambiguity coexist is
robust control under economic model uncertainty (see, for instance, [14] and [13]).

In mathematical finance, classes of equivalent martingale measures occur when
dealing with incomplete markets (see, e.g., [18]).

In all these situations it may be useful to compute bounds with respect to some
order. That is, given a class C of distributions, it may be interesting to find, among
all the distributions that are larger than all distributions in C, the smallest one, where
of course larger and smaller refer to some prespecified partial order. For the above
problem to be well defined it is necessary to have a lattice structure on the space of
distributions.

In this paper we will try to study this issue in a more systematic way. It will
turn out that the space of probability measures on R (or some suitable subsets of
it) is a lattice when endowed with most of the well-known stochastic orders such
as usual stochastic order, convex order, dispersion order, hazard rate order, etc.,
whereas the space of probability measures on Rd is in general not a lattice. In order
to obtain a lattice structure for sets of probability measures on Rd we need to put
severe restrictions on their dependence structure.

The paper is organized as follows. Section 2 contains some preliminary definitions
and results, section 3 is devoted to the space of probability measures on R, and
section 4 deals with the space of probability measures on Rd. Section 5 studies in
detail the properties of a special order.

2. Preliminaries. In this section we will introduce notation and the majority
of the definitions used in the rest of the paper.

2.1. Orders and lattices. We first recall the basic definitions of the theory of
lattices.

Definition 2.1. Let (X ,≤∗) be an ordered set. For x, y ∈ X let U(x, y) = {z ∈
X : x ≤∗ z, y ≤∗ z}. If U(x, y) has a smallest element z̃ such that z̃ ≤∗ z for all z ∈
U(x, y), then z̃ is called the supremum of x and y, denoted by z̃ = x∨∗ y = sup{x, y}.
Similarly, if there is a unique largest element z′ smaller than x and y, then this is
called the infimum, denoted by z′ = x ∧∗ y = inf{x, y}.

If x ∨∗ y and x ∧∗ y exist for all x, y ∈ X , then (X ,≤∗) is called a lattice.
A subset Z ⊂ X of a lattice is called a sublattice if x, y ∈ Z implies x ∨∗ y ∈ Z

and x ∧∗ y ∈ Z. Notice that (Z,≤∗) can be a lattice in its own right without being a
sublattice.

For properties of lattices the reader is referred to [4] and [1].
The following lattice and some of its sublattices will be used quite frequently. Let

S be an arbitrary set and let X be the set of all functions f : S → R, endowed with
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the pointwise order

f ≤ g if f(s) ≤ g(s) for all s ∈ S.

This is obviously a lattice with

f ∨ g(·) = max{f(·), g(·)} and f ∧ g(·) = min{f(·), g(·)}.(2.1)

Remark 2.2. Consider the lattices induced by the two orders �1,�2 on the same
space X . Let �1 be stronger than �2, namely, for all x, y ∈ X , let x �1 y imply
x �2 y. Then x ∧1 y �2 x ∧2 y and x ∨2 y �2 x ∨1 y. Therefore comparability of the
orders induces comparability of the suprema and infima (with respect to the weaker
order).

The following order ≤↑ will be of interest in what follows. Let S = [a, b] ⊂ R be a
finite interval and let BV(S) be the set of functions F : S → R, which are of bounded
variation. Endow BV(S) with the following relation ≤↑:

For F,G ∈ BV(S), F ≤↑ G if s 	→ G(s) − F (s) is increasing.

Properties of ≤↑ will be studied in section 5.

2.2. Probability. Next, we will collect some basic notation from probability
that is needed in what follows.

Definition 2.3. Given a topological space Y, B(Y) will indicate its Borel σ-
field, M(Y) will be the set of σ-additive probability measures on (Y,B(Y)), and for
some measure μ on (Y,B(Y)), Mμ(Y) ⊂ M(Y) will be the set of probability measures
dominated by the measure μ.

When Y is a linear space, then M∗(Y) ⊂ M(Y) will be the set of probability
measures with finite expectation, and Ma(Y) ⊂ M∗(Y) will be the set of probability
measures with finite expectation equal to a.

We denote by δx the degenerate probability measure at x.
Definition 2.4. Given a probability measure P ∈ M(R), define FP as the

associated distribution function and FP as the associated survival function, i.e.,

FP (x) = P ((−∞, x]),

FP (x) = P ((x,∞)) = 1 − FP (x).

Define the quantile function as

F−1
P (u) = sup{x : FP (x) ≤ u}, 0 < u < 1.

When P ∈ Mμ(R), define fP as the associated density function and rP as the
associated hazard rate function, i.e.,

fP (x) =
dP

dμ
(x), μ-a.s.,

rP (x) =
fP (x)

FP (x)
, μ-a.s.

Given P ∈ M∗(R), let F
(2)

P be the associated integrated survival function,

F
(2)

P (x) =

∫ ∞

x

FP (t) dt.
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For P ∈ M∗(R+) we call mP the associated mean residual life function, i.e.,

mP (x) =
F

(2)

P (x)

FP (x)
.

The name is due to the fact that, if the nonnegative random variable X has law P ,
then mP (x) = E[X − x|X > x].

2.3. Univariate stochastic orders. The following definitions of stochastic or-
ders can be found, e.g., in [34] and [25].

Definition 2.5. Given P,Q ∈ M(R) we define

P ≤st Q if

∫
φ dP ≤

∫
φ dQ for all increasing φ,

P ≤disp Q if F−1
P (t) − F−1

P (s) ≤ F−1
Q (t) − F−1

Q (s) for all 0 < s < t < 1,

P ≤hr Q if t 	→ FQ(t)

FP (t)
is increasing.

Given P,Q ∈ M∗(R) we define

P ≤cx Q if

∫
φ dP ≤

∫
φ dQ for all convex φ,

P ≤icx Q if

∫
φ dP ≤

∫
φ dQ for all increasing convex φ.

Given P,Q ∈ M∗(R+) we define

P ≤mrl Q if mP (t) ≤ mQ(t) for all t ∈ R+.

Given P,Q ∈ Mμ(R) we define

P ≤lr Q if fP (t)fQ(s) ≤ fP (s)fQ(t) for all s ≤ t.

Remark 2.6. In all the integral orders (≤st, ≤cx, ≤icx) the defining inequality is
assumed to hold whenever the expectations exist.

Remark 2.7. If P,Q ∈ Mμ(R), then P ≤hr Q iff rP (x) ≥ rQ(x) for all x ∈ R. If,
furthermore, fP > 0, then P ≤lr Q iff fQ/fP is increasing.

Remark 2.8. Given a random variable X with law P , and a number a ∈ R, we
denote by Pa the law of X + a. Then we have

P ≤disp Q iff Pa ≤disp Q for all a ∈ R.

Therefore the relation ≤disp is not antisymmetric, which implies that it is not a partial
order on M(R). It is a partial order on the quotient space (M(R)/∼) with respect to
the relation

P ∼ Q iff Q = Pa for some a ∈ R.

2.4. Multivariate stochastic orders.
Definition 2.9. Any function C : [0, 1]d → [0, 1] which is (the restriction of) a

d-variate distribution function with uniform marginals on [0, 1] is called a copula.
Lemma 2.10 (see [35]). Let P ∈ M(Rd). For i ∈ {1, . . . , d} let Pi ∈ M(R) be

the ith unidimensional marginal of P (i.e., Pi(A) = P (R× · · · ×R×A×R · · · ×R)).
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Then there exists a copula CP such that

P (×d
i=1(−∞, xi]) = CP (P1((−∞, x1]), . . . , Pd((−∞, xd])).

For the properties of copulae the reader is referred to [32], [15], and [26]. For
the properties of copulae of probability measures on more general product spaces, see
[31].

Definition 2.11. Let M(C)(Rd) be the set of probability measures with a common
copula C, and let Ma(Rd) be the set of probability measure with expectation equal to
a.

Definition 2.12. A random variable X is stochastically increasing in the random
vector Y (denoted by X ↑st Y) if for all s ≤ t we have L(X|Y = s) ≤st L(X|Y = t),
where L(X|A) is the conditional law of X given A.

Definition 2.13 (see [24]). A random vector X = (X1, . . . , Xd) is said to be
conditionally increasing (CI) if

Xi ↑st (Xj , j ∈ J) for all J ⊂ {1, . . . , d} and i �∈ J.

A copula is called CI if it is the copula of the distribution of a CI random vector.
Definition 2.14. A function φ : Rd → R is called supermodular if

φ(x) + φ(y) ≤ φ(x ∨ y) + φ(x ∧ y) for all x,y,

where Rd is endowed with the usual componentwise order and the corresponding lattice
structure.

A function φ : Rd → R is called directionally convex if for all xi ∈ Rd, i =
1, 2, 3, 4, such that x1 ≤ x2 ≤ x4, x1 ≤ x3 ≤ x4, and x1 + x4 = x2 + x3,

φ(x2) + φ(x3) ≤ φ(x1) + φ(x4).

Notice that a function is directionally convex if it is supermodular and convex in
each variable when the others are held fixed.

For the following definitions of stochastic orders the reader is referred again to
[34] and [25].

Definition 2.15. Given P,Q ∈ M(Rd) we define

P ≤st Q if

∫
φ dP ≤

∫
φ dQ for all increasing φ,

P ≤cx Q if

∫
φ dP ≤

∫
φ dQ for all convex φ,

P ≤sm Q if

∫
φ dP ≤

∫
φ dQ for all supermodular φ,

P ≤dcx Q if

∫
φ dP ≤

∫
φ dQ for all directionally convex φ,

P ≤lcx Q if

∫
φ dP ≤

∫
φ dQ for all φ such that

φ(x) = ψ(�(x)) with ψ : R → R convex and � : Rd → R linear,

P ≤plcx Q if

∫
φ dP ≤

∫
φ dQ for all φ such that

φ(x) = ψ(�(x)) with ψ : R → R convex and � : Rd → R linear and increasing,

P ≤lo Q if P
(
×d

i=1(−∞, xi]
)
≤ Q

(
×d

i=1(−∞, xi]
)

for all (x1, . . . , xd) ∈ Rd,

P ≤uo Q if P
(
×d

i=1(xi,∞)
)
≤ Q

(
×d

i=1(xi,∞)
)

for all (x1, . . . , xd) ∈ Rd.
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3. Lattices of measures on R. Now we will investigate whether the orders
defined in subsection 2.3 lead to a lattice structure. In case of ≤st this is easy. The
well-known fact that P ≤st Q iff FP (x) ≤ FQ(x) for all x ∈ R immediately implies
the following result.

Theorem 3.1. The ordered set (M(R),≤st) is a lattice with

FP∧stQ = min{FP , FQ} and FP∨stQ = max{FP , FQ}.
In the next result we use the notation

vex(f)(x) = sup{g(x) : g is convex and g(y) ≤ f(y) for all y ∈ R}
for the convex hull operator, yielding the largest convex function smaller than a given
one.

Theorem 3.2. The ordered set (M∗(R),≤icx) is a lattice with

F
(2)

P∧icxQ = vex
(
min

{
F

(2)

P (x), F
(2)

Q (x)
})

,

F
(2)

P∨icxQ = max
{
F

(2)

P (x), F
(2)

Q (x)
}
.

Proof. It is well known that increasing convex order can be characterized by
pointwise comparison of the integrated survival functions; i.e., P ≤icx Q holds iff

F
(2)

P (x) =

∫ ∞

x

FP (t) dt ≤
∫ ∞

x

FQ(t) dt = F
(2)

Q (x)

for all real x. Denote by F (2)(R) the class of all integrated survival functions.
F (2)(R) contains all functions f that are continuous, decreasing, convex, and satisfy
limx→−∞ f(x)−x = a for some a ∈ R and limx→∞ f(x) = 0; see, e.g., Theorem 1.5.10
in [25]. Therefore the pointwise maximum of two such functions f and g again is such
a function, and clearly the smallest integrated survival function is larger than f and
g. The pointwise minimum of two such functions is not necessarily convex, but there
is always a largest integrated survival function h ∈ F (2)(R) smaller than f and g,
namely h = vex(min{f, g}).

The ordered set (M∗(R),≤cx) is not a lattice, as P ≤cx Q can hold only for
distributions with the same mean. Therefore only the set (Ma(R),≤cx) containing
all distributions with some fixed mean a ∈ R can be a lattice. Since in this case

limx→−∞ F
(2)

P (x)− x = a, the following result can be proved exactly as Theorem 3.2.
Theorem 3.3. For all a ∈ R the ordered set (Ma(R),≤cx) is a lattice with

F
(2)

P∧cxQ = vex
(
min

{
F

(2)

P (x), F
(2)

Q (x)
})

,

F
(2)

P∨cxQ = max
{
F

(2)

P (x), F
(2)

Q (x)
}
.

The problem examined in Theorems 3.2 and 3.3 has been studied extensively in
[20], [21]. The reader is also referred to [19], [7], and [11].

In the next result we investigate the lattice structure of the mean residual life
order ≤mrl for distributions on R+ with a finite mean.

Theorem 3.4. The ordered set (M∗(R+),≤mrl) is a lattice with

FP∧mrlQ(x) = exp

(
−
∫ x

0

1

min{mP (t),mQ(t)} dt

)
· min{mP (0),mQ(0)}
min{mP (x),mQ(x)} ,

FP∨mrlQ(x) = exp

(
−
∫ x

0

1

max{mP (t),mQ(t)} dt

)
· max{mP (0),mQ(0)}
max{mP (x),mQ(x)} .
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Proof. A function m : R+ → R is a mean residual life function of some probability
measure P on R+ iff it has the following properties: It is nonnegative, right continuous,
and such that t 	→ m(t) + t is increasing, and if t0 exists such that m(t0) = 0, then
m(t) = 0 for all t > t0. If such a t0 does not exist, then∫ ∞

0

1

m(t)
dt = ∞

(see [36], [33], [34]). The class of these functions is closed under pointwise minimum
and maximum. As the survival function FP is uniquely determined by the mean
residual life function mP via

FP (x) = exp

(
−
∫ x

0

1

mP (t)
dt

)
· mP (0)

mP (x)
,

the given representation for the survival functions of P ∨mrl Q and P ∧mrl Q
follows.

The following theorems use properties of the order ≤↑ that are proved is section 5.
Theorem 3.5. The ordered set ((M(R)/∼),≤disp) is a lattice with

FP∧dispQ =
(
F−1
P ∧↑ F

−1
Q

)−1

,

FP∨dispQ =
(
F−1
P ∨↑ F

−1
Q

)−1

.

Proof. Notice that P ≤disp Q iff F−1
P ≤↑ F−1

Q . Therefore the assertion follows
from Lemma 5.2.

Remark 3.6. The set (M(R),≤hr) is not a lattice. Notice that P ≤hr Q holds iff
log(F̄P ) ≤↑ log(F̄Q). Therefore (M(R),≤hr) would be a lattice if the set of logarithms
of survival functions endowed with ≤↑ were a lattice. However, whereas log(F̄P ) ∧↑
log(F̄Q) is always a logarithm of a survival function, this is not necessarily the case
for log(F̄P )∨↑ log(F̄Q). In this case it may happen that the limit for x → ∞ is finite.
If, for example, P has as support all even numbers and Q has as support the odd
numbers, then log(F̄P ) ∨↑ log(F̄Q) ≡ 0, and this obviously is not a logarithm of a
survival function of a distribution on R.

However, the order relation ≤hr defines a lattice for distributions on the extended
real line R ∪ {+∞}, allowing explicit mass on {+∞}. Thus the logarithm of the
survival function is allowed to have a finite limit as x → ∞. The function f ≡ 0, for
instance, then is the logarithm of the distribution with P ({+∞}) = 1.

Theorem 3.7. The set (M(R ∪ {+∞}),≤hr) is a lattice with

FP∧hrQ = exp(log(FP ) ∧↑ log(FQ)),

FP∨hrQ = exp(log(FP ) ∨↑ log(FQ)).

Proof. As P ≤hr Q holds iff log(F̄P ) ≤↑ log(F̄Q), this is an immediate consequence
of Lemma 5.1.

Example 3.8. We will illustrate how the suprema and infima vary with respect
to the various orders by comparing two simple discrete distributions, which have the
same mean and variance, and therefore are not comparable with respect to any of the
mentioned orders.

Let

P =
1

2
δ1 +

1

2
δ3, Q =

1

8
δ0 +

3

4
δ2 +

1

8
δ4.
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Then

P ∧st Q =
1

8
δ0 +

3

8
δ1 +

3

8
δ2 +

1

8
δ3,

P ∨st Q =
1

8
δ1 +

3

8
δ2 +

3

8
δ3 +

1

8
δ4;

P ∧cx Q = P ∧icx Q =
1

4
δ1 +

1

2
δ2 +

1

4
δ3,

P ∨cx Q = P ∨icx Q =
1

8
δ0 +

3

8
δ4/3 +

3

8
δ8/3 +

1

8
δ4;

P ∧disp Q = δ1,

P ∨disp Q =
1

8
δ1 +

3

8
δ3 +

3

8
δ5 +

1

8
δ7;

P ∧hr Q =
1

8
δ0 +

7

16
δ1 +

3

8
δ2 +

1

16
δ3,

P ∨hr Q = δ4;

P ∧mrl Q =
2

9
δ1 +

5

9
δ2 +

2

9
δ3,

P ∨mrl Q =
1

8
δ0 +

10

32
δ1 +

9

32
δ2 +

9

32
δ4.

Notice that in most cases the support is contained in the union of the supports of P
and Q, whereas

supp(P ∨cx Q) �⊆ supp(P ) ∪ supp(Q) =: S = {0, 1, 2, 3, 4}.

Therefore (M(S),≤cx) is not a sublattice of (M(R),≤cx). Notice, however, that
(M(S),≤cx) is still a lattice in its own right. In the lattice (M(S),≤cx) the supremum
of P and Q from the above example is given by

P ∨cx Q =
1

8
δ0 +

1

4
δ1 +

1

4
δ2 +

1

4
δ3 +

1

8
δ4.

Theorem 3.9.

(a) For any P,Q ∈ M(R) we have

supp(P ∨st Q) ⊆ supp(P ) ∪ supp(Q),

supp(P ∧st Q) ⊆ supp(P ) ∪ supp(Q).

(b) For any P,Q ∈ Ma(R) we have

supp(P ∨cx Q) ⊆ conv(supp(P ) ∪ supp(Q)),

supp(P ∧cx Q) ⊆ supp(P ) ∪ supp(Q).

(c) For any P,Q ∈ M∗(R+) we have

supp(P ∨mrl Q) ⊆ supp(P ) ∪ supp(Q),

supp(P ∧mrl Q) ⊆ supp(P ) ∪ supp(Q).
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Proof. We show the case ∧cx. The other cases are similar. Let K = FP∧cxQ

and fix x �∈ supp(P ) ∪ supp(Q). Then there is a neighborhood Ux of x, where F̄
(2)
P

and F̄
(2)
Q are affine. Hence K

(2)
= vex(min(F

(2)

P , F
(2)

Q )) is also affine on Ux, and thus
x �∈ supp(P ∧cx Q).

As a consequence of Theorem 3.9 we get the following result. The proof is omitted.
Theorem 3.10.

(a) For any measurable subset S ⊂ R the partially ordered set (M(S),≤st) is a
sublattice of (M(R),≤st).

(b) For any convex subset S ⊂ R and any a ∈ S the partially ordered set
(Ma(S),≤cx) is a sublattice of (Ma(R),≤cx).

(c) For any measurable subset S ⊂ R+ the partially ordered set (M∗(S),≤mrl) is
a sublattice of (M∗(R+),≤mrl).

Remark 3.11. It is well known that on M(R) we have

≤lr ⊂ ≤hr ⊂ ≤st ⊂ ≤icx,

and on Ma(R) we have

≤disp ⊂ ≤cx .

For some of the orders examined in this section we have a stronger comparabil-
ity result than the one stated in Remark 2.2; that is, the infima and suprema are
comparable with respect to the stronger order, as the following proposition shows.

Proposition 3.12.

(a) P ∨icx Q ≤st P ∨st Q,
(b) P ∧st Q ≤st P ∧icx Q,
(c) P ∨st Q ≤hr P ∨hr Q,
(d) P ∧hr Q ≤hr P ∧st Q.
Proof.

(a) Define H = FP∨icxQ. Then H
(2)

(x) = max(FP
(2)

(x), FQ
(2)

(x)). As H(x) =

− d+H
(2)

(x)/dx, we have that H(x) equals either FP (x) or FQ(x), and there-
fore

H(x) ≤ max(FP (x), FQ(x)) = FP∨stQ(x),

which implies the desired result.

(b) Define K = FP∧icxQ. Then K
(2)

(x) = vex(min(FP
(2)

, FQ
(2)

))(x). For fixed
x we have that K(x) equals either FP (x) or FQ(x), or that there exists a

largest interval [a, b) containing x on which K
(2)

is affine, and hence K is

constant. Since in the latter case K
(2)

equals either F
(2)

P or F
(2)

Q in the point
a and it is smaller than both these functions between a and b, we then have

K(x) = K(a) ≥ min(FP (a), FQ(a)) ≥ min{FP (x), FQ(x)} = FP∧stQ(x),

which implies the desired result.
(c) Define R = P ∨st Q. Then FR(x) = max(FP (x), FQ(x)). Let μ be a domi-

nating measure of P and Q and let rP and rQ be the corresponding hazard
rate functions. Then rR(x) equals either rP (x) or rQ(x) μ-a.s. Therefore

rR(x) ≤ max{rP (x), rQ(x)} = rP∨hrQ(x) μ-a.s.

and therefore R ≤hr P ∨hr Q. The proof of (d) is similar.
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Theorem 3.13. The following sets of probability measures on R are lattices if
they are endowed with the order ≤lr:

(i) the set of all probability measures with a common finite support,
(ii) the set of all probability measures on a bounded interval (a, b) having a strictly

positive Lebesgue density f such that log f is of locally bounded variation.
Proof.
(i) In general, P ≤lr Q holds if they both have densities fP , fQ with respect

to some dominating measure such that log fP ≤↑ log fQ. Therefore, if both
probability measures have a common finite support {x1, . . . , xn} with x1 <
· · · < xn then we get, by (5.2) and (5.3),

(fP∨lrQ)(xi+1)

(fP∨lrQ)(xi)
= max

{
fQ(xi+1)

fQ(xi)
,
fP (xi+1)

fP (xi)

}
(3.1)

and

(fP∧lrQ)(xi+1)

(fP∧lrQ)(xi)
= min

{
fQ(xi+1)

fQ(xi)
,
fP (xi+1)

fP (xi)

}
.(3.2)

(ii) We have

log(fP∨lrQ) = c(log fP ∨↑ log fQ),

where c is such that
∫ b

a
(fP∨lrQ)(x) dx = 1. Similarly,

log(fP∧lrQ) = c′(log fP ∧↑ log fQ),

where c′ is such that
∫ b

a
(fP∧lrQ)(x) dx = 1.

Remark 3.14. For a probability measure P with values in {0, 1, . . . , N} the so-
called equilibrium rate function eP is defined as

eP (n) :=
P ({n− 1})
P ({n}) , n = 1, . . . , N.

It is well known that eP uniquely determines P and that P ≤lr Q holds iff eP (n) ≥
eQ(n) for all n = 1, . . . , N ; see, e.g., [34, p. 435ff]. Thus the proof of part (i) of
Theorem 3.13 is not surprising. It just states that

eP∨lrQ(n) = min{eP (n), eQ(n)} and eP∧lrQ(n) = max{eP (n), eQ(n)}.

Example 3.15. (a) Let S = {1, 2, 3}, let

fP (1) = fP (3) =
1

4
, fP (2) =

1

2
,

and let

fQ(1) = fQ(2) = fQ(3) =
1

3
.

It follows from (3.1) that

fP∨lrQ(3) = fP∨lrQ(2) = 2fP∨lrQ(1).
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Normalization yields

fP∨lrQ(3) = fP∨lrQ(2) =
2

5
and fP∨lrQ(1) =

1

5
.

Similarly, one obtains

fP∧lrQ(1) = fP∧lrQ(2) =
2

5
and fP∧lrQ(3) =

1

5
.

(b) Let S = [0, 1] and consider the following example for Lebesgue densities:

fP (x) =

{
4x, x ≤ 1/2,

4 − 4x, x > 1/2,
and fQ(x) = 1, 0 ≤ x ≤ 1.

From (5.1) it follows that

d

dx
log fP∨lrQ(x) =

{
1/x, 0 < x ≤ 1/2,

0, x > 1/2.

Normalization yields

fP∨lrQ(x) =

{
(8/3)x, x ≤ 1/2,

4/3, x > 1/2.

Similarly, one obtains

fP∧lrQ(x) =

{
4/3, x ≤ 1/2,

(8/3)(1 − x), x > 1/2.

(c) The set of all probability measures with support N0, endowed with the order
≤lr, is not a lattice. To see this, let

fP (n) = (1/2)k+1, n = 2k, 2k + 1, k = 1, 2, . . . ,

and

fQ(n) = (1/2)k+1, n = 2k − 1, 2k, k = 1, 2, . . . .

A density h with h/fP increasing and h/fQ increasing would have to be increasing on
the whole of N0, which is impossible. Therefore the set {P,Q} has no upper bound
with respect to ≤lr. A very similar argument can be used to show that the set of all
probability measures on R having Lebesgue densities, endowed with the order ≤lr, is
not a lattice. Let

fP (x) = (1/2)k+3, 2k ≤ |x| < 2k + 2, k = 0, 1, 2, . . . ,

and

fQ(x) =

{
1/4, |x| < 1,

(1/2)k+3, 2k − 1 ≤ |x| < 2k + 1, k = 1, 2, . . . .

Then a density h with h/fP increasing and h/fQ increasing would have to be increas-
ing on the whole of R which is impossible.
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4. Lattices of measures on Rd. In this section we will study the lattice struc-
ture of the orders defined in subsection 2.4.

Theorem 4.1. The following ordered sets of probability measures are lattices:
(a) for any copula C, the set (M(C)(Rd),≤st);
(b) for any CI copula C, and for all a ∈ Rd, the set

(M(C)
a (Rd),≤dcx);

(c) for any CI copula C, and for all a ∈ Rd, the set

(M(C)
a (Rd),≤plcx).

The following lemmas will be needed.
Lemma 4.2 (see [29], [30]). Let P,Q ∈ M(C)(Rd). Then P ≤st Q iff, for

i ∈ {1, . . . , d}, Pi ≤st Qi.
Lemma 4.3 (see [24]). Let C be a CI copula, and let P,Q ∈ M(C)(Rd). Then

P ≤dcx Q iff, for i ∈ {1, . . . , d}, Pi ≤cx Qi.
Proof of Theorem 4.1.
(a) By Lemma 4.2 and Theorem 3.1, we obtain that the ordered set (M(C)(Rd),

≤st) is a product of lattices, and hence is a lattice.
(b) By Lemma 4.3 and Theorem 3.3, we obtain that, if C is CI, then the set

(M(C)
a (Rd),≤dcx) is a product of lattices, and hence is a lattice,

(c) As P ≤dcx Q implies P ≤plcx Q, which in turn implies Pi ≤cx Qi for all
marginals, it follows from Lemma 4.3 that the orderings ≤dcx and ≤plcx are
equivalent on the set of all probability measures with a fixed CI copula C.
Thus the result follows immediately from part (b).

Example 4.4. Theorem 4.1 can be helpful for solving some multivariate versions
of optimization problems with stochastic ordering constraints of the type described
in (1.1). Let X = (X1, . . . , Xd) describe a portfolio of d risks, corresponding, e.g., to
different lines of business. Consider a portfolio optimization problem of the following
type:

max f(X)

subject to X ≤plcx Y(i), i = 1, . . . , n,(4.1)

CX = C+.

Notice that X ≤plcx Y is equivalent to

d∑
j=1

wjXj ≤cx

d∑
j=1

wjYj for all w1, . . . , wd ≥ 0,

which can be interpreted as follows: A portfolio consisting of the risks (X1, . . . , Xd)
is less risky than a portfolio consisting of the benchmark risks (Y1, . . . , Yd) for all
possible portfolio weights w1, . . . , wd. The assumption that the copula of X is given
by the upper Fréchet bound C+ (or, in other words, that the risks are comonotonic)
is a quite common assumption in the calculation of risk measures for portfolios; see,
e.g., [6]. The two main reasons for this are first that comonotonicity typically yields
a worst case bound, and second that many risk measures are easy to evaluate in the
case of comonotonicity.

It follows from Theorem 4.1 that problem (4.1) is equivalent to

max f(X)

subject to X ≤plcx Y(1) ∧plcx · · · ∧plcx Y(n),(4.2)

CX = C+,
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which in turn is equivalent to

max f(X)

subject to Xj ≤cx Y
(1)
j ∧cx · · · ∧cx Y

(n)
j , j = 1, . . . , d,(4.3)

CX = C+.

Kamae, Krengel, and O’Brien [17] were the first to recognize that, for d > 1, the
stochastic order on Rd does not generate a lattice.

Proposition 4.5 (see [17]). The ordered set (M(Rd),≤st) is not a lattice.
The counterexample that Kamae, Krengel, and O’Brien use in their proof is the

following. Consider for d = 2 the probability measures

P =
1

2
δ(0,0) +

1

2
δ(1,1), Q =

1

2
δ(0,1) +

1

2
δ(1,0).

Given the upper sets

A = {(x1, x2) : x1 ≥ 1, x2 ≥ 1}, B = {(x1, x2) : x1 ≥ 0, x2 ≥ 0,max{x1, x2} ≥ 1},

any upper bound (with respect to ≤st) R for P and Q has to satisfy

R(A) ≥ 1

2
, R(B) = 1.

The measures

R1 =
1

2
δ(0,1) +

1

2
δ(1,1) and R2 =

1

2
δ(1,0) +

1

2
δ(1,1)

are upper bounds for {P,Q} with respect to ≤st. But R̃ ≤st R1, R̃(A) ≥ 1/2, and
R̃(B) = 1 imply R̃ = R1; therefore R1 is a smallest upper bound. By symmetry it
can be shown that R2 is a smallest upper bound with respect to ≤st. Therefore no
supremum exists for {P,Q}.

Remark 4.6. Even if Theorem 4.1(a) holds, in general two distributions in the
set of all distributions on Rd do not have a supremum with respect to ≤st, even if
they have a common copula. Consider, for instance, N (0, 1) × δ0 and δ0 × N (0, 1),
where N (0, 1) is the standard normal distribution. Notice that any distribution with
marginals 1/2·(N+(0, 1)+δ0) is an upper bound with respect to ≤st, where we denote
by N+(0, 1) a standard normal distribution conditioned to be positive.

Proposition 4.7. For any a ∈ Rd the ordered set (Ma(Rd),≤cx) is not a
lattice.

Proof. Without loss of generality we will consider the case a = 0. Any other case
can be obtained by translation. Let

P =
1

2
δ(−1,−1) +

1

2
δ(1,1),

Q =
1

2
δ(−1,1) +

1

2
δ(1,−1).

The measure

R =
1

4
δ(−2,0) +

1

4
δ(0,−2) +

1

4
δ(2,0) +

1

4
δ(0,2)(4.4)

dominates both P and Q in (M0(Rd),≤cx). This can be seen by using the idea of
fusion studied in [9], [10].
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In fact P can be obtained from R by fusing 1
4δ(−2,0) + 1

4δ(0,−2) into 1
2δ(−1,−1) and

1
4δ(2,0) + 1

4δ(0,2) into 1
2δ(1,1).

Similarly Q can be obtained from R by fusing 1
4δ(−2,0) + 1

4δ(0,2) into 1
2δ(−1,1) and

1
4δ(2,0) + 1

4δ(0,−2) into 1
2δ(1,−1).

Consider now a measure

S =
5

11
δ( 3

2 ,
3
2 ) +

3

11
δ( 3

2 ,−4) +
3

11
δ(−4, 32 ).

Since any measure with support in the convex hull of(
3

2
,
3

2

)
,

(
3

2
,−4

)
,

(
−4,

3

2

)

and expectation (0, 0) is convexly dominated by S (see [10]), we have that S is an
upper bound for {P,Q}.

On the other hand R and S are not comparable on (M0(Rd),≤cx), since the
convex hulls of their supports are not ordered by inclusion (again see [10]).

If P ∨cx Q existed, then it would have to be dominated by both R and S, and
hence its support would have to be contained in the intersection of the convex hulls
of the supports of R and S (indicated in grey in Figure 1). Assume that this is
possible. Then in order to dominate P , the measure P ∨cx Q would have to deposit

mass 1
2 on the segment B = ( 1

2 ,
3
2 ), ( 3

2 ,
1
2 ). In order to dominate Q it would have

to deposit mass 1
2 on the segment A = (−2, 0), (− 1

2 ,
3
2 ) and mass 1

2 on the segment

C = (0,−2), ( 3
2 ,−

1
2 ); see Figure 1. Since the three segments are disjoint, this leads

to a contradiction.
Hence {P,Q} have no supremum in (M0(Rd),≤cx).
Proposition 4.8. The ordered set (M∗(Rd),≤lcx) is not a lattice.
In order to prove the above proposition we need the following definition and result,

for which the reader is referred to [23].
Definition 4.9. Given a probability measure P ∈ M∗(Rd), we define �(P ) its

lift-zonoid

�(P ) = conv

{(
P (B),

∫
B

x P (dx)

)
: B ∈ B(Rd)

}
.

Lemma 4.10 (see [22]). For a ∈ Rd and P,Q ∈ Ma(Rd), the following two
conditions are equivalent:

(a) P ≤lcx Q,
(b) �(P ) ⊆ �(Q).
Lemma 4.11. The class of zonoids in Rd+1

+ having one common vertex in 0 and
another in (1,μ), ordered by inclusion, is not a lattice.

Proof. Given two sets A,B ∈ Rd+1, let A ⊕ B = {s + t : s ∈ A, t ∈ B} be their
Minkowski sum. Consider the following zonotopes in R4:

Z1 = 0,a1 ⊕ 0,a2 ⊕ 0,a3,

Z2 = 0,b1 ⊕ 0,b2 ⊕ 0,b3,

Z3 = 0, c1 ⊕ 0, c2 ⊕ 0, c3,

Z4 = 0,d1 ⊕ 0,d2 ⊕ 0,d3,
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-1

0

1

2

3
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C

A

Fig. 1. Graphical illustration of the proof of Proposition 4.7.

where

a1 =

(
1

3
,
2

9
,
2

9
,
5

9

)
, a2 =

(
1

3
,
2

9
,
5

9
,
2

9

)
, a3 =

(
1

3
,
5

9
,
2

9
,
2

9

)
,

b1 =

(
1

3
,
4

9
,
4

9
,
1

9

)
, b2 =

(
1

3
,
4

9
,
1

9
,
4

9

)
, b3 =

(
1

3
,
1

9
,
4

9
,
4

9

)
,

c1 =

(
1

3
,
3

9
,
4

9
,
2

9

)
, c2 =

(
1

3
,
2

9
,
3

9
,
4

9

)
, c3 =

(
1

3
,
4

9
,
2

9
,
3

9

)
,

d1 =

(
1

3
,
3

9
,
2

9
,
4

9

)
, d2 =

(
1

3
,
4

9
,
3

9
,
2

9

)
, d3 =

(
1

3
,
2

9
,
4

9
,
3

9

)
.

It is not difficult to verify that the zonotopes Z1, Z2, Z3, Z4 have one vertex in 0
and the other in 1 := (1, 1, 1, 1). Let S2 be the simplex

S2 =

⎧⎨
⎩(x1, x2, x3) : x1, x2, x3 ≥ 0,

3∑
j=1

xj = 1

⎫⎬
⎭ .

Then each of the above zonoids is generated by segments of the type 0,
(

1
3 , x1, x2, x3

)
,

with (x1, x2, x3) ∈ S2.
It is enough to look at the simplex S2 to notice that both Z3 and Z4 are included

in Z1 ∩ Z2, so they are lower bounds for {Z1, Z2}. Therefore an infimum of {Z1, Z2}
would have to contain Z3 and Z4. We observe that each of the six segments that
generate Z3 and Z4 is extreme for the convex hull of Z3 and Z4, which coincides with
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(1,0,0)

(0,0,1) (0,1,0)

b
1

a
3

b
2
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b
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c
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d
3

c
1d

2

c
3

d
1

Fig. 2. Graphical illustration of the proof of Lemma 4.11.

the intersection of Z1 and Z2; see Figure 2. Therefore any zonoid that includes both
Z3 and Z4 would have to contain all six generating segments among its generators,
but then it would not have a vertex in 1. This proves that the set {Z1, Z2} has no
infimum.

Proof of Proposition 4.8. It is enough to combine Lemmas 4.10 and 4.11.
Proposition 4.12. The ordered set (M(Rd),≤sm) is not a lattice.
Proof. Let

P =
1

3
(δ(2,1) + δ(1,3) + δ(3,2)),

Q =
1

3
(δ(1,2) + δ(3,1) + δ(2,3)).

The measures

R =
1

3
(δ(1,1) + δ(3,2) + δ(2,3)),

S =
1

3
(δ(1,2) + δ(2,1) + δ(3,3))

are upper bounds for {P,Q}. To prove this, notice that, for instance,

∫
f dR−

∫
f dP =

1

3
(f(x ∨ y) + f(x ∧ y) − f(x) − f(y))

for x = (2, 1), y = (1, 3). Similar results hold for the other cases. The definition of
supermodularity implies that R,S are upper bounds for {P,Q}.



1040 ALFRED MÜLLER AND MARCO SCARSINI

The distribution function FP∨smQ would have to satisfy

FP , FQ ≤ FP∨smQ ≤ FR, FS ,

which implies

FP∨smQ(1, 1) = 0, FP∨smQ(1, 2) =
1

3
, FP∨smQ(2, 1) =

1

3
, FP∨smQ(2, 2) =

1

3
.

This is not possible.
The argument in the above proof can be used to prove also the following propo-

sition.
Proposition 4.13. The ordered sets (M(Rd),≤dcx), (M(Rd),≤lo), and (M(Rd),

≤uo) are not lattices.
A different argument showing that (M(Rd),≤lo) is not a lattice can be derived

by Example 2.1 in [27].

5. Properties of the order ≤↑. The relation ≤↑ on BV(S) induces a partial
order ≤↑ on BV/∼(S), the set of all equivalence classes F/∼ defined by the equivalence
relation

F ∼ G if G− F is constant.

Then (BV/∼(S),≤↑) is a lattice (see, e.g., section 8.6 in [1]). It is easy to see that this
can be extended to arbitrary measurable subsets S ⊂ R, denoting by BVloc(S) the
set of functions F : S → R that are of bounded variation on closed bounded subsets.

The subset (BV+
loc/∼(S),≤↑) of all right-continuous functions of local bounded

variation forms a sublattice, which is strongly related to the set of all signed measures
of local bounded variation endowed with the natural partial order. Indeed, let S(S)
be the set of all signed measures on (S,B(S)) of local bounded variation. Define on
it the order relation � as follows:

μ � ν if μ(B) ≤ ν(B) for all B ∈ B(S).

Then (S(S),�) is a lattice, where μ ∨ ν and μ ∧ ν are given as follows. Let ρ be a
dominating measure of μ and ν (e.g., take ρ = |μ| + |ν|), and denote by

fμ =
dμ

dρ
and fν =

dν

dρ

the corresponding Radon–Nikodym derivatives. Then μ ∨ ν and μ ∧ ν are the signed
measures with the Radon–Nikodym derivatives

d(μ ∨ ν)

dρ
= max{fμ, fν} and

d(μ ∧ ν)

dρ
= min{fμ, fν}.

The mapping from (BV+
loc/∼(S),≤↑) to (S(S),�), assigning to (the equivalence class

of) a distribution function F the corresponding signed measure μF with

μF ((a, b]) = F (b) − F (a) for all a, b ∈ S, a < b,

is a lattice isomorphism; see [1, Theorem 9.61]. There are two important special cases,
where this lattice isomorphism can be used to derive explicit formulas for F ∨↑G and
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F ∧↑ G. If S is an open set, and F and G are differentiable, then

(F ∨↑ G)′(s) = max{F ′(s), G′(s)} and (F ∧↑ G)′(s) = min{F ′(s), G′(s)}, s ∈ S.
(5.1)

If S = N0, then

(F ∨↑ G)(s + 1) − (F ∨↑ G)(s) = max{F (s + 1) − F (s), G(s + 1) −G(s)}, s ∈ N0,
(5.2)

and

(F ∧↑ G)(s + 1) − (F ∧↑ G)(s) = min{F (s + 1) − F (s), G(s + 1) −G(s)}, s ∈ N0.
(5.3)

The following special cases of spaces of functions endowed with the order ≤↑ are
needed in section 3. Let F log(R) be the set of all functions f : R → R∪{−∞}, which
are decreasing and right-continuous with limx→−∞ f(x) = 0; in other words F log(R)
is the set of logarithms of survival functions of distributions with support R∪{+∞},
where we define log(0) = −∞; see Remark 3.6.

Lemma 5.1. The partially ordered set (F log(R),≤↑) is a lattice.
Proof. For f, g ∈ F log(R) define

Sf,g = {x ∈ R : f(x) > −∞, g(x) > −∞}
=: (−∞, αf,g).

Then (BV+
loc/∼(Sf,g),≤↑) is a lattice as described above, and therefore f ∧↑ g(x) and

f ∨↑ g(x) are well defined for x ∈ Sf,g. This can be extended to the whole of R by
defining

f ∧↑ g(x) := −∞ for x ≥ αf,g

and

f ∨↑ g(x) :=

⎧⎪⎨
⎪⎩

limt↑αf,g
f ∨↑ g(t) + g(x) − g(αf,g) for x ≥ αf,g, g(x) > −∞,

limt↑αf,g
f ∨↑ g(t) + f(x) − f(αf,g) for x ≥ αf,g, f(x) > −∞,

−∞ for f(x) = g(x) = −∞.

As monotonicity and right continuity are preserved under the lattice operations,
it is straightforward to see that (F log(R),≤↑) becomes a lattice under these oper-
ations.

Now let Q be the set of all quantile functions, i.e., the set of all right-continuous
increasing functions f : (0, 1) → R. The proof of the following result is immediate.

Lemma 5.2. The partially ordered set (Q,≤↑) is a lattice.
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CRITICAL VALUE FUNCTIONS HAVE FINITE MODULUS OF
CONCAVITY∗

HARALD GÜNZEL† , FRANCISCO GUERRA VAZQUEZ‡ , AND HUBERTUS TH. JONGEN†

Abstract. We consider a smooth finite dimensional parametric optimization problem P(y) with
objective function f(x, y). Here, x and y denote the state variable and the parameter, respectively.
In the case that x is a strongly stable Karush–Kuhn–Tucker point for P(y), a neighborhood of x
contains a unique Karush–Kuhn–Tucker point x(y) for P(y), provided that y is sufficiently close to y.
This gives rise to the critical value function y �→ ϕ(y) := f(x(y), y). Under the additional assumption
that the Mangasarian–Fromovitz constraint qualification is satisfied at x, we show that ϕ has finite
modulus of concavity. That means ϕ becomes convex in a neighborhood of y by adding to it the
function y �→ (α/2) · ‖y− y‖2 for some α > 0. Moreover, we present an explicit upper bound for the
α to be used. The latter bound turns out to be sharp for problem data in general position.

Key words. parametric optimization, marginal function, critical value function, modulus of
concavity

AMS subject classifications. 90C26, 90C30, 90C31

DOI. 10.1137/S1052623403434735

1. Introduction and main result. In this paper we consider parametric opti-
mization problems of the form

P(y) Minimize f(x, y) on the feasible set M(y),

M(y) := {x ∈ Rn | gi(x, y) ≤ 0, i ∈ I, hj(x, y) = 0, j ∈ J},

where y ∈ Rp is a parameter vector, I and J are finite index sets, and the real valued
functions f, gi, hj are in Ck(Rn×Rp), k ≥ 2. If x ∈ M(y) is a strongly stable Karush–
Kuhn–Tucker (KKT) point for P(y), then there exist neighborhoods U � x and V � y
and a continuous mapping x : V → U such that x(y) is the unique KKT point in U
for P(y). This gives rise to the critical value function ϕ : V → R, ϕ(y) := f(x(y), y).
In the case that x is a (local) minimizer for P(y), the function ϕ is a (local) marginal
function.

Definition 1. Let ψ be a continuous real valued function defined on an open
subset V ⊂ Rp and let y ∈ V . For α ∈ [0,∞) put ψα(y) := ψ(y) + α

2 ‖y − y‖2,
where ‖.‖ stands for the Euclidean norm. The modulus of concavity αψ(y) of ψ at y
is defined to be the infimum over all α ∈ [0,∞) such that ψα is convex in a convex
neighborhood of y, where inf(∅) := ∞.

Example 2. For a C2-function ψ, let D2ψ(y) denote the Hessian at y. Then

αψ(y) = max
(
{0} ∪ {−λ | λ is eigenvalue of D2ψ(y)}

)
.

Note that the modulus of concavity might be infinite. In fact, for the function
ψ(y) := −|y| we have αψ(0) = ∞. For later use also note that the modulus of
concavity is an upper semicontinuous function, i.e., lim supy→y αψ(y) ≤ αψ(y).
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Theorem 3 (main result). Let x be a strongly stable KKT point for P(y) and
let ϕ denote the corresponding critical value function defined in a neighborhood of y.
Moreover, we assume the Mangasarian–Fromovitz constraint qualification (MFCQ)
for P(y) to be satisfied at x (for a definition see section 2). Then the modulus of
concavity αϕ(y) is finite.

Remark 4. The assumption in Theorem 3, that MFCQ is satisfied, can be omitted,
since recently it was shown that strong stability of the KKT point x already implies
MFCQ; see [3].

Section 2 contains preliminaries and some examples. In section 3 we prove The-
orem 3 and explicitly present (a tight upper bound of) the modulus of concavity
αϕ(y).

2. Preliminaries and examples. Given fixed finite index sets I and J , the gen-
eral optimization problem P(f, g, h) is defined for any triple of problem data (f, g, h)
with f, gi, hj ∈ Ck(Rn), i ∈ I, j ∈ J , by setting

P(f, g, h) min{f(x) | x ∈ M}, where(1)

M := {x ∈ Rn | gi(x) ≤ 0, i ∈ I, hj(x) = 0, j ∈ J}.(2)

A point x ∈ M is called feasible, and for a feasible point x let I0(x) := {i ∈ I | gi(x) =
0} denote the index set of active inequality constraints.

At a feasible point x ∈ M the linear independence constraint qualification (LICQ)
is said to hold if the set of gradients of the equality constraints and the active inequality
constraints are linearly independent. We say that the MFCQ holds at x ∈ M if the
gradients of the equality constraints are linearly independent and, moreover, there
exists a vector ξ ∈ Rn satisfying Dhj(x)ξ = 0, j ∈ J , Dgi(x)ξ < 0, i ∈ I0(x). Here,
Dhj(x) stands for the row vector of first partial derivatives of hj evaluated at x.
Besides strong stability, the MFCQ will be the main assumption of this paper.

The Lagrange polyhedron Δ(x), x ∈ M , is defined to be the set of all Lagrange
multiplier vectors (μ, λ) ∈ R|I|+|J| with the property that DxL(x, μ, λ) = 0 and,
moreover, μi ≥ 0 and μigi(x) = 0, i ∈ I. Here |I| stands for the cardinality of I and
L denotes the Lagrange function:

L(x, μ, λ) := f(x) +
∑
i∈I

μigi(x) +
∑
j∈J

λjhj(x).

A feasible point x is called a KKT point for P(f, g, h) if the Lagrange polyhedron
Δ(x) is nonempty.

Remark 5 (see [1]). At a KKT point x it holds MFCQ if and only if Δ(x) is
compact.

We topologize the space of possible problem data (f, g, h) by means of a nonempty
compact set K and an associated seminorm ‖(f, g, h)‖K which is defined to be the
maximum modulus of any partial derivative up to order two of f, gi, hj at any point
of K. (Here the function value itself is considered as the partial derivative of order
zero.) Note that the following definition does not depend on the particular choice
of K.

Definition 6 (strong stability, cf. [6]). Let x be a KKT point for P(f, g, h) and
let K be a compact neighborhood of x. Then x is called strongly stable if there exist a
neighborhood V of (f, g, h) (with respect to (w.r.t.) the seminorm associated with K)
and a neighborhood U ⊂ K of x such that the following conditions are met:
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(i) For any (f, g, h) ∈ V the neighborhood U of x contains exactly one KKT
point, say, x(f, g, h), of P(f, g, h).

(ii) The KKT mapping x : V → U , defined in (i), is continuous at (f, g, h).
For μ ∈ R|I| let I+(μ) := {i ∈ I | μi > 0}. With this notation we are ready to

state Kojima’s characterization of strong stability by means of first and second order
data of the problem.

Theorem 7. Let x be a KKT point and let MFCQ at x be satisfied for P(f, g, h).
Then x is strongly stable if and only if the following conditions are satisfied:

(i) For all (μ, λ) ∈ Δ(x) and all index sets I ′ with I+(μ) ⊂ I ′ ⊂ I0(x) the
restriction of the Hessian matrix D2

xxL(x, μ, λ) to the tangent space T I′
is

nonsingular and exhibits for all possible choices of (μ, λ) and I ′ the same
number of negative eigenvalues, say, ind−(x), called the (negative) index.
The tangent space T I′

is defined by

T I′
:= {ξ ∈ Rn | Dgi · ξ = 0, i ∈ I ′, Dhj · ξ = 0, j ∈ J}.(3)

(ii) If LICQ fails to hold (at x), then we have ind−(x) = 0. (Note that x has
index zero if and only if D2

xxL(x, μ, λ) is positive definite on T I+(μ) for all
(μ, λ) ∈ Δ(x), i.e., the smaller tangent spaces considered in (i) are of no
interest.)

Note that a strongly stable KKT point with index zero is necessarily a local
minimizer. The following is an immediate consequence of Theorem 7.

Remark 8. Strong stability is a stable property in the following sense. Let x
be a strongly stable KKT point for P(f, g, h) with index i such that MFCQ holds.
Moreover, let K be a compact neighborhood of x. Then there exists a neighborhood
V of (f, g, h) w.r.t. ‖.‖K and a neighborhood U ⊂ K of x such that the corresponding
KKT point x(f, g, h) ∈ U is strongly stable again and also has index i. (MFCQ is a
stable property in the aforementioned sense, too.)

Next we discuss some typical examples of critical value functions (in particular
marginal functions). In all examples strong stability and MFCQ are satisfied. Thus,
in view of Theorem 3, the marginal functions appearing in these examples have finite
modulus of concavity.

Example 9. For x, y ∈ R consider P(y) : min{x | −x−y−y2 ≤ 0, −x+y−y2 ≤
0}. The critical value function ϕ associated with the minimizer x = 0 of the problem
P(0) becomes ϕ(y) = |y| − y2. In this case, ϕ(y) = max{y − y2,−y − y2}, and,
in particular, ϕ is a finite continuous selection of maximum type. Note that ϕ has
modulus of concavity αϕ(0) = 2.

Example 10. For x, y ∈ R consider P(y) : min{x2 | − x+ y ≤ 0}. The critical
value function ϕ associated with the minimizer x = 0 of the problem P(0) becomes
ϕ(y) = y2 (y ≥ 0) and ϕ(y) = 0 (y ≤ 0). Again, ϕ is a continuous selection, but in
contrast to Example 9, it is not of maximum type.

Example 11. In contrast to Examples 9 and 10, this example shows that the
critical value function ϕ need not to be a continuous selection of a finite number of
C1-functions. Let x, y ∈ R2 and consider

P(y) : min{x2 | g1(x, y) ≤ 0, g2(x, y) ≤ 0},

where g1(x, y) := x2
1 − x2, g2(x, y) := 1

2 (x1 − y1)
2 + y2 − x2. The problems P(y)

are convex and the point x = 0 is a strongly stable KKT point for P(0). Put Y :=
{y ∈ R2 | y1 > 0, 1

2y
2
1 + y2 > 0}. For y ∈ Y both constraints g1 and g2 are active
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at the minimizer x(y) of P(y). In that case we have x1(y) = −y1 +
√

2y2
1 + 2y2,

x2(y) = x1(y)
2, and, consequently, ϕ(y) = (−y1 +

√
2y2

1 + 2y2)
2. Now suppose that

in a neighborhood of y = 0, the function ϕ is a continuous selection of C1-functions,
say, ϕ1, . . . , ϕk. Then, at least one of the functions ϕi would have to coincide with ϕ
on an open subset Ỹ ⊂ Y containing the point y = 0 in its closure. This, however,
cannot be true, since the restricted function ϕ|Ỹ (computed above) cannot be extended
as a C1-function through the origin.

As a final preliminary we need a result on the Hessian of a critical value function
and Schur complements; see [4, p. 37]. For a real symmetric matrix M let the inertia
in(M) denote the triple consisting of the numbers ind+(M), ind−(M), ind0(M) of its
positive, negative, and zero eigenvalues, respectively. Suppose that M has the form(

A B
B� C

)
.(4)

If A is nonsingular, the matrix SA := C−B�A−1B is called the Schur complement of
A in M . It is well known that the matrices M and diag(A,SA) are conjugated and,
hence, they have the same inertia, i.e.,

in(M) = in(A) + in(SA).(5)

Now, suppose that the matrix C in (4) vanishes. Moreover, let A be of dimension n
and let B be an (n,m)-matrix of rank k. Then we have (cf. [5])

in(M) = in(A|kerB�) + (k, k,m− k).(6)

In (6) the symbol A|kerB� denotes the restriction of the bilinear form induced by A,
to the subspace kerB� := {ξ ∈ Rn | B�ξ = 0}.

Now, let x be a strongly stable KKT point for P(y) and suppose that I0(x, y) = ∅,
i.e., no inequality constraints are active. In this case MFCQ and LICQ are equivalent;
suppose them to be satisfied.

Then the Lagrange function L(x, y, λ) = f(x, y) +
∑

j∈J λjhj(x, y) can be used
for an implicit definition of the KKT mapping x(y),

D�
x L(x, y, λ) = 0,

D�
λ L(x, y, λ) = 0,

(7)

where the second equation just denotes feasibility, i.e., hj(x, y) = 0, j ∈ J . The func-
tions in (7) have the following derivative w.r.t. (x, λ), where D2

xλL = (D�
x h1| . . . |D�

x h|J|):(
D2

xxL D2
xλL

D2
λxL 0

)
.(8)

In view of Theorem 7 the restriction of the bilinear form defined by the matrix D2
xxL

to kerD2
λx is regular, hence (6) implies that the matrix (8) is regular, i.e., the implicit

function theorem applies to the system (7). Thus the KKT mapping x(y) and the
corresponding λ(y) are of class C1. For the critical value function ϕ we have ϕ(y) =
f(x(y), y) = L(x(y), y, λ(y)) (since hj(x(y), y) ≡ 0), and therefore

Dϕ(y) = DyL(x(y), y, λ(y)).(9)
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The implicit function theorem also yields explicit formulas for the derivatives. By
computing the derivative of (9), substituting the derivatives of x(y), λ(y) by the
explicit expressions obtained from (7), we obtain the following formula for the Hessian
of ϕ:

D2ϕ = D2
yyL−

(
D2

yxL,D
2
yλL

)( D2
xxL D2

xλL

D2
λxL 0

)−1 (
D2

xyL

D2
λyL

)
,(10)

where all partial derivatives are evaluated at x, y and λ := λ(y). Note that the latter
formula for D2ϕ can be interpreted as the Schur complement of D2

(x,λ)(x,λ)L in D2L.

3. Proof of the main result. In this section we prove a quantitative result
on the modulus of concavity. This will prove Theorem 3 and, moreover, it provides
an upper bound for the modulus of concavity. The latter upper bound is sharp for
problem data (f, g, h) in general position.

For α ∈ R and w ∈ Rp put fα
w(x, y) := f(x, y)−w�y+ α

2 ‖y−y‖2 and consider the
family of optimization problems Pα

w in the variable (x, y), also referred to as unfolded
problems:

Pα
w min

{
fα
w(x, y) | (x, y) ∈ Rn+p, gi(x, y) ≤ 0, i ∈ I,

hj(x, y) = 0, j ∈ J

}
.(11)

Put

W := {D�
y L(x, y, μ, λ) | (μ, λ) ∈ Δ(x, y)},(12)

where Δ(x, y) stands for the set of Lagrange multipliers at the KKT point x corre-
sponding to the problem P(y).

Remark 12. The pair (x, y) is a KKT point for Pα
w if and only if x is a KKT

point for P(y) and w ∈ W .
Definition 13. Let x be a strongly stable KKT point for P(y). Then let α(y)

denote the infimum over all α ≥ 0 such that for any w ∈ W the point (x, y) is a
strongly stable KKT point for Pα

w with the additional property: ind−(x, y) = ind−(x),
again with the convention that inf(∅) = ∞. Note that ind−(x) is the index of x as a
KKT point of P(y) whereas ind−(x, y) is the index of the KKT point (x, y) of Pα

w.
Theorem 14 (quantitative modulus of concavity result).
(i) Let x be a strongly stable KKT point and let MFCQ at x be satisfied for P(y).

Then the critical value function ϕ has finite modulus of concavity αϕ(y). The
modulus of concavity can be estimated from above by αϕ(y) ≤ α(y).

(ii) For a set of problem data (f, g, h), which is open and dense with respect to the
Whitney C2-topology, it even holds αϕ(y) = α(y) for any pair (x, y) satisfying
the assumptions of (i).

In the Whitney C2-topology, a typical base neighborhood of a function F consists
of all functions F with the property that at any x ∈ Rn the function value F (x) and all
its partial derivatives up to order 2 at x are ε(x)-close to F (x) and its corresponding
derivatives. Here, ε is a continuous positive function on Rn. Note that the Whitney
C2-topology on the space of problem data C2(Rn,R1+|I|+|J|), considered in Definition
6, is much finer than the topology defined by the seminorm in that definition. This
is because the seminorm only compares function values on a (small) compact set.
To prevent ambiguities, recall that in Definition 6 we have topologized the space
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of problem data (f, g, h) of nonparametric problems. Therefore its domain is Rn. In
Theorem 14 we topologize the space of problem data of a p-parametric problem, hence
its domain is Rn × Rp, in contrast.

In view of Definition 13 and Theorem 7, the upper estimate α(y) for the modulus
of concavity αϕ(y) can be computed explicitly by means of first and second order
problem data, evaluated at the point (x, y). We emphasize that the sharpness re-
sult (ii) therefore implies that for problem data in general position the modulus of
concavity can be computed explicitly as well.

In sections 3.2 and 3.3 we will prove assertion (i) of Theorem 14, where section 3.2
deals with the LICQ case and section 3.3 with the local minimizer case. (In particular,
in the local minimizer case, LICQ does not need to be satisfied.) Finally, section 3.4
contains the proof of assertion (ii) of the theorem, here dealing with both the LICQ
case and the local minimizer case at once. As a preliminary we need the following
lemma dealing with the case where no inequality constraints are present. In this case
the critical value function ϕ is a C2-function, and we may compute its Hessian.

Lemma 15. Let x be a strongly stable KKT point for P(y) with I = ∅ and let
ind−(x) = i. Suppose that MFCQ (thus LICQ) is satisfied at x. Then the Hessian
D2ϕ(y) of the critical value function ϕ at y is positive definite if and only if the KKT
point (x, y) of P0

w is strongly stable with ind−(x, y) = i. Here, w := D�
y L(x, y, λ),

where λ is the unique element from Δ(x, y).
Proof. From formulas (5), (6), and (10) we obtain

in(D2L) = in(D2ϕ) + in(D2
(x,λ)(x,λ)L),(13)

in(D2
(x,λ)(x,λ)L) = in(D2

xxL|kerD2
λx

L) + (|J |, |J |, 0).(14)

In fact, we obtain formula (13) from (5) for M = D2L and A = D2
(x,λ)(x,λ)L, whereas

we obtain formula (14) from (6) for M = D2
(x,λ)(x,λ)L and A = D2

xxL. Since the rows

of the matrix D2
λxL are precisely the vectors Dxhj , j ∈ J , it follows from (14) that

ind−(D2
(x,λ)(x,λ)L) = i + |J |, ind0(D

2
(x,λ)(x,λ)L) = 0.(15)

From (13) and (14) we see that D2ϕ is positive definite if and only if

ind−(D2L) = i + |J |, ind0(D
2L) = 0.(16)

Let us write D2L in the form

D2L =

(
D2

(x,y)(x,y)L D2
(x,y)λL

D2
λ(x,y)L 0

)
.(17)

Note that the rows of the matrix D2
λ(x,y)L are precisely the vectors Dhj , j ∈ J ; hence

they are linearly independent, since already Dxhj , j ∈ J , are linearly independent.
From (6) and (17) it follows that

ind−(D2L) = i∗ + |J |, ind0(D
2L) = i∗0,(18)

where i∗ and i∗0 stand for the numbers of negative and zero eigenvalues of the re-
striction of D2

(x,y)(x,y)L to the subspace ker(D2
λ(x,y)L). From (16) and (18) and

the characterization of strong stability (Theorem 7) it follows that D2ϕ is positive
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definite if and only if (x, y) is a strongly stable KKT point for P0
w (i∗0 = 0) with

ind−(x, y) = i∗ = i.

Corollary 16. Let x be a strongly stable KKT point for P(y) with I = ∅. Then
α(y) is finite and we have αϕ(y) = α(y).

Proof. It suffices to show the following equality of intervals: (αϕ(y),∞) =
(α(y),∞). We prove only the inclusion (⊂); the other inclusion can be shown along
the same lines. Let α > αϕ(y). Then, by Definition 1, ϕα is convex (in a neighborhood
of y); thus its Hessian D2ϕα(y) must be positive semidefinite. For the same reason
this also holds for smaller values of α still bigger than αϕ(y), i.e., the Hessian of ϕα

must in fact be positive definite. By Lemma 15 this implies α > α(y).

3.1. Intermezzo. Besides showing that the estimating quantity α(y) is finite,
the major part of the proof is devoted to the verification of the inequality αϕ(y) ≤
α(y). The latter holds if and only if for any α > α(y) the function ϕα is convex on a
neighborhood of y. The convexity of ϕα restricted to an open convex neighborhood
of y will be established by means of the nonemptiness of its subdifferential. Here we
say that the vector w belongs to the subdifferential of ϕα at y if we have ϕα(y) −
ϕα(y) ≥ w�(y − y) for all y from the latter neighborhood. Evidently, the latter is
equivalent with y being a minimizer (on that neighborhood) of the function y →
ϕα(y)−w�(y− y) =: ϕα

w. In case that x is a strongly stable minimizer of P(y), then
y is a local minimizer of ϕα

w if and only if (x, y) is a local minimizer of the blown
up problem Pα

w. For this reason the blown-up problem comes into play in the case
that x is a local minimizer of P(y); see section 3.3. If x is not a local minimizer
of P(y), the aforementioned argument cannot be used. In this case, however, LICQ
must be fulfilled. Then the function ϕα is a continuous selection of smooth functions
ϕ̃α. The vector w belongs to the subdifferential of ϕα if and only if it belongs to the
subdifferential of all the functions ϕ̃α. Thus here, the argumentation is different from
the minimizer case. The LICQ case will be handled in section 3.2.

3.2. The LICQ case. In this section we will prove assertion (i) of Theorem 14
under the additional assumption that LICQ holds for P(y) at the point of interest x.
The proof consists of two parts. First we show that α := α(y) is finite, and then we
verify the estimating inequality αϕ(y) ≤ α.

Note that under LICQ the Lagrange polyhedron Δ(x, y) is a singleton. Let (μ, λ)
denote its unique element. Put I0 := I0(x, y) and I+ := I+(μ). For y close to y let
x(y) denote the corresponding KKT point of P(y).

Then we have I+ ⊂ I0(x(y), y) ⊂ I0. In fact, by continuity, any inequality
constraint being active at x(y) for P(y) must be active at x for P(y). This provides the
second inclusion. For the first inclusion let (μ(y), λ(y)) denote the (unique) Lagrange
multiplier corresponding to the KKT point x(y) for P(y). Then (μ(y), λ(y)) converges
for y → y, say, to (μ̃, λ̃). Continuity arguments show that (μ̃, λ̃) is a Lagrange
multiplier corresponding to x as a KKT point for P(y), hence we have (μ̃, λ̃) = (μ, λ).
Consequently, we have I+ ⊂ I+(μ̃) ⊂ I0(x(y), y), where the last inclusion is due to
the definition of a KKT point.

For Ĩ such that I+ ⊂ Ĩ ⊂ I0 we consider the parametric optimization problem

P̃(y) obtained from P(y) by deleting the inequality constraints gi, i �∈ Ĩ, and turning

the remaining inequality constraints gi, i ∈ Ĩ, into additional equality constraints. To
be precise, the constraint set of P̃(y) is given by the constraints gi(x, y) = 0, i ∈ Ĩ,
hj(x, y) = 0, j ∈ J . For y close to y the point x(y) is a KKT point of the problem

P̃(y) for Ĩ := I0(x(y), y). Obviously, x is a KKT point such that LICQ holds for P̃(y)
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as well. The strong stability of x for P̃(y) follows from Theorem 7. This gives rise to
the (local) critical value function ϕ̃ associated with the parametric family of problems

P̃(y). Since ϕ(y) coincides with at least one of the function values ϕ̃(y), I+ ⊂ Ĩ ⊂ I0,
we say that ϕ is a selection of the functions ϕ̃. (Since ϕ is continuous by Definition 6
and Remark 8, we shall rather call it a “continuous selection” thereof.)

Let Ĩ be as above and consider the problem P̃. Let α̃(y) denote the upper bound

for α
ϕ̃
(y) delivered by Corollary 16. Let P̃α

w denote the problem Pα
w with P replaced

by P̃. Then for w := DyL(x, y, μ, λ) the pair (x, y) is a KKT point for P̃α
w. By

definition of α̃(y) the index of (x, y) as a KKT point of the blown-up problem P̃α
w

coincides with the index of x as a KKT point of P̃(y) if and only if α > α̃(y). By
definition of α(y) and Theorem 7 this implies that α > α(y) if and only if α > α̃(y) for

all the problems P̃, i.e., α(y) is the maximum of all the upper bounds α̃(y) considered
above. Hence, α(y) = α is finite.

It remains to show that αϕ(y) ≤ α. We have to show that (locally) ϕα is a convex
function, provided that α > α. To this end, let α > α(y). Then we have α > α̃(y)

for any of the problems P̃. In virtue of Corollary 16, each of the functions ϕ̃α is
convex on a neighborhood of y. The fact that Δ(x, y) is a singleton implies that all
the functions ϕ̃α have the same gradient at y, and thus the latter gradient belongs to
the subdifferential of their selection ϕα, evaluated at y.

For α > α(y), continuity arguments ensure that the above argumentation can also
be followed if y is slightly perturbed, say, to y. This yields a nonempty subdifferential
of ϕα at any y sufficiently close to y, finally yielding its convexity.

3.3. The local minimizer case. In this section we will prove assertion (i) of
Theorem 14 under the additional assumption, that x is a local minimizer for P(y).
As in section 3.2, we first show that α := α(y) is finite, and afterward we verify the
estimating inequality αϕ(y) ≤ α.

Let I0 := I0(x, y), Δ := Δ(x, y), and consider the following collection of index
sets:

I := {Ĩ ⊂ I0 | ∃(μ, λ) ∈ Δ : I+(μ) ⊂ Ĩ}.(19)

Continuity arguments, as used in section 3.2, show that I contains all possible active
index sets I0(x(y), y) provided that the parameter y is sufficiently close to y. The
minimal elements of I (w.r.t. inclusion) are the sets of the form I+(μ), such that

(μ, λ) is a vertex of the polytope Δ. For Ĩ being a minimal element of I let P̃(y)
denote the parametric optimization problem obtained from P(y) by deleting all the

inequality constraints gi with i not belonging to Ĩ and turning the remaining inequality
constraints gi, i ∈ Ĩ, into additional equality constraints, in just the same way as in
section 3.2. By Theorem 7 the point x is a strongly stable local minimizer also for
P̃(y). Considering P̃, we are in the situation of Corollary 16. The corresponding local
marginal function ϕ̃ has finite modulus of concavity α

ϕ̃
, and let α̃ := α̃(y) denote the

corresponding upper estimate. We claim that α is the maximum of all the bounds α̃,
where Ĩ ranges over all minimal elements of I.

Let us now prove this claim. By the very construction of P̃, it follows from
Theorem 7 that α ≥ α̃ for any Ĩ. To complete the proof of the claim, it suffices to
verify that each number α, exceeding all the estimates α̃, is greater than or equal to
α. To this end let α > α̃ for any minimal element Ĩ of I. Analogously to (3) we
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define the tangent space T I′
for the unfolded problem Pα

w at (x, y) by setting

T I′
:= {ξ ∈ Rn+p | Dgi · ξ = 0, i ∈ I ′, Dhj · ξ = 0, j ∈ J}.(20)

From the definition of α̃ and Theorem 7 we know that for any vertex (μ, λ) of Δ
the restriction of the Hessian D2

(x,y)(x,y)L
α
w(x, y, μ, λ) to the tangent space T I+(μ) is

positive definite. Here we put Lα
w(x, y, μ, λ) := L(x, y, μ, λ) −w�y + α

2 ‖y − y‖2. Any
element (μ, λ) ∈ Δ can be written as a convex combination of vertices of Δ. Since the
Hessian matrix D2

(x,y)(x,y)L
α
w depends linearly on (μ, λ), a representation of (μ, λ) ∈ Δ

as a convex combination of vertices of Δ directly transfers to a representation of the
Hessian D2

(x,y)(x,y)L
α
w evaluated at (μ, λ) ∈ Δ as a convex combination of the Hessians

of Lα
w evaluated at the vertices. Since the tangent space T I+(μ), for (μ, λ) ∈ Δ,

is subspace of all the tangent spaces corresponding to vertices with nonvanishing
contribution in the latter convex combination, it follows that D2

(x,y)(x,y)L
α
w(x, y, μ, λ)

is positive definite on T I+(μ) for all (μ, λ) ∈ Δ. By definition of α this implies α ≤ α,
i.e., the claim is proved.

Now we verify the estimating inequality αϕ(y) ≤ α. To this end let α > α. We
need show only that the function ϕα is convex on an appropriate small neighborhood
of y. To this end recall the blown-up problem defined in (11). Since α > α, the
point (x, y) is a strongly stable KKT point of Pα

w, w ∈ W , with index ind−(x, y) =
ind−(x) = 0; thus it is a local minimizer of Pα

w. This immediately implies that y is a
local minimizer of the function ϕα

w, i.e., any w ∈ W belongs to the subdifferential of
ϕα, evaluated at y. We have to prove that the subdifferential of ϕα also is nonempty
at points y close to y. Since x(y) is a KKT point for P(y), the pair (x(y), y) is a KKT
point for Pα

w(y), provided that w(y) = DyL(x(y), y, μ, λ) for some (μ, λ) ∈ Δ(x(y), y).

Since x is a strongly stable KKT point of P(y), (x(y), y) is close to (x, y) for y close
to y. For continuity reasons, the vector w must also be close to W . By Remark 5 and
formula (12) the set W is compact. Since (x, y) is a strongly stable local minimizer of
Pα
w, w ∈ W , the KKT point (x(y), y) of Pα

w(y) must also be a (strongly stable) local

minimizer; see Remark 8. As above we see that w(y) belongs to the subdifferential of
ϕα at y. Hence the subdifferential of ϕα is nonempty on a neighborhood of y, yielding
the local convexity of ϕα.

3.4. The sharpness of the estimating inequality. This section is devoted
to the proof of assertion (ii) of Theorem 14.

Let us first consider the question of which index sets Ĩ may become the active
index set I0(x(y)) at the KKT point x(y) of P(y) after a small perturbation of the

parameter y = y. Recall that such Ĩ necessarily belong to I, where I is defined in
(19). This is also true in the LICQ case. For problem data in general position we
have much stronger information; see [2] for details.

Theorem 17. For problem data (f, g, h) from an open and dense set (w.r.t. the
Whitney C2-topology) the following holds. Given any strongly stable KKT point x of
any problem P(y) such that MFCQ holds, the following two assertions on the index

set Ĩ ⊂ I are equivalent:
(i) There are values of the parameter ỹ arbitrarily close to y, such that we have

I0(x(ỹ), ỹ) = I+(μ(ỹ)) = Ĩ, where μ(ỹ) denotes the unique Lagrange multi-
plier in Δ(x(ỹ), ỹ).

(ii) Ĩ ∈ I and |Ĩ| + |J | ≤ n.
To use a common language for referring to sections 3.2 and 3.3, note that the

collection of index sets I defined in formula (19) in section 3.3 also makes sense in
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the framework of section 3.2. More important, note that the index sets Ĩ considered
in 3.2 belong to the so-defined set I.

In both sections we have found an index set Ĩ ∈ I such that α̃ = α and assertion
(ii) of Theorem 17 holds (using Ĩ instead of I). Let such an index set Ĩ now be fixed.

In view of Corollary 16 we have α
ϕ̃
(y) = α̃. Since P̃(y) is an equality constraint

problem, Corollary 16 also applies after small parameter changes, i.e., letting α̃(y)

denote the upper bound for α
ϕ̃
(y) corresponding to P̃(y), we also have α

ϕ̃
(y) = α̃(y).

According to Theorem 17, Ĩ satisfies assertion (i) of the latter theorem. Note that

I0(x(ỹ), ỹ) = I+(μ(ỹ)) = Ĩ implies the existence of a small neighborhood Ṽ of ỹ such

that I0(x(y), y) = Ĩ for all y ∈ Ṽ . Hence, on Ṽ , we have ϕ̃ = ϕ. For y ∈ Ṽ this
implies αϕ(y) = α̃(y). The function α̃ is continuous and, in view of Definition 1, αϕ

is upper semicontinuous. Since y may be chosen arbitrarily close to y, we deduce
αϕ(y) ≥ α̃ = α. This is the opposite of the estimating inequality, thus equality holds.

Acknowledgment. The authors are indebted to the associate editor and the
anonymous referees for their precise and constructive remarks.
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Abstract. In this paper we propose a new derivative-free algorithm for linearly constrained
finite minimax problems. Due to the nonsmoothness of this class of problems, standard derivative-
free algorithms can locate only points which satisfy weak necessary optimality conditions. In this work
we define a new derivative-free algorithm which is globally convergent toward standard stationary
points of the finite minimax problem. To this end, we convert the original problem into a smooth one
by using a smoothing technique based on the exponential penalty function of Kort and Bertsekas.
This technique depends on a smoothing parameter which controls the approximation to the finite
minimax problem. The proposed method is based on a sampling of the smooth function along
a suitable search direction and on a particular updating rule for the smoothing parameter that
depends on the sampling stepsize. Numerical results on a set of standard minimax test problems are
reported.
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1. Introduction. Many problems of interest in real world applications can be
modeled as finite minimax problems. This class of problems arises, for instance, in
the solution of approximation problems, systems of nonlinear equations, nonlinear
programming problems, and multiobjective problems. Many algorithms have been
developed for the solution of finite minimax problems which require the knowledge
of first- or second-order derivatives of the functions involved in the definition of the
problem. Unfortunately, in some engineering applications, such as some of those
arising in optimal design problems, the function values are obtained by direct mea-
surements (which are often affected by numerical error or random noise) or are the
result of complex simulation programs so that first-order derivatives cannot be ex-
plicitly calculated or approximated. Moreover, the nonsmoothness of the minimax
problem does not allow us to employ some off-the-shelf derivative-free method, since
most of these methods are based on a well-established convergence theory which, in
order to guarantee convergence to a stationary point, requires first-order derivatives to
be continuous, even though they cannot be computed. In particular, if the continuity
assumption on the derivatives is relaxed, it is no longer possible to prove global con-
vergence of the derivative-free method to a stationary point, but it is possible only to
prove convergence towards a point where the (Clarke) generalized directional deriva-
tive is nonnegative with respect to every search direction explored by the algorithm
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(see Appendix A for such a general result). Such points can be considered as weak
stationary points in the sense that the (Clarke) generalized directional derivative can
still be negative along some unexplored direction.

In this paper we consider a particular class of nonsmooth problems, namely, the
problem of minimizing the maximum among a finite number of smooth functions. We
recall that, for such a class of problems, the (Clarke) generalized directional derivative
is proved to coincide with the directional derivative, but, also in this case, classical
derivative-free codes can still be convergent toward weak stationary points (see [8]
for a thorough discussion on this topic). Finite minimax problems have the valuable
feature that they can be approximated by a smooth problem. This smooth approx-
imation of the minimax problem can be achieved by using different techniques (see
[19], [1], [2], [4], [7], [15], [17], [18], and [20]). In particular, we consider an approxima-
tion approach based on a so-called smoothing function which depends on a precision
parameter (see [3], [16], and [11]). In order to define a solution method based on a
smoothing technique, two different aspects, one computational and the other theo-
retical, must be considered. From a computational point of view, a trade-off should
be found between the accuracy of the approximation and the problem of limiting the
ill-conditioning due to the nonsmoothness of the minimax problem at the solutions.
From a theoretical point of view, the algorithm should be guaranteed to converge
a stationary point of the original minimax problem. In particular, a class of algo-
rithms [16] for the solution of the minimax problem has been proposed, which takes
into account the above two requirements. This is accomplished by using a feedback
precision-adjustment rule which updates the precision parameter during the opti-
mization process of the smoothing function. Roughly speaking, the idea behind the
proposed updating rule is that of updating the parameter only when the minimization
method has carried out a significant improvement. However, these updating rules are
based upon the knowledge of the first derivatives of the problem.

In this paper we propose a derivative-free method which is based on a sampling
of the smooth function along suitable search directions and on a particular updating
rule for the smoothing parameter that depends on the sampling stepsize. We manage
to prove convergence of the method to a stationary point of the minimax problem,
while reducing the negative effects of the ill-conditioning that the smoothing approach
incurs.

In section 2, we describe the minimax problem, its properties, and the smoothing
function. In section 3, we report some convergence results for a general derivative-
free approach to solve the minimax problem. In section 4, we report the proposed
derivative-free algorithm and its convergence analysis. Finally, section 5 is devoted to
some results of our method.

2. Problem, definition, and smooth approximation. In this paper we con-
sider the solution of finite minimax problems where the variables are subject to linear
inequality constraints. In particular, we consider problems of the form

min f(x)(1)

s.t. Ax ≤ b,

where x ∈ �n, b ∈ �m, A ∈ �m×n, and

f(x) = max
1≤i≤q

fi(x).
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We indicate by F the feasible set of problem (1), namely,

F = {x ∈ �n : Ax ≤ b}.

We require the following standard assumption to hold, which ensures that the
level sets of f(x) are compact.

Assumption 1. The functions fi : �n → �, i = 1, . . . , q, are twice continuously
differentiable functions on �n, and the function f(x) is radially unbounded on the
feasible set F ; that is, for every sequence {xk} ⊂ F satisfying limk→∞ ‖xk‖ = +∞,

lim
k→∞

f(xk) = +∞.

Note that, even though every function fi(x), i = 1, . . . , q, is twice continuously
differentiable, we assume that their gradients can be neither calculated nor approxi-
mated explicitly.

We denote by B(x) the following set of indices:

B(x) = {i = 1, . . . , q : fi(x) = f(x)}.(2)

For every feasible point x ∈ F , we define the set of indices of active constraints
by

I(x) = {j = 1, . . . ,m : aTj x = bi},(3)

and the cone of feasible directions

T (x) = {d ∈ �n : aTj d ≤ 0, j ∈ I(x)},(4)

where aTj , j = 1, . . . ,m, denotes the jth row of the constraints matrix A. The
directional derivative of the max function f at x in the direction d ∈ �n is given by
(see, e.g., [3])

Df(x, d) = max
i∈B(x)

{∇fi(x)T d}.

We define x̄ ∈ F a stationary point of problem (1) if

Df(x̄, d) ≥ 0 ∀d ∈ T (x̄).(5)

In particular, the following proposition shows a different characterization of the
stationary points of problem (1).

Proposition 1. A point x̂ ∈ F is a stationary point of problem (1) if and only
if there exist λi ≥ 0, i ∈ B(x̂), such that∑

i∈B(x̂)

λi = 1,(6)

( ∑
i∈B(x̂)

λi∇fi(x̂)

)T

d ≥ 0 ∀d ∈ T (x̂).(7)

Proof. If x̂ ∈ F is a stationary point of problem (1), then there exists at least
one index j ∈ B(x̂) such that ∇fj(x̂)T d ≥ 0. Then conditions (6) and (7) hold with
λj = 1 and λi = 0 for all i �= j.
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If x̂ ∈ F satisfies conditions (6) and (7), then for any d ∈ T (x̂), we can write

0 ≤
( ∑

i∈B(x̂)

λi∇fi(x̂)

)T

d ≤ max
i∈B(x̂)

∇fi(x̂)T d,

which shows that x̄ is a stationary point of problem (1).
In order to find a stationary point of problem (1) we adopt a smoothing technique

[3], [11], [16], [19] which consists of solving a sequence of smooth problems approxi-
mating the minimax problem in the limit. Let μ > 0 be a smoothing parameter and
define

f(x, μ) = μ ln

q∑
i=1

exp

(
fi(x)

μ

)
,

which is sometimes referred to as an exponential penalty function [3]. An alternative
expression for f(x, μ) is given by

f(x, μ) = f(x) + μ ln

q∑
i=1

exp

(
fi(x) − f(x)

μ

)
.

We report some properties of f(x, μ) [19].
Proposition 2. Suppose fi(x), i = 1, . . . , q, are twice continuously differentiable

functions. Then
(i) f(x, μ) is increasing with respect to μ, and

f(x) ≤ f(x, μ) ≤ f(x) + μ ln q;(8)

(ii) f(x, μ) is twice continuously differentiable for all μ > 0, and

∇xf(x, μ) =

q∑
i=1

λi(x, μ)∇fi(x),(9)

∇2
xf(x, μ) =

q∑
i=1

(
λi(x, μ)∇2fi(x) +

1

μ
λi(x, μ)∇fi(x)∇fi(x)T

)
(10)

− 1

μ

(
q∑

i=1

λi(x, μ)∇fi(x)

)(
q∑

i=1

λi(x, μ)∇fi(x)

)T

,

where

λi(x, μ) =
exp(fi(x)/μ)∑q
j=1 exp(fj(x)/μ)

∈ (0, 1),

q∑
i=1

λi(x, μ) = 1.(11)

3. Derivative-free convergence conditions. A derivative-free algorithm for
problem (1) must account for two difficulties. The first is the nonsmoothness of
problem (1). The second is that stationary points of problem (1), as stated by (5) and
Proposition 1, are characterized by first-order derivatives of the component functions
fi(x), i = 1, . . . , q, which are not available.

In order to treat the nonsmoothness of problem (1), we employ the smooth ap-
proximating problem,

min
x∈F

f(x, μ),(12)
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where the approximating parameter μ will be adaptively reduced during the optimiza-
tion process.

In order to tackle the second difficulty of unavailable first derivatives, we try to
obtain first-order information by sampling the objective function along a suitable set
of search directions. Specifically, we follow the approach proposed in [13], which uses
a set of search directions that positively span an “ε-approximation” of the cone of
feasible directions or, in other words, the cone of feasible directions with respect to
the ε-active constraints.

Formally, for any ε > 0 and x ∈ F , we define the set of indices of ε-active
constraints by

I(x; ε) = {j : aTj x ≥ bj − ε}

and the ε-approximation of the cone of feasible directions by

T (x; ε) = {d ∈ �n : aTj d ≤ 0 ∀j ∈ I(x; ε)}.

The following proposition (see [13]) describes some properties of sets I(x; ε) and
T (x; ε).

Proposition 3. Let {xk} be a sequence of iterates converging towards a point
x̄ ∈ F . Then there exists a value ε∗ > 0 (depending on x̄ only) such that for every
ε ∈ (0, ε∗] there exists k̄ε such that

I(xk; ε) = I(x̄),(13)

T (xk; ε) = T (x̄)(14)

for all k ≥ k̄ε.
Proof. See the proof of Proposition 1 in [13].
The first step toward defining a derivative-free method for the solution of problem

(12) is to associate a suitable set of search directions with each point xk produced by
the algorithm. This set should have the property that the local behavior of the objec-
tive function in each direction in the set provides sufficient information to overcome
the lack of the gradient. Formally, we introduce the following assumption.

Assumption 2. Let {xk} be a sequence of feasible points and {Dk} be a sequence
of sets of search directions. Then, for all k,

Dk = {dik : ‖dik‖ = 1, i = 1, . . . , rk},

and, for some constant ε̄ > 0,

cone{Dk ∩ T (xk; ε)} = T (xk; ε) ∀ε ∈ [0, ε̄].

Moreover,
⋃∞

k=0 Dk is a finite set and rk is bounded.
The proposition that follows states a general convergence result. In particular,

it identifies sufficient conditions on the sampling of the smoothing function along the
directions dik, i = 1, . . . , rk, and on the updating of the smoothing parameter, which
will guarantee global convergence of the method to a stationary point of the original
minimax problem (1).

Proposition 4. Let {xk} be a sequence of feasible points and x̄ be a limit point
of a subsequence {xk}K for some infinite set K ⊆ {0, 1, . . .}. Let {Dk}, with Dk =
{d1

k, . . . , d
rk
k }, be a sequence of sets of directions which satisfy Assumption 2 and

Jk = {i ∈ {1, . . . , rk} : dik ∈ T (xk, ε)} with ε ∈ (0,min{ε̄, ε�}], where ε̄ and ε� are
defined in Assumption 2 and Proposition 3, respectively.
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Suppose that the following conditions hold:
(i) for each k ∈ K and i ∈ Jk, there exist yik and scalars ξik > 0 such that

yik + ξikd
i
k ∈ F ;(15)

f(yik + ξikd
i
k, μk) ≥ f(yik, μk) − o(ξik);(16)

(ii) furthermore,

lim
k→∞,k∈K

μk = 0;(17)

lim
k→∞,k∈K

maxi∈Jk
{ξik, ‖xk − yik‖}
μk

= 0.(18)

Then x̄ is a stationary point of the minimax problem (1).
Proof. By applying the mean-value theorem to (16), we can write

−o(ξik) ≤ f(yik + ξikd
i
k, μk) − f(yik, μk) = ξik∇xf(ui

k, μk)
T dik, i ∈ Jk,(19)

where ui
k = yik + tikξ

i
kd

i
k, with tik ∈ (0, 1). By using the mean-value theorem again and

the Cauchy–Schwarz inequality, we can write

ξik∇xf(ui
k, μk)

T dik = ξik∇xf(xk, μk)
T dik + ξik(u

i
k − xk)

T∇2
xf(ũi

k, μk)d
i
k

≤ ξik∇xf(xk, μk)
T dik + ξik‖ui

k − xk‖‖∇2
xf(ũi

k, μk)d
i
k‖,

where ũi
k = xk + t̃ik(u

i
k − xk), with t̃ik ∈ (0, 1). By considering expression (10) of

∇2
xf(ũi

k, μk) and the triangle inequality, we get that

ξik∇xf(ui
k, μk)

T dik ≤ ξik∇xf(xk, μk)
T dik

+ ξik‖ui
k − xk‖

⎧⎨
⎩
∥∥∥∥∥∥

q∑
j=1

λj(ũ
i
k, μk)∇2fj(u

i
k)d

i
k

∥∥∥∥∥∥ +
1

μk

∥∥∥∥∥∥
q∑

j=1

λj(ũ
i
k, μk)∇fj(ũ

i
k)∇fj(ũ

i
k)

T dik

−

⎛
⎝ q∑

j=1

λj(ũ
i
k, μk)∇fj(ũ

i
k)

⎞
⎠

⎛
⎝ q∑

j=1

λj(ũ
i
k, μk)∇fj(ũ

i
k)

⎞
⎠

T

dik

∥∥∥∥∥∥∥
⎫⎪⎬
⎪⎭ .

Since {xk}K converges, it follows from Assumption 2 and (11) that, for all i
and j, {xk}K , {ũi

k}, {λj(ũ
i
k, μk)}, and {dik} are bounded sequences. Therefore, by

Assumption 1, we can find constants c1 and c2 such that

(20)

−o(ξik) ≤ ξik∇xf(ui
k, μk)

T dik ≤ ξik∇xf(xk, μk)
T dik + ξik‖ui

k − xk‖
(
c1 +

1

μk
c2

)
.

From (20) and (9), we obtain

⎛
⎝ q∑

j=1

λj(xk, μk)∇fj(xk)

⎞
⎠

T

dik +

(
c1 +

1

μk
c2

)
‖ui

k − xk‖ ≥ −o(ξik)

ξik
.(21)
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Since ∪k∈KDk is a finite set by Assumption 2 and recalling the boundedness of
each sequence {λj(xk, μk)}, j = 1, . . . , q, there exist an infinite set K̄ ⊆ K and, given
the fact that rk is bounded, a finite set J ⊆ {1, 2, . . .} and d̄j ∈ �n, j ∈ J , such that

lim
k → ∞
k ∈ K̄

xk = x̄,(22)

lim
k → ∞
k ∈ K̄

λj(xk, μk) = λ̄j , j = 1, . . . , q,(23)

Jk = J ∀k ∈ K̄,(24)

djk = d̄j ∀j ∈ J and k ∈ K̄.(25)

Moreover, recalling that ui
k = yik + tikξ

i
kd

i
k, with tik ∈ (0, 1), we have that(

c1 +
1

μk
c2

)
‖uj

k − xk‖ ≤
(
c1 +

1

μk
c2

)
(‖yjk − xk‖ + ξjk) ∀j ∈ J,

which, by using (18), implies that

lim
k → ∞
k ∈ K̄

(
c1 +

1

μk
c2

)
‖uj

k − xk‖ = 0 ∀j ∈ J.(26)

We note that expression (11) can be rewritten as

λj(x, μ) =
exp((fj(x) − f(x))/μ)∑q
l=1 exp((fl(x) − f(x))/μ)

, j = 1, . . . , q,

so that it is easily seen that

λ̄j ≥ 0 ∀j,

λ̄j = 0 ∀j �∈ B(x̄).
(27)

Furthermore, since
∑q

j=1 λj(xk, μk) = 1 for all k, then

q∑
j=1

λ̄j = 1.(28)

Now, recalling (26) and taking limits in (21) as k → ∞, k ∈ K̄, we obtain

⎛
⎝ q∑

j=1

λ̄j∇fj(x̄)

⎞
⎠

T

d̄i ≥ 0 ∀i ∈ J.(29)

Now, Proposition 3 and Assumption 2 imply that, for k ∈ K,

T (x̄) = T (xk; ε) = cone{Dk ∩ T (xk; ε)} = cone{dik}i∈Jk
.(30)

Hence, by (30), (24), and (25) we have that

T (x̄) = cone{d̄i}i∈J ,(31)
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so that, for every d ∈ T (x̄), there exist βi ≥ 0, for all i ∈ J , such that

d =
∑
i∈J

βid̄
i.(32)

Thus, we obtain from (29) and (32) that, for every d ∈ T (x̄),

⎛
⎝ q∑

j=1

λ̄j∇fj(x̄)

⎞
⎠

T

d =
∑
i∈J

βi

⎛
⎝ q∑

j=1

λ̄j∇fj(x̄)

⎞
⎠

T

d̄i ≥ 0,

which, along with (27) and (28), proves the proposition (see Proposition 1).
The above proposition is a nontrivial extension of similar results established in the

context of derivative-free methods for smooth optimization (see, for instance, [13]).
The major novelty of Proposition 4 is (18), which relates the convergence rate of the
smoothing parameter with that of the sampling stepsizes. Indeed, Proposition 4 has
two crucial aspects:

1. When xk → x̄ and μk → 0, eventually,

∇xf(xk, μk)
T dik =

⎛
⎝ q∑

j=1

λj(xk, μk)∇fj(xk)

⎞
⎠

T

dik ≥ 0 ∀ i ∈ Jk.

2. The bounded sequence {(λ1(xk, μk), . . . , λq(xk, μk))} has an accumulation
point. This allows us to overcome the difficulty tied to the indefiniteness of ∇2

xf(xk,
μk) in the limit.

The sampling of the smooth objective function along the directions dik, i ∈ Jk,
introduces a further difficulty, namely, that ∇xf(xk, μk)

T dik is approximated by the
quantity

∇xf(ui
k, μk)

T dik =

⎛
⎝ q∑

j=1

λj(u
i
k, μk)∇fj(u

i
k)

⎞
⎠

T

dik,

where, for every index i ∈ Jk, we have different bounded sequences {(λ1(u
i
k, μk), . . . ,

λq(u
i
k, μk))}. This raises the problem that each of these sequences converges to its

own limit while the optimality condition (29) requires them to have the same limit
point. In order to guarantee the existence of a unique limit point of the sequences
{(λ1(u

i
k, μk), . . . , λq(u

i
k, μk))}, for all i ∈ Jk, it is necessary that ‖ui

k − xk‖, i ∈ Jk,
tends to zero faster than μk, where ‖ui

k−xk‖ can be viewed as a measure of the degree
of approximation of first-order derivatives and μk gives a measure of the degree of
approximation of the original minimax problem.

To conclude, we note that, since Proposition 4 poses only an upper bound on
the convergence rate of μk towards zero, it allows us to choose an updating rule for
the smoothing parameter which conciliates global convergence with the problem of
avoiding the ill-conditioning of the smooth approximating problem.

4. A derivative-free method and global convergence result. In this sec-
tion we define an algorithm for the solution of problem (1). The proposed method
stems from the union of a derivative-free approach for smooth and linearly constrained
optimization with a suitable handling of the smoothing parameter μ. In particular,



1062 G. LIUZZI, S. LUCIDI, AND M. SCIANDRONE

the derivative-free method samples the smoothing function value along a finite set of
search directions and decreases the sampling stepsize and the smoothing parameter if
a sufficiently improved objective function value is not attained. The sampling strat-
egy and the updating rule for the smoothing parameter are guided by the convergence
conditions of Proposition 4. The derivative-free technique for sampling the smooth-
ing function is based on the feasible descent method 2 proposed in [13] for a class of
smooth optimization problems, including those with linear constraints. The formal
description of the algorithm is reported below.

Algorithm DF
Data. x0 ∈ F , init step0 > 0, μ0 > 0, γ > 0, θ ∈ (0, 1), ε̄ > 0.
Step 0. Set k = 0.
Step 1. (Computation of search directions)

Choose a set of directions Dk = {d1
k, . . . , d

rk
k } satisfying Assumption 2.

Step 2. (Minimization on the cone{Dk})
Step 2.1. (Initialization)

Set i = 1, yik = xk, α̃
i
k = init stepk.

Step 2.2. (Computation of the initial stepsize)
Compute the maximum steplength ᾱi

k such that yik + ᾱi
kd

i
k ∈ F

and set α̂i
k = min{ᾱi

k, α̃
i
k}.

Step 2.3. (Test on the search direction)

If α̂i
k > 0 and f(yik + α̂i

kd
i
k, μk) ≤ f(yik, μk) − γ(α̂i

k)
2
,

compute αi
k by the Expansion Step(ᾱi

k, α̂
i
k, y

i
k, d

i
k;α

i
k)

and set α̃i+1
k = αi

k;
otherwise set αi

k = 0 and α̃i+1
k = θα̃i

k.
Step 2.4. (New point)

Set yi+1
k = yik + αi

kd
i
k.

Step 2.5 (Test on the minimization on the cone{Dk})
If i = rk, go to Step 3;
otherwise set i = i + 1 and go to Step 2.2.

Step 3. (Main iteration)
Find xk+1 ∈ F such that f(xk+1, μk) ≤ f(yi+1

k , μk);
otherwise, set xk+1 = yi+1

k .
Set init stepk+1 = α̃i+1

k ,

choose μk+1 = min
{
μk, max

i=1,...,rk
{(α̃i

k)
1/2, (αi

k)
1/2}

}
,

set k = k + 1, and go to Step 1.

Expansion Step (ᾱi
k, α̂

i
k, y

i
k, d

i
k;α

i
k).

Data. γ > 0, δ ∈ (0, 1).
Step 1. Set α = α̂i

k.
Step 2. Let α̃ = min{ᾱi

k, (α/δ)}.
Step 3. If α = ᾱi

k or f(yik + α̃dik, μk) > f(yik, μk) − γα̃2, set αi
k = α and return.

Step 4. Set α = α̃ and go to Step 2.



A DERIVATIVE-FREE ALGORITHM FOR MINIMAX PROBLEMS 1063

At Step 1 a suitable set of search directions d1
k, . . . , d

rk
k is determined. At Step 2

the behavior of the objective function is evaluated along each search direction. In
particular, if the search direction is feasible and is of sufficient decrease, the behavior
of the objective function along this direction is further investigated by executing an
Expansion Step until a suitable decrease is no longer obtained or the trial point reaches
the boundary of the feasible region.

We indicate by init stepk the initial stepsize at iteration k, and, for every direction
dik, with i = 1, . . . , rk, we denote

- by α̃i
k the candidate initial stepsize;

- by ᾱi
k the maximum feasible stepsize;

- by α̂i
k the initial stepsize;

- by αi
k the stepsize actually taken.

At Step 3 the new point xk+1 can be the point yi+1
k produced by Steps 1–2 or any

point where the objective function is improved with respect to f(yrkk , μk). This fact
allows us to adopt any approximation scheme for the objective function to produce
a new better point. This flexibility can be particularly useful when the evaluation of
objective function is computationally expensive, in which case the objective function
values produced in previous iterations can be used to build an inexpensive model
of f(x) to be minimized with the aim of producing a potentially good point xk+1.
However, we note that this option can be discarded simply by setting xk+1 = yi+1

k .
Then the smoothing parameter μk is reduced whenever maxi=1,...,rk{(α̃i

k)
1/2,

(αi
k)

1/2} gets smaller than the current smoothing value μk. We recall that
maxi=1,...,rk{(α̃i

k)
1/2, (αi

k)
1/2} can be viewed as a stationarity measure of the current

iterate (see [9], for example). Thus, according to the updating rule, the smoothing
parameter is reduced whenever a more precise approximation of a stationary point of
the smoothing function is obtained.

The following proposition describes some key properties of certain sequences gen-
erated by Algorithm DF.

Proposition 5. Let {xk}, {μk} be the sequences generated by Algorithm DF.
Then

(i) {xk} is well-defined;
(ii) the sequence {f(xk, μk)} is monotonically nonincreasing;
(iii) the sequence {xk} is bounded;
(iv) every cluster point of {xk} belongs to F ;
(v) the sequences {f(xk+1, μk)} and {f(xk, μk)} are both convergent and have

the same limit.
Proof. To prove assertion (i), it suffices to show that the Expansion Step, when

performed along a direction dik from yik, for i ∈ {1, . . . , rk}, terminates in a finite
number j̄ of steps either because δ−j̄α̂i

k ≥ ᾱi
k or because f(yik + δ−j̄α̂i

kd
i
k, μk) >

f(yik, μk) − γ
(
δ−j̄α̂i

k

)2
.

If this were not true, we would have for some k and i ∈ {1, . . . , rk} that α̂i
k > 0

and

δ−jα̂i
k < ᾱi

k, yik + δ−jα̂i
kd

i
k ∈ F ,

f(yik + δ−jα̂i
kd

i
k, μk) ≤ f(yik, μk) − γ

(
δ−jα̂i

k

)2
for all j = 0, 1, . . . . But by (i) of Proposition 2,

f(yik + δ−jα̂i
kd

i
k) ≤ f(yik + δ−jα̂i

kd
i
k, μk) ≤ f(yik, μk) − γ

(
δ−jα̂i

k

)2
,

for all j = 0, 1, . . . , which, since δ−j is unbounded, violates Assumption 1.
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To prove assertion (ii), we note that the instructions of the algorithm imply that

f(xk+1, μk) ≤ f(xk, μk).

Since μk+1 ≤ μk and f(x, μ) is increasing with respect to μ (see (i) of Proposition 2),
we have

f(xk+1, μk+1) ≤ f(xk+1, μk) ≤ f(xk, μk),(33)

so that assertion (ii) is proved.

By assertion (ii) we have for all k that f(xk, μk) ≤ f(x0, μ0), and hence

xk ∈ {x |f(x, μk) ≤ f(x0, μ0)}.

Then for any x satisfying

f(x, μk) ≤ f(x0, μ0)

we have from (i) of Proposition 2 that

f(x) ≤ f(x0, μ0).

Thus we can write

xk ∈ {x |f(x, μk) ≤ f(x0, μ0)} ⊆ {x |f(x) ≤ f(x0, μ0)}.

It follows from Assumption 1 that the set {x |f(x) ≤ f(x0, μ0)} is bounded, which
proves assertion (iii).

To prove assertion (iv), we note that the instructions of Algorithm DF imply that
xk ∈ F for all k. Since F is a closed set, the assertion follows.

To prove point (v), we note that, by Assumption 1, f(x) is bounded from below on
the feasible set F . Therefore, by recalling (8), we have that {f(xk, μk)} is also bounded
below, and hence, by point (ii), convergent. From (33), we have that {f(xk+1, μk)}
converges to the same limit of {f(xk, μk)}, which proves assertion (v).

The proposition that follows establishes some results concerning the adopted sam-
pling technique. In particular, point (i) guarantees that the sampling points tend to
cluster more and more. Point (ii) ensures the existence of sufficiently large stepsizes
providing feasible points along the search directions.

Proposition 6. Let {xk} be the sequence produced by Algorithm DF. Then we
have

(i)

lim
k→∞

max
1≤i≤rk

{
αi
k

}
= 0,(34)

lim
k→∞

max
1≤i≤rk

{
α̃i
k

}
= 0,(35)

lim
k→∞

max
1≤i≤rk

∥∥xk − yik
∥∥ = 0.(36)

(ii) ᾱi
k ≥ ε/c−

∥∥xk − yik
∥∥ whenever dik ∈ T (xk, ε) and ε > 0, where

c = maxj=1,...,m ‖aj‖.
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Proof. To prove assertion (i), we note from the construction of αi
k and yi+1

k in
Step 2.3 that

f(yi+1
k , μk) ≤ f(yik, μk) − γ(αi

k)
2(37)

and from the construction of α̃i+1
k that for each k and each i ∈ {1, . . . , rk}, one of the

following holds:

α̃i+1
k = αi

k,(38)

α̃i+1
k = θα̃i

k.(39)

Summing (37) for i = 1, . . . , rk and using the construction of xk+1 in Step 3 yields

f(xk+1, μk) ≤ f(xk, μk) − γ

rk∑
i=1

(αi
k)

2.

Recalling point (v) of Proposition 5, {f(xk, μk)} and {f(xk+1, μk)} are both conver-
gent and have the same limit, and {

∑rk
i=1(α

i
k)

2} → 0, thus proving (34).

For all k we have

α̃i
k = (θ)p

i
k α

lik
mi

k

,(40)

where mi
k ≤ k and lik ≤ rmi

k
are, respectively, the largest iteration index and the

largest direction index such that (38) holds, and the exponent pik is given by

pik =

{
i− lik if mi

k = k,
i + rk−1 + rk−2 + · · · + rmi

k
− lik otherwise.

(41)

Then let i be an arbitrary integer such that the set Ki = {k ∈ {0, 1, . . .} : rk ≥ i}
has infinitely many elements. If mi

k → ∞, as k → ∞ with k ∈ Ki, then, by (40) and
(34), we get (35).

On the other hand, suppose that mi
k is bounded above. In this case, for all k ∈ Ki

sufficiently large, mi
k < k, so that pik is given by the second part of (41). Since rmi

k
≥ lik

and rl ≥ 1 for l = mi
k + 1, . . . , k − 1, this then implies that pik ≥ i + (k − 1 −mi

k), so
that pik → ∞ as k → ∞, k ∈ Ki. Hence, by (40) and θ ∈ (0, 1) we get (35).

Then we note from the updating formula for yik in Step 2.4 that

xk − yik = −
i−1∑
l=1

αl
kd

l
k.

Then, using (34), ‖dlk‖ = 1 for 1 ≤ l ≤ rk, i ≤ rk, and the assumption that {rk}
is bounded, we obtain (36).

To prove assertion (ii), we note that, by the fact that dik ∈ T (xk; ε) and by the
definition of ᾱi

k in Step 2.2, either ᾱi
k = +∞ (in which case, the result is proved) or

an index j̄ /∈ I(xk; ε) exists such that

aTj̄ (yik + ᾱi
kd

i
k) = bj̄.
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In the latter case, solving for ᾱi
k and using 0 < aTj̄ d

i
k ≤ c (where c = maxj=1,...,m ‖aj‖)

yields

ᾱi
k =

(
bj̄ − aTj̄ y

i
k

)
/(aTj̄ d

i
k)

≥
(
bj̄ − aTj̄ y

i
k

)
/c

=
(
bj̄ − aTj̄ xk + aTj̄ (xk − yik)

)
/c

≥
(
ε + aTj̄ (xk − yik)

)
/c

≥
(
ε− ‖xk − yik‖c

)
/c,

where the second inequality follows from j̄ /∈ I(xk; ε) and the definition of I(xk; ε), so
that the assertion is proved.

The next proposition establishes the convergence properties of Algorithm DF.
Theorem 1. Let {xk} be the sequence generated by Algorithm DF. Then a limit

point of the sequence {xk} exists which is a stationary point of the minimax problem
(1).

Proof. By applying the results of Proposition 6 to Step 3 of the algorithm, we get
that

lim
k→∞

μk = 0.(42)

Let {xk}K be the subsequence corresponding to the subset of indices

K = {k : μk+1 < μk},(43)

which, due to (42), has infinitely many elements.
Now let x̄ be an accumulation point of the subsequence {xk}K , and let ε ∈

(0,min{ε̄, ε�}], where ε̄ and ε� are defined in Algorithm DF and Proposition 3, re-
spectively. Let

Jk = {i ∈ {1, . . . , rk} : dik ∈ Dk ∩ T (xk, ε)}.

Then Proposition 3 and Assumption 2 imply that, for k ∈ K,

T (x̄) = T (xk; ε) = cone{Dk ∩ T (xk; ε)} = cone{dik}i∈Jk
.(44)

For all i ∈ Jk, by definition, dik ∈ T (xk; ε) so that from point (ii) of Proposition
6 we get

ᾱi
k ≥ ε/c−

∥∥xk − yik
∥∥ ,

which, by point (i) of Proposition 6, implies that there exists an index k̄ such that,
for all k ≥ k̄ and k ∈ K,

αi
k/δ < ᾱi

k and α̂i
k = min{ᾱi

k, α̃
i
k} = α̃i

k < ᾱi
k.(45)

Then the construction of αi
k in Step 2.3 implies that, for each i ∈ Jk, either

yik +
αi
k

δ
dik ∈ F , f

(
yik +

αi
k

δ
dik, μk

)
> f(yik, μk) − γ

(
αi
k

δ

)2

,
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if an Expansion Step is performed, or

yik + α̂i
kd

i
k ∈ F , f(yik + α̂i

kd
i
k, μk) > f(yik, μk) − γ(α̂i

k)
2.

By letting ξik = αi
k/δ in the first case and ξik = α̂i

k in the second case, we have

f(yik + ξikd
i
k, μk) > f(yik, μk) − γ(ξik)

2.(46)

From the updating formula for yik in Step 2.4 of Algorithm DF, we note that

‖yik − xk‖ ≤
i−1∑
l=1

αl
k ≤ δ

i−1∑
l=1

ξlk ≤ δrk max
j∈Jk

{ξjk},(47)

from which we get

max
i∈Jk

{ξik, ‖xk − yik‖} ≤ max{1, δrk}max
i∈Jk

{ξik}.(48)

Since rk ≥ 1, δ ∈ (0, 1), and, by definition of ξik, maxi∈Jk
{ξik} ≤ maxi∈Jk

{α̃i
k, α

i
k/δ},

we have

max{1, δrk}max
i∈Jk

{ξik} ≤ rk
δ

max
i∈Jk

{α̃i
k, α

i
k}.(49)

Recalling the definition of K (see (43)), it follows from Step 3 of Algorithm DF
that

μ2
k > max

j=1,...,rk

{
α̃j
k, α

j
k

}
= μ2

k+1,(50)

so that, by (48), (49), and (50), we obtain maxi∈Jk
{ξik, ‖xk−yik‖} < rk

δ μ2
k, from which

we get

lim
k→∞,k∈K

maxi∈Jk
{ξik, ‖xk − yik‖}
μk

= 0.(51)

Finally, (42), (46), (51), and the result of Proposition 4 conclude the proof.
Corollary 1. Let {xk} be the sequence produced by Algorithm DF, and let

{xk}K be the subsequence corresponding to the subset of indices K such that

K = {k : μk+1 < μk}.

Then every accumulation point of {xk}K is a stationary point of the minimax
problem (1).

5. Numerical results. The aim of the computational experiments is to inves-
tigate the ability of the proposed algorithm to locate a good approximation to a
solution of the finite minimax problem (1). We report numerical results obtained by
Algorithm DF both on a set of 33 unconstrained minimax problems with n ∈ [1, 200]
and q ∈ [2, 501] (see [6] and [16] for a description of these problems) and on a set of
5 linearly constrained minimax problems with n ∈ [2, 20], q ∈ [3, 14], and m ∈ [1, 4]
(see [14] for a description of these test problems). We used as starting points those
reported in [6], [16], and [14].
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Parameter values used in the algorithm were chosen as follows:

init step0 = 1.0,μ0 = 1.0, γ = 10−6,

θ = 0.5,δ = 0.5, ε̄ = 1.0 .

As for the search directions, in the linearly constrained setting we use the com-
putation strategy proposed in [10], whereas, in the unconstrained case, we use Dk =
D = {±e1, . . . ,±en}. In the latter case, we further exploit the fact that Dk is con-
stant. First, we modify Step 2 by adopting the stepsize updating strategy proposed
in [12], in which each search direction ei, i = 1, . . . , n, has its own associated step-
size. Furthermore, in Step 3 a point x̂ is computed by performing a linesearch along
an additional direction described at Step 4 of Algorithm 3 in [12]. Then xk+1 = x̂,
provided that f(x̂, μk) ≤ f(yi+1

k , μk); otherwise, we set xk+1 = yi+1
k . We note that in

the linearly constrained case we always set xk+1 = yi+1
k .

For the stopping condition, we choose to stop the algorithm when init stepk ≤
10−4 in the constrained case and when maxi=1,...,n α̃

i
k ≤ 10−4 in the unconstrained

case. Furthermore, we also stop the computation whenever the code reaches a total
of 50000 function evaluations.

Table 1 shows the numerical results obtained by Algorithm DF. The table reports,
for each problem, its name, number n of variables, number q of component functions,
number m of linear constraints, and number nF of function evaluations required to
satisfy the stopping condition. We denote by f(x̄) the minimum value obtained by
Algorithm DF, by μ̄ the value of the smoothing parameter when the stopping condition
is met, and by f� the value of the known solution. Furthermore, we denote by

Δ =
f(x̄) − f�

1 + |f�|

the error at the solution obtained by Algorithm DF.
The results reported in Table 1 show that Algorithm DF is able to locate a good

estimate of the minimum point of the minimax problem (1) (as reported in [14] and
[16]) with a limited number of function evaluations, especially for problems with a
reasonably small number of variables (e.g., fewer than 10). It is worth noting that for
almost every problem, the final smoothing parameter value is of order 10−2 or less.

In order to better point out the efficiency of the proposed approach, we compare
Algorithm DF with some reasonable modifications of it. First, it seems reasonable
to test a modified version of Algorithm DF, which we call DFmod1, that always uses
the max function f(x) instead of the smooth approximation f(x, μ). This helps us to
evaluate the computational benefit of our method, with its first-order stationary result,
versus a modification that possesses a much weaker convergence property, as shown
in Appendix A. Second, in order to judge the effectiveness of the updating rule for the
smoothing parameter, we choose to compare Algorithm DF with Algorithms DFmod2

and DFmod3, which can be obtained from Algorithm DF by dropping the updating rule
for μ at Step 3 and choosing μ0 = 1 and μ0 = 10−2, respectively.

The complete results obtained by the three modified versions of Algorithm DF
(DFmod1, DFmod2, and DFmod3) are reported in Appendix B. Here, for the sake of clarity,
we report only a summary of the obtained results. For each algorithm, Table 2
indicates how many problems were solved to within the accuracy specified by the
column labels, while Table 3 reports the number of function evaluations. In particular,
for every pair of algorithms (DF, DFmodi, i = 1, 2, 3), we identify those problems solved
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Table 1

Numerical performance of Algorithm DF.

PROBLEM n q m nF f(x̄) μ̄ f� Δ

crescent 2 2 0 160 3.061E-03 1.105E-02 0.000E+00 3.061E-03
polak 1 2 2 0 106 2.718E+00 7.812E-03 2.718E+00 7.654E-09
lq 2 2 0 343 -1.411E+00 7.812E-03 -1.414E+00 1.158E-03
mifflin 1 2 2 0 65 -1.000E+00 1.210E-02 -1.000E+00 0.000E+00
mifflin 2 2 2 0 188 -9.980E-01 7.813E-03 -1.000E+00 1.009E-03
char.-conn 1 2 3 0 118 1.954E+00 9.882E-03 1.952E+00 4.631E-04
char.-conn 2 2 3 0 208 2.003E+00 1.105E-02 2.000E+00 1.153E-03
demy-malo 2 3 0 84 -3.000E+00 1.105E-02 -3.000E+00 0.000E+00
ql 2 3 0 132 7.203E+00 1.105E-02 7.200E+00 3.575E-04
hald-mad. 1 2 4 0 170 1.582E-02 1.105E-02 0.000E+00 1.582E-02
rosen 4 4 0 368 -4.394E+01 7.906E-03 -4.400E+01 1.347E-03
hald-mad. 2 5 42 0 471 6.177E-03 7.906E-03 1.220E-04 6.055E-03
polak 2 10 2 0 285 5.460E+01 7.813E-03 5.459E+01 1.134E-04
maxq 20 20 0 1858 0.000E+00 1.105E-02 0.000E+00 0.000E+00
maxl 20 40 0 891 0.000E+00 1.105E-02 0.000E+00 0.000E+00
goffin 50 50 0 2045 0.000E+00 7.813E-03 0.000E+00 0.000E+00
polak 6.1 2 3 0 131 1.954E+00 1.118E-02 1.952E+00 4.760E-04
polak 6.2 20 20 0 692 2.384E-09 1.105E-02 0.000E+00 2.384E-09
polak 6.3 4 50 0 2055 6.253E-03 7.813E-03 2.637E-03 3.607E-03
polak 6.4 4 102 0 1105 9.166E-03 7.813E-03 2.650E-03 6.499E-03
polak 6.5 4 202 0 1890 9.181E-03 7.813E-03 2.650E-03 6.515E-03
polak 6.6 3 50 0 374 6.531E-03 7.813E-03 4.500E-03 2.022E-03
polak 6.7 3 102 0 335 7.141E-03 7.813E-03 4.505E-03 2.624E-03
polak 6.8 3 202 0 369 7.263E-03 7.813E-03 4.505E-03 2.746E-03
polak 6.9 2 2 0 91 1.162E-01 7.812E-03 0.000E+00 1.162E-01
polak 6.10 1 25 0 129 1.784E-01 1.105E-02 1.782E-01 1.625E-04
polak 6.11 1 51 0 136 1.784E-01 1.105E-02 1.783E-01 6.206E-05
polak 6.12 1 101 0 153 1.784E-01 1.105E-02 1.784E-01 2.368E-05
polak 6.13 1 501 0 153 1.784E-01 1.105E-02 1.784E-01 1.464E-05
polak 6.14 100 100 0 3452 3.433E-09 1.105E-02 0.000E+00 3.433E-09
polak 6.15 200 200 0 6891 3.433E-09 1.105E-02 0.000E+00 3.433E-09
polak 6.16 100 50 0 3452 5.364E-09 1.105E-02 0.000E+00 5.364E-09
polak 6.17 200 50 0 7233 1.023E-08 7.812E-03 0.000E+00 1.023E-08
mad 1 2 3 1 43 -3.896E-01 1.747E-02 -3.897E-01 5.878E-05
mad 2 2 3 1 42 -3.304E-01 1.353E-02 -3.304E-01 -9.735E-10
mad 4 2 3 2 72 -4.489E-01 1.562E-02 -4.489E-01 4.601E-07
wong 2 10 6 3 236 2.522E+01 1.948E-02 2.431E+01 3.609E-02
wong 3 20 14 4 451 1.076E+02 2.545E-02 1.337E+02 -1.938E-01

Table 2

Comparison of methods: Number of problems solved to within a given accuracy.

Δ < 10−3 10−3 ≤ Δ < 10−1 Δ ≥ 10−1

DF 23 14 1
DFmod1 14 12 12
DFmod2 16 16 6
DFmod3 21 14 3
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Table 3

Comparison of methods: Cumulative number of function evaluations to solve the same problems
to within a given accuracy.

Δ < 10−3 10−3 ≤ Δ < 10−1 Δ ≥ 10−1

DF 3649 947 91
DFmod1 3645 703 88
DF 27662 8112 91
DFmod2 27662 7736 91
DF 7586 7716 91
DFmod3 22164 8252 88

with the same accuracy both by DF and DFmodi and compare the sum of the required
number of function evaluations.

From these results, it is clear that Algorithm DF outperformed Algorithms DFmod1

and DFmod2. In fact, DF solved to high accuracy (Δ < 10−3) a larger number of prob-
lems with a comparable number of function evaluations. Furthermore, the comparison
between Algorithms DF and DFmod1, in terms of number of failures (Δ ≥ 10−1), shows
the computational advantage of using an algorithm with stronger convergence proper-
ties. As for method DFmod3, it has two failures (Δ ≥ 10−1) more than DF, but it still
performs well and seems to exhibit a behavior quite similar to that of DF. However,
as seen in Table 3, the two algorithms perform quite differently in terms of function
evaluations. This difference in performance properly points out the fundamental im-
portance of the updating rule for the smoothing parameter μ, whose ultimate task is
that of limiting the ill-conditioning of the approximating problem. Indeed, when we
fix the smoothing parameter to 10−2, the problem is too ill-conditioned from the be-
ginning of the solution process. On the other hand, Algorithm DF limits the possible
ill-conditioning by decreasing the smoothing parameter at a suitable rate.

6. Appendix A. A function f : �n → � is said to be locally Lipschitz near a
point x ∈ �n if there exist L > 0 and δ > 0 such that

|f(y1) − f(y2)| ≤ L‖y1 − y2‖

for all y1, y2 belonging to the open ball {y ∈ �n : ‖y − x‖ < δ}. The (Clarke)
generalized directional derivative [5] of f at x in the direction d is denoted by f◦(x; d)
and is defined as follows:

f◦(x; d) = lim sup
y→x,t→0+

f(y + td) − f(y)

t
.(52)

Under the assumption that f is Lipschitz near x, f◦(x; d) is well defined.
The following proposition extends to Lipschitz continuous functions analogous re-

sults reported in [12] and [13] concerning general convergence conditions for derivative-
free methods.

Proposition 7. Let {xk} be a sequence of feasible points, x̄ be a limit point
of a subsequence {xk}K for some infinite set K ⊆ {0, 1, . . .}, and f(x) be locally
Lipschitz near x̄. Let {Dk}, with Dk = {d1

k, . . . , d
rk
k }, be a sequence of sets of di-

rections which satisfy Assumption 2 and Jk = {i ∈ {1, . . . , rk} : dik ∈ T (xk, ε)} with
ε ∈ (0,min{ε̄, ε�}] (where ε̄ and ε� are defined in Assumption 2 and Proposition 3,
respectively).
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Suppose that the following condition holds: for each k ∈ K and i ∈ Jk, there exist
yik and scalars ξik > 0 such that

yik + ξikd
i
k ∈ F ;(53)

f(yik + ξikd
i
k) ≥ f(yik) − o(ξik);(54)

lim
k→∞,k∈K

max
i∈Jk

{ξik} = 0;(55)

lim
k→∞

max
i∈Jk

‖xk − yik‖ = 0.(56)

Then

lim
k→∞,k∈K

min
i∈Jk

{
min{0, f◦(xk; d

i
k)}

}
= 0.(57)

Proof. Since
⋃

k∈K Dk is a finite set, there exist infinite subsets K1 ⊆ K and
J ⊂ {1, 2, . . .} and a positive integer r such that

Jk = J ∀k ∈ K1,

{dik}i∈Jk
= {d̄1, . . . , d̄r}, ‖d̄i‖ = 1 ∀k ∈ K1.

By using condition (56) it follows that

lim
k→∞,k∈K1

yik = x̄, i ∈ J.(58)

Now, recalling condition (54), for all k ∈ K1, we have

f(yik + ξikd̄
i) − f(yik) ≥ −o(ξik), i ∈ J,(59)

from which we obtain

lim sup
k→∞,k∈K1

f(yik + ξikd̄
i) − f(yik)

ξik
≥ 0.(60)

Since f(x) is locally Lipschitz near x̄, by using (52), (55), and (58) we can write

f◦(x̄; d̄i) ≥ lim sup
k→∞,k∈K1

f(yik + ξikd̄
i) − f(yik)

ξik
, i = 1, . . . , r,

so that, from (60), we obtain

f◦(x̄; d̄i) ≥ 0, i = 1, . . . , r,(61)

which proves (57).

7. Appendix B. Here we report the complete results for the modified versions
of Algorithm DF, namely DFmod1, DFmod2, and DFmod3, in Tables 4, 5, and 6.
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Table 4

Numerical performance of Algorithm DFmod1.

PROBLEM n q m nF f(x̄) μ̄ f� Δ

crescent 2 2 0 78 0.000E+00 1.105E-02 0.000E+00 0.000E+00
polak 1 2 2 0 106 2.718E+00 7.812E-03 2.718E+00 7.654E-09
lq 2 2 0 86 -1.395E+00 7.812E-03 -1.414E+00 7.771E-03
mifflin 1 2 2 0 185 -1.000E+00 1.210E-02 -1.000E+00 6.358E-08
mifflin 2 2 2 0 74 -1.000E+00 7.812E-03 -1.000E+00 0.000E+00
char.-con 1 2 3 0 80 2.000E+00 7.812E-03 1.952E+00 1.618E-02
char.-con 2 2 3 0 81 2.000E+00 1.105E-02 2.000E+00 0.000E+00
demy-malo 2 3 0 84 -3.000E+00 1.105E-02 -3.000E+00 0.000E+00
ql 2 3 0 92 7.812E+00 7.812E-03 7.200E+00 7.470E-02
hald-mad 1 2 4 0 122 1.767E-01 1.105E-02 0.000E+00 1.767E-01
rosen 4 4 0 259 -4.378E+01 7.906E-03 -4.400E+01 4.821E-03
hald-mad 2 5 42 0 194 3.126E-01 7.906E-03 1.220E-04 3.124E-01
polak 2 10 2 0 285 5.460E+01 7.813E-03 5.459E+01 1.134E-04
maxq 20 20 0 7190 8.713E-03 7.813E-03 0.000E+00 8.713E-03
maxl 20 40 0 12111 3.028E-03 7.813E-03 0.000E+00 3.028E-03
goffin 50 50 0 2045 0.000E+00 7.813E-03 0.000E+00 0.000E+00
polak 6.1 2 3 0 92 1.973E+00 7.906E-03 1.952E+00 7.087E-03
polak 6.2 20 20 0 5174 1.553E-03 9.244E-03 0.000E+00 1.553E-03
polak 6.3 4 50 0 138 5.467E-01 7.813E-03 2.637E-03 5.426E-01
polak 6.4 4 102 0 138 5.497E-01 7.813E-03 2.650E-03 5.456E-01
polak 6.5 4 202 0 139 5.495E-01 7.813E-03 2.650E-03 5.454E-01
polak 6.6 3 50 0 104 5.441E-01 7.813E-03 4.500E-03 5.372E-01
polak 6.7 3 102 0 104 5.441E-01 7.813E-03 4.505E-03 5.372E-01
polak 6.8 3 202 0 104 5.441E-01 7.813E-03 4.505E-03 5.372E-01
polak 6.9 2 2 0 88 1.161E-01 7.812E-03 0.000E+00 1.161E-01
polak 6.10 1 25 0 58 1.782E-01 1.105E-02 1.782E-01 6.121E-07
polak 6.11 1 51 0 60 1.783E-01 1.105E-02 1.783E-01 6.630E-08
polak 6.12 1 101 0 61 1.784E-01 1.105E-02 1.784E-01 5.382E-07
polak 6.13 1 501 0 59 1.784E-01 1.105E-02 1.784E-01 1.021E-07
polak 6.14 100 100 0 44694 3.337E-03 7.812E-03 0.000E+00 3.337E-03
polak 6.15 200 200 0 50001 1.210E-01 1.914E-02 0.000E+00 1.210E-01
polak 6.16 100 50 0 50002 1.621E-01 2.210E-02 0.000E+00 1.621E-01
polak 6.17 200 50 0 50003 1.782E+00 3.125E-02 0.000E+00 1.782E+00
mad 1 2 3 1 105 -3.879E-01 1.235E-02 -3.897E-01 1.246E-03
mad 2 2 3 1 42 -3.304E-01 1.353E-02 -3.304E-01 -9.735E-10
mad 4 2 3 2 201 -4.461E-01 1.105E-02 -4.489E-01 1.967E-03
wong 2 10 6 3 358 2.654E+01 1.377E-02 2.431E+01 8.830E-02
wong 3 20 14 4 660 1.019E+02 1.271E-02 1.337E+02 -2.364E-01



A DERIVATIVE-FREE ALGORITHM FOR MINIMAX PROBLEMS 1073

Table 5

Numerical performance of Algorithm DFmod2.

PROBLEM n q m nF f(x̄) μ̄ f� Δ

crescent 2 2 0 78 2.418E-01 1.000E+00 0.000E+00 2.418E-01
polak 1 2 2 0 106 2.718E+00 1.000E+00 2.718E+00 7.654E-09
lq 2 2 0 95 -1.274E+00 1.000E+00 -1.414E+00 5.796E-02
mifflin 1 2 2 0 65 -1.000E+00 1.000E+00 -1.000E+00 0.000E+00
mifflin 2 2 2 0 77 -8.193E-01 1.000E+00 -1.000E+00 9.033E-02
char.-con 1 2 3 0 94 2.041E+00 1.000E+00 1.952E+00 3.017E-02
char.-con 2 2 3 0 81 2.223E+00 1.000E+00 2.000E+00 7.435E-02
demy-malo 2 3 0 84 -3.000E+00 1.000E+00 -3.000E+00 0.000E+00
ql 2 3 0 156 7.473E+00 1.000E+00 7.200E+00 3.332E-02
hald-mad 1 2 4 0 292 8.496E-03 1.000E+00 0.000E+00 8.496E-03
rosen 4 4 0 515 -4.356E+01 1.000E+00 -4.400E+01 9.842E-03
hald-mad 2 5 42 0 299 9.496E-03 1.000E+00 1.220E-04 9.372E-03
polak 2 10 2 0 285 5.460E+01 1.000E+00 5.459E+01 1.134E-04
maxq 20 20 0 1858 0.000E+00 1.000E+00 0.000E+00 0.000E+00
maxl 20 40 0 891 0.000E+00 1.000E+00 0.000E+00 0.000E+00
goffin 50 50 0 2045 0.000E+00 1.000E+00 0.000E+00 0.000E+00
polak 6.1 2 3 0 106 2.041E+00 1.000E+00 1.952E+00 3.014E-02
polak 6.2 20 20 0 692 2.384E-09 1.000E+00 0.000E+00 2.384E-09
polak 6.3 4 50 0 1527 8.864E-03 1.000E+00 2.637E-03 6.211E-03
polak 6.4 4 102 0 2260 7.785E-03 1.000E+00 2.650E-03 5.122E-03
polak 6.5 4 202 0 1428 1.106E-02 1.000E+00 2.650E-03 8.388E-03
polak 6.6 3 50 0 262 6.592E-03 1.000E+00 4.500E-03 2.083E-03
polak 6.7 3 102 0 264 8.179E-03 1.000E+00 4.505E-03 3.657E-03
polak 6.8 3 202 0 400 8.545E-03 1.000E+00 4.505E-03 4.022E-03
polak 6.9 2 2 0 91 1.162E-01 1.000E+00 0.000E+00 1.162E-01
polak 6.10 1 25 0 52 1.038E+00 1.000E+00 1.782E-01 7.300E-01
polak 6.11 1 51 0 53 1.105E+00 1.000E+00 1.783E-01 7.866E-01
polak 6.12 1 101 0 51 1.139E+00 1.000E+00 1.784E-01 8.150E-01
polak 6.13 1 501 0 57 1.167E+00 1.000E+00 1.784E-01 8.389E-01
polak 6.14 100 100 0 3452 3.433E-09 1.000E+00 0.000E+00 3.433E-09
polak 6.15 200 200 0 6891 3.433E-09 1.000E+00 0.000E+00 3.433E-09
polak 6.16 100 50 0 3452 5.364E-09 1.000E+00 0.000E+00 5.364E-09
polak 6.17 200 50 0 7233 1.023E-08 1.000E+00 0.000E+00 1.023E-08
mad 1 2 3 1 43 -3.896E-01 1.000E+00 -3.897E-01 5.878E-05
mad 2 2 3 1 42 -3.304E-01 1.000E+00 -3.304E-01 -9.735E-10
mad 4 2 3 2 72 -4.489E-01 1.000E+00 -4.489E-01 4.601E-07
wong 2 10 6 3 236 2.522E+01 1.000E+00 2.431E+01 3.609E-02
wong 3 20 14 4 451 1.076E+02 1.000E+00 1.337E+02 -1.938E-01
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Table 6

Numerical performance of Algorithm DFmod3.

PROBLEM n q m nF f(x̄) μ̄ f� Δ

crescent 2 2 0 79 2.693E-03 1.000E-02 0.000E+00 2.693E-03
polak 1 2 2 0 106 2.718E+00 1.000E-02 2.718E+00 7.654E-09
lq 2 2 0 142 -1.412E+00 1.000E-02 -1.414E+00 1.072E-03
mifflin 1 2 2 0 65 -1.000E+00 1.000E-02 -1.000E+00 0.000E+00
mifflin 2 2 2 0 74 -9.982E-01 1.000E-02 -1.000E+00 9.172E-04
char.-con 1 2 3 0 130 1.953E+00 1.000E-02 1.952E+00 4.080E-04
char.-con 2 2 3 0 91 2.003E+00 1.000E-02 2.000E+00 1.060E-03
demy-malo 2 3 0 84 -3.000E+00 1.000E-02 -3.000E+00 0.000E+00
ql 2 3 0 148 7.203E+00 1.000E-02 7.200E+00 3.656E-04
hald-mad 1 2 4 0 165 1.270E-03 1.000E-02 0.000E+00 1.270E-03
rosen 4 4 0 812 -4.399E+01 1.000E-02 -4.400E+01 3.083E-04
hald-mad 2 5 42 0 856 6.762E-03 1.000E-02 1.220E-04 6.639E-03
polak 2 10 2 0 285 5.460E+01 1.000E-02 5.459E+01 1.134E-04
maxq 20 20 0 7153 5.821E-11 1.000E-02 0.000E+00 5.821E-11
maxl 20 40 0 9663 5.913E-05 1.000E-02 0.000E+00 5.913E-05
goffin 50 50 0 2045 0.000E+00 1.000E-02 0.000E+00 0.000E+00
polak 6.1 2 3 0 329 1.953E+00 1.000E-02 1.952E+00 3.821E-04
polak 6.2 20 20 0 1305 2.384E-09 1.000E-02 0.000E+00 2.384E-09
polak 6.3 4 50 0 1990 8.010E-03 1.000E-02 2.637E-03 5.359E-03
polak 6.4 4 102 0 865 9.830E-03 1.000E-02 2.650E-03 7.162E-03
polak 6.5 4 202 0 2284 1.063E-02 1.000E-02 2.650E-03 7.963E-03
polak 6.6 3 50 0 590 6.429E-03 1.000E-02 4.500E-03 1.921E-03
polak 6.7 3 102 0 589 7.040E-03 1.000E-02 4.505E-03 2.524E-03
polak 6.8 3 202 0 365 7.446E-03 1.000E-02 4.505E-03 2.928E-03
polak 6.9 2 2 0 88 1.161E-01 1.000E-02 0.000E+00 1.161E-01
polak 6.10 1 25 0 62 1.784E-01 1.000E-02 1.782E-01 1.625E-04
polak 6.11 1 51 0 60 1.784E-01 1.000E-02 1.783E-01 5.924E-05
polak 6.12 1 101 0 61 1.784E-01 1.000E-02 1.784E-01 2.368E-05
polak 6.13 1 501 0 60 1.784E-01 1.000E-02 1.784E-01 1.464E-05
polak 6.14 100 100 0 50005 3.713E-02 1.000E-02 0.000E+00 3.713E-02
polak 6.15 200 200 0 50002 8.690E-02 1.000E-02 0.000E+00 8.690E-02
polak 6.16 100 50 0 50001 1.617E-01 1.000E-02 0.000E+00 1.617E-01
polak 6.17 200 50 0 50001 6.276E-01 1.000E-02 0.000E+00 6.276E-01
mad 1 2 3 1 43 -3.896E-01 1.000E-02 -3.897E-01 5.878E-05
mad 2 2 3 1 42 -3.304E-01 1.000E-02 -3.304E-01 -9.735E-10
mad 4 2 3 2 72 -4.489E-01 1.000E-02 -4.489E-01 4.601E-07
wong 2 10 6 3 236 2.522E+01 1.000E-02 2.431E+01 3.609E-02
wong 3 20 14 4 451 1.076E+02 1.000E-02 1.337E+02 -1.938E-01
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LMI APPROXIMATIONS FOR CONES OF POSITIVE
SEMIDEFINITE FORMS∗
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Abstract. An interesting recent trend in optimization is the application of semidefinite pro-
gramming techniques to new classes of optimization problems. In particular, this trend has been
successful in showing that under suitable circumstances, polynomial optimization problems can be
approximated via a sequence of semidefinite programs. Similar ideas apply to conic optimization over
the cone of copositive matrices and to certain optimization problems involving random variables with
some known moment information.

We bring together several of these approximation results by studying the approximability of cones
of positive semidefinite forms (homogeneous polynomials). Our approach enables us to extend the
existing methodology to new approximation schemes. In particular, we derive a novel approximation
to the cone of copositive forms, that is, the cone of forms that are positive semidefinite over the
nonnegative orthant. The format of our construction can be extended to forms that are positive
semidefinite over more general conic domains. We also construct polyhedral approximations to cones
of positive semidefinite forms over a polyhedral domain. This opens the possibility of using linear
programming technology in optimization problems over these cones.

Key words. positive polynomials, global optimization, linear matrix inequalities, conic pro-
gramming, semidefinite programming
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1. Introduction. An interesting recent trend in optimization is the use of semi-
definite programming techniques for solving or approximating new classes of opti-
mization problems. In particular, Lasserre [15] proposed a general solution approach
for polynomial optimization problems via semidefinite programming. Independently,
Parrilo [20, 21] developed semidefinite programming techniques to address semialge-
braic problems in control theory. In addition to the work by Lasserre and Parrilo,
the idea of approximating a set of positive semidefinite polynomials is also present in
the work by Bertsimas and Popescu [1], de Klerk and Pasechnik [3], Laurent [17, 18],
Popescu [22], and Kojima, Kim, and Waki [14].

A fundamental ingredient underlying most of these approaches, as well as earlier
related work by Shor [30], Shor and Stetsyuk [31], and Nesterov [19], is to recast
the feasibility of a finite system of polynomial equations and inequalities in terms
of an alternative polynomial identity involving squares of (unknown) polynomials.
Computable relaxations (via semidefinite programming) of the feasibility problem
can then be obtained by solving a degree-restricted version of the alternative polyno-

∗Received by the editors October 29, 2003; accepted for publication (in revised form) Sep-
tember 6, 2005; published electronically February 3, 2006. This research was supported by NSF
grant CCF-0092655.

http://www.siam.org/journals/siopt/16-4/60151.html
†Faculty of Business Administration, University of New Brunswick, Fredericton, NB E3B 5A3,

Canada (lzuluaga@unb.ca). This author’s work was partially supported by NSF grant DMI-0098427
and NSERC grant 31814-05. This paper was written while the author was a graduate student at the
Tepper School of Business at Carnegie Mellon University.

‡Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
(jvera@andrew.cmu.edu). This paper was written while the author was visiting the Universidad
de los Andes in Bogotá, Colombia.
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mial identity. For instance, the Markov–Lukacs theorem states that a single-variable
polynomial is nonnegative if and only if it is a sum of squares of two single-variable
polynomials. The latter can then be recast in terms of positive semidefinite matrices
as discussed by Nesterov [19]. In general, for a system of finitely many polynomial
equations and inequalities, the powerful Positivstellensatz theorem from real algebraic
geometry (see, e.g., [2, 23]) ensures the existence of such an alternative polynomial
identity. When the problem possesses additional structure, more specialized ver-
sions of the Positivstellensatz can be applied. Some such results are the theorems
of Schmüdgen [29], Putinar [24], Pólya (see, e.g., [8]), Reznick [26], and Handel-
man [6]. These results provide a fundamental step in the development of solution
techniques for various classes of polynomial optimization problems via semidefinite
programming [1, 3, 14, 15, 16, 17, 18, 20, 21].

In this paper we study the approximability of the cone Pn,m(D) of positive
semidefinite forms (homogeneous polynomials) of degree m over a semialgebraic conic
domain D ⊆ Rn. This approach allows us to bring together a number of previously
known approximation results for polynomial optimization problems. By considering
the cone of positive semidefinite forms Pn,m(D), we can systematically apply ho-
mogenized versions of representation theorems from algebraic geometry to show that
a given cone of positive semidefinite forms can be approximated by a sequence of
cones, where each cone in the sequence has a description in terms of linear matrix
inequalities (LMI). This generic approximation format is an extension of the ones pre-
sented by de Klerk and Pasechnik [3] and by Lasserre [15]. De Klerk and Pasechnik
show that Parrilo’s hierarchy of sufficient criteria for copositivity can be seen as se-
quence of cones that converge to the copositive cone, where each cone in the sequence
has an LMI description. Lasserre’s approximation approach for polynomial opti-
mization problems can also be phrased, after a suitable homogenization, in a similar
fashion.

In addition to gathering several previously known approximation results for poly-
nomial optimization problems, our approach to cones of positive semidefinite forms
enables us to develop some new approximation results. In particular, we give a gen-
eralization of the (sufficient) criterion for copositivity proposed by Parrilo in [20]
(section 4). In the approximation format above, this corresponds to a sequence of
cones converging to Pn,m(Rn

+), each of which has an LMI description. The two key
ideas of our construction are to approximate Pn,m(Rn

+) with simply described sets
En,m(Rn

+) and to embed Pn,m(Rn
+) in a higher-dimensional cone Pn,m+r(Rn

+). We
initially introduce En,m(Rn

+) as the set of n-degree forms θ such that θ(x2
1, . . . , x

2
n)

is a sum of squares; subsequently, we show (Proposition 9) that En,m(Rn
+) has an

alternative simpler description. The latter yields an interesting new description of
the successive LMI approximations to the cone of copositive matrices proposed by
Parrilo [20]. In addition, it allows us to extend our ideas further, first to Pn,m(D)
for a pointed polyhedral domain D (section 5) and then to Pn,m(D) for a pointed
semialgebraic conic domain D (section 6). In sections 4 and 5, the fundamental rep-
resentation theorem that ensures the convergence of the constructed approximation
is Pólya’s theorem. In section 6, the representation theorem ensuring the convergence
of the approximation sequence is Schmüdgen’s theorem. Section 3, which serves as
a preamble to the main three sections, discusses the conceptually simpler case of ap-
proximating the cone Pn,m(Rn) of positive semidefinite forms over Rn. In particular,
we discuss an approximation introduced by Jibetean and de Klerk [13, section 4.3]
that is based on a representation theorem due to Reznick [26].
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When the domain D is polyhedral, in addition to semidefinite approximations,
we provide polyhedral approximations, that is, approximations via linear inequalities
only, for Pn,m(D). This construction is an extension of the polyhedral approximations
for the copositive cone proposed by de Klerk and Pasechnik [3]. Although polyhedral
approximations for Pn,m(D) are in general weaker (inclusionwise) than semidefinite
approximations, they open possibilities for use of the highly developed linear program-
ming technology. Given the limitations of current semidefinite programming solvers
to handle large-scale problems, the availability of polyhedral approximations can po-
tentially yield enhancements in the solution techniques for problems involving cones
of positive semidefinite forms.

The rest of the paper is organized as follows. In section 2 we introduce some
key definitions and present Theorem 1, which formally defines the format of the
approximation results discussed in what follows. In sections 3 and 4 we present inner
approximations for the cones Pn,m(Rn) and Pn,m(Rn

+), respectively. In the latter case,
which generalizes the cone of copositive matrices, along with a sequence of semidefinite
approximations, we introduce a sequence of polyhedral approximations. In section 5
we generalize the construction and key results from section 4 to the cone Pn,m(D)
when D is a pointed polyhedral cone. Section 6 discusses similar results for the more
general cone of positive semidefinite forms over pointed semialgebraic cones.

2. Preliminaries.

2.1. Monomials, polynomials, and forms. We begin by recalling some stan-
dard multinomial notation and terminology. Given α := (α1, . . . , αn) ∈ Nn and a
vector of variables x := (x1, . . . , xn), the expression xα denotes the monomial

xa1
1 · · ·xαn

n .

We also write |α| for α1 + · · · + αn.
Let Hn,m denote the set of forms (homogeneous polynomials) of degree m in n

variables with real coefficients. A form θ(x) in Hn,m can be written as

θ(x) =
∑

|α|=m

θαx
α.

We shall identify the form θ(x) with the vector of its coefficients θ := (θα)|α|=m.
Formally speaking, θ denotes the vector (θα)|α|=m, and for a given x ∈ Rn, θ(x)
denotes the value

∑
|α|=m θαx

α, i.e., the value of the form θ evaluated at x. Via this
identification, the set Hn,m can in turn be identified with the Euclidean space Rnm ,
where

nm := |{α ∈ Nn : |α| = m}| =

(
n + m− 1

n− 1

)
.

We will make extensive use of this identification. In particular we endow Hn,m with
the dot-inner product. In other words, we define the inner product of θ, φ ∈ Hn,m as

〈θ, φ〉 :=
∑

|α|=m

θαφα.

We shall also frequently use the vector-valued function σm : Rn → Rnm defined by

x �→ (xα)|α|=m.
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Notice that by construction, the following identity holds for all θ ∈ Hn,m and x ∈ Rn:

θ(x) = 〈θ, σm(x)〉.

For the special case m = 2, the space of 2-forms Hn,2 = Rn2 can also be identified
with the space Sn of n×n symmetric matrices. The identification is via the one-to-one
correspondence between symmetric matrices and quadratic forms Q ∈ Sn �→ q ∈ Hn,2,
where q(x) := xTQx.

2.2. Positive semidefinite forms. Given a cone D ⊆ Rn, let Pn,m(D) be the
cone of m-degree forms that are positive semidefinite in D (psd in D), i.e.,

Pn,m(D) := {θ ∈ Hn,m : θ(x) ≥ 0 for all x ∈ D}.

When m = 2, D = Rn, and Hn,2 is identified with Sn, the cone Pn,2(Rn) corresponds
precisely to the cone of psd matrices, usually denoted Sn

+. We shall write A 	 0 for
A ∈ Sn

+ following the usual notation in the semidefinite programming literature (see,
e.g., [33]).

If θ ∈ Pn,m(D) satisfies θ(x) > 0 for all x ∈ D, x 
= 0, then θ is said to be positive
definite in D (pd in D). Throughout our presentation we will frequently rely on the
following straightforward characterization of the interior of Pn,m(D).

Observation 1. Assume D ⊆ Rn is a closed cone. Then θ is pd in D if and only
if θ ∈ int(Pn,m(D)).

Notice that the class of cones of psd polynomials can be seen as a subclass of
cones of psd forms via homogenization. Consequently, our presentation focuses on
the latter class of cones.

An advantage of working with cones of forms is the algebraic characterization of
the interior of Pn,m(D) stated in Observation 1. The analog statement in general fails
for cones of polynomials due to the possibility of “zeros at infinity” (see [27]). For
example, the polynomial g(x1, x2) = x2

1 + (1 − x1x2)
2 is pd in R2, but for all ε > 0,

g(x1, x2) − ε is not psd in R2 because limx→0 g(x, 1/x) = 0.

2.3. LMI approximations of Pn,m(D). Theorem 1 summarizes the main re-
sults discussed in this paper: For several important classes of conic domains D, the
cone Pn,m(D) can be innerly approximated by a sequence of cones definable in terms
of LMI. Theorem 1 can be seen as a compilation and extension of previous approxima-
tion results for polynomial optimization problems [1, 3, 13, 14, 15, 16, 17, 18, 20, 21].

Theorem 1. Suppose D = Rn, D = Rn
+, or D is a pointed semialgebraic cone.

Then we can construct a sequence of cones Kr, r = 0, 1, . . . , such that
(i) Kr ⊆ Kr+1 ⊆ Pn,m(D), r = 0, 1, . . . ,
(ii) int(Pn,m(D)) ⊆

⋃∞
r=0 K

r,
(iii) each Kr has an LMI description; in other words,

Kr = {θ ∈ Hn,m : ∃Φ 	 0 s.t. Lθ = T Φ}(1)

for some suitable linear mappings L, T ;
(iv) if D is a polyhedral cone, then we can also construct a polyhedral sequence

of cones approximating Pn,m(D) as above (i.e., with Φ ≥ 0 in (1)).
Proof. See Propositions 5, 13, and 17 in sections 3, 5, and 6, respectively.
Throughout what follows, we shall write Kr ↑ Pn,m(D) as shorthand for condi-

tions (i) and (ii) in Theorem 1. Also, whenever we say that {Kr, r = 0, 1, . . . } is
a sequence of inner approximations for Pn,m(D), it will be implicitly assumed that
{Kr, r = 0, 1, . . . } satisfies conditions (i), (ii), and (iii) in Theorem 1.
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Theorem 1 in combination with Theorem 2 readily yields numerical schemes based
on semidefinite programming for computing arbitrarily close approximate solutions
to primal-dual pairs of conic programs of the form

(P)
zP = inf 〈c, θ〉

s.t. Aθ = b,
θ ∈ Pn,m(D)

(D)
zD = sup 〈b, v〉

s.t. c−A∗v ∈ Pn,m(D)∗

for the classes of conic domains D in Theorem 1. Here A∗ is the adjoint of A and
Pn,m(D)∗ is the dual cone of Pn,m(D). This general format underlies several of the
ideas and results in [15, 16, 20].

Consider the primal-dual pair of conic programs obtained when Pn,m(D) is re-
placed by Kr in (P) and (D):

(Pr)
zPr = inf 〈c, θ〉

s.t. Aθ = b,
θ ∈ Kr

(Dr)
zDr = sup 〈b, v〉

s.t. c−A∗v ∈ (Kr)∗.

Theorem 2 formalizes the intuitively natural fact that (P) and (D) are approxi-
mated when the cone Pn,m(D) is suitably approximated by a sequence of cones. This
result can be seen as a strengthening of the classical strong conic duality theorem in
convex analysis (cf. [25, 28]).

Theorem 2. Assume (D) is feasible, A is surjective, and (P) is strictly feasible
(i.e., there exists θ ∈ int(Pn,m(D)) such that Aθ = b). Let Kr ↑ Pn,m(D) and (P),
(Pr), (D), (Dr) be as above. Then

(i) (Dr) is feasible and zDr
≥ zDr+1

≥ zD for r = 0, 1, . . . ;
(ii) for r sufficiently large, zPr = zDr and (Dr) has an optimal solution vr;
(iii) limr→∞ zDr = zD = zP, the set {vr : r = 0, 1, . . . } is bounded, and every

limit point of {vr : r = 0, 1, . . . } is an optimal solution of (D).
Proof. This is a direct consequence of conic duality. It is a dual version of [34,

Thm. 2] and can be proven by a similar argument.

3. PSD forms in Rn. In this section we concentrate on the cone Pn,2m(Rn),
which we shall abbreviate as Pn,2m.

3.1. First approximation: Sums of squares. Let Σn,2m denote the cone of
forms in Hn,2m that are sum of squares (sos), that is,

Σn,2m := conv{φ(x)2 : φ ∈ Hn,m}.

(Here conv(S) denotes the convex hull of the set S.)
Notice that Σn,2m ⊆ Pn,2m(Rn) for all m,n. This inclusion is proper, except for

some special cases. This is a classical result due to Hilbert [9].
Theorem 3 (Hilbert). Σn,2m = Pn,2m(Rn) if and only if n ≤ 2, or m ≤ 1, or

(n,m) = (3, 2).
The inclusion Σn,2m ⊆ Pn,2m gives an inner approximation of Pn,2m and hence-

forth a sufficient condition for positive semidefiniteness: a form is psd if it is a sos.
Notice that for φ ∈ Hn,m we have

φ(x)2 = 〈φ, σm(x)〉2 = σm(x)T(φφT)σm(x).

This yields the following observation.
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Observation 2. Let θ ∈ Hn,2m. Then θ ∈ Σn,2m if and only if there exists
Φ ∈ Snm , Φ 	 0, such that θ(x) = σm(x)TΦσm(x).

Notice that the identity θ(x) = σm(x)TΦσm(x) corresponds to a linear system of
equations in Φ and θ, and therefore optimizing a linear function with linear restrictions
over Σn,2m can be cast as a semidefinite programming problem.

The study of the relationship between psd forms and sos has a long history. The
search for such kinds of connections is closely tied with Hilbert’s 17th problem [10]
and with advances in real algebra over the last century [23, 26]. Our work relies on
some of these developments. For a detailed account of the rich history of this subject,
we refer the reader to the excellent references [23, 26, 27].

3.2. Inner approximations for Pn,2m. We next present a sequence of inner
approximations for Pn,2m introduced by Jibetean and de Klerk [13, section 4.3]. The
construction uses Σn,2m as a starting point and is based on the following key repre-
sentation theorem for pd forms due to Reznick [26].

Theorem 4 (Reznick). Let θ ∈ Hn,2m. If θ is pd in Rn, then there exists r ∈ N
such that ⎛

⎝ n∑
j=1

x2
j

⎞
⎠

r

θ(x) ∈ Σn,2(m+r).

Proof. See [26, Thm. 3.12].
Theorem 4 naturally suggests the following sequence of inner approximations for

Pn,2m [13, section 4.3]: For r = 0, 1, . . . let

Kr
n,2m(Rn) :=

⎧⎨
⎩θ ∈ Hn,2m :

⎛
⎝ n∑

j=1

x2
j

⎞
⎠

r

θ(x) ∈ Σn,2(m+r)

⎫⎬
⎭

=

⎧⎨
⎩θ ∈ Hn,2m : ∃Φ ∈ Snm+r , Φ 	 0, s.t.

⎛
⎝ n∑

j=1

x2
j

⎞
⎠

r

θ(x) = σm+r(x)TΦσm+r(x)

⎫⎬
⎭ .

The last identity holds by Observation 2 and automatically gives an LMI description
of Kr

n,2m(Rn):

Kr
n,2m(Rn) = {θ ∈ Hn,2m : ∃Φ ∈ Snm+r , Φ 	 0, s.t. Lθ = T Φ},(2)

where L : Hn,2m → Hn,2(m+r) and T : Snm+r → Hn,2(m+r) are the linear maps defined
by (Lθ)(x) := (

∑n
j=1 x

2
j )

rθ(x) and (T Φ)(x) := σm+r(x)TΦσm+r(x).
Proposition 5. Kr

n,2m(Rn) ↑ Pn,2m.
Proof. Let θ ∈ Hn,2m. If θ(x) ∈ Σn,2m, then

∑n
j=1 x

2
j θ(x) ∈ Σn,2m+2. Also, if∑n

j=1 x
2
j θ(x) ∈ Σn,2m+2, then θ(x) ∈ Pn,2m. These two facts imply Kr

n,2m(Rn) ⊆
Kr+1

n,2m(Rn) ⊆ Pn,2m for all r. Finally, from Observation 1 and Theorem 4 it follows

that int(Pn,2m) ⊆
⋃∞

r=0 K
r
n,2m(Rn).

Remark 1. In general the inclusion
⋃∞

r=0 K
r
n,2m(Rn) ⊆ Pn,2m in Proposition 5 is

strict. For example, it is known (see, e.g., [26]) that the form

θ(x1, x2, x3, x4) = x2
1(x

2
2x

4
3 + x2

3x
4
4 + x2

4x
4
2 − 3x2

2x
2
3x

2
4) + x8

4

satisfies θ ∈ P4,8, but for all r, (
∑4

j=1 x
2
j )

rθ(x) 
∈ Σ4,8+2r. Thus θ 
∈
⋃∞

r=0 K
r
4,8(R

4).
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Proposition 5 yields an approximation scheme for unconstrained polynomial opti-
mization (for details see [7, 12, 13, 35]). This approximation scheme is similar to the
one proposed by Lasserre in [15] but does not require the knowledge of any a priori
bound on the size of the minimizer of the polynomial.

4. Copositive forms. In this section we concentrate on the cone Pn,m(Rn
+),

which we call the cone of m-degree copositive forms in n variables.
We describe two families of inner approximations of Pn,m(Rn

+). The first one is
analogous to that of section 3. The second one is a sequence of polyhedral cones.

4.1. Inner approximations for Pn,m(Rn
+). Let S : Hn,m → Hn,2m be the

mapping θ(x) �→ θ(x2) := θ(x2
1, . . . , x

2
n). In other words,

[S θ]α =

{
θ 1

2α
if every αi is even,

0 otherwise.
(3)

Since θ(x) ≥ 0 for all x ∈ Rn
+ if and only if θ(x2) ≥ 0 for all x ∈ Rn, it follows that

θ ∈ Pn,m(Rn
+) ⇔ S θ ∈ Pn,2m.(4)

Inspired by (4) we define (for r = 0, 1, . . . )

Kr
n,m(Rn

+) := {θ ∈ Hn,m : S θ ∈ Kr
n,2m(Rn)}.

From Proposition 5 and (4) it follows that the sequence of cones Kr
n,m(Rn

+) is a
sequence of inner approximations of Pn,m(Rn

+).
Proposition 6. Kr

n,m(Rn
+) ↑ Pn,m(Rn

+).
The LMI description (2) for Kr

n,2m(Rn) yields an LMI description for Kr
n,m(Rn

+).
However, a more concise description can be obtained via the cone of elementary
copositive forms En,m(Rn

+) ⊆ Pn,m(Rn
+), defined as follows:

En,m(Rn
+) := {θ ∈ Hn,m : S θ ∈ Σn,2m}.(5)

This gives an alternative definition of Kr
n,m(Rn

+), namely

Kr
n,m(Rn

+) =

⎧⎨
⎩θ ∈ Hn,m :

⎛
⎝ n∑

j=1

xj

⎞
⎠

r

θ(x) ∈ En,m+r(Rn
+)

⎫⎬
⎭ .

In section 4.3 we give an alternative and more concise description of En,m(Rn
+) without

relying on the operator S .

4.2. Polyhedral approximations. Now we construct a sequence of polyhedral
approximations for Pn,m(Rn

+). This construction is based in the representation theo-
rem due to Pólya [8].

Theorem 7 (Pólya). Let θ ∈ Hn,2m. If θ is pd in Rn
+, then there exists r ∈ N

such that ⎛
⎝ n∑

j=1

xj

⎞
⎠

r

θ(x) has nonnegative coefficients.

Proof. See [8, Thm. 56].
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It is now natural to define

Cr
n,m(Rn

+) :=

⎧⎨
⎩θ ∈ Hn,m :

⎛
⎝ n∑

j=1

xj

⎞
⎠

r

θ(x) has nonnegative coefficients

⎫⎬
⎭ .

Notice that Cr
n,m(Rn

+) can also be viewed as a modification of the construction of
Kr

n,m(Rn
+). Clearly, Cr

n,m(Rn
+) ⊆ Kr

n,m(Rn
+), as any form of degree d with nonnega-

tive coefficients is in En,d(Rn
+). By construction, Cr

n,m(Rn
+) has an LMI description.

Indeed, Cr
n,m(Rn

+) is a polyhedral cone.
The sequence Cr

n,m(Rn
+), r = 0, 1, . . . , also yields a sequence of inner approxima-

tions for Pn,m(Rn
+).

Proposition 8. Cr
n,m(Rn

+) ↑ Pn,m(Rn
+).

Proof. This follows from Proposition 6 and Theorem 7.
Again, as in Proposition 5, the inclusion

⋃∞
r=0 C

r
n,m(Rn

+) ⊆ Pn,m(Rn
+) is strict in

general. For example, the form

θ(x1, x2, x3, x4) = x1(x2x
2
3 + x3x

2
4 + x4x

2
2 − 3x2x3x4) + x4

4

satisfies θ ∈ P4,4(R4
+), but θ 
∈

⋃∞
r=0 C

r
4,4(R

4
+).

4.3. Alternative characterization of En,m(Rn
+). The next proposition yields

a characterization of the elementary copositive forms En,m(Rn
+) without relying on the

operator S . Aside from being more concise, this alternative description for En,m(Rn
+)

has natural extensions to pointed polyhedral and semialgebraic cones (cf. sections 5
and 6).

Proposition 9. The sets En,m(Rn
+) defined above satisfy the following identity:

En,m(Rn
+) = conv{xi1xi2 · · ·xikψ(x)2 : m− k is even, ψ ∈ Hn,(m−k)/2,

and i1, . . . , ik ∈ {1, . . . , n}}.

Proof. The “⊇” inclusion is immediate. For the reverse inclusion, assume θ ∈
En,m(Rn

+). Hence θ(x2) =
∑k

i=1 φi(x)2 for some φi ∈ Hn,m, i = 1, . . . , k. Writing
each φi in terms of its monomial expansion we get

φi(x)2 =
∑

|α|=m

∑
|α′|=m

φi,αφi,α′xαxα′
.

Now let par(α) ∈ {0, 1}n be the vector of parities of α, defined by par(α)i = 0 if αi is
even and par(α)i = 1 otherwise. Since all monomials in θ(x2) contain only variables
with even powers, it follows that

θ(x2) =

k∑
i=1

φi(x)2

=

k∑
i=1

∑
β∈{0,1}n

∑
{φi,αφi,α′xαxα′

: par(α) = par(α′) = β, |α| = |α′| = m}.

(All other terms cancel out.)
Thus,

θ(x2) =

k∑
i=1

φi(x)2 =

k∑
i=1

∑
β∈{0,1}n

(∑
{φi,αx

α : par(α) = β, |α| = m }
)2

.
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Since α ≥ par(α), we can rewrite the previous expression as

θ(x2) =

k∑
i=1

φi(x)2 =

k∑
i=1

∑
β∈{0,1}n

x2β
(∑

{φi,αx
α−β : par(α) = β, |α| = m}

)2

.

Finally, since all entries in α− par(α) are even, we get

θ(x) =

k∑
i=1

∑
β∈{0,1}n

xβ
(∑

{φi,αx
(α−β)/2 : par(α) = β, |α| = m}

)2

.

The following inductive and LMI descriptions of the sets En,m(Rn
+) readily follow

from Proposition 9 and Observation 2.
Corollary 10.

(i) The sets En,m(Rn
+) satisfy the following recursive relationships:

En,1(Rn
+) = conv{xj : j = 1, . . . , n},

En,2(Rn
+) = conv({(aTx)2 : a ∈ Rn} ∪ {xixj : 1 ≤ i < j ≤ n}),

En,2k+1(Rn
+) = conv{xjθ(x) : θ ∈ En,2k, j = 1, . . . , n},

En,2k+2(Rn
+) = conv(Σn,2(k+1) ∪ {xjθ(x) : θ ∈ En,2k+1, j = 1, . . . , n}).

(ii) The sets En,m(Rn) can be defined via the following LMI identities:

En,1(Rn
+) := {θ ∈ Hn,1 : ∃a ∈ Rn

+ s.t. θ(x) = aTx},

En,2(Rn
+) := {θ ∈ Hn,2 : ∃M,N ∈ Sn, M 	 0, N ≥ 0, s.t.

θ(x) = xT(M + N)x},

En,3(Rn
+) :=

{
θ ∈ Hn,3 : ∃M i, N i ∈ Sn, M i 	 0, N i ≥ 0, i = 1, . . . , n,

s.t. θ(x) =
∑
i

xi(x
T(M i + N i)x)

}
,

...

The map S (see (3)) establishes a parallel between the pairs (Σn,2m, Pn,2m) and
(En,m(Rn

+), Pn,m(Rn
+)). Extending this parallel, note that the inclusion En,m(Rn) ⊆

Pn,m(Rn
+) is proper, except for the special cases described in Proposition 11. This

result follows from Theorem 3 (Hilbert’s theorem) and a classical result on copositive
forms due to Diananda [4, Thm. 2]. For details see [35].

Proposition 11. En,m(Rn) = Pn,m(Rn
+) if and only if n ≤ 2, or m = 1, or

(n,m) = (3, 2), or (n,m) = (4, 2).
The particular case m = 2 in Proposition 6 yields the hierarchy of sufficient

conditions for copositivity of matrices proposed by Parrilo [20]: a symmetric matrix
A ∈ Sn is copositive (i.e., a(x) := xTAx ∈ Pn,2(Rn

+)) if the following r-criterion holds:⎛
⎝ n∑

j=1

x2
j

⎞
⎠

r

(x2)TAx2 ∈ Σn,4+2r.(6)

The LMI description of the sets En,m(Rn
+) in Corollary 10 yields an alternative LMI

formulation of Parrilo’s r-criterion for r = 0, 1, 2, 3, . . . . In particular, a new suc-
cinct derivation of the criterion for copositivity proposed by Parrilo in [20] can be
obtained [35].
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5. PSD forms over pointed polyhedral cones. We next construct approx-
imation schemes for the cone Pn,m(D) in the case when D is a pointed polyhedral
cone. Throughout this section we shall assume that the domain D is the polyhedral
cone

D = {x : aT

i x ≥ 0, i = 1, . . . , q}

for some matrix
[
a1 . . . aq

]T ∈ Rq×n. We shall also assume that D is pointed;
i.e., it contains no lines. It is easy to see that the latter condition is equivalent to
rank(

[
a1 . . . aq

]T
) = n.

Notice that

Rn
+ = {x : eT

i x ≥ 0, i = 1, . . . , n},

and therefore this section is an extension of the previous one. To get inner approxi-
mating sequences of cones for Pn,m(D) we first extend Pólya’s theorem to this context.
This generalization can be obtained as a consequence of a representation theorem for
polynomials positive on compact polyhedra due to Handelman [6]. (A constructive
proof of such a theorem is presented in [26, Thm. 2].) At the end of this section
we give a proof of this result that relies exclusively on elementary tools and Pólya’s
theorem.

Proposition 12. Assume D = {x : aT
i x ≥ 0, i = 1, . . . , q} is pointed and

θ ∈ int(Pn,m(D)). Then, for N sufficiently large,

(aT

1x + · · · + aT

qx)Nθ(x) = φ(aT

1x, . . . , a
T

qx)

for some φ ∈ Hq,m+N with φ ≥ 0.
Here φ ≥ 0 means that the form φ has nonnegative coefficients.
Now we can extend the ideas of section 4 in a natural fashion. Let

En,m(D) := conv
{

(aT
i1
x) · · · (aT

ik
x)ψ(x)2 : m− k is even, ψ ∈ Hn,(m−k)/2,

and i1, . . . , ik ∈ {1, . . . , q}
}
,

Kr
n,m(D) :=

{
θ ∈ Hn,m :

(
q∑

i=1

aT

i x

)r

θ(x) ∈ En,m+r(D)

}
,

and

Cr
n,m(D) :=

{
θ ∈ Hn,m : ∃φ ∈ Hn,m+r, φ ≥ 0, s.t.(

q∑
i=1

aT

i x

)r

θ(x) = φ(aT

1x, . . . , a
T

qx)

}
.

By construction, both Kr
n,m(D) and Cr

n,m(D) have LMI descriptions. Indeed, we have
that Cr

n,m(D) is a polyhedral cone. Notice also that Cr
n,m(D) ⊆ Kr

n,m(D).
The natural extensions of Propositions 6 and 8 hold.
Proposition 13. Cr

n,m(D) ↑ Pn,m(D) and Kr
n,m(D) ↑ Pn,m(D).

Proof. The first claim follows from Proposition 12. The second claim follows from
the first one and the inclusions Cr

n,m(D) ⊆ Kr
n,m(D) ⊆ Pn,m(D).
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Proposition 12 also yields Proposition 14, which is a natural analogue of Theo-
rem 4. Notice that both the second part of Proposition 13 and Proposition 6 can be
obtained as a consequence of Proposition 14.

Proposition 14. Assume D = {x : aT
i x ≥ 0, i = 1, . . . , q} is pointed. Let

θ ∈ Hn,m. If θ is pd in D, then there exists r ∈ N such that(
n∑

i=1

aT

i x

)r

θ(x) ∈ En,m+r(D).

Proof. This readily follows from Proposition 12.
Proof of Proposition 12. Let A = QR be the full QR factorization of A (see,

e.g., [5, 32]); i.e., Q ∈ Rq×q is orthogonal and R ∈ Rq×n is upper triangular. Since
rank(A) = n (as D is pointed), the matrix R is of the form

[
UT 0

]T
, where U ∈ Rn×n

is upper triangular and nonsingular. Put Q =
[
Q1 Q2

]
, where Q1 is the block of

the first n columns of Q. Now let γ ∈ Hq,m be defined as

γ(y) := θ(U−1QT

1y).

Notice that U−1QT
1A = I, so in particular γ(Ax) = θ(x).

Claim. For c ≥ 0 sufficiently large, γ(y) + c(yTQ2Q
T
2y) > 0 for all y ∈ Δq :=

{y ∈ Rq
+ :

∑
yi = 1}. Here is a proof of the claim: let F := {y ∈ Δq : γ(y) ≤ 0}.

If F = ∅, then take c = 0. Otherwise, observe that any given y ∈ F cannot be of
the form Ax, so it is also not of the form Q1z. Therefore QT

2y 
= 0 for all y ∈ F .
Let m1 := min{γ(y) : y ∈ F} ≤ 0, and m2 := min{(yTQ2Q

T
2y) : y ∈ F} > 0.

(These minima are attained because F is compact.) The claim then follows by taking
c > −m1/m2.

Let c > 0 be sufficiently large so that γ(y) + c(yTQ2Q
T
2y) > 0 for all y ∈ Δq.

Applying Pólya’s theorem to

γ(y) + c(y1 + · · · + yq)
m−2(yTQ2Q

T

2y)

we conclude that for N sufficiently large there exists φ ∈ Hq,m+N , φ ≥ 0, such that

(y1 + · · · + yq)
N (γ(y) + c(y1 + · · · + yq)

m−2(yTQ2Q
T

2y)) = φ(y1, . . . , yq).

Thus, since γ(Ax) = θ(x) and QT
2Ax = 0, plugging y = Ax we get

(aT

1x + · · · + aT

qx)Nθ(x) = φ(aT

1x, . . . , a
T

qx).

6. PSD forms over pointed semialgebraic cones. Consider a domain of the
form

D = {x ∈ Rn : φi(x) ≥ 0, i = 1, . . . , q},

where φi ∈ Hn,mi
, i = 1, . . . , q. We shall restrict our attention to domains that are

pointed; i.e., we shall assume that 0 cannot be obtained as a sum of nonzero elements
of D.

Since D is semialgebraic, it is closed. Thus, D is pointed if and only if {0} is an
exposed face of D (see, e.g., [11, 28]), i.e., if and only if there exists a nonzero vector
a ∈ Rn such that

D ⊆ {x ∈ Rn : aTx ≥ 0}(7)
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and

D ∩ {x ∈ Rn : aTx = 0} = {0}.(8)

Furthermore, (7) and (8) imply that D ∩ {x ∈ Rn : aTx = 1} is compact.
Assumption 1.

(a) Assume that a vector a ∈ Rn satisfying (7) and (8) is available.
(b) Assume also that aTx ≥ 0 is included in the definition of D. In other words,

assume φi(x) = aTx for some i ∈ {1, . . . , q}. (This can be assumed without loss of
generality because we can always include the redundant inequality aTx ≥ 0 in the
definition of D.)

We now extend the constructions in sections 4 and 5 in a natural fashion. Let

En,m(D) := conv{φi1(x) · · ·φik(x)ψ(x)2 : m− (mi1 + · · · + mik) is even,
ψ ∈ Hn,(m−(mi1+···+mik

))/2,

and i1, . . . , ik ∈ {1, . . . , q}},
(9)

and let

Kr
n,m(D) := {θ ∈ Hn,m : (aTx)rθ(x) ∈ En,m+r(D)}.(10)

The heart of our construction is the following natural extension of Proposition 14.
Proposition 15. Assume D = {x ∈ Rn : φi(x) ≥ 0, i = 1, . . . , q} is such that

Assumption 1 holds. Let θ ∈ Hn,m. If θ is pd in D, then there exists r ∈ N such that

(aTx)rθ(x) ∈ En,m+r(D).

The proof of Proposition 15 relies on the following fundamental representation
theorem due to Schmüdgen [29]. In the following statement, Σn denotes the set of
polynomials in n variables that are sos.

Theorem 16 (Schmüdgen). Let f, h1, . . . , hs be polynomials in n variables such
that D = {x ∈ Rn : hi(x) ≥ 0, i = 1, . . . , s} is compact and f(x) > 0 for all x ∈ D.
Then there exist gν ∈ Σn, ν ∈ {0, 1}s, such that

f(x) =
∑

ν∈{0,1}s

h1(x)ν1 · · ·hs(x)νsgν(x).

Proof. See [29, Cor. 3].
Proof of Proposition 15. First assume a = en :=

[
0 · · · 0 1

]T ∈ Rn. To sim-
plify notation, we shall let x̄ denote a generic vector (x1, . . . , xn−1) ∈ Rn−1. Assume
θ ∈ Hn,m is pd in D. Let f(x̄) = θ(x̄, 1), and let D = {x̄ ∈ Rn−1 : (x̄, 1) ∈ D} = {x̄ ∈
Rn−1 : φi(x̄, 1) ≥ 0}. By Assumption 1 and since θ is pd in D, the set D is compact
and f(x̄) > 0 for all x̄ ∈ D. Thus by Theorem 16 there exist gν ∈ Σn−1, ν ∈ {0, 1}q,
such that

f(x̄) =
∑

ν∈{0,1}q

φ1(x̄, 1)ν1 · · ·φq(x̄, 1)νqgν(x̄).(11)

Let mν =
∑

νi=1 deg(φi) for each ν ∈ {0, 1}q, and let N = maxν(mν + deg(gν)).
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From (11) we get

xN−m
n θ(x) = xN

n f(x̄/xn)

=
∑

ν∈{0,1}q

φ1(x̄/xn, 1)ν1 · · ·φq(x̄/xn, 1)νqgν(x̄/xn)xN
n

=
∑

ν∈{0,1}q

φ1(x)ν1 · · ·φq(x)νq ğν(x)xN−mν−deg(gν)
n ,

where ğν is the homogenization of gν . It thus follows that θ ∈ KN−m
n,m (D).

The general case can be reduced to this special case via a “change of coordinates”
as follows. Without loss of generality assume aTa = 1. Let B ∈ Rn×n be an orthogonal
matrix whose last column is a. Taking D̃ := {y : By ∈ D}, φ̃i(y) := φi(By), ã := en,
we are in the previous case, and hence the statement above holds for D̃, φ̃i, ã. The
general result then follows for D, φi, a, after changing back to the original coordinates
by taking D = {By : y ∈ D̃}, φi(x) := φ̃i(B

Tx), a = Bã.
We can now extend the second part of Proposition 13, which yields our most

general result.
Proposition 17. Kr

n,m(D) ↑ Pn,m(D).
Proof. This follows from Proposition 15 and the following two facts:

θ(x) ∈ En,m(D) ⇒ (aTx)θ(x) ∈ En,m+1(D),
(aTx)θ(x) ∈ En,m+1(D) ⇒ θ(x) ∈ Pn,m(D).

Remark 2. Notice that the definitions of En,m(·) and Kr
n,m(·) in section 4, sec-

tion 5, and section 6 are consistent; i.e., if we apply (9) and (10) to the special cases
D = Rn

+ = {x : xj ≥ 0}, a = e :=
[
1 · · · 1

]T and to D = {x ∈ Rn : aT
i x ≥

0, i = 1, . . . , q}, a = a1 + · · · + aq, we recover the sets defined in sections 4 and
5. Indeed, Proposition 6 and the second part of Proposition 13 are special cases of
Proposition 17.

Using a stronger representation theorem for positive polynomials due to Jacobi
and Prestel (see [23, Thm. 6.3.4]), another sequence of inner approximations can be
constructed. Assume m1, . . . ,mq have the same parity. Thus by Assumption 1(a), all
m1, . . . ,mq must be odd.

Define En,m(D) as follows: For m odd,

En,m(D) := conv{φi(x)ψ(x)2 : i ∈ {1, . . . , q}, ψ ∈ Hn,(m−mi)/2},

and for m even,

En,m(D) := Σn,m.

Finally, let

Kr
n,m(D) := {θ ∈ Hn,m : (aTx)rθ(x) ∈ En,m+r(D)}.

Proposition 18. Kr
n,m(D) ↑ Pn,m(D).

Proof. Under the assumptions made above, the representation theorem due to
Jacobi and Prestel (see [23, Thm. 6.3.4(i)]) implies that for any given θ ∈ Hn,m pd
in D there exists r ∈ N such that

(aTx)rθ(x) ∈ En,m+r(D).

Now proceeding as in the proof of Proposition 17, the result follows.
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Remark 3. When the mi’s do not have the same parity, the construction above
still works, provided that we take

En,m(D) := conv(Fn,m(D) ∪Gn,m(D) ∪ Σn,m),

where

Fn,m(D) := {φi(x)ψ(x)2 : i ∈ {1, . . . , q}, m−mi is even, ψ ∈ Hn,(m−mi)/2},

Gn,m(D) := {φi(x)φj(x)ψ(x)2 : i < j ∈ {1, . . . , q},
m−mi −mj is even,
and ψ ∈ Hn,(m−mi−mj)/2}.

In this case, [23, Thm. 6.3.4(ii)] applies.
Example 1 (constrained polynomial optimization). Let g(x) and gi(x), i =

1, . . . , q, be given polynomials in n variables (not necessarily homogeneous) and con-
sider the problem of finding

g∗ := min{g(x) : gi(x) ≥ 0, i = 1, . . . , q}.(12)

We shall assume that the following technical condition holds:

For all x ∈ Rn \ {0} there exists i ∈ {1, . . . , q} s.t. g̃i(x) < 0,(13)

where g̃i(x) is the homogeneous component of gi(x) of highest total degree.
Without loss of generality assume the constant term of g(x) is zero, i.e., g�0 = 0.

Thus, by homogenizing, it can be shown that (12) is equivalent to

max −θ(�0,2m)

s.t. θ(α,αn+1) = gα for all |(α, αn+1)| = 2m, α 
= �0,
θ ∈ Pn+1,m(D),

where D = {(x, xn+1) : xn+1 ≥ 0 and ği(x, xn+1) ≥ 0, i = 1, . . . , q}. It is easy to
see that the domain D ⊆ Rn+1 satisfies Assumption 1(a) for a = en+1 if and only if
condition (13) holds.

For each nonnegative integer r, consider

gr := max −θ(�0,2m)

s.t. θ(α,αn+1) = gα for all |(α, αn+1)| = 2m, α 
= �0,
θ ∈ Kr

n+1,m(D).

By the construction of Kr
n+1,m(D) above, this is a semidefinite program. Furthermore,

by Proposition 17 and Theorem 2, gr ↑ g∗. This also holds if Kr
n+1,m(D) is changed

to Kr
n+1,m(D).
Remark 4. The sequence of inner approximations Kr

n,m(D) is closely related to
Lasserre’s construction in [15], which relies on a theorem of Putinar [24, Thm. 1.4].
However, as pointed out in [23, p. 159], the proof of Putinar’s theorem works only
in the case when all mi’s are even and requires the hypothesis (13), which is slightly
stronger than the hypothesis made in [24] and in [15].
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A NEW NOTION OF WEIGHTED CENTERS FOR SEMIDEFINITE
PROGRAMMING∗
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Abstract. The notion of weighted centers is essential in V-space interior-point algorithms for
linear programming. Although there were some successes in generalizing this notion to semidefinite
programming via weighted center equations, we still do not have a generalization that preserves two
important properties—(1) each choice of weights uniquely determines a pair of primal-dual weighted
centers, and (2) the set of all primal-dual weighted centers completely fills up the relative interior of
the primal-dual feasible region. This paper presents a new notion of weighted centers for semidefinite
programming that possesses both uniqueness and completeness. Furthermore, it is shown that under
strict complementarity, these weighted centers converge to weighted centers of optimal faces. Finally,
this convergence result is applied to homogeneous cone programming, where the central paths defined
by a certain class of optimal barriers for homogeneous cones are shown to converge to analytic centers
of optimal faces in the presence of strictly complementary solutions.
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structure, Cholesky decomposition
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1. Introduction. This paper presents a new generalization of the notion of
weighted centers from linear programming (LP) to semidefinite programming (SDP).
We consider the following primal-dual pair of SDP problems,

inf C • X

subject to A(i) • X = bi, i = 1, . . . ,m,

X � 0,

(P)

and

sup bTy

subject to S = C −
m∑
i=1

A(i)yi,

S � 0,

(D)

where the A(i) and C are symmetric matrices, b = (b1, . . . ,bm)T and y =
(y1, . . . ,ym)T are real m-vectors, • : (A,B) �→ trATB is the trace inner product,
and X � 0 means that X is symmetric and positive semidefinite.

The notion of weighted centers for LP is very useful in interior-point algorithms
that use the V-space approach (see [10, 11]). These weighted centers can be charac-
terized in the following two ways:
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1. as minimizers of shifted, weighted logarithmic barriers

(x, s) ∈ Rn × Rn �→ −
n∑

i=1

wi log xi −
n∑

i=1

wi log si + xT s

over the primal-dual feasible region {(x, s) ∈ Rn × Rn : Ax = b, s = c −
ATy, y ∈ Rm, x ≥ 0, s ≥ 0}, and

2. as solutions to weighted center equations

Ax = b, s = c −ATy for some y ∈ Rm,

xs = w, x > 0, and s > 0,

where w = (w1, . . . , wn)T and xs denotes the componentwise product of x
and s.

A main obstacle in generalizing weighted centers to SDP is the lack of proper
weighted barriers. Nonetheless, there were some successes in generalizing weighted
center equations to SDP. Monteiro and Pang [15] considered the weighted Alizadeh–
Haeberly–Overton (AHO) centers, where the equation XS + SX = 2W replaces
xs = w. Every symmetric, positive definite matrix W uniquely determines a weighted
AHO center. However, unlike LP, these weighted centers do not fill up the whole
relative interior of the primal-dual feasible region, i.e., not every strictly feasible pair
of matrices (X,S) is a pair of weighted AHO centers. Sturm and Zhang [21] considered
a different generalization that is based on the Nesterov–Todd (NT) scaling point.
This generalization replaces xs = w with Λ(XS) = W, where Λ(XS) denotes the
diagonal matrix with the eigenvalues of XS on its diagonal, and W is a positive,
diagonal matrix. In contrast with the weighted AHO centers, these weighted NT
centers completely fill up the relative interior of the primal-dual feasible region as W
ranges over all positive, diagonal matrices but lacks uniqueness, i.e., the equations
may have more than one solution for each positive, diagonal matrix W.

We shall describe an alternative generalization of weighted centers to SDP that
possesses both uniqueness and completeness. While this generalization, which is
based on Cholesky factors, is similar to a generalization considered by Monteiro and
Zanjácomo [17], the main difference lies in the choice of W. In [17], W is required to
be “close” to multiples of the identity matrix in order for the weighted center equation
to have a unique solution. On the other hand, we use positive, diagonal matrices W
to ensure uniqueness. By restricting to diagonal matrices, the weighted centers can
be characterized as minimizers of certain shifted, weighted logarithmic barriers over
the primal-dual feasible region. In each generalization, the collection of weighted cen-
ters does not completely fill up the relative interior of the primal-dual feasible region.
This drawback can be easily rectified in our generalization by considering orthonor-
mal similarity transformations. Thus, for the first time, we have a notion of weighted
centers for SDP that possesses two useful properties—uniqueness and completeness.
This lays the foundation for future extensions of V-space algorithms to SDP.

Besides having both uniqueness and completeness, these weighted centers con-
verge to weighted centers of optimal faces under strict complementarity. This gener-
alizes the same property of usual central paths for SDP. Similar results were shown
in [12, 13] and by Prieß and Stoer [20] for notions of weighted centers defined by the
maps (X,S) �→ (XS + SX)/2 and (X,S) �→ X1/2SX1/2, respectively.

Yet another reason for considering this generalization is that our weighted cen-
ters include the analytic centers defined by a certain class of optimal barriers for
homogeneous cones. Consequently, we can apply the above convergence result to ho-
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mogeneous cone programming (HCP). Specifically, we show that under strict comple-
mentarity, central paths defined by this class of optimal barriers converge to analytic
centers of optimal faces.

This paper is organized as follows. The next section starts with some basics of
SDP, including a discussion on the facial structures of positive definite cones and the
notion of strict complementarity. In section 3, a generalization, based on Cholesky
factors, of weighted centers to SDP is presented and a characterization of limit points
of these weighted centers under strict complementarity is given. This result is applied
to HCP in section 4, where it is shown that central paths defined by a certain class of
optimal barriers for HCP converge to analytic centers of optimal faces in the presence
of strictly complementary solutions.

Notation and conventions. Throughout this paper, we use the following no-
tation.

The space of symmetric matrices of order n is denoted by Sn and the cone of
symmetric, positive semidefinite (resp., positive definite) matrices of order n is denoted
by Sn

+ (resp., Sn
++). If X ∈ Sn, then the statement X � 0 (resp., X � 0) means that

X ∈ Sn
+ (resp., X ∈ Sn

++).
For any m-by-n matrix M and any subsets of indices I ⊂ {1, . . . ,m} and J ⊂

{1, . . . , n}, the submatrix of M with row indices in I and column indices in J is
denoted by MIJ . If I = {i} (or J = {j}) is a singleton, we may also write i (or j) in
place of {i} (or {j}).

The identity matrix of appropriate size (in the context used) is denoted by I.
For any subset B of positive integer indices, IB denotes the 0-1 diagonal matrix of
appropriate size with (IB)ii = 1 if and only if i ∈ B, and IcB denotes I − IB .

For each X ∈ Sn, R(X) denotes the range space of X and N (X) denotes the null
space of X.

For each topological subspace S, relint(S) denotes the relative interior of S and
cl(S) denotes the closure of S.

For each sequence x1, . . . , xn of real numbers, Diag(x1, . . . , xn) denotes the diag-
onal matrix with x1, . . . , xn on its diagonal.

2. Optimal faces and strict complementarity of SDP. It is well known
that each face of Sn

+ can be uniquely identified with a subspace of Rn as follows: F
is a face of Sn

+ if and only if F = {X ∈ Sn
+ : R(X) ⊂ V} for some linear subspace

V ⊂ Rn. Moreover, for any face F = {X ∈ Sn
+ : R(X) ⊂ V} of Sn

+, X̃ ∈ relint(F ) if

and only if R(X̃) = V (see [1]). Thus, matrices in the relative interior of any face of
Sn

+ are characterized by having maximal rank among all matrices in the face.
An alternative characterization, based on Cholesky factors, of the relative interior

of a face shall now be given.
It is a well-known fact that every symmetric, positive definite matrix X has a

unique Cholesky factor (i.e., a lower triangular matrix L with nonnegative diagonal
satisfying X = LLT ). When X is symmetric and positive semidefinite, it still has
a Cholesky factor. However, the Cholesky factor may not be unique when X is not
positive definite. The next proposition shows that we can recover uniqueness by
posing an additional condition on L.

Proposition 1. Every symmetric, positive semidefinite matrix X has a unique
Cholesky factor LX satisfying

(LX)ii = 0 =⇒ (LX)ji = 0 ∀j,(2.1)

i.e., every column of LX either is a zero column or has a positive diagonal entry.
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Proof. Existence. Suppose X ∈ Sn
+. We shall prove by induction on n that

∀μk ↓ 0, ∀{Y(k)}∞k=1 ⊂ Sn
++ with Y(∞) := lim

k→∞
Y(k) ∈ Sn

++,

all limit points of {L(k) := LX+μkY(k)}∞k=1 satisfy (2.1),
(2.2)

where LX+μkY(k) denotes the unique Cholesky factor of X + μkY(k) ∈ Sn
++. Since

the sequence {L(k)} is bounded and hence has at least one limit point, the existence
of LX follows by taking, say, μk = 1/k and Y(k) ≡ I.

The case n = 1 is trivially true. Suppose that for some n ≥ 1, (2.2) holds for
all X ∈ Sn

+. Consider the case X ∈ Sn+1
+ . Let L denote an arbitrary limit point of

{L(k)}. By considering a subsequence if necessary, we may assume without any loss
of generality that limt→∞ L(k) = L. We consider two cases.

If L11 = 0, then the entries in the first column and row of X are zeros, whence
L(k)j1 =

√
μk(Y(k)11)

−1/2Y(k)j1 for all j ∈ {2, . . . , n + 1}. Since Y(∞) ∈ Sn
++, it

follows that (Y(k)11)
−1/2Y(k)j1 → (LY(∞))j1, whence Lj1 = limk→∞ L(k)j1 = 0.

We then apply (2.2) on the remaining columns and rows of X and Y(k) to conclude
(2.2) for X.

If L11 > 0, then X11 > 0 and we only need to show that LJJ satisfy (2.1) where
J denotes the set {2, . . . , n + 1}. Now

L(k)JJ = LXJJ+μkY(k)JJ−(XJ1+μkY(k)J1)(X11+μkY(t)11)−1(XJ1+μkY(k)J1)T

= (X11 + μkY(k)11)
−1/2LX̂+μkŶ(k)+μ2

kZ(k),

where

X̂ = X11XJJ − XJ1X
T
J1 ∈ Sn

+,

Ŷ(k) = Y(k)11XJJ + X11Y(k)JJ − Y(k)J1(XJ1)
T − XJ1(Y(k)J1)

T , and

Z(k) = Y(k)11Y(k)JJ − (Y(k)J1)(Y(k)J1)
T ∈ Sn

++.

Let Ŷ(∞) denote limk→∞ Ŷ(k). For each k ∈ {1, 2, . . . ,∞} and each v(�= 0) ∈ Rn,

vT
(
Ŷ(k)

)
v

= Y(k)11v
TXJJv + X11v

TY(k)JJv − 2
(
vTY(k)J1

)(
vTXJ1

)
> Y(k)11

(vTXJ1)
2

X11
+ X11

(vTY(k)J1)
2

Y(k)11
− 2

(
vTY(k)J1

)(
vTXJ1

)
≥ 0,

where we have used Ŷ(k) ∈ Sn
++, X ∈ Sn

+, and X11 > 0 in the strict inequality and the
arithmetic-geometric mean inequality in the last inequality. Thus we may apply (2.2)
to X̂ ∈ Sn

+ and {Ŷ(k) + μkZ(k)} ⊂ Sn
++ to deduce that limk→∞ LX̂+μkŶ(k)+μ2

kZ(k)

satisfies (2.1). Consequently, LJJ = limk→∞ L(k)JJ also satisfies (2.1).
Uniqueness. First, consider the case when X is a nonnegative diagonal matrix.

Let B denote the set of indices of positive diagonal entries of X. Suppose that L is
a Cholesky factor of X satisfying (2.1). Since Xii = 0 for all i /∈ B, the ith row of
L must be a row of zeros. Thus, Lij = 0 whenever i /∈ B or j /∈ B. Consequently,
LBBLT

BB = XBB is a positive, diagonal matrix. Thus, L is unique. Now, suppose
that X � 0 is arbitrary. Suppose that L and L′ are Cholesky factors of X satisfying
(2.1). Let B be the set of indices of nonzero columns of L. It is clear that LIB = L,
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and thus, (L + IcB)IB = L. Therefore,

IB = [(L + IcB)−1L][(L + IcB)−1L]T

= (L + IcB)−1X(L + IcB)−T

= [(L + IcB)−1L′][(L + IcB)−1L′]T .

Since ((L + IcB)−1L′)ii = 0 =⇒ L′
ii = 0 =⇒ L′

ji = 0 ∀j =⇒ ((L + IcB)−1L′)ji =

0 ∀j, we have that both (L + IcB)−1L′ and (L + IcB)−1L are Cholesky factors of IB
satisfying (2.1). Thus, L = L′.

In a similar way, we can prove the followinig.
Proposition 2. Every symmetric, positive semidefinite matrix X has a unique

inverse Cholesky factor UX (i.e., an upper triangular matrix U with nonnegative
diagonal satisfying X = UUT ) satisfying

(UX)ii = 0 =⇒ (UX)ji = 0 ∀j.(2.3)

Henceforth, the unique Cholesky factor of X that satisfies (2.1) is denoted by LX,
and the unique inverse Cholesky factor of X that satisfies (2.3) is denoted by UX.

We now describe the faces of Sn
+ based on these Cholesky factors.

Suppose that F is a face of Sn
+ and X̃ ∈ relint(F ) is arbitrary. From the proof

of uniqueness, we see that (LX̃ + IcB)−1X̃(LX̃ + IcB)−T = IB , where B is the set
of indices of nonzero columns of LX̃. Since X �→ (LX̃ + IcB)−1X(LX̃ + IcB)−T is a
linear automorphism of Sn

+, it maps F to some face F ′ of Sn
+ with IB ∈ relint(F ′).

Therefore, for any X ∈ Sn
+, X ∈ F ′ if and only if R(X) ⊂ R(IB), which holds if and

only if (i /∈ B) ∨ (j /∈ B) =⇒ Xij = 0. Consequently,

F = {(LX̃ + IcB)X(LX̃ + IcB)T : X � 0, (i /∈ B) ∨ (j /∈ B) =⇒ Xij = 0}.(2.4)

From this representation of the face F , we deduce the following.
Proposition 3. If F is a face of Sn

+, B = {i : ∃X ∈ F, (LX)ii �= 0}, and X̃ ∈ F ,
then

1. (LX̃)ii = 0 ∀i /∈ B and

2. X̃ ∈ relint(F ) ⇐⇒ (LX̃)ii > 0 ∀i ∈ B.
Similarly, we can use inverse Cholesky factors to characterize the relative interiors

of the faces of Sn
+.

Proposition 4. If F is a face of Sn
+, B = {i : ∃X ∈ F, (UX)ii �= 0}, and X̃ ∈ F ,

then
1. (UX̃)ii = 0 ∀i /∈ B and

2. X̃ ∈ relint(F ) ⇐⇒ (UX̃)ii > 0 ∀i ∈ B.
We now turn our attention to the primal-dual SDP problems.
Let A : Sn → Rm denote the linear operator X �→ (A(i) • X)mi=1, and let A∗

denote its adjoint operator y �→
∑m

i=1 A(i)yi.
We assume the following Slater condition.
Assumption 5. There are symmetric, positive definite matrices X and S satis-

fying A(X) = b, and S = C −A∗(y) for some y ∈ Rm.
This condition implies that the sets of optimal primal and dual solutions are

nonempty and bounded and X̃S̃ = 0 for any optimal solutions X̃ and S̃. The sets
of optimal primal and dual solutions are called the primal optimal face and the dual
optimal face respectively, and are denoted by Op and Od, respectively. Let Fp and Fd
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denote the minimal faces of Sn
+ containing Op and Od, respectively. If we take any

X̃ ∈ relint(Op), then X̃ ∈ relint(Fp), and thus

Op = {X ∈ Sn
+ : R(X) ⊂ Vp, A(X) = b},

where Vp denotes R(X̃). Similarly,

Od = {S ∈ Sn
+ : R(S) ⊂ Vd, S = C −A∗(y), y ∈ Rm},

where Vd denotes R(S̃) for any S̃ ∈ relint(Od).
Let B and N denote the sets {i : ∃X ∈ Fp, (LX)ii �= 0} and {i : ∃S ∈ Fd, (US)ii �=

0}, respectively.
Since the sets Op and Od are orthogonal, we have R(X) ⊂ N (S) and R(S) ⊂

N (X) for any (X,S) ∈ Op × Od. Thus, Vp ⊥ Vd. When Vp + Vd = Rn, we say that

each (X̃, S̃) ∈ relint(Op) × relint(Od) is a pair of strictly complementary solutions. In
terms of the index sets B and N , the orthogonality of Op and Od implies B ∩N = ∅
(and thus |B| + |N | ≤ n), and the existence of strictly complementary solutions can
be characterized by B ∪ N = {1, . . . , n}, i.e., |B| + |N | = n. Let T denote the set
{1, . . . , n} \ (B ∪ N) so that T = ∅ if and only if there are strictly complementary
solutions.

We end this section with a useful lemma.
Lemma 6. If X̃ ∈ relint(Op) and S̃ ∈ relint(Od), then there exists a lower

triangular, square matrix L(X̃, S̃) with positive diagonal such that

L(X̃, S̃)X̃L(X̃, S̃)T = IB

and

L(X̃, S̃)−T S̃L(X̃, S̃)−1 = IN .

Proof. In the proof of uniqueness for Proposition 1, we see that L−1X̃L−T = IB ,
where L = LX̃ + IN∪T . From the positive semidefiniteness and complementarity of

L−1X̃L−T and LT S̃L, we conclude that (LT S̃L)ii = 0 whenever i ∈ B. Thus, the ith
row of ULT S̃L is a zero row whenever i ∈ B. Consequently, (UTL−1)X̃(UTL−1)T =

UT IBU = IB , where U = ULT S̃L + IB∪T . Finally, (UTL−1)−T S̃(UTL−1)−1 =

U−1(LT S̃L)U−T = IN .

3. Weighted centers for SDP. One of the many existing notions of weighted
centers for SDP is the weighted centers defined by the following set of equations:

A(X) = b, S = C −A∗(y) for some y ∈ Rm,

LT
XSLX = W, X � 0, and S � 0.

(3.1)

Here, the symmetric matrix W plays the role of the weights. We recover the usual
analytic centers by setting W to a positive multiple of I, in which case any solution
is the unique minimizer of a shifted logarithmic determinant barrier, which is strictly
convex over the primal-dual feasible region.

When W is not a positive multiple of I, a result of Monteiro and Zanjácomo
[16], which was improved upon by Tunçel and Wolkowicz [22], states that (3.1) has
locally unique solutions when ‖W − μI‖2 < (

√
3 − 1)μ. This result was recently

extended by the author and Tunçel [5] to include all W satisfying ‖D−1/2WD−1/2 −
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μI‖2 <
√
αmin/(2αmax)μ for any diagonal matrix D = Diag(α1, . . . , αn) with positive

diagonal entries, where αmin and αmax denote min{α1, . . . , αn} and max{α1, . . . , αn},
respectively. This extension includes all positive, diagonal matrices W.

In the case when W is a positive, diagonal matrix, we shall further prove that
(3.1) has a (globally) unique solution by showing that any solution is the unique
minimizer of some shifted, weighted logarithmic barrier that is strictly convex over
the primal-dual feasible region.

3.1. Weighted barriers for semidefinite cones. Fix some arbitrary positive
constants w1, . . . , wn and consider the barrier f on the cone Sn

++ defined by

X �→ −
n∑

i=1

wi log(LX)2ii.

This is called the weighted barrier with weights wi. The following proposition shows
that the weighted barrier is strictly convex.

Proposition 7. The gradient and Hessian of the weighted barrier f are respec-
tively given by

g(X) = −L−T
X WL−1

X and H(X) : V �→ L−T
X M2(L−1

X VL−T
X )L−1

X ,

where W = Diag(w1, . . . , wn) and M denotes the map on Sn defined by Vij �→√
wmin{i,j}Vij.

Proof. For the proof, see [5, section 6].
As a consequence, the shifted barrier f+ : X �→ f(X) + C • X has a unique

minimizer X over the primal feasible region, and X satisfies the Karush–Kuhn–Tucker
conditions

A(X) = b, S = C −A∗(y), and LT
XSLX = W

for some S ∈ Sn
++ and some y ∈ Rm. The matrix S is also uniquely determined

and can be characterized as the unique minimizer of the shifted barrier f∗
+ : S �→

f∗(S) + X̄ • S over the dual feasible region, where

f∗ : S �→ −
n∑

i=1

wi log(US)2ii

is the conjugate functional of f and X̄ is an arbitrary primal feasible solution. Thus,
we have proven the following.

Theorem 8. The weighted analytic center equation (3.1) uniquely determines a
pair of solutions (X,S) whenever W is a positive, diagonal matrix.

Hence, given positive weights w1, . . . , wn, we can define the primal-dual weighted
analytic centers either via the weighted centers equations (3.1), where W is the di-
agonal matrix Diag(w1, . . . , wn), or as minimizers of the shifted barriers f+ + f∗

+ over
the primal-dual feasible region.

Unfortunately, unlike the weighted centers for LP, these weighted centers do not
fill up the whole relative interior of the primal-dual feasible region, i.e., not all strictly
feasible solutions (X,S) are weighted centers. This drawback can be easily recti-
fied by considering orthonormal similarity transformations on both primal and dual
problems.1

1In fact, we can also use general similarity transformations P : X �→ P−1XP, where P is an
invertible matrix, but orthonormal similarity transformations are sufficient for the purpose of this
paper.
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Theorem 9. For each pair of primal-dual strictly feasible solutions (X,S), there
exists an orthogonal matrix Q such that under the orthonormal similarity transfor-
mation Q : Z �→ QTZQ on both primal and dual problems, the resulting pair of
strictly feasible solutions (Q(X),Q(S)) is a pair of weighted centers whose weights
are eigenvalues of XS.

Proof. Consider a Schur decomposition QTXSQ = L of the product XS, where
Q is an orthogonal matrix and L is a lower triangular matrix with eigenvalues of XS
on its diagonal. Under the orthonormal similarity transformation Q : X �→ QTXQ,
we see that Q(X)Q(S) = L. Thus, LT

Q(X)Q(S)LQ(X) = L−1
Q(X)LLQ(X) is both

symmetric and lower triangular, and hence diagonal. Clearly, this diagonal matrix
shares the same diagonal entries with L.

Therefore, we can obtain a collection of weighted centers that “fills up” the whole
interior of the primal-dual feasible region by generalizing the notion of weighted cen-
ters to include all primal-dual pairs (X,S) satisfying

A(i) • X = bifor i = 1, . . . ,m,

S +

m∑
i=1

A(i)yi = C for some y ∈ Rm,

LT
Q(X)Q(S)LQ(X) = W, X � 0, and S � 0,

(3.2)

for some orthonormal similarity transformation Q : X �→ QTXQ and some positive,
diagonal matrix W. These weighted centers can alternatively be defined as the unique
minimizers of the shifted, weighted barriers

(X,S) �→ −
n∑

i=1

wi log(LQTXQ)2ii −
n∑

i=1

wi log(UQTSQ)2ii + X • S

over the primal-dual feasible region, where Q ranges over all orthogonal matrices of
order n and (w1, . . . , wn)T ranges over all positive n-vectors.

3.2. Target map. A natural and useful consequence of weighted centers is the
collection of weighted central paths WCP (W,Q) := {(X(μ,W,Q),S(μ,W,Q)) :
μ > 0}, where (X(μ,W,Q),S(μ,W,Q) is the solution to (3.2) with W replaced by
μW.

Since Schur decomposition is generally not unique, we may have two or more
weighted central paths passing through the same pair of weighted centers. We ad-
dress this ambiguity by considering only those Schur decompositions involving lower
triangular matrices with diagonal entries in nonincreasing order. In another words, we
consider only weighted central paths corresponding to those W with diagonal entries
arranged in nonincreasing order.

Suppose (X,S) = (X(1,W,Q),S(1,W,Q)) is a pair of weighted centers on the
weighted central path WCP (W,Q). Consider any weighted central path WCP (W′,Q′)
passing through (X,S), say, (X,S) = (X(μ′,W′,Q′),S(μ′,W′,Q′)) for some μ′ > 0.
By scaling W′ appropriately, we may assume without any loss of generality that
μ′ = 1. Now pick an arbitrary pair of weighted centers (X(μ,W,Q),S(μ,W,Q)) on
WCP (W,Q). By definition of weighted centers,

QTX(1,W,Q)S(1,W,Q)Q = L,

QTX(μ,W,Q)S(μ,W,Q)Q = μĽ,
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and

(Q′)TX(1,W′,Q′)S(1,W′,Q′)Q′ = L′

are Schur decompositions, where the diagonal entries of both L and Ľ are precisely
the diagonal entries of W in the same nonincreasing order, and the diagonal entries
of L′ are those of W′ in the same order. Since

L = QTXSQ = QT (Q′)L′(Q′)TQ

and the diagonal entries of both L and L′ are in nonincreasing order, it follows from
Proposition 21 (Appendix A) that the diagonal entries of L and L′ (whence those of
W and W′) coincide, and (Q′)TQ is a block-diagonal matrix where the size of the ith
block is the multiplicity of the ith largest (distinct) eigenvalue of XS. It then follows
from Proposition 21 that

Ľ′ := μ−1(Q′)TX(μ,W,Q)S(μ,W,Q)Q′ = (Q′)TQĽQTQ′

is a lower triangular matrix and has diagonal entries in nonincreasing order (and thus
shares the same diagonal as Ľ). Thus

(X(μ,W,Q),S(μ,W,Q)) = (X(μ,W′,Q′),S(μ,W′,Q′)) ∈ WCP (W′,Q′).

Since (X(μ,W,Q),S(μ,W,Q)) is arbitrary, we conclude that WCP (W,Q) ⊆
WCP (W′,Q′). Repeating the argument on any arbitrary pair of weighted centers in
WCP (W′,Q′) shows that

WCP (W,Q) = WCP (W′,Q′).

We have thus proved the next theorem.
Theorem 10. For each pair of primal-dual strictly feasible solutions (X,S), there

exists exactly one weighted central path WCP (W,Q) passing through (X,S), where
diagonal entries of W are in nonincreasing order .

As a direct consequence of the above argument, we have the next theorem.
Theorem 11. The map

(X,S) �→ QDQT ,

where QTXSQ = L is a Schur decomposition of XS with diagonal entries of L in
nonincreasing order, and D is the diagonal matrix sharing the same diagonal with L,
is a bijection between the set of primal-dual strictly feasible solutions and the cone
Sn

++.
Proof. Using Proposition 21 as before, if

QTXSQ = L

and

(Q′)TXSQ′ = L′

are two Schur decompositions of XS where the diagonal entries of both Schur forms
L and L′ are arranged in nonincreasing order, then the diagonal entries of L and L′

coincide, and (Q′)Q is a block-diagonal matrix where the size of the ith block is the
multiplicity of the ith largest (distinct) eigenvalue of XS. Consequently

QTDQ = (Q′)DQ′,

where D is the diagonal matrix sharing the same diagonal with L and L′.
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3.3. Weighted central paths under strict complementarity. The main
result in this subsection states that every (primal) weighted central path {X(μ) : μ >
0} converges to weighted analytic centers of optimal faces, where (X(μ),S(μ)) is the
solution to (3.1) with W = μDiag(w1, . . . , wn).

We begin by proving a result on the limit points of weighted central paths.

Lemma 12. All limit points of the weighted central path lie in the relative interior
of the primal optimal face.

Proof. Suppose that X is a limit point of the weighted central path. Clearly, from
the Karush–Kuhn–Tucker conditions, X ∈ Op. So, it suffices to show that rank(X) =
|B|. Let {X(μk)}∞k=1 be a subsequence converging to X. Since {X(μk)} is bounded,
so is {LX(μk)}. So, by choosing a subsequence of {X(μk)} if necessary, we may assume
that {LX(μk)} converges to some lower triangular matrix L. Clearly, X = LLT . Let

X̃ ∈ relint(Op) and S̃ ∈ Od be arbitrary. Now, (X(μk) − X̃) • (S(μk) − S̃) = 0,

X(μk) • S(μk) = μk

∑n
i=1 wi, and X̃ • S̃ = 0 imply that X(μk) • S̃ + S(μk) • X̃ =

μk

∑n
i=1 wi. Consequently,

μk

n∑
i=1

wi ≥ S(μk) • X̃

= tr[
√
μk

√
W(LX(μk))

−1LX̃][
√
μk

√
W(LX(μk))

−1LX̃]T ,

from which it follows that
√∑n

i=1 wi ≥ √
wi(LX̃)ii/(LX(μk))ii. Since X̃ lies in the

relative interior of Fp, it follows from Proposition 3 that (LX̃)ii > 0 for all i ∈ B.
Thus,

Lii = lim
k→∞

(LX(μk))ii ≥
√
wi(LX̃)ii√∑n

i=1 wi

> 0 ∀i ∈ B.

This implies that rank(L) ≥ |B|, and hence rank(X) = |B|.
Under strict complementarity, the central path for an SDP problem converges to

the analytic center of the optimal face (see [8, 6, 14]). We now generalize this result
to the weighted central paths.

Recall from Proposition 3 that for any X ∈ Fp, X is in the relative interior of Fp

if and only if (LX)ii > 0 ∀i ∈ B. Thus, the functional fp : relint(Fp) → R defined by

X �→ −
∑
i∈B

wi log(LX)2ii

induces a barrier for the primal optimal face Op. We shall show that under strict
complementarity, every limit point of the weighted central path solves

min{fp(X) : A(X) = b, X ∈ span(Fp)},

where span(Fp) denotes the smallest linear subspace containing Fp.

Lemma 13. If the primal-dual pair of SDP problems has strictly complementary
solutions, and the subsequence {(X(μk),S(μk))} converges to (IB , IN ), then

1. (LX(μk))ij = o(1) ∀i ∈ B, j �= i, and (US(μk))ij = o(1) ∀i ∈ N, j �= i, and
2. (LX(μk))ij = o(

√
μk) ∀i ∈ N, j �= i, and (US(μk))ij = o(

√
μk) ∀i ∈ B, j �= i.
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Proof. From (X(μk) − IB) • (S(μk) − IN ) = 0, it follows that trX(μk)N +
trS(μk)B = μk

∑n
i=1 wi. Expanding the left-hand side gives∑

i∈N
j≤i

(LX(μk))
2
ij +

∑
i∈B
j≥i

(US(μk))
2
ij

=
∑
i∈N

(LX(μk))
2
ii +

∑
i∈B

(US(μk))
2
ii +

∑
i∈N
j<i

(LX(μk))
2
ij +

∑
i∈B
j>i

(US(μk))
2
ij .

From (LX(μk))
TS(μk)LX(μk) = μkW, we get (US(μk))ii(LX(μk))ii =

√
μkwi. There-

fore,

n∑
i=1

wi =
∑
i∈B

wi

(LX(μk))
2
ii

+
∑
i∈N

wi

(US(μk))
2
ii

+
1

μk

⎛
⎜⎝∑

i∈N
j<i

(LX(μk))
2
ij +

∑
i∈B
j>i

(US(μk))
2
ij

⎞
⎟⎠

=
∑
i∈B

wi

X(μk)ii
+

∑
i∈N

wi

S(μk)ii
+

∑
i∈N
j<i

(LX(μk))
2
ij

μk
+

∑
i∈B
j>i

(US(μk))
2
ij

μk

+
∑
i∈B

(
wi

(LX(μk))
2
ii

− wi

X(μk)ii

)
+

∑
i∈N

(
wi

(US(μk))
2
ii

− wi

S(μk)ii

)
.

Since

S(μk)ii =
∑
j>i

((US(μk))ij)
2 + ((US(μk))ii)

2 ≥ ((US(μk))ii)
2

and

X(μk)ii =
∑
j<i

((LX(μk))ij)
2 + ((LX(μk))ii)

2 ≥ ((LX(μk))ii)
2,

the summands in the last two sums are nonnegative. Thus, the right-hand side is at
least the sum

∑
i∈N

wi

S(μk)ii
+
∑

i∈B
wi

X(μk)ii
, which, under strict complementarity and

the assumptions X(μk) → IB and S(μk) → IN , converges to the left-hand side as
k → ∞. This can occur only when all summands in the last four sums converge to
zero.

We now give the main theorem of this section.
Theorem 14. If there are strictly complementary solutions to the primal-dual

SDP problems, then the weighted central path for the primal problem converges to the
solution of

min −
∑
i∈B

wi log(LX)2ii

s.t. A(i) • X = bi, i = 1, . . . ,m,

X ∈ span(Fp),

(3.3)

where Fp is the minimal face of Sn
+ containing the primal optimal face and B = {i :

∃X ∈ Fp, (LX)ii �= 0}.
Proof. Suppose X̃ is an arbitrary limit point of the weighted central path. By

Lemma 12, X̃ ∈ relint(Fp). Since S(μ) is bounded as μ ↓ 0, we can choose a sequence
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{μk} of positive real numbers converging to zero such that X(μk) → X̃, and S(μk)
is convergent with limit S̃. Let L denote the matrix L(X̃, S̃) in the statement of
Lemma 6. Since fp is invariant, up to an additive constant, under the transformation

G : X �→ LXLT , the limit point X̃ solves (3.3) if and only if IB = G(X̃) solves

min

{
−
∑
i∈B

wi log(LX)2ii : A(G−1(X)) = b, X ∈ span(G(Fp))

}
.(3.4)

The matrix IB solves (3.4) if and only if the optimality condition

∇fp(IB) ∈ span({G−∗(A(1)), . . . ,G−∗(A(m))}) + span(G(Fp))
⊥

holds, where G−∗ denotes the adjoint of the inverse of G. Let X̂(μk) and Ŝ(μk)
denote G(X(μk)) and G−∗(S(μk)), respectively. Let Â(i) denote G−∗(A(i)). From
the description (2.4) of faces of Sn

+ and the assumption that IB ∈ relint(G(Fp)), we
deduce that span(G(Fp))

⊥ = {X ∈ Sn
+ : XBB = 0}. Thus, the optimality condition

is equivalent to

∇fp(IB)BB(= WBB) ∈ span({(Â(1))BB , . . . , (Â
(m))BB}).

Let V denote the subspace span({(Â(1))BB , . . . , (Â
(m))BB}). Since Ŝ(μk) − IN =

G−∗(S(μk) − Ŝ) ∈ span({Â(1), . . . , Â(m)}), we have that (Ŝ(μk))BB ∈ V. Dividing
by μk gives

(Ŝ(μk))BB

μk
∈ V.

By Lemma 13, (U(Ŝ(μk)))ij/
√
μk → 0 for all i ∈ B and j > i, and (L(X̂(μk)))ij → 0

for all i ∈ B and j < i. Together with
∑i

j=1(LX̂(μk))
2
ij = (X̂(μk))ii → 1 for all i ∈ B,

it follows that (LX̂(μk))ii → 1. Thus, we deduce from (UŜ(μk))ii(LX̂(μk))ii =
√
μkwi

that (Ŝ(μk))BB/μk → WBB . Finally, since V is closed, the theorem follows.

4. Application to homogeneous cone programming. In this section, we
consider the following primal-dual pair of HCP problems:

inf cTx

s.t. (a(i))Tx = bi for i = 1, . . . ,m,

x ∈ cl(K),

and

sup bTy

s.t. s = c −
m∑
i=1

(a(i))yi,

s ∈ cl(K∗),

where K is a d-dimensional homogeneous cone (i.e., a pointed, open, convex cone
whose group of automorphisms acts transitively on it), K∗ := {s : xT s > 0 ∀x ∈ K}
is its dual cone, the a(i), c, and x are real d-vectors, and b = (b1, . . . ,bm)T and
y = (yi, . . . ,ym)T are real m-vectors.

As before, we assume the following Slater condition.
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Assumption 15. There exist an x ∈ K and an s ∈ K∗ satisfying (a(i))Tx = bi

for i = 1, . . . ,m and s = c −
∑m

i=1(a
(i))yi for some y = (yi, . . . ,ym)T ∈ Rm.

It was shown by the author [3] that all homogeneous cones are SDP-representable,
i.e., for each homogeneous cone K, there exists a linear map M : Rd → Sn such that
x ∈ K if and only if M(x) � 0. Thus, the primal HCP problem can be reformulated
as the primal SDP problem

min M−∗(c) • X

s.t. M−∗(a(i)) • X = bi, i = 1, . . . ,m,

X ∈ M(Rd),

X � 0.

Furthermore, it was shown by the author and Tunçel [5] that HCP problems inherit
strict complementarity from the corresponding SDP formulations, i.e., a HCP problem
has strictly complementary solutions if and only if any SDP reformulation has such
solutions. These establish the foundation for applying Theorem 14 to HCP problems.

4.1. SDP-representability of homogeneous cones. Each d-dimensional ho-
mogeneous cone K of rank r can be associated with a T -algebra A =

⊕r
i,j=1 Aij with

involution ∗ such that K is the cone containing elements of the form ll∗, where l
is a lower triangular element with positive diagonal (see [23]). In fact, each x ∈ K
uniquely determines a lower triangular element l with positive diagonal such that
x = ll∗. The reader is strongly encouraged to refer to [3] and [23] for more details.

For each (i, j) ∈ {1, . . . , r}2, let nij denote the dimension of Aij as a vector
subspace of A and let xij denote the component of x ∈ A in Aij . From the definition

of T -algebras, we have nij = nji and nii = 1. Also,
∑r

i=1

∑i
j=1 nij = d.

Let T denote the subspace
⊕

1≤j≤i≤r Aij of lower triangular elements of A. With
each x ∈ A, we associate the linear operator M(x) : T → T defined by M(x) : l �→
PrT xl, where PrT denotes the orthogonal projection onto T under the inner product
〈·, ·〉 : (x,y) �→ trxy∗. The author [3] proved that x ∈ K if and only if M(x) is
self-adjoint and positive definite. Thus, for any choice of ordered basis B for T, the
map

MB : Rd → Sn : x �→ MB(x),(4.1)

where MB(x) is the matrix representing M(x) under B, is an SDP-representation of
K.

Let l ∈ T be arbitrary. Consider the orthogonal decomposition
⊕r

j=1

(⊕r
i=j Aij

)
of T into columns. Fix an arbitrary j ∈ {1, . . . , r} and consider the restriction of
M(l) to the jth column

⊕r
i=j Aij . For each i ∈ {j, . . . , r}, let Bij denote a basis for

Aij . Since lyij =
∑r

k=i lkiyij ∈
⊕r

k=i Akj for each yij ∈ Bij , the operator y �→ ly
on

⊕r
i=j Aij is represented by a lower block-triangular matrix L(j) under the ordered

basis (Bjj , . . . ,Brj) of
⊕r

i=j Aij , where elements in each Bij are arbitrarily ordered.
Furthermore, PrAij lyij = ρi(l)yij for each yij ∈ Bij implies that the (i − j + 1)st

diagonal block in L(j) is ρi(l)I, where ρi(l) is the value of the ith entry on the diagonal
of l. Thus, L(j) is in fact a lower triangular matrix with nij copies of ρi(l) on the
diagonal for i = {j, . . . , r}. Since for each j ∈ {1, . . . , r}, M(l) maps the jth column⊕r

i=j Aij into itself, it follows that the linear operator M(l) can be represented by a

lower triangular matrix L with
∑i

j=1 nij copies of ρi(l) on the diagonal for i = 1, . . . , r.
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Lemma 16. There exists an ordered basis B for T such that for each l ∈ T with
nonnegative diagonal values, the lower triangular matrix MB(l) is a Cholesky factor

of the matrix MB(ll∗). Moreover, the matrix MB(l) has
∑i

j=1 nij copies of ρi(l) on
its diagonal.

Proof. Let B be the ordered basis (B11, . . . ,B1r,B22, . . . ,B2r, . . . ,Brr). It re-
mains to show that M(x) = M(l)◦M(l)∗. This is a special case of Proposition 3.4(iii)
of [3].

Henceforth, we shall use the ordered basis in the lemma to define the SDP repre-
sentation in (4.1), and drop the subscript B.

4.2. Optimal faces and strict complementarity of HCP. In this subsec-
tion, we extend some results in section 2 to the optimal faces of HCP problems. These
extensions rely heavily on the appropriate choice of the ordered basis B in Lemma 16.

Lemma 17. Each x ∈ cl(K) has a unique Cholesky factor lx (i.e., a lower
triangular element lx with nonnegative diagonal values such that x = ll∗) satisfying

ρi(lx) = 0 =⇒ (lx)ji = 0.(4.2)

Proof. Suppose that x ∈ cl(K). Therefore M(x) is symmetric and positive
semidefinite. From the proof of existence of Proposition 1, we see that LM(x)+μI →
LM(x) as μ → 0. Since M(x) +μI = M(x +μe), where e is the unit of the T -algebra
A, it follows from Lemma 16 that for each positive μ, LM(x)+μI = M(lx+μe). Con-
sequently, LM(x) = M(lx), where lx ∈ T is any limit point of {lx+μe}μ>0. The limit
point lx is clearly a Cholesky factor of x. Property (4.2) for lx can be deduced from
the same property of LM(x) in Proposition 1 and the choice of B in Lemma 16. Fi-
nally, the uniqueness of lx follows straightforwardly from the choice of B in Lemma 16
and the uniqueness of LM(x).

Proposition 18. If F is a face of K, B = {i : ∃x ∈ F, ρi(lx) �= 0} and x̃ ∈ F ,
then

1. ρi(lx̃) = 0 ∀i /∈ B and
2. x̃ ∈ relint(F ) ⇐⇒ ρi(lx̃) > 0 ∀i ∈ B.

Proof. If F is a face of K, then there exists some face F ′ of Sn
++ such that

M(F ) = M(Rd) ∩ F ′. Thus, using the description (2.4) of F ′ we may describe F as

F = {((l˜̃x + ecB)lx)(l∗x(l˜̃x + ecB)∗) : x ∈ cl(K), (i /∈ B) ∨ (j /∈ B) =⇒ xij = 0},

where ˜̃x ∈ relint(F ) is arbitrary and ecB denotes the diagonal element of A with 0-1
diagonal such that ρi(e

c
B) = 1 if and only if i /∈ B. The theorem then follows from

this description.
Since every HCP problem can be reformulated as an SDP problem, we may nat-

urally generalize the notion of strict complementarity from SDP to HCP. However,
in order for this generalization to be well defined, different SDP reformulations of
the same HCP problem should not result in different conclusions on the existence of
strictly complementary solutions. Indeed, the author and Tunçel [5] showed that the
existence of strictly complementary solutions is independent of the SDP formulation
used. Furthermore, this notion of strictly complementary solutions coincides with
a more general notion introduced by Pataki [18], which was shown to be a generic
property of linear optimization problems over convex cones by Pataki and Tunçel [19].

4.3. Limit points of central paths for HCP. By reformulating HCP prob-
lems as SDP problems, any algorithm for SDP translates directly to an algorithm for
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HCP. However, from the perspective of theoretical complexity, it is advantageous for
algorithms to use optimal barriers for homogeneous cones. In this subsection, we con-
sider a certain class of optimal barriers for homogeneous cones, and we characterize
the limit points of the central paths defined by this class of optimal barriers under
strict complementarity.

Since each x ∈ K uniquely determines a lower triangular element lx with pos-
itive diagonal such that x = lxl

∗
x, the functional f : K �→ R defined by f : x �→

−
∑r

i=1 log ρi(lx)2 is well defined. Furthermore, it is an r-logarithmically homoge-
neous, self-concordant barrier for K (see [2]). In fact, we know from a result of Güler
and Tunçel [9] that it is optimal for K. We shall now relate this barrier with a
weighted barrier of the SDP representation given by (4.1).

For each i, let J(i) denote the set of the indices of the n̄i :=
∑i

j=1 nij copies of
ρi(lx) on the diagonal of L = M(l), i.e., Ljj = ρi(lx) for all i ∈ {1, . . . , r}, all j ∈ J(i),
and all x ∈ K. Since {J(i)}ri=1 is a partition of {1, . . . , n}, where n :=

∑
1≤j≤i≤r nij ,

we may define a map π : {1, . . . , n} → {1, . . . , r} such that j ∈ J(π(j)) for all
j ∈ {1, . . . , n}. For each i ∈ {1, . . . , r},

log ρi(lx)2 =
1

n̄i
n̄i log ρi(lx)2 =

∑
j∈J(i)

1

n̄π(j)
log(LM(x))

2
jj ,(4.3)

from which we deduce that the optimal barrier

f(x) = −
r∑

i=1

log ρi(lx)2 = −
n∑

i=1

n̄−1
π(i) log(LM(x))

2
ii

coincides with the restriction of the weighted barrier for the SDP representation with
weights n̄−1

π(1), . . . , n̄
−1
π(n). Consequently, as a corollary to Theorem 14, we have the

following.
Corollary 19. If a pair of primal-dual HCP problems has strictly complemen-

tary solutions, then the central path converges to the solution of

min −
∑
i∈B

log ρi(lx)2

s.t. (a(i))Tx = bi, i = 1, . . . ,m,

x ∈ span(Fp),

where Fp is the minimal face of K containing the primal optimal face and B = {i :
∃x ∈ Fp, ρi(lx) �= 0}.

Proof. Since the image of the central path under M is the path defined by the
weighted barrier X �→ −

∑n
i=1 log n̄−1

π(i)(LX)2 for the SDP representation (4.1), it

follows from Theorem 14 that when the HCP problem has strictly complementary
solutions, the image of the central path under M converges to the solution of

min −
∑

i∈J(B)

n̄−1
π(i) log(LX)2ii

s.t. M−∗(a(i)) • X = bi, i = 1, . . . ,m,

X ∈ M(Rd),

X ∈ span(F ′
p),

where J(B) denotes ∪i∈BJ(i) and F ′
p is the face of Sn

++ such that F ′
p ∩M(Rd) = Fp.

The theorem then follows from (4.3).
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5. Conclusion. We end this paper with some open questions and directions for
future research.

1. Since the notion of weighted centers introduced in this paper possesses both
uniqueness and completeness, we may use them for future development of
V-space algorithms for SDP. One approach is to consider the target map
(X,S) �→ QDQT , where QTXSQ = L is a Schur decomposition of XS with
diagonal entries of L arranged in nonincreasing order and D is a diagonal ma-
trix that shares the same diagonal entries with L, which is a bijection between
the primal-dual strictly feasible region and the cone Sn

++. Another approach
would be to linearly transform the primal-dual problems via the orthonormal
similarity transformation Q : X �→ QTXQ so that LT

Q(X)Q(S)LQ(X) is diag-

onal and use the locally injective map (X,S) �→ LT
XSLX as the V-space map.

2. The limit points of weighted centers for SDP were characterized in this paper
only under strict complementarity. In the absence of strict complementarity,
the limit point of the usual central path can be characterized either as the
analytic center of a certain subset of the optimal face (see [6]) or as the unique
minimizer of the logarithmic determinant barrier for the optimal face with
an additional term (see [7]). Future extensions of these results to weighted
central paths would complete the characterization of their limit points.

3. By treating central paths for HCP problems as weighted central paths for
the SDP reformulations, any V-space algorithm that follows weighted cen-
tral paths naturally translates to a primal-dual algorithm that follows central
paths of HCP problems. However, without exploiting the structure of homo-
geneous cones in the analysis of the algorithm, its theoretical complexity will
generally be no better than algorithms that follow the usual central path of
the SDP reformulation. Thus, some nontrivial work is needed to improve the
analysis of these V-space algorithms for HCP.

4. In [12, 13, 20], the analyticity of various notions of weighted central paths
were studied. In [4], we investigate the analyticity of the weighted central
paths introduced in this paper.

Appendix A. Technical results.
Lemma 20. If L is a real, lower triangular, diagonalizable matrix with nonin-

creasing diagonal entries, and

P−1LP = D

is a diagonalization of L where D has nonincreasing diagonal entries, then P is lower
block-diagonal where the size of the kth block on the diagonal is the multiplicity of the
kth largest diagonal entry of L.

Proof. We shall prove by induction on the number of distinct diagonal entries of
L, which is the number of distinct eigenvalues of L.

When L has only one distinct eigenvalue, the lemma is trivial.
Suppose that the lemma is true whenever L has at most p distinct eigenvalues.

Consider the case where L has p + 1 distinct eigenvalues. Let m denote the multi-
plicity of its largest eigenvalue λmax. We write all matrices in the 2-by-2 block form
M = [ M11 M12

M21 M22
], where M11 is m-by-m. The diagonals of L and D (which contain

eigenvalues of the similar matrices L and D) coincide since they are arranged in
nonincreasing order. Now[

L11

L21 L22

] [
P12

P22

]
=

[
P12

P22

]
D22 =⇒ L11P12 = P12D22
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implies that each nonzero column of P12 is an eigenvector of L11 whose associated
eigenvalue is a diagonal entry of D22. Since the only eigenvalue of L11 is λmax and
all diagonal entries of D22 are strictly less than λmax, it follows that P12 is a zero
matrix. Consequently, it follows from[

P11

P21 P22

]−1 [
L11

L21 L22

] [
P11

P21 P22

]
=

[
D11

D22

]

that L22 = P22D22P
−1
22 is diagonalizable. Since L22 has p distinct eigenvalues, we may

apply the induction hypothesis to conclude that P22 is lower block-diagonal where
the size of the kth block on the diagonal is the multiplicity of the kth largest diagonal
entry of L22.

Proposition 21. Suppose L is a real, lower triangular, diagonalizable matrix
with nonincreasing diagonal entries and Q is an orthogonal matrix of the same size
as L. Then QTLQ is a lower triangular matrix with nonincreasing diagonal entries
if and only if Q is block-diagonal where the size of the kth block is the multiplicity of
the kth largest diagonal entry of L.

Proof. “only if”: Suppose QTLQ is lower triangular with nonincreasing diagonal
entries. Let P−1(QTLQ)P = D be a diagonalization of QTLQ where D has nonin-
creasing diagonal entries, and hence shares the same diagonal as L. It follows from
the preceding lemma that P is lower block-diagonal where the size of the kth block
is the multiplicity of the kth largest diagonal entry of L. Since

(QP)−1L(QP) = D

is a diagonalization of L, we conclude, using the preceding lemma, that QP, whence
Q, is lower block-diagonal where the size of the kth block is the multiplicity of the
kth largest diagonal entry of L.

“if”: Suppose Q is block-diagonal where the size of the kth block is the multi-
plicity of the kth largest diagonal entry of L. Let P−1LP = D be a diagonalization
of L where D has nonincreasing diagonal entries, and hence shares the same di-
agonal as L. By the preceding lemma, P, whence QTP, is lower block-diagonal.
Thus QTLQ = (QTP)D(QTP)−1 is lower block-diagonal. Since the kth diago-
nal block of D is a multiple of the identity matrix, so is the kth diagonal block
of (QTP)D(QTP)−1. Consequently QTLQ = (QTP)D(QTP)−1 is actually lower
triangular and shares the same diagonal as D.

Acknowledgment. The author thanks an anonymous referee for pointing out
the related works [12, 13, 20] and for a suggestion that lead to a simpler existence
proof for Proposition 1.
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A FULL-NEWTON STEP O(n) INFEASIBLE INTERIOR-POINT
ALGORITHM FOR LINEAR OPTIMIZATION∗

C. ROOS†

Abstract. We present a primal-dual infeasible interior-point algorithm. As usual, the algorithm
decreases the duality gap and the feasibility residuals at the same rate. Assuming that an optimal
solution exists, it is shown that at most O(n) iterations suffice to reduce the duality gap and the
residuals by the factor 1/e. This implies an O(n log(n/ε)) iteration bound for getting an ε-solution
of the problem at hand, which coincides with the best known bound for infeasible interior-point
algorithms. The algorithm constructs strictly feasible iterates for a sequence of perturbations of
the given problem and its dual problem. A special feature of the algorithm is that it uses only
full-Newton steps. Two types of full-Newton steps are used, so-called feasibility steps and usual
(centering) steps. Starting at strictly feasible iterates of a perturbed pair, (very) close to its central
path, feasibility steps serve to generate strictly feasible iterates for the next perturbed pair. By
accomplishing a few centering steps for the new perturbed pair we obtain strictly feasible iterates
close enough to the central path of the new perturbed pair. The algorithm finds an optimal solution
or detects infeasibility or unboundedness of the given problem.

Key words. linear optimization, interior-point method, infeasible method, primal-dual method,
polynomial complexity
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1. Introduction. Interior-point methods (IPMs) for solving linear optimization
(LO) problems were initiated by Karmarkar [8]. They not only have polynomial
complexity but are also highly efficient in practice. One may distinguish between
feasible IPMs and infeasible IPMs (IIPMs). Feasible IPMs start with a strictly feasible
interior point and maintain feasibility during the solution process. An elegant and
theoretically sound method to find a strictly feasible starting point is to use a self-dual
embedding model, by introducing artificial variables. This technique was presented
first by Ye, Todd, and Mizuno [33]. Subsequent references are [1, 20, 31]. Well-known
commercial software packages are based on this approach; for example, MOSEK [2]1

and SeDuMi [23]2 are based on the use of the self-dual model. Also, the leading
commercial linear optimization package CPLEX3 includes the self-dual embedding
model as a possible option.

Most of the existing software packages use an IIPM. IIPMs start with an arbitrary
positive point, and feasibility is reached as optimality is approached. The first IIPMs
were proposed by Lustig [11] and Tanabe [24]. Global convergence was shown by
Kojima, Megiddo, and Mizuno [9], whereas Zhang [34] proved an O(n2L) iteration
bound for IIPMs under certain conditions. Mizuno [12] introduced a primal-dual
IIPM and proved global convergence of the algorithm. Other relevant references are
[4, 5, 6, 10, 13, 15, 16, 18, 19, 22, 25, 28, 29]. A detailed discussion and analysis of
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IIPMs can be found in the book by Wright [30] and, with less detail, in the books by
Ye [32] and Vanderbei [26]. The performance of existing IIPMs highly depends on the
choice of the starting point, which makes these methods less robust than the methods
that use the self-dual embedding technique.

As usual, we consider the LO problem in the standard form

(P) min
{
cTx : Ax = b, x ≥ 0

}
,

with its dual problem

(D) max
{
bT y : AT y + s = c, s ≥ 0

}
.

Here A ∈ Rm×n, b, y ∈ Rm, and c, x, s ∈ Rn. Without loss of generality we
assume that rank(A) = m. The vectors x, y, and s are the vectors of variables.

The best know iteration bound for IIPMs, as given in [32, Theorem 5.14], is

O

⎛
⎝n log

max
{(

x0
)T

s0,
∥∥b−Ax0

∥∥ , ∥∥c−AT y0 − s0
∥∥}

ε

⎞
⎠ .(1)

Here x0 > 0, y0 and s0 > 0 denote the starting points, and b−Ax0 and c−AT y0 − s0

are the initial primal and dual residue vectors, respectively, whereas ε is an upper
bound for the duality gap and the norms of residual vectors upon termination of the
algorithm. It is assumed in this result that there exists an optimal solution (x∗, y∗, s∗)
such that ‖(x∗; s∗)‖∞ ≤ ζ, and the initial iterates are (x0, y0, s0) = ζ(e, 0, e).

Until 2003, the search directions used in all primal-dual IIPMs were computed
from the linear system

AΔx = b−Ax,

ATΔy + Δs = c−AT y − s,(2)

sΔx + xΔs = μe− xs,

which yields tho so-called primal-dual Newton search directions Δx, Δy, and Δs.
Here xs denotes the componentwise (or Hadamard) product of the vectors x and s.
Recently, Salahi, Terlaky, and Zhang used a so-called self-regular proximity function
to define a new search direction for IIPMs [21]. Their modification involves only the
third equation in the above system. The iteration bound of their method does not
improve the bound in (1).

To introduce the idea underlying the algorithm presented in this paper we make
some remarks with an historical flavor. In feasible IPMs the iterates are feasible
and the ultimate goal is to get iterates that are optimal. There is a well-known
IPM that aims to reach optimality in one step, namely the affine-scaling method.
Although variants of this method have been shown to be polynomial in [14] and [7],
with complexity bounds O(nL2) and O(nL), respectively, where L denotes the binary
input size, these bounds are much worse than the best known bounds for IPMs. The
question of whether or not the affine-scaling method is polynomial is still unsettled.
The last two decades have made it very clear that to get a more efficient method one
should be less greedy and work with a search direction that moves the iterates only
slowly in the direction of optimality. The reason is that only then one can take full
advantage of the efficiency of Newton’s method, which is the workhorse in all IPMs.
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In IIPMs, the iterates are not feasible, and apart from reaching optimality one
needs to strive for feasibility. This is reflected by the choice of the search direction,
as defined by (2) because, when moving from x to x+ := x + Δx the new iterate
x+ satisfies the primal feasibility constraints, except possibly the nonnegativity con-
straint. In fact, in general, x+ will have negative components, and, to keep the iterate
positive, one is forced to take a damped step of the form x+ := x+αΔx, where α < 1
denotes the step size. This recalls, however, the phenomenon that occurred with the
affine-scaling method in feasible IPMs. There it has become clear that the best com-
plexity results hold for methods that are much less greedy and that use full-Newton
steps (with α = 1). Striving to reach feasibility in one step might be too greedy and
may deteriorate the overall behavior of a method. One should better exercise a little
patience and move slower in the direction of feasibility. Therefore, in our approach
the search directions are designed in such a way that a full-Newton step reduces the
sizes of the residual vectors with the same speed as the duality gap. The outcome of
the analysis in this paper shows that this is a good strategy.

The paper is organized as follows. As a preparation for the rest of the paper, in
section 2 we first recall some basic tools in the analysis of a feasible IPM. These tools
will be used also in the analysis of the IIPM proposed in this paper. Section 3 is used
to describe our algorithm in more detail. One characteristic of the algorithm is that it
uses intermediate problems. The intermediate problems are suitable perturbations of
the given problems (P) and (D) so that at any stage the iterates are strictly feasible
for the current perturbed problems; the size of the perturbation decreases at the same
speed as the barrier parameter μ. When μ changes to a smaller value, the perturbed
problem corresponding to μ changes, and hence also the current central path. The
algorithm keeps the iterates close to the μ-center on the central path of the current
perturbed problem. To get the iterates feasible for the new perturbed problem and
close to its central path, we use a so-called feasibility step. The largest, and hardest,
part of the analysis, which is presented in section 4, concerns this step. It turns out
that to keep control over this step, before taking the step the iterates need to be very
well centered. Some concluding remarks can be found in section 5.

Some notation used throughout the paper is as follows. The 2-norm and the
infinity norm are denoted by ‖·‖ and ‖·‖∞, respectively. If x, s ∈ Rn, then xs denotes
the componentwise (or Hadamard) product of the vectors x and s. Furthermore, e
denotes the all-one vector of length n. If z ∈ Rn

+ and f : R+ → R+, then f (z)
denotes the vector in Rn

+ whose ith component is f (zi), with 1 ≤ i ≤ n. We write
f(x) = O(g(x)) if f(x) ≤ γ g(x) for some positive constant γ.

2. Feasible full-Newton step IPMs. In preparation for dealing with IIPMs,
in this section we briefly recall the classical way to obtain a polynomial-time path-
following feasible IPM for solving (P) and (D). To solve these problems one needs to
find a solution of the following system of equations:

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,

xs = 0.

In these so-called optimality conditions the first two constraints represent primal and
dual feasibility, whereas the last equation is the so-called complementarity condi-
tion. The nonnegativity constraints in the feasibility conditions make the problem al-
ready nontrivial: only iterative methods can find solutions of linear systems involving
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inequality constraints. The complementarity condition is nonlinear, which makes it
extra hard to solve this system.

2.1. The central path. IPMs replace the complementarity condition by the
so-called centering condition xs = μe, where μ may be any positive number. This
yields the system

Ax = b, x ≥ 0,

AT y + s = c, s ≥ 0,(3)

xs = μe.

Surprisingly enough, if this system has a solution for some μ > 0, then a solution
exists for every μ > 0, and this solution is unique. This happens if and only if (P)
and (D) satisfy the interior-point condition (IPC), i.e., if (P) has a feasible solution
x > 0 and (D) has a solution (y, s) with s > 0 (see, e.g., [20]). If the IPC is satisfied,
then the solution of (3) is denoted by (x(μ), y(μ), s(μ)) and called the μ-center of (P)
and (D). The set of all μ-centers is called the central path of (P) and (D). As μ goes
to zero, x(μ), y(μ), and s(μ) converge to optimal solutions of (P) and (D). Of course,
system (3) is still hard to solve, but by applying Newton’s method one can easily find
approximate solutions.

2.2. Definition and properties of the Newton step. We proceed by de-
scribing Newton’s method for solving (3), with μ fixed. Given any primal feasible
x > 0 and dual feasible y and s > 0, we want to find displacements Δx, Δy, and Δs
such that

A(x + Δx) = b,

AT (y + Δy) + s + Δs = c,

(x + Δx)(s + Δs) = μe.

Neglecting the quadratic term ΔxΔs in the left-hand side expression of the third
equation, we obtain the following linear system of equations in the search directions
Δx, Δy, and Δs:

AΔx = b−Ax,(4)

ATΔy + Δs = c−AT y − s,(5)

sΔx + xΔs = μe− xs.(6)

Since A has full rank, and the vectors x and s are positive, one may easily verify
that the coefficient matrix in the linear system (4)–(6) is nonsingular. Hence this
system uniquely defines the search directions Δx, Δy, and Δs. These search directions
are used in all existing primal-dual (feasible and infeasible) IPMs and are equivalent
to Newton’s method for solving the equations in system (3).

If x is primal feasible and (y, s) dual feasible, then b−Ax = 0 and c−AT y−s = 0,
whence the above system reduces to

AΔx = 0,(7)

ATΔy + Δs = 0,(8)

sΔx + xΔs = μe− xs,(9)

which gives the usual search directions for feasible primal-dual IPMs.
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Primal-Dual Feasible IPM

Input:
Accuracy parameter ε > 0;
barrier update parameter θ, 0 < θ < 1;

feasible (x0, y0, s0) with
(
x0

)T
s0 = nμ0, δ(x0, s0, μ0) ≤ 1/2.

begin
x := x0; y := y0; s := s0; μ := μ0;
while xT s ≥ ε do
begin

μ-update:

μ := (1 − θ)μ;

centering step:

(x, y, s) := (x, y, s) + (Δx, Δy, Δs);
end

end

Fig. 1. Feasible full-Newton-step algorithm.

The new iterates are given by

x+ = x + Δx,

y+ = y + Δy,

s+ = s + Δs.

An important observation is that Δx lies in the null space of A, whereas Δs belongs
to the row space of A. This implies that Δx and Δs are orthogonal, i.e.,

(Δx)
T

Δs = 0.

As a consequence we have the important property that after a full-Newton step the
duality gap assumes the same value as at the μ-centers, namely nμ.

Lemma 2.1 (see [20, Lemma II.46]). After a primal-dual Newton step, one has

(x+)
T
s+ = nμ.

A primal-dual feasible triplet (x, y, s) is an ε-solution of (P) and (D) if cTx−bT y =
xT s ≤ ε.

Assume that a primal feasible x0 > 0 and a dual feasible pair (y0, s0) with s0 > 0
are given that are “close to” x(μ) and (y(μ), s(μ)), respectively, for some μ = μ0. Then
one can find an ε-solution in O(

√
n log(n/ε)) iterations of the algorithm in Figure 1.

In this algorithm δ(x, s;μ) is a quantity that measures proximity of the feasible triple
(x, y, s) to the μ-center (x(μ), y(μ), s(μ)). Following [20], this quantity is defined as
follows:

δ(x, s;μ) := δ(v) :=
1

2

∥∥v − v−1
∥∥ , where v :=

√
xs

μ
.(10)

The following two lemmas are crucial in the analysis of the algorithm. We recall them
without proof. They describe the effect on δ(x, s;μ) of a μ-update and a Newton (or
centering) step, respectively.
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Lemma 2.2 (see [20, Lemma II.53]). Let (x, s) be a positive primal-dual pair and
μ > 0 such that xT s = nμ. Moreover, let δ := δ(x, s;μ) and let μ+ = (1 − θ)μ. Then

δ(x, s;μ+)2 = (1 − θ)δ2 +
θ2n

4(1 − θ)
.

Lemma 2.3 (see [20, Theorem II.49]). If δ := δ(x, s;μ) ≤ 1, then the primal-dual
Newton step is feasible; i.e., x+ and s+ are nonnegative. Moreover, if δ < 1, then x+

and s+ are positive and

δ(x+, s+;μ) ≤ δ2√
2(1 − δ2)

.

Corollary 2.4. If δ := δ(x, s;μ) ≤ 1√
2
, then δ(x+, s+;μ) ≤ δ2.

2.3. Complexity analysis. We have the following theorem, whose simple proof
we include, because it slightly improves the complexity result in [20, Theorem II.52].

Theorem 2.5. If θ = 1/
√

2n, then the algorithm requires at most

√
2n log

nμ0

ε

iterations. The output is a primal-dual pair (x, s) such that xT s ≤ ε.

Proof. At the start of the algorithm we have δ(x, s;μ) ≤ 1/2. After the update
of the barrier parameter to μ+ = (1− θ)μ, with θ = 1/

√
2n, we have, by Lemma 2.2,

the following upper bound for δ(x, s;μ+):

δ(x, s;μ+)2 ≤ 1 − θ

4
+

1

8(1 − θ)
≤ 3

8
.

Assuming n ≥ 2, the last inequality follows since the expression on its left-hand side
is a convex function of θ, whose value is 3/8 both at θ = 0 and at θ = 1/2. Since
θ ∈ [0, 1/2], the left-hand side does not exceed 3/8. Since 3/8 < 1/2, we obtain
δ(x, s;μ+) ≤ 1/

√
2. After the primal-dual Newton step to the μ+-center we have, by

Corollary 2.4, δ(x+, s+;μ+) ≤ 1/2. Also, from Lemma 2.1, (x+)T s+ = nμ+. Thus,
after each iteration of the algorithm the properties

xT s = nμ, δ(x, s;μ) ≤ 1

2

are maintained, and hence the algorithm is well defined. The iteration bound in the
theorem now easily follows from the fact that in each iteration the value of xT s is
reduced by the factor 1 − θ (see, for example, the proof of Theorem 3.2 in [30] for
such a deduction). This proves the theorem.

3. Infeasible full-Newton step IPM. In the case of an infeasible method we
call the triple (x, y, s) an ε-solution of (P) and (D) if the 2-norms of the residual
vectors b−Ax and c−AT y− s do not exceed ε, and also xT s ≤ ε. In this section we
present an infeasible-start algorithm that generates an ε-solution of (P) and (D), if it
exists, or establishes that no such solution exists.
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3.1. The perturbed problems. We start with choosing arbitrarily x0 > 0 and
y0, s0 > 0 such that x0s0 = μ0e for some (positive) number μ0. For any ν with
0 < ν ≤ 1 we consider the perturbed problem (Pν), defined by

(Pν) min
{(

c− ν
(
c−AT y0 − s0

))T
x : Ax = b− ν

(
b−Ax0

)
, x ≥ 0

}
,

and its dual problem (Dν), which is given by

(Dν) max
{(

b− ν
(
b−Ax0

))T
y : AT y + s = c− ν

(
c−AT y0 − s0

)
, s ≥ 0

}
.

Note that if ν = 1, then x = x0 yields a strictly feasible solution of (Pν) and
(y, s) = (y0, s0) a strictly feasible solution of (Dν). We conclude that if ν = 1, then
(Pν) and (Dν) satisfy the IPC.

Lemma 3.1 (cf. [32, Theorem 5.13]). The original problems, (P) and (D), are
feasible if and only if for each ν satisfying 0 < ν ≤ 1 the perturbed problems (Pν) and
(Dν) satisfy the IPC.

Proof. Suppose that (P) and (D) are feasible. Let x̄ be a feasible solution of (P)
and (ȳ, s̄) a feasible solution of (D). Then Ax̄ = b and AT ȳ + s̄ = c, with x̄ ≥ 0 and
s̄ ≥ 0. Now let 0 < ν ≤ 1, and consider

x = (1 − ν) x̄ + ν x0, y = (1 − ν) ȳ + ν y0, s = (1 − ν) s̄ + ν s0.

One has

Ax = A
(
(1 − ν) x̄ + ν x0

)
= (1 − ν)Ax̄ + νAx0 = (1 − ν) b + νAx0 = b− ν

(
b−Ax0

)
,

showing that x is feasible for (Pν). Similarly,

AT y + s = (1 − ν)
(
AT ȳ + s̄

)
+ ν

(
AT y0 + s0

)
= (1 − ν) c + ν

(
AT y0 + s0

)
= c− ν

(
c−AT y0 − s0

)
,

showing that (y, s) is feasible for (Dν). Since ν > 0, x and s are positive, thus proving
that (Pν) and (Dν) satisfy the IPC.

To prove the inverse implication, suppose that (Pν) and (Dν) satisfy the IPC for
each ν satisfying 0 < ν ≤ 1. Obviously, then (Pν) and (Dν) are feasible for these
values of ν. Letting ν go to zero it follows that (P) and (D) are feasible.

In the sections to follow we assume that (P) and (D) are feasible. Only in section
4.7 will we discuss how our algorithm can be used to detect infeasibility or unbound-
edness of (P) and (D). It may be worth noting that if (P) and (D) satisfy the IPC
and x0 and (y0, s0) are feasible, then (Pν) ≡ (P) and (Dν) ≡ (D) for each ν ∈ (0, 1].

3.2. The central path of the perturbed problems. Let (P) and (D) be
feasible and 0 < ν ≤ 1. Then Lemma 3.1 implies that the problems (Pν) and (Dν)
satisfy the IPC, and hence their central paths exist. This means that the system

b−Ax = ν(b−Ax0), x ≥ 0,(11)

c−AT y − s = ν(c−AT y0 − s0), s ≥ 0,(12)

xs = μe(13)

has a unique solution for every μ > 0. In what follows this unique solution is denoted
by (x(μ, ν), y(μ, ν), s(μ, ν)). These are the μ-centers of the perturbed problems (Pν)
and (Dν).
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Note that since x0s0 = μ0e, x0 is the μ0-center of the perturbed problem (P1)
and (y0, s0) the μ0-center of (D1). In other words, (x(μ0, 1), y(μ0, 1), s(μ0, 1)) =
(x0, y0, s0). In what follows the parameters μ and ν always satisfy the relation μ =
ν μ0.

3.3. An iteration of our algorithm. We just established that if ν = 1 and
μ = μ0, then x = x0 is the μ-center of the perturbed problem (Pν) and (y, s) = (y0, s0)
the μ-center of (Dν). These are our initial iterates.

We measure proximity to the μ-center of the perturbed problems by the quantity
δ(x, s;μ) as defined in (10). Initially we thus have δ(x, s;μ) = 0. In what follows
we assume that at the start of each iteration, just before the μ-update, δ(x, s;μ) is
smaller than or equal to a (small) threshold value τ > 0. So this is certainly true at
the start of the first iteration.

Now we describe one (main) iteration of our algorithm. Suppose that for some
μ ∈ (0, μ0] we have x, y, and s satisfying the feasibility conditions (11) and (12) for
ν = μ/μ0 and such that xT s = nμ and δ(x, s;μ) ≤ τ . We reduce μ to μ+ = (1− θ)μ,
with θ ∈ (0, 1), and find new iterates x+, y+, and s+ that satisfy (11) and (12), with μ
replaced by μ+ and ν by ν+ = μ+/μ0, and such that xT s = nμ+ and δ(x+, s+;μ+) ≤
τ . Note that ν+ = (1 − θ)ν.

To be more precise, this is achieved as follows. Each main iteration consists of a
feasibility step and a few centering steps. The feasibility step serves to get iterates
(xf , yf , sf ) that are strictly feasible for (Pν+) and (Dν+) and close to their μ-centers
(x(μ+, ν+), y(μ+, ν+), s(μ+, ν+)). In fact, the feasibility step is designed in such a
way that δ(xf , sf ;μ+) ≤ 1/

√
2. Since the triple (xf , yf , sf ) is strictly feasible for

(Pν+) and (Dν+), we then can easily get iterates (x+, y+, s+) that are strictly feasible
for (Pν+) and (Dν+) and such that δ(x, s;μ+) ≤ τ , just by performing a few centering
steps starting at (xf , yf , sf ) and targeting at the μ+-centers of (Pν+) and (Dν+).

Before describing the feasibility step it will be convenient to introduce some new
notation. We denote the initial values of the primal and dual residuals r0

b and r0
c ,

respectively, as

r0
b = b−Ax0,

r0
c = c−AT y0 − s0.

Then the feasibility equations for (Pν) and (Dν) are given by

Ax = b− νr0
b , x ≥ 0,(14)

AT y + s = c− νr0
c , s ≥ 0,(15)

and those of (Pν+) and (Dν+) by

Ax = b− ν+r0
b , x ≥ 0,(16)

AT y + s = c− ν+r0
c , s ≥ 0.(17)

Now suppose that the triplet (x, y, s) is feasible for (Pν) and (Dν). To get iterates
that are feasible for (Pν+) and (Dν+) we need search directions Δfx, Δfy, and Δfs
such that

A(x + Δfx) = b− ν+r0
b ,

AT (y + Δfy) + (s + Δfs) = c− ν+r0
c .
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Since x is feasible for (Pν) and (y, s) is feasible for (Dν), it follows that Δfx, Δfy,
and Δfs should satisfy

AΔfx = (b−Ax) − ν+r0
b = νr0

b − ν+r0
b = θνr0

b ,

ATΔfy + Δfs = (c−AT y − s) − ν+r0
c = νr0

c − ν+r0
c = θνr0

c .

Therefore, the following system is used to define Δfx, Δfy, and Δfs:

AΔfx = θνr0
b ,(18)

ATΔfy + Δfs = θνr0
c ,(19)

sΔfx + xΔfs = μe− xs,(20)

and after the feasibility step the iterates are given by

xf = x + Δfx,(21)

yf = y + Δfy,(22)

sf = s + Δfs.(23)

We conclude that after the feasibility step the iterates satisfy the affine equations in
(11) and (12), with ν = ν+. The hard part in the analysis will be to guarantee that
xf and sf are positive and satisfy δ(xf , sf ;μ+) ≤ 1/

√
2.

After the feasibility step we perform centering steps in order to get iterates

(x+, y+, s+) that satisfy x+T
s+ = nμ+ and δ(x+, s+;μ+) ≤ τ . By using Corollary

2.4, the required number of centering steps can easily be obtained. Indeed, assuming
δ = δ(xf , sf ;μ+) ≤ 1/

√
2, after k centering steps we will have iterates (x+, y+, s+)

that are still feasible for (Pν+) and (Dν+) and that satisfy

δ(x+, s+;μ+) ≤
(

1√
2

)2k

.

Thus, δ(x+, s+;μ+) ≤ τ if k satisfies

(
1√
2

)2k

≤ τ,

which gives

k ≥ log2

(
log2

1

τ2

)
.(24)

3.4. The algorithm. A more formal description of the algorithm is given in
Figure 2. Note that after each iteration the residuals and the duality gap are reduced
by a factor 1 − θ. The algorithm stops if the norms of the residuals and the duality
gap are less than the accuracy parameter ε.

4. An analysis of the algorithm. Let x, y, and s denote the iterates at the
start of an iteration, and assume δ(x, s;μ) ≤ τ . Recall that at the start of the first
iteration this is certainly true, because then δ(x, s;μ) = 0.
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Primal-Dual Infeasible IPM

Input:
Accuracy parameter ε > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter τ > 0.

begin
x := x0 > 0; y := y0; s := s0 > 0; x0s0 = μ0e; μ = μ0; ν = 1;
while max

(
xT s, ‖b−Ax‖ ,

∥∥c−AT y − s
∥∥) ≥ ε do

begin

feasibility step:

(x, y, s) := (x, y, s) + (Δfx, Δfy, Δfs);

update of μ and ν:

μ := (1 − θ)μ;
ν := (1 − θ)ν;

centering steps:

while δ(x, s;μ) ≥ τ do
(x, y, s) := (x, y, s) + (Δx, Δy, Δs);

endwhile

end
end

Fig. 2. The algorithm.

4.1. The effect of the feasibility step and the choice of θ. As we estab-
lished in section 3.3, the feasibility step generates new iterates

(
xf , yf , sf

)
that satisfy

the feasibility conditions for (Pν+) and (Dν+), except possibly the nonnegativity con-
straints. A crucial element in the analysis is to show that after the feasibility step
δ(xf , sf ;μ+) ≤ 1/

√
2, i.e., that the iterates

(
xf , yf , sf

)
are within the region where

the Newton process targeting at the μ+-centers of (Pν+) and (Dν+) is quadratically
convergent.

Defining

v =

√
xs

μ
, dx :=

vΔfx

x
, ds :=

vΔfs

s
,(25)

we have, using (20) and (25),

xfsf = xs +
(
sΔfx + xΔfs

)
+ ΔfxΔfs = μe + ΔfxΔfs = μe +

xs

v2
dxds = μ (e + dxds) .

(26)

Lemma 4.1 (cf. [20, Lemma II.45]). The iterates
(
xf , yf , sf

)
are strictly feasible

if and only if e + dxds > 0.
Proof. Note that if xf and sf are positive, then (26) makes clear that e+dxds > 0,

proving the “only if” part of the statement in the lemma. For the proof of the converse



1120 C. ROOS

implication we introduce a step length α ∈ [0, 1], and we define

xα = x + αΔfx, yα = y + αΔfy, sα = s + αΔfs.

We then have x0 = x, x1 = x+ and similar relations for y and s. Hence we have
x0s0 = xs > 0. We write

xαsα = (x + αΔfx)(s + αΔfs) = xs + α
(
sΔfx + xΔfs

)
+ α2ΔfxΔfs.

Using sΔfx + xΔfs = μe− xs gives

xαsα = xs + α (μe− xs) + α2ΔfxΔfs.

Now suppose e + dxds > 0. From the definitions of dx and ds in (25) we deduce
μdxds = ΔfxΔfs. Hence μe + ΔfxΔfs > 0, or, equivalently, ΔfxΔfs > −μe.
Substitution gives

xαsα > xs + α (μe− xs) − α2μe = (1 − α) (xs + αμe) , α ∈ [0, 1].

Since (1 − α) (xs + αμe) ≥ 0 it follows that xαsα > 0 for 0 ≤ α ≤ 1. Hence, none of
the entries of xα and sα vanishes for 0 ≤ α ≤ 1. Since x0 and s0 are positive, and
xα and sα depend linearly on α, this implies that xα > 0 and sα > 0 for 0 ≤ α ≤ 1.
Hence, x1 and s1 must be positive, proving the “if” part of the statement in the
lemma.

Corollary 4.2. The iterates
(
xf , yf , sf

)
are strictly feasible if ‖dxds‖∞ < 1.

Proof. By Lemma 4.1, xf and sf are strictly feasible if and only if e + dxds > 0.
Since the last inequality holds if ‖dxds‖∞ < 1, the corollary follows.

In what follows we denote

ω(v) := 1
2

√
‖dx‖2

+ ‖ds‖2
.(27)

This implies ‖dx‖ ≤ 2ω(v) and ‖ds‖ ≤ 2ω(v), and, moreover,

dTx ds ≤ ‖dx‖ ‖ds‖ ≤ 1
2

(
‖dx‖2

+ ‖ds‖2
)
≤ 2ω(v)2,(28)

‖dxds‖∞ ≤ ‖dx‖ ‖ds‖ ≤ 2ω(v)2.(29)

Lemma 4.3. If ω(v) < 1/
√

2, then the iterates
(
xf , yf , sf

)
are strictly feasible.

Proof. Let ω(v) < 1/
√

2. Then (29) implies that ‖dxds‖∞ < 1. By Corollary 4.2
this implies the statement in the lemma.

Assuming ω(v) < 1/
√

2, which guarantees strict feasibility of the iterates(
xf , yf , sf

)
, we proceed by deriving an upper bound for δ(xf , sf ;μ+). By definition

(10) we have

δ(xf , sf ;μ+) =
1

2

∥∥∥vf − e

vf

∥∥∥ , where vf =

√
xfsf

μ+
.

In what follows we denote δ(xf , sf ;μ+) also shortly by δ(vf ).
Lemma 4.4. Let ω(v) < 1/

√
2. Then one has

4δ(vf )2 ≤ θ2n

1 − θ
+

2ω(v)2

1 − θ
+ (1 − θ)

2ω(v)2

1 − 2ω(v)2
.
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Proof. Using (26), after division of both sides by μ+ = (1 − θ)μ, we get

(
vf

)2
=

μ(e + dxds)

μ+
=

e + dxds
1 − θ

.

Due to Lemma 4.3 and Corollary 4.2 we have ‖dxds‖∞ < 1, whence e + dxds > 0.
By defining for the moment u =

√
e + dxds, we have vf = u/

√
1 − θ. Hence we may

write

2δ(vf ) =

∥∥∥∥ u√
1 − θ

−
√

1 − θ u−1

∥∥∥∥ =

∥∥∥∥ θu√
1 − θ

+
√

1 − θ
(
u− u−1

)∥∥∥∥ .
Therefore we have

4δ(vf )2 =
θ2

1 − θ
‖u‖2

+ (1 − θ)
∥∥u− u−1

∥∥2
+ 2θuT

(
u− u−1

)
=

(
θ2

1 − θ
+ 2θ

)
‖u‖2

+ (1 − θ)
∥∥u− u−1

∥∥2 − 2θuTu−1

=

(
θ2

1 − θ
+ 2θ

)
eT (e + dxds) + (1 − θ)

∥∥u− u−1
∥∥2 − 2θn

=

(
θ2

1 − θ
+ 2θ

) (
n + dTx ds

)
+ (1 − θ)

∥∥u− u−1
∥∥2 − 2θn

=
θ2n

1 − θ
+

(
θ2

1 − θ
+ 2θ

)
dTx ds + (1 − θ)

∥∥u−1 − u
∥∥2

.

The last term can be reduced as follows:

∥∥u−1 − u
∥∥2

= eT
(
e + dxds +

e

e + dxds
− 2e

)
= dTx ds +

n∑
i=1

1

1 + dxidsi
− n

= dTx ds +

n∑
i=1

(
1

1 + dxidsi
− 1

)
= dTx ds −

n∑
i=1

dxidsi
1 + dxidsi

.

Substitution gives

4δ(vf )2 =
θ2n

1 − θ
+

(
θ2

1 − θ
+ 2θ

)
dTx ds + (1 − θ)

(
dTx ds −

n∑
i=1

dxidsi
1 + dxidsi

)

=
θ2n

1 − θ
+

dTx ds
1 − θ

− (1 − θ)
n∑

i=1

dxidsi
1 + dxidsi

.

Hence, using (28) and (29), we arrive at

4δ(vf )2 ≤ θ2n

1 − θ
+

2ω(v)2

1 − θ
+ (1 − θ)

n∑
i=1

|dxidsi|
1 − 2ω(v)2

≤ θ2n

1 − θ
+

2ω(v)2

1 − θ
+

1 − θ

2

n∑
i=1

dx
2
i + ds

2
i

1 − 2ω(v)2

=
θ2n

1 − θ
+

2ω(v)2

1 − θ
+ (1 − θ)

2ω(v)2

1 − 2ω(v)2
,
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which completes the proof.
Because we need to have δ(vf ) ≤ 1/

√
2, it follows from Lemma 4.4 that it suffices

to have

θ2n

1 − θ
+

2ω(v)2

1 − θ
+ (1 − θ)

2ω(v)2

1 − 2ω(v)2
≤ 2.(30)

We conclude this section by presenting a value that we do not allow ω(v) to exceed
and by choosing a value for θ so that inequality (30) is satisfied.

Lemma 4.5. Let ω(v) ≤ 1
2 and

θ =
α√
2n

, 0 ≤ α ≤
√

n

n + 1
.(31)

Then the iterates
(
xf , yf , sf

)
are strictly feasible and δ(vf ) ≤ 1√

2
.

Proof. Since ω(v) ≤ 1
2 , the iterates

(
xf , yf , sf

)
are certainly strictly feasible,

due to Lemma 4.3. As we just established, δ(vf ) ≤ 1/
√

2 holds if inequality (30) is
satisfied. The left-hand side in this inequality is monotonically increasing in ω(v). By
substituting ω(v) = 1

2 , the inequality reduces to

θ2n

1 − θ
+

1

2 (1 − θ)
+ (1 − θ) ≤ 2.

Using that θ ≥ 0, one easily verifies that this is equivalent to

θ ≤ 1√
2n + 2

,

which is in agreement with (31). Thus the lemma has been proved.
We proceed by considering the vectors dx and ds in more detail in order to obtain

an upper bound for ω(v).

4.2. The scaled search directions dx and ds. One may easily check that
the system (18)–(20), which defines the search directions Δfx, Δfy, and Δfs, can be
expressed in terms of the scaled search directions dx and ds as follows:

Ādx = θνr0
b ,(32)

ĀT Δfy

μ
+ ds = θνvs−1r0

c ,(33)

dx + ds = v−1 − v,(34)

where

Ā = AV −1X, V = diag(v), X = diag(x).(35)

If r0
b and r0

c are zero, i.e., if the initial iterates are feasible, then dx and ds are
orthogonal vectors, since then the vector dx belongs to the null space and ds to the row
space of the matrix Ā. It follows that dx and ds form an orthogonal decomposition
of the vector v−1 − v. As a consequence we then have obvious upper bounds for
the norms of dx and ds, namely ‖dx‖ ≤ 2δ(v) and ‖ds‖ ≤ 2δ(v), and, moreover,
ω(v) = δ(v), with ω(v) as defined in (27).

In the infeasible case, orthogonality of dx and ds may not be assumed, how-
ever, and the situation may be quite different. This is illustrated in Figure 3. As a
consequence, it becomes much harder to get upper bounds for ‖dx‖ and ‖ds‖, thus
complicating the analysis of the algorithm in comparison with feasible IPMs. To
obtain an upper bound for ω(v) is the subject of several subsections to follow.
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{ ξ
:

Ā
ξ

=
θ
ν
r
0 b

} θνvs−1r0
c +

{
ĀT

η : η ∈ Rm }

90o 2ω(v)

2δ(v)

v−1 − v

ds

dx

0

q

Fig. 3. Geometric interpretation of ω(v).

4.3. An upper bound for ω(v). Let us denote the null space of the matrix Ā
as L. So,

L :=
{
ξ ∈ Rn : Āξ = 0

}
.

Then the affine space
{
ξ ∈ Rn : Āξ = θνr0

b

}
equals dx +L. Note that due to a well-

known result from linear algebra the row space of Ā equals the orthogonal complement
L⊥ of L. Obviously, ds ∈ θνvs−1r0

c + L⊥. Also note that L ∩ L⊥ = {0}, and as a
consequence the affine spaces dx +L and ds +L⊥ meet in a unique point. This point
is denoted by q.

Lemma 4.6. Let q be the (unique) point in the intersection of the affine spaces
dx + L and ds + L⊥. Then

2ω(v) ≤
√
‖q‖2

+ (‖q‖ + 2δ(v))
2
.

Proof. To simplify the notation in this proof we denote r = v−1 − v. Since
L + L⊥ = Rn, there exist q1, r1 ∈ L and q2, r2 ∈ L⊥ such that

q = q1 + q2, r = r1 + r2.

On the other hand, since dx− q ∈ L and ds− q ∈ L⊥ there must exist �1 ∈ L and
�2 ∈ L⊥ such that

dx = q + �1, ds = q + �2.
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Due to (34) it follows that r = 2q + �1 + �2, which implies

(2q1 + �1) + (2q2 + �2) = r1 + r2.

Since the decomposition L + L⊥ = Rn is unique, we conclude that

�1 = r1 − 2q1, �2 = r2 − 2q2.

Hence we obtain

dx = q + r1 − 2q1 = (r1 − q1) + q2,

ds = q + r2 − 2q2 = q1 + (r2 − q2).

Since the spaces L and L⊥ are orthogonal we conclude from this that

4ω(v)2 = ‖dx‖2
+ ‖ds‖2

= ‖r1 − q1‖2
+ ‖q2‖2

+ ‖q1‖2
+ ‖r2 − q2‖2

= ‖q − r‖2
+ ‖q‖2

.

Assuming q 
= 0, since ‖r‖ = 2δ(v) the right-hand side is maximal if r = −2δ(v)q/ ‖q‖,
and thus we obtain

4ω(v)2 ≤
∥∥∥∥
(

1 +
2δ(v)

‖q‖

)
q

∥∥∥∥
2

+ ‖q‖2
= ‖q‖2

+ (‖q‖ + 2δ(v))
2
,

which implies the inequality in the lemma if q 
= 0. Since the inequality in the lemma
holds with equality if q = 0, this completes the proof.

In what follows we denote δ(v) simply as δ. Recall from Lemma 4.5 that in order
to guarantee that δ(vf ) ≤ 1√

2
we want to have ω(v) ≤ 1

2 . Due to Lemma 4.6 this will

certainly hold if ‖q‖ satisfies

‖q‖2
+ (‖q‖ + 2δ)

2 ≤ 1.(36)

4.4. An upper bound for ‖q‖. Recall from Lemma 4.6 that q is the (unique)
solution of the system

Āq = θνr0
b ,

ĀT ξ + q = θνvs−1r0
c .

We proceed by deriving an upper bound for ‖q‖. Before doing this we have to specify
our initial iterates (x0, y0, s0). These are chosen in the usual way. So, we assume that
ζ > 0 is such that ‖x∗ + s∗‖∞ ≤ ζ for some optimal solutions x∗ of (P) and (y∗, s∗)
of (D), and we start the algorithm with

x0 = s0 = ζe, y0 = 0, μ0 = ζ2.

We have the following result.
Lemma 4.7. One has

√
μ ‖q‖ ≤ θν ζ

√
eT

(x
s

+
s

x

)
.(37)

Proof. From the definition (35) of Ā we deduce that Ā =
√
μAD, where

D = diag

(
xv−1

√
μ

)
= diag

(√
x

s

)
= diag

(√
μ vs−1

)
.
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For the moment, let us write

rb = θνr0
b , rc = θνr0

c .

Then the system defining q is equivalent to

√
μAD q = rb,

√
μDAT ξ + q =

1
√
μ
Drc.

This implies

μAD2AT ξ = AD2rc − rb,

whence

ξ =
1

μ

(
AD2AT

)−1 (
AD2rc − rb

)
.

Substitution gives

q =
1
√
μ

(
Drc −DAT

(
AD2AT

)−1 (
AD2rc − rb

))
.

Observe that

q1 := Drc −DAT
(
AD2AT

)−1
AD2rc =

(
I −DAT

(
AD2AT

)−1
AD

)
Drc

is the orthogonal projection of Drc onto the null space of AD. Let (ȳ, s̄) be such that
AT ȳ + s̄ = c. Then we may write

rc = θνr0
c = θν

(
c−AT y0 − s0

)
= θν

(
AT (ȳ − y0) + s̄− s0

)
.

Since DAT (ȳ − y0) belongs to the row space of AD, which is orthogonal to the null
space of AD, we obtain

‖q1‖ ≤ θν
∥∥D (

s̄− s0
)∥∥ .

On the other hand, let x̄ be such that Ax̄ = b. Then

rb = θνr0
b = θν(b−Ax0) = θνA(x̄− x0),

and the vector

q2 := DAT
(
AD2AT

)−1
rb = θνDAT

(
AD2AT

)−1
AD

(
D−1

(
x̄− x0

))
is the orthogonal projection of θνD−1

(
x̄− x0

)
onto the row space of AD. Hence it

follows that

‖q2‖ ≤ θν
∥∥D−1

(
x̄− x0

)∥∥ .
Since

√
μ q = q1 + q2 and q1 and q2 are orthogonal, we may conclude that

√
μ ‖q‖ =

√
‖q1‖2

+ ‖q2‖2 ≤ θν

√
‖D (s̄− s0)‖2

+ ‖D−1 (x̄− x0)‖2
,(38)

where, as always, μ = μ0ν.
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We are still free to choose x̄ and s̄, subject to the constraints Ax̄ = b and AT ȳ+s̄ =
c. Taking x̄ = x∗ and s̄ = s∗ the entries of the vectors x0 − x̄ and s0 − s̄ satisfy

0 ≤ x0 − x̄ ≤ ζe, 0 ≤ s0 − s̄ ≤ ζe.

Thus it follows that√
‖D (s̄− s0)‖2

+ ‖D−1 (x̄− x0)‖2 ≤ ζ

√
‖De‖2

+ ‖D−1e‖2
= ζ

√
eT

(x
s

+
s

x

)
.

Substitution into (38) gives

√
μ ‖q‖ ≤ θν ζ

√
eT

(x
s

+
s

x

)
,

proving the lemma.
To proceed we need upper bounds for the elements of the vectors x/s and s/x.

4.5. Some bounds for x and s. The choice of τ and α. Recall that x is
feasible for (Pν) and (y, s) for (Dν) and, moreover, δ(x, s;μ) ≤ τ ; i.e., these iterates
are close to the μ-centers of (Pν) and (Dν). Based on this information we need to
estimate the sizes of the entries of the vectors x/s and s/x. Since the concerning
analysis does not belong to the mainstream of the paper we have moved this analysis
to the appendix. Based on this analysis we choose

τ =
1

8
.(39)

Then, by Corollary A.10, we have√
x

s
≤

√
2
x(μ, ν)
√
μ

,

√
s

x
≤

√
2
s(μ, ν)
√
μ

.

Substitution into (37) gives

√
μ ‖q‖ ≤ θν ζ

√√√√2eT

(
x(μ, ν)

2

μ
+

s(μ, ν)
2

μ

)
.

This implies

μ ‖q‖ ≤ θνζ
√

2

√
‖x(μ, ν)‖2

+ ‖s(μ, ν)‖2
.

Therefore, also using μ = μ0ν = ζ2ν and θ = α√
2n

, we obtain the following upper

bound for the norm of q:

‖q‖ ≤ α

ζ
√
n

√
‖x(μ, ν)‖2

+ ‖s(μ, ν)‖2
.

At this stage we define

κ(ζ, ν) :=

√
‖x(μ, ν)‖2

+ ‖s(μ, ν)‖2

ζ
√

2n
, 0 < ν ≤ 1, μ = μ0ν,(40)
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and

κ̄(ζ) = max
0<ν≤1

κ(ζ, ν).(41)

Then ‖q‖ can be bounded above as follows:

‖q‖ ≤ ακ̄(ζ)
√

2.

We found in (36) that in order to have δ(vf ) ≤ 1/
√

2, we should have ‖q‖2
+

(‖q‖ + 2δ)
2 ≤ 1. Therefore, since δ ≤ τ = 1

8 , it suffices if q satisfies ‖q‖2
+(

‖q‖ + 1
4

)2 ≤ 1. So we certainly have δ(vf ) ≤ 1/
√

2 if ‖q‖ ≤ 1
2 . Since ‖q‖ ≤ ακ̄(ζ)

√
2,

the latter inequality is satisfied if we take

α =
1

2
√

2 κ̄(ζ)
.(42)

Note that since x(ζ2, 1) = s(ζ2, 1) = ζe, we have κ(ζ, 1) = 1. As a consequence we
obtain that κ̄(ζ) ≥ 1. We can prove that κ̄(ζ) ≤

√
2n. This is shown in the next

section.

4.6. Bound for κ̄(ζ). Due to the choice of the vectors x̄, ȳ, s̄ and the number
ζ (cf. section 4.4) we have

Ax̄ = b, 0 ≤ x̄ ≤ ζe,

AT ȳ + s̄ = c, 0 ≤ s̄ ≤ ζe,

x̄s̄ = 0.

To simplify notation in the rest of this section, we denote x = x(μ, ν), y = y(μ, ν),
and s = s(μ, ν). Then x, y, and s are uniquely determined by the system

b−Ax = ν(b−Aζe), x ≥ 0,

c−AT y − s = ν(c− ζe), s ≥ 0,

xs = νζ2e.

Hence we have

Ax̄−Ax = ν(Ax̄−Aζe), x ≥ 0,

AT ȳ + s̄−AT y − s = ν(AT ȳ + s̄− ζe), s ≥ 0,

xs = νζ2e.

We rewrite this system as

A (x̄− x− νx̄ + νζe) = 0, x ≥ 0,

AT (ȳ − y − νȳ) = s− s̄ + νs̄− νζe, s ≥ 0,

xs = νζ2e.

Using again that the row space of a matrix and its null space are orthogonal, we
obtain

(x̄− x− νx̄ + νζe)
T

(s− s̄ + νs̄− νζe) = 0.
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Defining

a := (1 − ν)x̄ + νζe, b := (1 − ν)s̄ + νζe,

we have (a− x)
T

(b− s) = 0. This gives

aT b + xT s = aT s + bTx.

Since x̄T s̄ = 0, x̄ + s̄ ≤ ζe, and xs = νζ2e, we may write

aT b + xT s = ((1 − ν)x̄ + νζe)
T

((1 − ν)s̄ + νζe) + νζ2n

= ν(1 − ν) (x̄ + s̄)
T
ζe + ν2ζ2n + νζ2n

≤ ν(1 − ν) (ζe)
T
ζe + ν2ζ2n + νζ2n

= ν(1 − ν)ζ2n + ν2ζ2n + νζ2n = 2νζ2n.

Moreover, also using a ≥ νζe, b ≥ νζe, we get

aT s + bTx = ((1 − ν)x̄ + νζe)
T
s + ((1 − ν)s̄ + νζe)

T
x

= (1 − ν)
(
sT x̄ + xT s̄

)
+ νζeT (x + s)

≥ νζeT (x + s) = νζ (‖s‖1 + ‖x‖1) .

Hence we obtain ‖s‖1 + ‖x‖1 ≤ 2ζn. Since ‖x‖2
+ ‖s‖2 ≤ (‖s‖1 + ‖x‖1)

2
, it follows

that √
‖x‖2

+ ‖s‖2

ζ
√

2n
≤ ‖s‖1 + ‖x‖1

ζ
√

2n
≤ 2ζn

ζ
√

2n
=

√
2n,

thus proving
κ̄(ζ) ≤

√
2n.

4.7. Complexity analysis. In the previous sections we have found that if at
the start of an iteration the iterates satisfy δ(x, s;μ) ≤ τ , with τ as defined in (39),
then after the feasibility step, with θ as defined in (31), and α as in (42), the iterates
satisfy δ(xf , sf ;μ+) ≤ 1/

√
2.

According to (24), at most

log2

(
log2

1

τ2

)
= log2 (log2 64) ≤ 3

centering steps suffice to get iterates (x+, y+, s+) that satisfy δ(x+, s+;μ+) ≤ τ . So
each main iteration consists of at most 4 so-called inner iterations, in each of which we
need to compute a search direction (for either a feasibility step or a centering step).

It has become a custom to measure the complexity of an IPM by the required
number of inner iterations. In each main iteration both the duality gap and the norms

of the residual vectors are reduced by the factor 1− θ. Hence, using x0T s0 = nζ2, the
total number of main iterations is bounded above by

1

θ
log

max
{
nζ2,

∥∥r0
b

∥∥ , ∥∥r0
c

∥∥}
ε

.
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Due to (31) and (42) we have

θ =
α√
2n

=
1

4κ̄(ζ)
√
n
.

Hence the total number of inner iterations is bounded above by

16 κ̄(ζ)
√
n log

max
{
nζ2,

∥∥r0
b

∥∥ , ∥∥r0
c

∥∥}
ε

,(43)

where κ̄(ζ) ≤
√

2n. Thus we may state without further proof the main result of the
paper.

Theorem 4.8. If (P) and (D) are feasible and ζ > 0 is such that ‖x∗ + s∗‖∞ ≤ ζ
for some optimal solutions x∗ of (P) and (y∗, s∗) of (D), then after at most

16
√

2n log
max

{
nζ2,

∥∥r0
b

∥∥ , ∥∥r0
c

∥∥}
ε

inner iterations the algorithm finds an ε-solution of (P) and (D).

A basic question is, of course, how to choose the number ζ, which determines the
initial iterates and has to be fixed before starting the algorithm. A related question
that we did not yet deal with is whether or not our algorithm can detect infeasibility
(or unboundedness) of (P) and (D). In the case, where the entries of A, b, and c are
rational numbers, these issues can be dealt with as follows. It is well known that if
(P) and (D) are feasible, then there exist optimal solutions x∗ and (y∗, s∗) of (P) and
(D) such that ‖x∗ + s∗‖∞ ≤ 2L, where L denotes the binary input size of (P) and
(D). The number L can be computed straightforwardly from the input data A, b, and
c. Thus, when starting the algorithm with ζ = 2L, after at most

16
√

2n log
max

{
n4L,

∥∥b− 2LAe
∥∥ , ∥∥c− 2Le

∥∥}
ε

iterations the algorithm finds an ε-solution if it exists. Otherwise we must decide that
(P) and (D) are infeasible or unbounded.

Working with the number L may not be possible in practice, however, since this
number can be very large. For such cases it may be worth noting that if (P) and (D)
are infeasible or unbounded, then Lemma 3.1 implies that (Pν) and (Dν) do not satisfy
the IPC for all ν ∈ (0, ν̄] for some ν̄ ∈ (0, 1). If the iterates after the feasibility step
satisfy δ(xf , sf ;μ+) ≤ 1/

√
2, we are sure that the perturbed problems corresponding

to ν = μ+/μ0 satisfy the IPC, and hence are strictly feasible. So we then have ν ≥ ν̄.
On the other hand, if ν < ν̄, the algorithm will find that δ(xf , sf ;μ+) > 1/

√
2, which

implies that there are no optimal solutions x∗ and (y∗, s∗) such that ζ ≥ ‖x∗ + s∗‖∞.
We can then run the algorithm again with ζ := 2ζ. If necessary, this can be repeated.
When starting with ζ = 1, after doubling the value of ζ at most L times the algorithm
must have found optimal solutions of (P) and (D) if these exist. Otherwise (P) and
(D) are infeasible or unbounded.

5. Concluding remarks. The current paper shows that the techniques that
have been developed in the field of feasible full-Newton step IPMs, and which have
now been known for almost 20 years, are sufficient to get a full-Newton step IIPM
whose complexity is at least as good as the currently best known performance of
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Fig. 4. Typical behavior of κ(ζ, ν) as a function of ν.

IIPMs. Following a well-known metaphor of Isaac Newton,4 it looks as if a “smooth
pebble or pretty shell on the sea-shore of IPMs” has been overlooked for a surprisingly
long time.

It is worth mentioning that we found computational evidence for the following
conjecture.

Conjecture 5.1. If (P) and (D) are feasible and ζ ≥ ‖x∗ + s∗‖∞ for some pair
of optimal solutions x∗ and (y∗, s∗), then κ̄(ζ) = 1.

The evidence was provided by a simple MATLAB implementation of our algo-
rithm. As input we used a primal-dual pair of randomly generated feasible prob-
lems with known optimal solutions x∗ and (y∗, s∗) and ran the algorithm with ζ =
‖x∗ + s∗‖∞. This was done for various sizes of the problems and for at least 105

instances. No counterexample for the conjecture was found. Typically, the graph of
κ(ζ, ν), as a function of ν, is as depicted in Figure 4. The importance of the conjecture
is evident. Its trueness would reduce the currently best iteration bound for IIPMs by
a factor

√
2n.

It may be clear that the full-Newton step method presented in this paper may
not be efficient from a practical point of view, just as the feasible IPMs with the best
theoretical performance are far from practical. But just as in the case of feasible IPMs,
one might expect that computationally efficient large-update methods for IIPMs can
be designed whose theoretical complexity is not worse than

√
n times the iteration

bound in this paper. Even better results for large-update methods might be obtained
by changing the search direction, by using methods that are based on kernel functions,
as presented in [3, 17]. This requires further investigation. Also, extensions to second-
order cone optimization, semidefinite optimization, linear complementarity problems,
etc. seem to be within reach.

Appendix. Some technical lemmas. Given a strictly primal feasible point x
of (P) and a strictly dual feasible point (y, s) of (D), and μ > 0, let

Φ (xs;μ) := Ψ(v) :=
n∑

i=1

ψ(vi), vi :=

√
xisi
μ

, ψ(t) :=
1

2

(
t2 − 1 − log t2

)
.

It is well known that ψ(t) is the kernel function of the primal-dual logarithmic barrier
function, which, up to some constant, is the function Φ (xs;μ) (see, e.g., [3]).

4“I do not know what I may appear to the world; but to myself I seem to have been only like a
boy playing on the sea-shore, and diverting myself in now and then finding a smoother pebble or a
prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me” [27, p.
863].
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Lemma A.1. One has

Φ (xs;μ) = Φ (xs(μ);μ) + Φ (x(μ)s;μ) .

Proof. The equality in the lemma is equivalent to

n∑
i=1

(
xisi
μ

− 1 − log
xisi
μ

)

=

n∑
i=1

(
xi(μ)si

μ
− 1 − log

xi(μ)si
μ

)
+

n∑
i=1

(
xisi(μ)

μ
− 1 − log

xisi(μ)

μ

)
.

Since

log
xisi
μ

= log
xisi

xi(μ)si(μ)
= log

xi

xi(μ)
+ log

si
si(μ)

= log
xisi(μ)

μ
+ log

xi(μ)si
μ

,

this equality holds if and only if

xT s− nμ =
(
xT s(μ) − nμ

)
+

(
sTx(μ) − nμ

)
.

Using that x(μ)s(μ) = μe, whence x(μ)T s(μ) = nμ, this can be written as (x −
x(μ))T (s− s(μ)) = 0, which holds if the vectors x−x(μ) and s− s(μ) are orthogonal.
This is indeed the case, because x − x(μ) belongs to the null space and s − s(μ) to
the row space of A. This proves the lemma.

Lemma A.2. One has

ψ

(√
xi

xi(μ)

)
≤ Ψ(v), ψ

(√
si

si(μ)

)
≤ Ψ(v), i = 1, . . . , n.

Proof. By Lemma A.1 we have Φ (xs;μ) = Φ (xs(μ);μ) + Φ (x(μ)s;μ). Since
Φ (xs;μ) is always nonnegative, also Φ (xs(μ);μ) and Φ (x(μ)s;μ) are nonnegative.
Thus it follows that Φ (xs(μ);μ) ≤ Ψ(v) and Φ (x(μ)s;μ) ≤ Ψ(v). The first of these
two inequalities gives

Φ (xs(μ);μ) =

n∑
i=1

ψ

(√
xisi(μ)

μ

)
≤ Ψ(v).

Since ψ(t) ≥ 0, for every t > 0, it follows that

ψ

(√
xisi(μ)

μ

)
≤ Ψ(v), i = 1, . . . , n.

Due to x(μ)s(μ) = μe, we have

xisi(μ)

μ
=

xisi(μ)

xi(μ)si(μ)
=

xi

xi(μ)
,

whence we obtain the first inequality in the lemma. The second inequality follows in
the same way.

Note that ψ(t) is monotonically decreasing for t ≤ 1 and monotonically increasing
for t ≥ 1. In what follows we denote by � : [0,∞) → [1,∞) the inverse function of
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ψ(t) for t ≥ 1 and by χ : [0,∞) → (0, 1] the inverse function of ψ(t) for 0 < t ≤ 1.
So we have

�(s) = t ⇔ s = ψ(t), s ≥ 0, t ≥ 1,(44)

and

χ(s) = t ⇔ s = ψ(t), s ≥ 0, 0 < t ≤ 1.(45)

Note that χ(s) is monotonically decreasing and �(s) is monotonically increasing in
s ≥ 0.

Lemma A.3. Let t > 0 and ψ(t) ≤ s. Then χ (s) ≤ t ≤ � (s) .
Proof. This is almost obvious. Since ψ(t) is strictly convex and minimal at t = 1,

with ψ(1) = 0, ψ(t) ≤ s implies that t belongs to a closed interval whose extremal
points are χ(s) and �(s).

Corollary A.4. One has

χ (Ψ(v)) ≤
√

xi

xi(μ)
≤ � (Ψ(v)) , χ (Ψ(v)) ≤

√
si

si(μ)
≤ � (Ψ(v)) .

Proof. This is immediate from Lemma A.3 and Lemma A.2.
Lemma A.5. One has√

x

s
≤ � (Ψ(v))

χ (Ψ(v))

x(μ)
√
μ
,

√
s

x
≤ � (Ψ(v))

χ (Ψ(v))

s(μ)
√
μ
.

Proof. Using that xi(μ)si(μ) = μ, for each i, Corollary A.4 implies

√
xi

si
≤ � (Ψ(v))

√
xi(μ)

χ (Ψ(v))
√
si(μ)

=
� (Ψ(v))

χ (Ψ(v))

√
xi(μ)

si(μ)
=

� (Ψ(v))

χ (Ψ(v))

√
x2
i (μ)

μ
=

� (Ψ(v))

χ (Ψ(v))

xi(μ)
√
μ

,

which implies the first inequality. The second inequality is obtained in the same
way.

We proceed by deriving an upper bound for Ψ(v) in terms of δ(v). First we deal
with a simple lemma.

Lemma A.6. Let t ≥ 1. Then ψ(t) − ψ
(

1
t

)
≥ 0.

Proof. Define f(t) := ψ(t) − ψ
(

1
t

)
for t > 0. Then

f ′(t) = t− 1

t
−

(
1

t
− t

)
−1

t2
=

(
t− 1

t

)(
1 − 1

t2

)
=

(
t2 − 1

)2

t3
≥ 0.

It follows that f(t) is monotonically increasing for t > 0. Since f(1) = 0 this proves
that f(t) ≥ 0 for t ≥ 1, and hence the lemma follows.

Theorem A.7. Let δ(v) be as defined in (10) and ρ(δ) as in (46). Then Ψ(v) ≤
ψ (ρ(δ(v))) .

Proof. The statement in the lemma is obvious if v = e, since then δ(v) = Ψ(v) = 0
and since ρ(0) = 1 and ψ(1) = 0. Otherwise we have δ(v) > 0 and Ψ(v) > 0. To deal
with the nontrivial case we consider, for τ > 0, the problem

zτ = max
v

{
Ψ(v) =

n∑
i=1

ψ(vi) : δ(v)2 = 1
4

n∑
i=1

ψ′(vi)
2 = τ2

}
.
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The first-order optimality conditions are

ψ′(vi) = λψ′(vi)ψ
′′(vi), i = 1, . . . , n,

where λ ∈ R. From this we conclude that we have either ψ′(vi) = 0 or λψ′′(vi) = 1
for each i. Since ψ′′(t) is monotonically decreasing, this implies that all vi’s for which
λψ′′(vi) = 1 have the same value. Denoting this value as t, and observing that all
other coordinates have value 1 (since ψ′(vi) = 0 for these coordinates), we conclude
that for some k, and after reordering the coordinates, v has the form

v = (t, . . . , t︸ ︷︷ ︸
k times

, 1, . . . , 1︸ ︷︷ ︸
n−k times

).

Since ψ′(1) = 0, δ(v) = τ implies kψ′(t)
2

= 4τ2. Since ψ′(t) = t− 1/t, it follows that

t− 1

t
= ± 2τ√

k
,

which gives t = ρ(τ/
√
k) or t = 1/ρ(τ/

√
k), where ρ : R+ → [1,∞) is defined by

ρ(δ) := δ +
√

1 + δ2.(46)

By Lemma A.6, the first value, which is greater than 1, gives the largest value of ψ(t).
Since we are maximizing Ψ(v), we conclude that t = ρ(τ/

√
k), whence we have

Ψ(v) = k ψ

(
ρ

(
τ√
k

))
.

The question remains which value of k maximizes Ψ(v). To investigate this we take
the derivative of Ψ(v) with respect to k. To simplify the notation we write

Ψ(v) = k ψ (t) , t = ρ (s), s =
τ√
k
.

The definition of t implies t = s+
√

1 + s2. This gives (t−s)2 = 1+s2, or t2−1 = 2st,
whence we have

2s = t− 1

t
= ψ′(t).

Some straightforward computations now yield

dΨ(v)

dk
= ψ (t) − s2ρ(s)√

1 + s2
=: f(τ).

We consider this derivative as a function of τ , as indicated. One may easily verify
that f(0) = 0. We proceed by computing the derivative with respect to τ . This gives
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f ′(τ) = − 1√
k

s2

(1 + s2)
√

1 + s2
.

This proves that f ′(τ) ≤ 0. Since f(0) = 0, it follows that f(τ) ≤ 0 for each τ ≥ 0.
Hence we conclude that Ψ(v) is decreasing in k. So Ψ(v) is maximal when k = 1,
which gives the result in the theorem.

Corollary A.8. Let τ ≥ 0, δ(v) ≤ τ , and ρ(δ) as defined in (46). Then Ψ(v) ≤
τ ′, where

τ ′ := ψ (ρ(τ)) .(47)

Proof. Since ρ(δ) is monotonically increasing in δ, and ρ(δ) ≥ 1 for all δ ≥ 0, and,
moreover, ψ(t) is monotonically increasing if t ≥ 1, the function ψ (ρ(δ)) is increasing
in δ for δ ≥ 0. Thus the result is immediate from Theorem A.7.

Theorem A.9. Let τ ≥ 0, δ(v) ≤ τ , and τ ′ as defined in (47). Then√
x

s
≤ � (τ ′)

χ (τ ′)

x(μ)
√
μ
,

√
s

x
≤ � (τ ′)

χ (τ ′)

s(μ)
√
μ
.

Proof. Since �(t) is monotonically increasing and χ(t) monotonically decreasing
this is an immediate consequence of Lemma A.5 and Corollary A.8.

Corollary A.10. Let τ = 1
8 and δ(v) ≤ τ . Then√

x

s
≤

√
2
x(μ)
√
μ
,

√
s

x
≤

√
2
s(μ)
√
μ
.

Proof. If τ = 1
8 , then τ ′ ≈ 0.016921, � (τ ′) ≈ 1.13278, and χ (τ ′) ≈ 0.872865,

whence

� (τ ′)

χ (τ ′)
≈ 1.29777 <

√
2.

Thus the result follows.
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Abstract. In this paper, a truncated projected Newton-type algorithm is presented for solving
large-scale semi-infinite programming problems. This is a hybrid method of a truncated projected
Newton direction and a modified projected gradient direction. The truncated projected Newton
method is used to solve the constrained nonlinear system. In order to guarantee global convergence,
a robust loss function is chosen as the merit function, and the projected gradient method inserted is
used to decrease the merit function. This algorithm is suitable for handling large-scale problems and
possesses superlinear convergence rate. The global convergence of this algorithm is proved and the
convergence rate is analyzed. The detailed implementation is discussed, and some numerical tests for
solving large-scale semi-infinite programming problems, with examples up to 2000 decision variables,
are reported.

Key words. semi-infinite programming, Karush–Kuhn–Tucker system, large-scale problem

AMS subject classifications. 90C34, 90C06, 90C90, 65K05, 49M05

DOI. 10.1137/040619867

1. Introduction. We consider the semi-infinite programming (SIP) problem

min{f(x), x ∈ X},(1.1)

where X = {x ∈ �n : g(x, v) ≤ 0 for all v ∈ Ω}, f(x) : �n → �, and g : �n×�m → �
are twice continuously differentiable functions. In this paper, we assume that Ω is a
nonempty compact box with

Ω = {v ∈ �m : a ≤ v ≤ b},

where a ∈ �m, b ∈ �m, and a < b.
Such an SIP problem has wide applications such as approximation theory, optimal

control, eigenvalue computation, mechanical stress of materials, and statistical design.
Many methods have been proposed for the SIP problem. We refer readers to [4, 6,
11, 12, 15, 17] for details.

Some large-scale SIP problems arise from the modeling of optimal control and
approximation (see [5, 16, 19]). In order to increase the control precision in an optimal
control problem, one should increase the number of switching points. That is, the
larger the number of switching points set, the higher the control precision. If one sets
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a large number of switching points, the discretization of the control space will lead to
large-scale SIP problems. In approximation theory, if a function f(v) is approximated
on the interval [a, b] by a polynomial

fN (v) =

N∑
j=1

xjv
j−1

and the approximation is in the Chebyshev norm, then we get a SIP problem. It is
clear that the larger the order of the polynomial, the higher the approximation preci-
sion. When a very high-order polynomial is used to approximate f on [a, b], a large-
scale SIP problem is generated. However, some efficient algorithms for small-scale
SIP problems do not directly translate into algorithms for large-scale SIP problems.

In this paper, we extend a smoothing projected Newton-type algorithm proposed
in [14] to solve large-scale SIP problems. The smoothing projected Newton-type
algorithm proposed in [14] enjoys global and locally superlinear convergence. How-
ever, it is not suitable for large-scale SIP problems. We modify this algorithm in two
aspects. First, a truncated solution of the system is determined by an iterative
method, in which the computation of the matrix-vector product, instead of the ma-
trix factorization, is used such that the implementation at each iteration is relatively
simple and time-economic. Second, in order to guarantee the global convergence, a
robust loss function [7] is chosen as the merit function and the projected gradient
method inserted is used to decrease the merit function. This loss function uses a mea-
sure which does not weigh very large components of the variable heavily. Numerical
results show that this loss function is a good merit function. This modified algorithm
is called a truncated projected Newton-type algorithm and is suitable for handling
large-scale problems. The global convergence of this algorithm is proved and the su-
perlinear convergence rate is analyzed. The detailed implementation is discussed, and
some numerical tests for solving large-scale SIP problems, with examples up to 2000
decision variables, are reported.

This paper is organized as follows. We present a truncated projected Newton-
type algorithm in section 2. The convergence of the algorithm is analyzed in section 3
and numerical tests are given in section 4. We propose some comments in section 5.

For convenience, we denote ∇T
x = ( ∂

∂x1
, . . . , ∂

∂xn
) and ∇x = ( ∂

∂x1
, . . . , ∂

∂xn
)T for

x ∈ �n. For a smoothing function Φ : �n → �m, we denote ∇T
x Φ = ( ∂Φ

∂x1
, . . . , ∂Φ

∂xn
)

and ∇xΦ ≡ ∇xΦT = (∇xΦ1, . . . ,∇xΦm). For u ∈ �n and v ∈ �m, we denote by
(u, v) the column vector (uT , vT )T in �n+m.

2. A truncated projected Newton-type algorithm. In order to describe
our algorithm, we recall some notation and definitions in [14].

Let

V (x) = {v ∈ Ω : g(x, v) = 0}.

If there exists a vector d ∈ �n such that

∇xg(x, v)
T d < 0

for all v ∈ V (x), then we say that an extended Mangasarian–Fromovitz constraint
qualification (EMFCQ) holds at x. It is well known that if x is a local minimizer
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of the SIP problem (1.1), and EMFCQ holds at x, then the KKT system of the SIP
problem (1.1) is as follows:

∇f(x) +

p∑
j=1

uj∇xg(x, v
j) = 0,

g(x, v) ≤ 0 ∀ v ∈ Ω,
uj > 0, g(x, vj) = 0, j = 1, . . . , p,

(2.1)

where vj ∈ V (x) for j = 1, . . . , p and p ≤ n.

By the definition of V (x) and the first inequality of (2.1), vj ∈ V (x) (j = 1, . . . , p)
imply that vj (j = 1, . . . , p) are global minimizers of the following minimization
problem:

min − g(x, v)

subject to v ∈ Ω.(2.2)

The KKT system of (2.2) can be written as

(v′ − v)T (−∇vg(x, v)) ≥ 0 ∀ v′ ∈ Ω,

and it can be reformulated as a system of nonsmooth equations as follows:

v − mid(a, b, v + ∇vg(x, v)) = 0,(2.3)

where the mid function is defined for all i = 1, . . . ,m as

(mid(c, d, w))i =

⎧⎨
⎩

ci if wi < ci,
wi if ci ≤ wi ≤ di,
di if di < wi.

The system of nonsmooth equations (2.3) can be approximated by

(φ(t, x, v))i = vi − ϕ(t, ai, bi, vi + (∇vg(x, v))i), i = 1, . . . ,m,(2.4)

where

ϕ(t, c, d, w) =
c +

√
(c− w)2 + 4t2

2
+

d−
√

(d− w)2 + 4t2

2

is the Chen–Harker–Kanzow–Smale smoothing function for mid(c, d, w). It is clear
that φ is smooth for t 
= 0. In order to handle the first constrained condition of (2.1),
Teo, Rehbock, and Jennings [20] used a nonsmooth function

G(x) =

∫
V

[g(x, v)]+dv,(2.5)

where [x]+ = max{0, x}. This is approximated by the smoothing function

G(t, x) =

∫
Ω

√
g2(x, v) + 4t2 + g(x, v)

2
dv,(2.6)



1140 QIN NI, CHEN LING, LIQUN QI, AND KOK LAY TEO

which is defined in [14]. Hence (2.1) can be approximated by

∇f(x) +

p∑
j=1

ui∇xg(x, v
j) = 0,

uj > 0, g(x, vj) = 0, j = 1, . . . , p,
φ(t, x, vj) = 0, j = 1, . . . , p,
G(t, x) = 0.

(2.7)

Now we define

L(x, u, V ) = f(x) +

p∑
j=1

ujg(x, v
j),(2.8)

where V = (v1, v2, . . . , vp) ∈ �mp and u = (u1, . . . , up)
T ∈ �p, and denote

g(x, V ) =

⎡
⎢⎢⎣

g(x, v1)
g(x, v2)

. . .
g(x, vp)

⎤
⎥⎥⎦ , φ̄(t, x, V ) =

⎡
⎢⎢⎣

φ(t, x, v1)
φ(t, x, v2)

. . .
φ(t, x, vp)

⎤
⎥⎥⎦ .(2.9)

In order to balance the number between equations and variables, we add an
artificial variable y. By simple analysis, we can know that the KKT system of the
SIP problem (1.1) can be reformulated as a equivalent system of constrained equations
in the following:

Φ(w) = 0,

u ≥ 0, y ≥ 0,(2.10)

where w = (t, z) = (t, x, u, V, y) ∈ � × �n ×�p ×�mp ×�, and

Φ(w) =

[
t

H(w)

]
, H(w) =

⎡
⎢⎢⎣

∇xL(x, u, V )
g(x, V )
φ̄(t, x, V )
G(t, x) + y

⎤
⎥⎥⎦ .(2.11)

For convenience, we denote w = (t, x, u, V, y) ∈ �ñ, ñ = n+2+(m+1)p. The function
Φ(w) has the following property.

Lemma 2.1 (see [14]). Φ(w) = Φ(t, z) is smooth at (t, z) with t 
= 0 and semi-
smooth at (0, z).

For the meaning of semismoothness we refer readers to [10, 13].

The problem (2.10) was established and a smoothing projected Newton-type al-
gorithm was proposed for solving this problem in [14]. In the smoothing projected
Newton-type algorithm in [14], the Newton direction is obtained by solving the fol-
lowing linear system:

Φ(wk) + ∇TΦ(wk)Δwk = βkw̄,(2.12)
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where Δwk = (Δtk,Δxk,Δuk,ΔVk,Δyk) ∈ �ñ, w̄ = (t̄, 0), t̄ > 0, and

∇T Φ(wk)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 01×n 01×p 01×m . . . 01×m 0

0n×1 ∇2
xL(x, u, V ) ∇xgT (x, V ) u1∇T

v1(∇xg(x, v
1)) · · · up∇T

vp(∇xg(x, v
p)) 0n×1

0 ∇T
x g(x, v1) 01×p ∇T

v1g(x, v
1) . . . 01×m 0

0 ∇T
x g(x, v2) 01×p 01×m · · · 01×m 0

...
...

...
...

. . .
...

...
0 ∇T

x g(x, vp) 01×p 01×m · · · ∇T
vpg(x, v

p) 0

∇tφ(t, x, v1) ∇T
x φ(t, x, v1) 0p×p ∇T

v1φ(t, x, v1) · · · 01×m 0p×1

∇tφ(t, x, v2) ∇T
x φ(t, x, v2) 0p×p 01×m · · · 01×m 0p×1

...
...

...
...

. . .
...

...
∇tφ(t, x, vp) ∇T

x φ(t, x, vp) 0p×p 01×m · · · ∇T
vpφ(t, x, vp) 0p×1

∇tG(t, x) ∇T
x G(t, x) 01×p 01×m · · · 01×m 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(2.13)

We remark that from (2.13) we see that the last row of the matrix ∇TΦ(wk) is
independent of other rows, so the introduction of artificial variable y can reduce the
possible degeneration generated by the function G(t, x). In order to solve large-scale
problems, we determine an inexact solution of (2.12) by using a restarted generalized
minimum residual algorithm (GMRES(m̃)) [3]. Here we use m̃ other than usual m
because there is an another meaning for m in this paper. The vector Δwk is called a
truncated solution of (2.12) if

‖Φ(wk) + ∇TΦ(wk)Δwk − βkw̄‖ ≤ rk(2.14)

for rk > 0.
In [14], a simple merit function

Ψ(w) =
1

2

ñ∑
j=1

Φ2
j (w)(2.15)

is chosen and its gradient is

∇Ψ(w) = ∇Φ(w)Φ(w).(2.16)

In order to solve the large-scale SIP problem, we consider the following function:

Ψh(w) =

ñ∑
j=1

ρhj (Φj(w)),(2.17)

where

ρhj (ξ) =

{
ξ2/2 if |ξ| ≤ hj

hj |ξ| − h2
j/2 otherwise,

hj , j = 1, . . . , ñ, are positive constants, and ρhj (ξ) is linear in ξ for |ξ| > hj . This func-
tion was proposed by Huber and Dutter (see [7] and [2]) for solving the least squares
problem. The measure ρ(ξ) in this function does not weigh very large components of
ξ heavily.



1142 QIN NI, CHEN LING, LIQUN QI, AND KOK LAY TEO

We use the function (2.17) as the merit function. The gradient of this function
Ψh(w) is

∇Ψh(w) = ∇Φ(w)Φh(w),(2.18)

where

Φh(w) =
∑
j∈Jh

Φj(w)ej +
∑
j∈Kh

sign(Φj(w))hjej ,(2.19)

Jh = {j : 1 ≤ j ≤ ñ, |Φj(w)| ≤ hj}, Kh = {1, . . . , ñ}/Jh.(2.20)

The problem (2.10) is equivalent to finding a global solution of the following
minimization problem:

min Ψh(w)

subject to u ≥ 0, y ≥ 0.(2.21)

We call w a stationary point of (2.21) if it satisfies

‖d̄G(1)‖ = 0,(2.22)

where

d̄G(1) = ΠW (w − γ∇Ψh(w)) − w =

[
−γ∇tΨh(w)

ΠZ(z − γ∇zΨh(w)) − z

]
,(2.23)

γ > 0 is a constant, and ΠW (·) is an orthogonal projection operator onto W ,

W = {w = (t, x, u, V, y) ∈ �ñ : u ≥ 0, y ≥ 0},
Z = {z = (x, u, V, y) ∈ �ñ−1 : u ≥ 0, y ≥ 0}.

Let α ∈ (0, 1) be a constant. For a sequence {wk}∞k=0, we define

β0 = β(w0) = αmin{1, ‖d̄0
G(1)‖2},

and

βk = β(wk) :=

{
βk−1 if αmin{1, ‖d̄kG(1)‖2} > βk−1,
αmin{1, ‖d̄kG(1)‖2} otherwise.

(2.24)

Now we state our truncated projected Newton-type algorithm for solving (2.10)
below.

Algorithm 2.1.

Step 0. (Initialization)
Choose constants η, ρ, σ ∈ (0, 1) with ση < 1, p1 > 0, p2 > 2 and α ∈ (0, 1),
t̄ > 0 with αt̄ < 1, hj ≥ 1, j = 1, . . . , ñ. Let w̄ = (t̄, 0, 0, 0, 0), t0 = t̄, and
w0 = (t0, x

0, u0, V 0, y0) with u0
i ≥ 0 (i = 1, . . . , p), y0 ≥ 0. Set k = 0.

Step 1. (Termination Test)
Compute

ξk = min

{
1,

tk
|tk + ∇tH(wk)Hh(wk)|

,
η‖Φ(wk)‖
‖∇Ψh(wk)‖

}
,(2.25)
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where Hh(wk) is obtained by removing just the first element of Φh(w) (see
(2.19)).

γk =

{
min

{
ξk,

ηΨh(wk)
‖∇Ψh(wk)‖2

}
if |Φj(wk)| ≤ hj , j = 1, 2, . . . , ñ,

ξk otherwise.
(2.26)

If d̄kG(1) = 0, then stop; otherwise compute βk by (2.24) and go to Step 2.
Step 2. (Search Directions)

2.1. Compute the negative gradient direction. Compute

dkG = −γk∇Ψh(wk) + βkw̄.(2.27)

If

|Φj(wk)| ≤ hj , j = 1, 2, . . . , ñ,(2.28)

then go to Step 2.2; otherwise set dktN = dkG and go to Step 3.
2.2. Compute the truncated Newton direction. Determine Δwk, which satis-
fies

‖Φ(wk) + ∇TΦ(wk)Δwk − βkw̄‖ = o(Ψh(wk)),(2.29)

and set dktN = Δwk.
Step 3. (Line Search)

Let mk be the smallest nonnegative integer m satisfying

Ψh(wk + d̄k((ρ)m)) ≤ Ψh(wk) + σ∇Ψh(wk)T d̃kG((ρ)m),(2.30)

where for any λ ∈ [0, 1],

d̄k(λ) = τ∗(λ)d̃kG(λ) + (1 − τ∗(λ))d̃ktN (λ).(2.31)

Here

d̃kG(λ) := ΠW (wk + λdkG) − wk, d̃ktN (λ) := ΠW (wk + λdktN ) − wk,(2.32)

and τ∗(λ) is a solution of the following minimization problem:

min
τ∈[0,1]

1

2
‖Φ(wk) + Φ′(wk)[τ d̃

k
G(λ) + (1 − τ)d̃ktN (λ)]‖2.

Let λk = (ρ)mk and wk+1 = wk + d̄k(λk).
Step 4. Set k = k + 1 and go to Step 1.

Remarks. (1) Algorithm 2.1 is able to handle sparse large-scale SIP problems. In
Step 2.2, a truncated solution of the problem (2.12) is determined by using GMRES(m̃)
method. Hence, the matrix factorizations are avoided, because this iterative algorithm
requires computing only matrix-vector products. If the SIP problem possesses the
sparse data structure, the computation of the matrix, ∇TΦ(wk), can take advantage
of the sparsity of ∇2

xL(xk, uk, Vk). Therefore Algorithm 2.1 is applicable to the sparse
large-scale SIP problem.

(2) If the condition (2.28) is not satisfied, then only the projected negative gra-
dient direction is generated in the iteration; otherwise Step 2.2 is carried out and
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mixed projected directions are generated. In addition, if (2.28) is satisfied, then
Ψh(w) = Ψ(w) holds.

(3) The condition (2.29) guarantees the convergence of Algorithm 2.1, which is
discussed in the next section. In the implementation of the algorithm, one kind of
choice of the right side in (2.29) is 1

k+1 min{1,Ψh(wk)}.
(4) τ∗(λ) is easily obtained, and we refer readers to [14].

(5) Another line search technique in Step 3 can be used if only the projected
negative gradient is the search direction. Although it does not affect the convergence
and its proof, it can decrease the number of inner iterations. In section 4 we give a
detailed description.

(6) We remark that G(t, x) in (2.11) and its derivative are not evaluated exactly.
We use Newton–Cotes formulas (Simpson’s rule) for approximating the integral and
choose ni equally spaced points in the interval [ai, bi] such that (bi − ai)/ni ≤ 0.05 is
satisfied, where i = 1, . . . ,m. Numerical results show that this choice is proper.

3. Convergence analysis. In this section we discuss the convergence property
of Algorithm 2.1. From the definition of βk, the following lemma is obvious.

Lemma 3.1. {βk} defined in (2.24) has the following properties:

(i) {βk} is a nonincreasing sequence.

(ii) For all k, βk satisfies

βk ≤ αmin{1, ‖d̄kG(1)‖2}.

In the following we give the descent property of d̃kG(λ) in Algorithm 2.1.

Lemma 3.2. Suppose that wk = (tk, zk) ∈ W with tk > 0 is not a stationary
point of (2.21). Then for any λ ∈ (0, 1], it holds that

∇Ψh(wk)
T d̃kG(λ) ≤ − λ

ξk
(1 − αt̄ )‖d̄kG(1)‖2 < 0.(3.1)

Proof. In this proof, for simplicity, we drop the superscript k. For any w =
(t, z) ∈ W with t > 0, suppose that w is not a stationary point of (2.21). Then

∇Ψh(w) = ∇Φ(w)Φh(w) =

[
t̃ + ∇tH

T (w)Hh(w)
∇zH(w)Hh(w)

]
≡

[
∇tΨh(w)
∇zΨh(w)

]
,

where t̃ = min(t, h1), ∇tH
T (w) is the first row of ∇H(w), ∇zH(w) is the submatrix of

∇H(w) obtained by removing just the first row of ∇H(w), and Hh(w) is obtained by
removing just the first element of Φh(w) (see (2.19)). From (2.32) and the definition
of projection in (2.23), d̃G(λ) can be written as

d̃G(λ) ≡
[

(d̃G(λ))t
(d̃G(λ))z

]
= ΠW (w − λγ∇Ψh(w) + λβw̄) − w

=

[
−λγ(t̃ + ∇tH

T (w)Hh(w)) + λβt̄
ΠZ(z − λγ∇zΨh(w)) − z

]
.
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Then we have

(t̃ + ∇tH
T (w)Hh(w))[−λγ(t̃ + ∇tH(w)Hh(w)) + λβt̄]

= −λγ‖t̃ + ∇tH(w)Hh(w)‖2 + λ(t̃ + ∇tH(w)Hh(w))βt̄

≤ −λ

γ
‖γ∇tΨh(w)‖2 +

λ

γ
‖γ∇tΨh(w)‖βt̄(3.2)

≤ −λ

γ
‖γ∇tΨh(w)‖2 +

λ

γ
‖γ∇tΨh(w)‖(αt̄)‖d̄G(1)‖

≤ −λ

γ
‖γ∇tΨh(w)‖2 + αt̄

λ

γ
‖d̄G(1)‖2,

where the second inequality comes from Lemma 3.1(ii) and the fact that β ≤ α‖d̄G(1)‖,
the last inequality, is due to ‖γ∇tΨh(w)‖ ≤ ‖d̄G(1)‖ (see (2.23)). In addition,

∇zΨh(w)T [ΠZ(z − λγ∇zΨh(w)) − z]

= − 1

λγ
[z − λγ∇zΨh(w) − z]T [ΠZ(z − λγ∇zΨh(w)) − z]

=
1

λγ
[ΠZ(z − λγ∇zΨh(w)) − (z − λγ∇zΨh(w))]T [ΠZ(z − λγ∇zΨh(w)) − z]

− 1

λγ
‖ΠZ(z − λγ∇zΨh(w)) − z‖2(3.3)

≤ − 1

λγ
‖ΠZ(z − λγ∇zΨh(w)) − z‖2

≤ −λ

γ
‖ΠZ(z − γ∇zΨh(w)) − z‖2,

where the first and second inequalities come from the property of projector (see [1]).
It follows from (3.2) and (3.3) that

∇Ψh(w)T d̃G(λ)

= (t̃ + ∇tH
T (w)Hh(w))[−λγ(t̃ + ∇tH(w)Hh(w)) + λβt̄]

+∇zΨ(w)T [ΠZ(z − λγ∇zΨh(w)) − z]

≤ −λ

γ

[
‖γ∇tΨh(w)‖2 + ‖Πz(z − γ∇zΨh(w)) − z‖2

]
+ αt̄

λ

γ
‖d̄G(1)‖2

= −λ

γ
(1 − αt̄)‖d̄G(1)‖2 < 0.

The proof is complete.
Remark. If (2.28) is not satisfied and d̄ k

G(1) 
= 0, then from Step 2.1 of Algo-
rithm 2.1 we know that only the projected negative gradient is chosen as the search
direction. Hence, Lemma 3.2 shows that this is a descent direction, which implies
that after a finite number of iterations, (2.28) will be satisfied.

In order to establish the global convergence of Algorithm 2.1, we need the follow-
ing lemma, which shows that Algorithm 2.1 can keep tk > 0 at each iteration.

Lemma 3.3. Let {wk} be a sequence generated by Algorithm 2.1. Then for each
k, k = 0, 1, . . . , wk = (tk, zk) satisfies

tk ≥ βk t̄.(3.4)
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Furthermore, if wk is not a stationary point of (2.21), then

tk > 0.

Proof. We prove this lemma by induction. From the choices of t0 and β0 in
Algorithm 2.1, it is obvious that (3.4) holds for k = 0. Suppose that for any integer
l, wl = (tl, zl) satisfies (3.4). Now we prove that wl+1 = (tl+1, zl+1) satisfies (3.4) as
well.

If the condition (2.28) is not satisfied for k = l, we have

d̄l(λl) = d̃lG(λl) = ΠW (wl + λld
l
G) − wl, dlG = −ξl∇Ψh(wl) + βlw̄,

where λl is the accepted steplength at the lth iteration. It follows from Algorithm 2.1
that

(d̄l(λl))t = λl[−ξl(t
l + ∇tH(w)Hh(w)) + β(wl)t̄]

≥ −λlt
l + λlβ(wl)t̄ ( see (2.25) ),

where (d̄l(λl))t is the first element of d̄l(λl). Then we have

tl+1 − β(wl+1)t̄ = tl + (d̄l(λl))t − β(wl+1)t̄

≥ (1 − λl)t
l + λlβ(wl)t̄− β(wl+1)t̄

≥ (1 − λl)t
l + λlβ(wl)t̄− β(wl)t̄

= (1 − λl)(t
l − β(wl)t̄) ≥ 0,

where the second and third inequalities are due to the monotonicity property of β(wl)
in Lemma 3.1 and tl ≥ β(wl)t̄.

If the condition (2.28) is satisfied for k = l, then we have

(d̄l(λl))t = (τ∗(λl)d̄
l
G(λl) + (1 − τ∗(λl))d̃

l
tN (λl))t.

By a similar way, we can obtain that tl+1 − β(wl+1)t̄ ≥ 0.
Therefore (3.4) holds for any nonnegative integer k. Furthermore, from (3.4) and

the fact that wk is not a stationary point of (2.21), tk > 0 holds. We complete the
proof.

Lemma 3.4. Let {wk} be a sequence generated by Algorithm 2.1. Then any
accumulation point of {wk} is a stationary point of (2.21).

Proof. Lemma 3.3 shows that if Algorithm 2.1 does not stop at a stationary
point of (2.21), then tk > 0 for any k. This implies that Ψ and Ψh are continuously
differentiable at wk. The remark after the proof of Lemma 3.2 implies that for k
sufficiently large, the condition (2.28) is always satisfied and Ψh(w) = Ψ(w) (see
Remark (2) after Algorithm 2.1). Hence, by using a similar way to the proof of
Theorem 4.1 in [18], we can prove that this theorem holds.

In order to analyze the local convergence of Algorithm 2.1, we make the following
standard assumption.

(A1) Let w∗ = (t∗, z∗) = (0, z∗) be an accumulation point of the sequence {wk}
generated by Algorithm 2.1. Suppose limk∈K wk = w∗ for some subset K ⊂ {1, 2, . . . },
w∗ is a solution of the system of equations (2.10), and Φ is BD-regular at w∗ where
the definition of BD-regularity refers to [13].

BD-regularity can be satisfied without special difficulty. Before giving a sufficient
condition for BD-regularity to hold, we need the following assumptions:
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(A2) The vectors ∇xg(x, v
j), j = 1, . . . , p, are linearly independent.

(A3) The matrix ∇2
xL(x, u, V ) is positive definite, and for every j = 1, 2, . . . , p,

the matrix (∇2
vg(x, v

j))M is negative definite whenever JM (x, vj) 
= ∅, where

JM (x, v) = {i | ai < vi + (∇vg(x, v))i < bi},

and (∇2
vg(x, v

j))M is a principal square submatrix of ∇2
vg(x, v), which is determined

by the columns and rows with the index i ∈ JM (x, v).
(A4) For every j = 1, 2, . . . , p, {i | vi+(∇vg(x, v))i = ai or vi+(∇vg(x, v))i = bi}

is an empty set.
In addition, for any (x, v) ∈ �n ×�m, we denote

JL(x, v) = {i | vi + (∇vg(x, v))i < ai}, JR(x, v) = {i | bi < vi + (∇vg(x, v))i}

and state a simple lemma without proof in the following.
Lemma 3.5. Let

T =

⎡
⎣ A B DC

BT 0 0
DT 0 F

⎤
⎦ ,

where A ∈ �p×p, B ∈ �p×q, C ∈ �r×r, D ∈ �p×r, and F ∈ �r×r. Suppose that A
and CTF are positive definite and negative semidefinite, respectively. If the column
rank of B and F are q and r, respectively, then T is nonsingular.

Proof. Let Td = 0, where d = (d1, d2, d3) is a suitable partitioned vector. Then

Ad1 + Bd2 + DCd3 = 0,(3.5)

BT d1 = 0,(3.6)

DT d1 + Fd3 = 0.(3.7)

Multiplication (3.5) with dT1 yields

dT1 Ad1 + dT1 Bd2 + dT1 DCd3 = 0,

which, together with (3.6) and (3.7), implies

dT1 Ad1 + dT3 (−CTF )d3 = 0.

From the property of A and CTF , we have that d1 = 0. Then it follows from (3.7)
and the property of F that d3 = 0. Because of (3.5) and the property of B, d2 = 0
holds. The proof is complete.

Theorem 3.6. Suppose that w∗ = (t∗, z∗) = (t∗, x∗, u∗, V ∗, y∗) is a solution of
(2.10) and satisfies (A2)–(A4). Then Φ is BD-regular at w∗.

Proof. Without loss of generality, by (A4), we assume that

JL(x∗, vj∗) = {1, 2, . . . , kj1},
JM (x∗, vj∗) = {kj1 + 1, . . . , kj2},
JR(x∗, vj∗) = {kj2 + 1, . . . ,m},

where 1 ≤ kj1 ≤ kj2 ≤ m. Because w∗ = (t∗, z∗) is a solution of (2.10), t∗ = 0.
Moreover, we have, by φ(0, x∗, vj∗) = 0, that

vj∗ − mid(a, b, vj∗ + ∇vg(x
∗, vj∗)) = 0, j = 1, . . . , p.(3.8)
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By (3.8) and the definition of the mid function, we have that for j = 1, . . . , p and
i ∈ JM (x∗, vj∗),

(∇vjg(x∗, vj∗))i = 0.(3.9)

By direct computation, we obtain that for any Q ∈ ∂BΦ(w∗),

Q

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 01×n 01×p 01×m · · · 01×m 0

0n×1 ∇2
xL(x∗, u∗, V ∗) ∇xgT (x∗, V ∗) u∗

1D1 · · · u∗
pDp 0n×1

0 ∇T
x g(x∗, v1∗) 01×p ∇T

v1g(x
∗, v1∗) · · · 01×m 0

0 ∇T
x g(x∗, v2∗) 01×p 01×m · · · 01×m 0

...
...

...
...

. . .
...

...
0 ∇T

x g(x∗, vp∗) 01×p 01×m · · · ∇T
vpg(x∗, vp∗) 0

Q1 C1DT
1 0m×p E1 + C1F1 · · · 0m×m 0p×1

Q2 C2DT
2 0m×p 0m×m · · · 0m×m 0p×1

...
...

...
...

. . .
...

...
Qp CpDT

p 0m×p 0m×m · · · Ep + CpFp 0p×1

U1 U2 01×p 01×m · · · 01×m 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(3.10)

where U1 ∈ ∂tG(0, x∗), U2 ∈ ∂xG(0, x∗), and for j = 1, . . . , p,

Qj ∈ ∂tφ(0, x∗, vj∗), Dj = ∇T
vj (∇xg(x

∗, vj∗)), Fj = ∇T
vj (∇vjg(x∗, vj∗)),

Cj = diag(0j1 ,−Ij2 , 0j3), Ej = diag(Ij1 , 0j2 , Ij3),(3.11)

where 0j1 , 0j2 , and 0j3 are zero square matrices with kj1, (kj2−kj1), and (m−kj2) order,

respectively, and Ij1 , Ij2 , and Ij3 are identity matrices with kj1, (kj2−kj1), and (m−kj2)
order, respectively. By (3.10), it is easy to see that the matrix Q is also nonsingular
as the matrix

Q̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∇2
xL(x∗, u∗, V ∗) ∇xg

T (x∗, V ∗) u∗
1D1 · · · u∗

pDp

∇T
x g(x

∗, v1∗) 01×p ∇T
v1g(x∗, v1∗) · · · 01×m

∇T
x g(x

∗, v2∗) 01×p 01×m · · · 01×m

...
...

...
. . .

...
∇T

x g(x
∗, vp∗) 01×p 01×m · · · ∇T

vpg(x∗, vp∗)
C1D

T
1 0m×p E1 + C1F1 · · · 0m×m

C2D
T
2 0m×p 0m×m · · · 0m×m

...
...

...
. . .

...
CpD

T
p 0m×p 0m×m · · · Ep + CpFp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We denote by (Dj)ML a submatrix of Dj constituted by the columns with the index
i ∈ JM (x, vj) and by (Fj)M a principal square submatrix of Fj , which is determined
by the columns and rows with the index i ∈ JM (x, vj). Then from special forms of
Cj and Ej we have

CjD
T
j =

⎡
⎣ 0

−(Dj)
T
ML

0

⎤
⎦ , Ej + CjFj =

⎡
⎣ Ij1 0 0

∗ −(Fj)M ∗
0 0 Ij2

⎤
⎦ ,
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where two ∗ are some proper partitioned matrices. Hence the nonzero elements of
∇T

vjg(x∗, vj∗) and the matrix ∗ are deleted by the some proper row transformations.

Hence it is not difficult to know that the matrix Q̃ is also nonsingular as the matrix

Q∗ =

⎡
⎣ ∇2

xL(x∗, u∗, V ∗) ∇xg
T (x∗, V ∗) DU

∇T
x g(x∗, V ∗) 0 0

DT 0 F

⎤
⎦ ,(3.12)

where D = ((D1)ML, . . . , (Dp)ML), F = diag((F1)M , . . . , (Fp)M ), U = diag(u∗
1I1, . . . ,

u∗
pIp), and Ij , j = 1, . . . , p, are some proper identity matrices. It is clear that UTF

is negative definite, and from (A2) and (A3) it follows that all other conditions in
Lemma 3.5 are satisfied. Hence from Lemma 3.5 we know that Q∗ is nonsingular and
we complete the proof.

The following lemma is the same as Lemma 4.1 in [14]; its proof is omitted.
Lemma 3.7. There exist positive constants κ and ε such that for every wk satis-

fying ‖wk − w∗‖ ≤ ε,
(i) ∇TΦ(wk) is nonsingular and satisfies

‖∇TΦ(wk)‖ ≤ κ,

(ii)

‖Φ(wk)‖ =
√

2Ψ(wk)
1
2 = O(‖wk − w∗‖).

Lemma 3.8. Let {wk} be a sequence generated by Algorithm 2.1. Then for all
k ∈ K sufficiently large, we have

β(wk) = O(Ψ(wk)) = O(‖wk − w∗‖2);(3.13)

and

wk + λdktN = (1 − λ)wk + λw∗ + λo(Ψ(wk)
1
2 )(3.14)

for any λ ∈ (0, 1].
Proof. From the definition of β(wk) (see (2.24)), the choice of γk (see (2.26)), the

projection property, and Lemma 3.7, it follows that for wk sufficiently close to w∗,
Ψh(wk) = Ψ(wk),

β(wk) ≤ α‖d̄kG(1)‖2 ≤ αγ2
k‖∇Ψ(wk)‖2 ≤ αηΨ(wk) =

αη

2
‖Φ(wk)‖2 = O(‖wk − w∗‖2).

This shows that (i) holds. Let

θk = Φ(wk) − βkw̄ + ∇TΦ(wk)d
k
tN .

Then from (2.29), we have that for wk sufficiently close to w∗,

‖θk‖ = o(Ψh(wk)) = o(Ψ(wk)),(3.15)

which implies that

wk + λdktN = wk + λ∇TΦ(wk)−1[−Φ(wk) + β(wk)w̄ + θk]

= wk − λ∇TΦ(wk)−1[Φ(wk) − Φ(w∗) −∇TΦ(wk)(wk − w∗)]

−λ(wk − w∗) + λ∇TΦ(wk)−1(β(wk)w̄ + θk)

= (1 − λ)wk + λw∗ + λo(‖wk − w∗‖) + λo(Ψ(wk))

= (1 − λ)wk + λw∗ + λo(Ψ(wk)
1
2 ),
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where the third equality is due to the semismoothness of Φ, (i), and (3.15). The proof
is complete.

Now we obtain the following convergence theorem.
Theorem 3.9. Suppose that {wk} is a sequence generated by Algorithm 2.1 and

w∗ is a point satisfying (A1). Then the whole sequence {wk} superlinearly converges
to w∗.

Proof. At first we know that for wk sufficiently close to w∗, Ψh(wk) = Ψ(wk).
In a similar way to the proof of Theorem 3.2 in [18] and Lemma 3.8, we have that

for sufficiently large k ∈ K,

‖wk + d̄k(1) − w∗‖ = o(Ψ(wk)
1
2 ) = o(‖Φ(wk)‖) = o(‖wk − w∗‖),(3.16)

and

Ψ(wk + d̄k(1)) =
1

2
‖Φ(wk + d̄k(1))‖2

=
1

2
‖Φ(wk + d̄k(1)) − Φ(w∗)‖2(3.17)

= O(‖wk + d̄k(1) − w∗‖2)

= o(Ψ(wk)),

where the last equality is due to (3.16). Thus,

−∇Ψ(wk)T d̃kG(1) ≤ ‖∇Ψ(wk)‖‖d̃kG(1)‖(3.18)

= ‖∇Ψ(wk)‖‖ΠW (wk − γk∇Ψ(wk) + β(wk)w̄) − wk‖
≤ ‖∇Ψ(wk)‖[‖γk∇Ψ(wk)‖ + O(Ψ(wk))]

≤ ηΨ(wk) + o(Ψ(wk)),

where the second inequality is due to the property of β(wk) and the projection prop-
erty, and the last inequality comes from the choice of γk. It follows from (3.17) and
(3.18) that

Ψ(wk) + σ∇Ψ(wk)T d̃kG(1) ≥ (1 − ση)Ψ(wk) + o(Ψ(wk))(3.19)

≥ o(Ψ(wk)) = Ψ(wk + d̄k(1)),

which implies that

wk+1 = wk + d̄k(1),

for k sufficiently large. Moreover, from (3.16) we conclude that wk converges to w∗

superlinearly. We complete the proof.

4. Implementation and numerical tests. In this section, we discuss some
detailed implementation of Algorithm 2.1 and give some numerical results for medium-
sized and large-scale SIP problems.

4.1. Implementation of Algorithm 2.1. In order to decrease the number of
inner iterations, we use another line search technique if only the projected gradient
direction is the search direction. In this case, the initial value of λ is set to

min

{
1,

1

‖dkG‖
,

0.2Ψh(wk)

−∇Ψh(wk)T dkG
,

tk
|tk + ∇tH(wk)Hh(wk)|

}
,

and λ is updated by quadratic interpolation technique.
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In Algorithm 2.1, we choose the values of parameters (see Step 0) as

η = 0.9, ρ = 0.5, σ = 0.0005, α = 0.5, t̄ = 0.9, p1 = 10−10, p2 = 2.1,

and

hj = max{2.5, 10−3 ∗ |Ψ(w0)|, j = 1, 2, . . . , ñ},

where the choice of hj , j = 1, 2, . . . , ñ, is similar to that in [9]. The starting points u0

and y0 for all problems are set to t0 = t̄, u0 = 0.05e, y0 = 0.5, where e is the vector of
ones. For GMRES(m̃), we choose m̃ = 10 when n < 100 and m̃ = 20 when n ≥ 100.

In some test problems, we have tried using a simple left preconditioning matrix

M = diag(1, Lssor, I(m+1)p+1),

where Lssor is an SSOR preconditioning matrix defined by

Lssor = (D − ωE)D−1(D − ωF ),

D is the diagonal part of ∇2
xxL(x, u, V ), and −F and −E are the strict upper and lower

parts of ∇2
xxL(x, u, V ). Numerical results show that GMRES without preconditioning

is better than that with preconditioning for ω = 1 and ω = 0.5. Hence we give the
numerical results without preconditioning in the following.

4.2. Numerical results. Now we discuss the implementation of Algorithm 2.1,
which has been implemented in FORTRAN 77. All calculation within the driving
programs, test problems, and optimization code are carried out in double precision.
The problem is solved on a personal computer (Pentium III 1133 MHz, 256 MB
memory).

Although a lot of large SIP-type problems arise from optimal control and approx-
imation theory, it is difficult to find large-scale SIP problems in the literature suitable
for using as test problems. In order to evaluate Algorithm 2.1 for large-scale SIP
problems, we enlarge three test problems, where two problems are from [14] and [8]
and another is generated from an optimal control problem. We list the three SIP
problems in the following.

Problem I.

f(x) =
1

2
xTx, g(x, v) = 3 + 4.5 sin

(
4.7π(v − 1.23)

8

)
−

n∑
i=1

xiv
i−1,

V = [1, b], p = 1 if n ≤ 60, b = 100; otherwise b = 1.

Problem II.

f(x) =

∫ 1

0

(
n∑

i=1

xit
i−1 − tan t

)2

dt, g(x, v) = tan v −
n∑

i=1

xiv
i−1, V = [0, 1], p = 1.

Problem III.

min p(g)hTh

subject to gTA(v1, v2)h ≤ r(v1, v2),
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Table 1

Test results of Problem I.

n ITK iITK ‖d̄kG(1)‖ Ψ(wk) f(xk)

10 8 65 5.52E-12 1.60E-19 0.07412
20 8 50 4.96E-12 4.29E-19 0.08319
40 67 393 9.86E-7 2.06E-11 3.1788
60 98 489 8.84E-7 2.91E-11 4.8860
100 60 286 9.66E-7 5.10E-8 2.3862
400 67 580 2.70E-7 3.58E-13 4.580
1000 78 630 8.29E-6 2.97E-10 8.519
2000 52 603 6.96E-6 6.69E-7 18.07

where v1 ∈ [−π, π], v2 ∈ [0, 2π], p(g) = gTBg, h ∈ �n1 , g ∈ �n2 , B ∈ �n2×n2 ;
A(v1, v2) ∈ �n2×n1 , n2 = n1, and

B =

⎡
⎢⎢⎢⎢⎢⎣

4 −1
−1 4 −1

. . .
. . .

. . .

−1 4 −1
−1 4

⎤
⎥⎥⎥⎥⎥⎦ ,

A(v1, v2)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 sin(bv2) cos(cv1)

sin(av1) 1 sin(bv2) cos(cv1)

cos(dv2) sin(av1) 1 sin(bv2) cos(cv1)

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

. . .
. . .

. . .
. . .

. . .

cos(dv2) sin(av1) 1 sin(bv2) cos(cv1)

cos(dv2) sin(av1) 1 sin(bv2)

cos(dv2) sin(av1) 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We use Algorithm 2.1 to solve these problems. The dimensions (n) of these
problems are chosen by 10, 20, 40, 60, 80, 100, 200, 400, 1000, and 2000. The
termination condition is that the l2 norm of the projected gradient, ‖d̄kG(1)‖, is reduced
below 10−6 when n < 100 (10−5 when n ≥ 100). The results of the test are given in
Tables 1, 2, and 3. The number of outer iterations (ITK), the total number of inner
iterations for solving subproblems (iITK), the norm of projected gradient (‖d̄kG(1)‖),
the merit function value Ψ(wk), and the objective function value f(xk) are shown in
these tables.

Table 1 shows that Algorithm 2.1 performs very well for solving Problem I with
the different dimensions. There is some difference among different dimensions. When
n ≥ 40, there is a slight increase in the iteration number.

Problem II is dense; i.e., its Hessian of Lagrangian function ∇2
xL(x, u, V ) is not

sparse. Although the Hessian can be stored according to its special structure, the
computation in each iteration cannot be decreased. Here Algorithm 2.1 is used for
solving Problem II, whose dimensions range from 10 to 200. Table 2 shows that
Algorithm 2.1 performs well for solving some medium dense SIP problems.
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Table 2

Test results of Problem II.

n ITK iITK ‖d̄kG(1)‖ Ψ(wk) f(xk)

10 31 140 1.14E-7 4.86E-12 0.3147
20 46 235 9.68E-7 7.98E-10 0.6717
40 50 306 1.48E-7 3.48E-12 0. 5803
80 65 476 4.48E-7 3.93E-11 1.424
100 58 528 2.87E-7 1.86E-11 1.069
200 71 768 2.86E-6 1.46E-9 1.323

Table 3

Test results of Problem III.

n ITK iITK ‖d̄kG(1)‖ Ψ(wk) f(xk)

20 26 694 9.04E-7 7.80E-12 18.23
60 28 973 5.72E-7 3.03E-12 21.82
100 27 963 9.63E-6 8.98E-12 20.36
200 24 605 6.97E-6 4.56E-10 16.84
600 20 509 9.21E-6 7.75E-10 13.72
1000 25 494 9.32E-6 7.59E-10 13.82
2000 22 488 8.39E-6 8.06E-10 13.81

Problem III is a somewhat complicated SIP problem which often arises from the
optimal control field. In this problem, Ω ⊂ �2, while in Problems I and II, Ω ⊂ �. Its
Hessian of the Lagrangian function is sparse; however, the computation of elements
is not simple due to some trigonometric functions. Numerical results of this problem
are given in Table 3, which shows that Algorithm 2.1 can solve some large-scale sparse
SIP problems. It is interesting that the outer iteration number does not increase and
inner iteration numbers decrease as the dimensions increase.

5. Comments. Although the development of the code for Algorithm 2.1 is still
at its primary stage, the numerical results have indicated that Algorithm 2.1 is capable
of processing large-scale SIP problems. However, there are some issues which may be
addressed in further research.

Because “large scale” here refers only to the decision variables, it is hoped that an
improved version of Algorithm 2.1 may also be capable of handling high-dimensional
index sets. In addition, our method works on the KKT system of SIP; i.e., it does not
minimize the original objective function f . Sometimes this may limit the applicability
of this method to a special class of SIP problems.

By Algorithm 2.1 we can obtain stationary points of (2.21). It is possible that
some of them may not be stationary points of (1.1). If Ω in (1.1) is a nonpolyhedral
index set, then our method cannot be used directly.

We hope that with further research more efficient methods can be obtained for
solving general SIP problem with many decision variables and high-dimensional index
sets.

Acknowledgments. We are grateful to Professor Fukushima and two anony-
mous referees for their detailed comments. The approach for solving nonsymmetric
linear system suggested by a referee improved our method.
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Abstract. A hierachy of simplified models for traffic flow on networks is derived from continuous
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and numerical results and algorithms are compared.
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1. Introduction. Modeling and simulation of traffic flow on highways has been
investigated intensively in the last few years. On the one hand, models describing de-
tailed traffic dynamics on single roads have been constantly developed and improved;
see [33, 32, 28, 15, 31, 1, 23, 14, 11, 8, 12]. In these papers models based on ordi-
nary differential equations, partial differential equations, and kinetic equations have
been derived. To describe traffic flow on networks, detailed dynamic models based on
partial differential equations have been used in [18, 7], where theoretical results on
existence of solutions for the network problem were obtained. However, the number
of roads which can be treated with such an approach is restricted, in particular, if
optimization problems have to be solved. On the other hand, large traffic networks
with strongly simplified dynamics or even static description of the flow have been
widely investigated [6, 10, 21, 26, 29, 24]. In particular, optimal control problems for
traffic flow on networks arising from traffic management (see, for example, [27, 3])
are a major focus of research in this field. The purpose of the present investigation is
to derive and develop a hierachy of simplified dynamical models based on the correct
dynamics described by partial differential equations. These models should include
reasonable dynamics and, at the same time, they should be solvable for large scale
networks. Special focus is on optimal control problems and optimization techniques.
We start with macroscopic models based on partial differential equations. Two such
models were introduced by Holden and Risebro [18] and Coclite and Piccoli [7], re-
spectively. In particular, dealing with optimal control questions for such large-scale
networks where the flow is described by partial differential equations is very expensive
from a computational point of view; see [16, 17]. Therefore, we concentrate in the
present paper on the derivation of simplified dynamic models derived from the mod-
els based on partial differential equations. The resulting models are network models
which are based on nonlinear algebraic equations or combinatorial models based on
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linear equations. In the simplest case well-known static combinatorial problems like
min cost flow models are obtained. For the different models we study optimal con-
trol problems and various optimization methods, i.e., combinatorial and continuous
optimization techniques. Using strongly simplified models, large-scale networks can
be optimized with combinatorial approaches in real time. However, including more
complex dynamics reduces the advantage of the combinatorial algorithms compared
to continuous optimization procedures.

2. Continuous traffic flow models. The starting point is a macroscopic traffic
flow model on networks. We give a brief review of the model. Further details and
more general situations are treated in [7, 16]. We consider a network of roads as
follows.

Definition 2.1. For some traffic road map we introduce a finite, connected
directed graph G = (V,A) where the arcs j ∈ A correspond to the roads and the
vertices v ∈ V to the junctions. G is also called traffic flow network. With each arc
j ∈ A we associate an interval [aj , bj ] representing the location x at the corresponding
road, with the interpretation x = aj if we are at the tail of arc j and x = bj if we
are at the head of arc j. At a single junction v the set of indices of ingoing roads is
denoted by δ−v and the set of outgoing roads by δ+

v .
On each arc j, the traffic dynamics are described by a model based on partial

differential equations for the density ρj(x, t), x ∈ [aj , bj ], t ≥ 0. We use the well-known
Lighthill–Whitham equations [30] to model the evolution of the density. Hence the
following equations are assumed to hold on the network away from junctions:

∂tρj(x, t) + ∂xfj(ρj(x, t)) = 0 ∀j ∈ A, x ∈ [aj , bj ], t ≥ 0,(2.1)

ρj(x, 0) = ρ̄j(x) ∀x ∈ [aj , bj ],(2.2)

where fj(ρ) = ρue
j(ρ) and ue

j(ρ) is the fundamental diagram and ρ̄j(x) are given initial
values. A solution (ρj)j∈A to the network problem should satisfy flux conservation
through junctions, i.e., for all v ∈ V we have∑

j∈δ−v

fj(ρj(bj , t)) =
∑
j∈δ+

v

fj(ρj(aj , t)) ∀t ∈ ]0,∞[ .(2.3)

To obtain a well-defined problem we have to impose further boundary conditions in
the sense of [2], since (2.3) is not sufficient to obtain unique solutions (ρj)j∈A. An
overview of possible models for junctions and the corresponding boundary values for
the equations (2.1) can be found in [16]. For the following derivations we restrict our-
selves to the Coclite–Piccoli model of junctions [7]. For nonconstant initial data ρ̄j(x)
the obtained boundary conditions cannot be given explicitly. They are well defined
in the case of constant initial data and obtained as the limit of an approximation; see
[7, 9, 19]. However, in certain cases and under some restrictions one can derive explicit
formulas for the boundary values. We briefly describe the Coclite–Piccoli coupling
conditions for special geometries. We restrict ourselves for simplicity to networks with
only two types of junctions with a total of three incident roads; see Figure 2.1. We
assume that fj is defined on [0, ρj,max] and assume that fj is smooth, concave with
single maximum. Define

Mj = max fj(ρ), σj = argmaxfj(ρ).(2.4)

We consider the case of a single junction v and constant initial data ρ̄j . Coclite
and Piccoli introduced additional conditions for a junction by considering Riemann
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Fig. 2.1. Considered types for a junction v. The used notation is δ−v = {j0}, δ+v = {j1, j2}
(left) and δ−v = {j1, j2}, δ+v = {j3} (right), respectively.

problems on the in- and outgoing roads. To be more precise, assume we have given
values p̃j ∈ R+ and the initial value ρ̄j ∈ R+. We consider the following problem:

∂tρj + ∂xfj(ρj) = 0,

j ∈ δ+
v : ρj(x, 0) =

[
ρ̄j x > aj
p̃j x ≤ aj

]
, resp.,(2.5)

j ∈ δ−v : ρj(x, 0) =

[
p̃j x ≥ bj
ρ̄j x ≤ bj

]
.

A solution (ρj)j∈A of (2.5) also satisfies (2.1). We have a degree of freedom in choosing
the values p̃j . Since the conservation of flux (2.3) holds, there are certain restriction
on p̃j . They can be given explicitly by (2.7) using the following definition of the
function ρ �→ τ(ρ):

for given ρ define τ = τj(ρ) to be τ 	= ρ, fj(τ) = fj(ρ).(2.6)

The restrictions are

j ∈ δ−v : p̃j ∈
[
{ρ̄j}∪]τj(ρ̄j), ρj,max] if ρ̄j < σj

[σ, ρj,max] if ρ̄j ≥ σj

]
,

(2.7)

j ∈ δ+
v : p̃j ∈

[
[0, σj) if ρ̄j < σj

{ρ̄j} ∪ [0, τj(ρ̄j)[ if ρ̄j ≥ σj

]
.

Depending on to which interval p̃j belongs, the wave generated by the Riemann prob-
lem (2.5) is either a shock wave or a rarefaction wave. But still, there are many
possible choices for p̃j depending on the values of ρ̄j . Therefore Coclite and Piccoli
introduced more constraints.

Case 1. Consider a single junction v where road j0 disperse in two roads j1 and
j2. A value αv ∈ R with 0 < αv < 1 specifying the percentage of drivers coming from
road j0 and driving to j1 is introduced. (2.3) reads

fj1(ρj1(aj1+, ·)) = αvfj0(ρj0(bj0−, ·)),
fj2(ρj2(aj2+, ·)) = (1 − αv)fj0(ρj0(bj0−, ·)).(2.8)

Unique values p̃j , j = j0, j1, j2, can be found by solving the maximization problem

max fj0(p̃j) such that (s.t.) (2.7), (2.8), (2.5).(2.9)
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Expression (2.9) does not allow an explicit representation of the boundary conditions.
If we neglect the possibility of shock waves, especially backward-going shock waves
on the incoming street j0, the situation is much simpler. Therefore we assume in the
following

ρ̄j , ρj(x, t) ≤ σj ∀j ∈ A.(2.10)

Since we omit shock waves on j0 we obtain instead of the maximization problem (2.9)
an explicit formula for calculating p̃j :

p̃j0 = ρ̄j0 , fj1(p̃j1) = αvfj0(p̃j0), fj2(p̃j2) = (1 − αv)fj0(p̃j0).(2.11)

Equation (2.11) is well defined due to (2.10) and yields unique values p̃j1 , p̃j2 .
Remark 2.1. Coclite and Piccoli proved the existence and uniqueness of admis-

sible solutions satisfying (2.9) for a single junction with constant initial data. They
generalized this result to prove existence for networks where for each junction v we
have |δ−v | + |δ+

v | ≤ 4 and the initial data ρ̄j has bounded total variation. For more
details see [7].

Case 2. Consider a single junction v where roads j1 and j2 merge to j3. Flux
conservation through the junction implies

fj3(ρj3(aj3+, ·)) = fj1(ρj1(bj1−, ·)) + fj2(ρj2(bj2−, ·)).(2.12)

In the same spirit as above we define unique values p̃j , j = ji, i = 1, 2, 3, by a
procedure suggested in [16]: define maximal possible fluxes by

j ∈ δ−v = {j1, j2} : γj =

[
fj(ρ̄j) if ρ̄j < σj

Mj if ρ̄j ≥ σj

]
,

j ∈ δ+
v = {j3} : γj =

[
Mj if ρ̄j < σj

fj(ρ̄j) if ρ̄j ≥ σj

]

and solve the maximization problem:

If γj1 + γj2 > γj3 max
∑
j∈δ−v

fj(p̃j) s.t. (2.12), (2.7), and fj1(p̃j1) = fj2(p̃j2),

If γj1 + γj2 ≤ γj3 max
∑
j∈δ−v

fj(p̃j) s.t. (2.12), (2.7).(2.13)

Again we obtain an explicit representation of the boundary conditions when assuming
(2.10).

p̃j = ρ̄j , j = j1 and j = j2,

fj3(p̃j3) =
∑
j∈δ−v

fj(p̃j).(2.14)

Thus, in this simple case of no backward-traveling wave, the coupling conditions at
the junctions are essentially given by the drivers’ wishes for a diverging junction.
For a converging junction they are given by the equality of fluxes together with the
requirement that the fluxes from the two ingoing roads are equal in the dense case.
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Now, optimal control problems can be investigated. Typically, the average time
spent by the drivers in the network is minimized. This means we consider the objective
function

J((αv)v∈V ) =

∫ T

0

∑
j∈A

∫ bj

aj

ρj(x, t)dxdt.(2.15)

This function has to be minimized with respect to the control variables αv for v ∈ V .
We solve the problem:

min
0<αv<1,v∈V

J((αv)v∈V )(2.16)

subject to (ρj)j∈A is solution of (2.1) with coupling conditions

at the junctions given by (2.9) and (2.13).

A solution to this problem yields an optimal distribution of a traffic flow in a network
including all dynamics, like jam propagation, etc. Alternatively we can optimize the
above function in the case of no backward-going shock wave. This implies replacing
conditions (2.9) and (2.13) by (2.11) and (2.14). However, even in this case opti-
mization of networks with a large number of roads in reasonable time is beyond any
computational possibility.

3. Simplified nonlinear model. In this section the traffic flow model based
on partial differential equations is reduced to a system of algebraic equations; cf. [17].
This is achieved by considering a simplified situation concerning the inflow into the
network and tracking single waves running through the network. In contrast to the
static network models often used by traffic engineers, the present approach still con-
tains simplified dynamics, being at the same time not much more complicated and
expensive from a computational point of view. For the following we assume that no
backward-going shock waves appear; this means that the traffic is optimized in such a
way that no traffic jam occurs. We start with an initially empty network and refer to
the end of the section for the case of partially filled networks. Moreover, for simplicity,
we restrict to constant inflow ρj,0 applied as boundary condition at the incoming road
to the network. For the geometry of the network we use the same assumptions as in
the previous section, i.e., we assume to have only junctions connecting at most three
roads, like in Figure 2.1.

For simplicity of presentation, we assume to have an initially empty network,
i.e., ρj,0(x) = 0. Extensions of the procedure to other cases are straightforward and
discussed in Remarks 3.2 and 3.3.

The assumption of no backward-going shock waves is imposed as in (2.10), i.e.,

ρj(x, t) ≤ σj ∀j ∈ A.

We assign two values pj ∈ R and tj ∈ R+ to each road j of the network. The value
pj is an approximation of the density ρj(x, t), while tj denotes the arrival time of a
wave at road j. The following bounds are obvious:

0 ≤ pj ≤ σj , 0 ≤ tj ≤ T.(3.1)

Due to (2.10) we can express the coupling conditions (2.9) and (2.13) in the form
(2.11) and (2.14), respectively. We translate them in terms of pj and obtain
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Case 1.

δ−v = {j0}, δ+
v = {j1, j2},

pj1 = f−1
j1

(αvfj0(pj0)), pj2 = f−1
j2

((1 − αv)fj0(pj0)).

Case 2.

δ−v = {j1, j2}, δ+
v = {j3},

pj3 = f−1
j3

(fj1(pj1) + f−1
j2

(fj(pj2))).

For the ingoing roads to the network we set pj = ρj,0. In Case 1 the parameters
0 < αv < 1 distribute traffic at junction v in the direction of road i. Hence, pj is
determined solely by fulfilling the coupling conditions at the junctions.

Remark 3.1. As an example note that for a flux function of the type fj(x) =

4x(1 − x/Mj) the conditions read 2pj1 = Mj1 −
√
M2

j1
− αvMj1fj0(pj0) and similar

for pj2 . For the other junction type we obtain 2pj3 = Mj3 −
√
M2

j3
−Mj3χ with

χ = fj1(pj1) + fj2(pj2).
We model the dynamics in the following way: the times tj describe an approx-

imation of the arrival times of the waves (generated as solutions to the hyperbolic
equation (2.1)) at x = aj of road j. Since we cannot track the whole wave we use a
discontinuity as approximation. Then the times tj are defined by (3.2) and (3.3). In
more detail, we have initially a Riemann problem

∂tρj + ∂xfj(ρj) = 0, ρj(x, 0) =

[
pj x ≤ aj
0 x > aj

]

with concave flux function fj . The rarefaction wave is the correct solution of the
above problem which we approximated by a single discontinuity. The speed of the
wave is approximated with the so-called Rankine–Hugoniot speed

sj =
fj(pj)

pj
.

The arrival times of the rarefaction wave are approximated as follows. For the ingoing
road j0 we set tj0 = 0. In the case of a junction, where one road j0 disperse in two
others j1, j2, we set

tj1 = tj2 = tj0 +
b− a

sj0
.(3.2)

In the case of a junction with two incoming roads j1, j2 and one outgoing road j3 the
situation is more complicated. We set

tj3 =

(
tj1 +

b− a

sj1

)
pj1

pj1 + pj2
+

(
tj2 +

b− a

sj2

)
pj2

pj1 + pj2
.(3.3)

This choice is motivated by the following calculations. Let t(1) < t(2) denote the
time when the dicontinuity from road j1 and j2 reach the beginning of road j3 with
the values pj1 and pj2 . We again assume to have one discontinuity on road j3 in-

stead of rarefaction waves. The traveling speeds are given by s(1) =
fj3 (pj1 )

pj1
and
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s(2) =
fj3 (pj3 )−fj3 (pj1 )

pj3−pj1
. The values pj3 are determined by the coupling condition, i.e.,

f(pj3) = f(pj1) + f(pj2). Then we have

∫ T

0

∫ b

a

ρj3(x, t)dxdt = (T − t(1))(b− a)pj1 −
pj1

2s(1)
(b− a)2

+ (T − t(2))(b− a)(pj3 − pj1) −
pj3 − pj1

2s(2)
(b− a)2.

The idea is to approximate the above integral by (T − tj3)(b − a)pj3 − pj3

2sj3
(b − a)2

with sj3 = fj3(pj3)/pj3 . If f is linear, then the correct choice for tj3 is

tj3 = t(1)
pj1

pj1 + pj2
+ t(2)

pj2
pj1 + pj2

.(3.4)

This is used as approximation in the nonlinear case. Finally, to obtain formula (3.3) we
use (3.4) together with t(1) = (tj1+ b−a

sj1
) and t(2) = (tj2+ b−a

sj2
). Thus we have defined a

purely algebraic dynamic model for traffic flow on road networks without backward-
going shock waves. The model essentially describes how a wave of vehicles travels
through the network. The speed of this wave is derived from the macroscopic model.
It remains to reformulate the objective function (2.15) in terms of the simplified
nonlinear model. We assumed to have a discontinuity that arrives at road j at time

tj and travels with speed sj . Evaluating the integral
∫ T

0

∫ bj
aj

ρj(x, t)dxdt under this

assumptions yields∫ T

0

∫ bj

aj

ρj(x, t)dxdt = (T − tj)(bj − aj)pj −
pj
2sj

(bj − aj)
2.

Finally, the full simplified nonlinear model reads with Lj = bj − aj and sj =
fj(pj)/pj :

For junctions of merging type

tk =

(
ti +

Li

si

)
pi

pi + pj
+

(
tj +

Lj

sj

)
pj

pi + pj

pk = f−1
k (fi(pi) + fj(pj))

For junctions of dispersing type

ti = tj = tk +
Lk

sk

pi = f−1
i (αvfk(pk)), pj = f−1

j ((1 − αv)fk(pk))

For the road entering the network

pj = ρ0, tj = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.(3.5)

The objective function reads

J((αv)v∈V ;T, ρ0) =
∑
j∈A

(T − tj)Ljpj −
pj
2sj

L2
j .(3.6)

Herein T is a fixed time and ρ0 is the inflow to the network. It turns out that also for
this simplification the minimization problem minJ subject to the constraints above
still needs large computation times for very large networks due to the nonlinearities in
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the coupling conditions for pj and tj . For numerical results we refer to the subsequent
sections.

Remark 3.2. The treatment of a partially filled network is also possible. Assume
we have the initial densities p̄j on road j given, where all values are consistent with
the conditions at the junctions. p̄j is constant for the whole road such that p̄j < σj .
We start, as before, with an inflow ρ0 < σ. Then similar considerations yield the
following expression for an integral on j with (L := b− a):

∫ T

0

∫ b

a

ρ(x, t)dxdt = Ltj p̄j + Lpj(T − tj) −
pj − p̄j

2sj
L2,(3.7)

where now sj is given by

sj =
fj(pj) − fj(p̄j)

pj − p̄j
.(3.8)

Using this definition of sj one can approximate the arrival times of the ingoing wave
tj in the same way as before with sj as in (3.8).

Remark 3.3. Nonconstant initial data, for example, piecewise constant initial
data, can be treated in the same way. We have to assume that the waves do not
interact to track the arrival times of each wave.

4. Linear models. In this section the previously introduced model is further
simplified obtaining a linear model accessible to discrete optimization techniques. The
basic idea is the reformulation of the above model in terms of the flux qj := pju

e(pj).
We introduce the notation

τj(qj) :=
1

ue(f−1
j (qj))

(4.1)

and obtain pj = qjτj(qj). The coupling conditions at the junctions read

For junctions of merging type

qk = qi + qj

For junctions of dispersing type

qi + qj = qk

For all roads

Mj ≥ qj ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

.(4.2)

Note that the control variable αv does not appear in the above formulation. Therefore
the values of qi, qj are not solely defined by qk. The function J is given in terms of qj
by

J((qj)j∈A;T, ρ0) =
∑
j∈A

(
TLj − tjLj −

τj(qj)L
2
j

2

)
τ(qj)qj .(4.3)
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Then the complete model and the optimization problem reads

min
(qj)j∈A

J((qj)j∈A;T, ρ0)

where for junctions of dispersing type

ti = tj = tk + Lkτk(qk)

qi + qj = qk

where for junctions of merging type

tk =
(ti + Liτi(qi))qiτi(qi)

qiτi(qi) + qjτj(qj)
+

(tj + Ljτj(qj))qjτj(qj)

qiτi(qi) + qjτj(qj)

qk = qi + qj

where for roads ingoing to the network

qj = f0(ρ0), tj = 0

where for all roads

Mj ≥ qj ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.(4.4)

This model is still equivalent to the nonlinear model described above. We derive
different (linear!) models from this formulation and refer to the subsequent sections
for numerical results.

4.1. Linear models with dynamics. The coupling conditions at the junctions
are linear in qj but nonlinear in tj . We use different possibilites to linearize the
coupling tj . In the numerical tests it turns out that the crucial point is the proper
discretization of the weight w appearing in the case of merging junctions, i.e.,

wi(qi, qj) :=
qiτi(qi)

qiτi(qi) + qjτj(qj)
, wj(qi, qj) :=

qjτj(qj)

qiτi(qi) + qjτj(qj)
.

We propose two different approaches and compare the results numerically in section 5.
A. We approximate

wi, wj ∼ w̃ =
1

2

and calculate the first order Taylor expansion τ̃j(q) = τj(0)+qτ ′j(0) as an ap-
proximation for τj(q). That means we linearize the model globally around 0.
Neglecting higher order terms, we obtain the following linear equations:

Dispersing junctions

ti = tj = tk + Lk τ̃k(qk),

Merging junctions

tk =
(
ti + Liτ̃i(qi)

)
· w̃ +

(
tj + Lj τ̃j(qj)

)
· w̃.

(4.5)

B. Instead of linearizing the functions globally, we discretize the problem us-
ing piecewise linear approximations. The junctions of merging type are now
approximated by piecewise linear functions on triangles, a more refined ap-
proximation as in case A. For each junction k of the merging type consider

ak(qi, qj) :=
Liqi(τi(qi))

2

qiτi(qi) + qjτj(qj)
+

Ljqj(τj(qj))
2

qiτi(qi) + qjτj(qj)
.(4.6)
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Fig. 4.1. Contour lines of the nonlinear weight function ak(qi, qj) for qi, qj ∈ [0, 1].

As an example note that for f(ρ) = 4ρ(1 − ρ/Mi) and Mi = Mj = 1 the
contour lines of ak are given in Figure 4.1.
We introduce Ni ·Nj discretization points (ξkv , η

k
w) with 0 = ξk1 < ξk2 < · · · <

ξkNi−1 < ξkNi
= Mi and 0 = ηk1 < ηk2 < · · · < ηkNj−1 < ηkNj

= Mj . Denote
Δ a partition of the grid of discretization points into triangles and introduce
a binary variable yk(p1,p2,p3)

∈ {0, 1} for each triangle (p1, p2, p3) ∈ Δ. The
identification of the proper triangle corresponding to the incoming fluxes qi, qj
is done by the next equations. Exactly one triangle has to be selected:∑

(p1,p2,p3)∈Δ

yk(p1,p2,p3)
= 1.(4.7)

Once one triangle is selected, the values of qi, qj can be encoded as convex
combination of its corners. For this, introduce a continuous variable λk

v,w ≥ 0

for each discretization point (ξkv , η
k
w), which are coupled to qi and qj as follows:

qi =

Ni∑
v=1

Nj∑
w=1

ξkv · λv,w, qj =

Ni∑
v=1

Nj∑
w=1

ηkw · λv,w.(4.8)

The convex combination condition is

Ni∑
v=1

Nj∑
w=1

λv,w = 1.(4.9)

Only those three values λp1 , λp2 , λp3
may be nonzero that correspond to the

selected triangle by (4.7):

yk(p1,p2,p3)
≤ λp1 + λp2 + λp3 ∀ (p1, p2, p3) ∈ Δ.(4.10)
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To introduce ãk as a piecewise linear approximation of ak(qi, qj), we add the
following equation to the model:

ãk =

Ni∑
v=1

Nj∑
w=1

ak(ξv, ηw) · λv,w.(4.11)

The junctions of dispersing type are approximated as in case A, whereas for
the junctions of merging type, we use a blending of ã as above and w̃ as in
case A:

Dispersing junctions

ti = tj = tk + Lk τ̃k(qk),

Merging junctions

tk = (ti + tj) · w̃ + ãk.

(4.12)

For any linearization A or B we linearize the objective function (4.3) as follows. For

every j ∈ A we introduce Dq variables 0 ≤ yji ≤ Mj

Dq
and let the flux be represented

by

qj =

Dq∑
i=1

yji .(4.13)

Functional J is approximated by

J̃((qj)j∈A;T, ρ0) :=
∑
j∈A

zj ,(4.14)

where we introduce for every arc j ∈ A and every k = 1, . . . , Dt the inequality

Dq∑
i=1

(
G

(
(i + 1) ·Mj

Dq
, T · 2k−Dt

)
−G

(
i ·Mj

Dq
, T · 2k−Dt

))
· Dq

Mj
· yji

≤ zj + M · (1 − ujk),(4.15)

where M is a sufficiently big value and G is defined by

G(ξ, ζ) :=

(
T − ζ − τ(ξ)Lj

2

)
· Ljτ(ξ)ξ,(4.16)

and we assume that G(·, ζ) is convex for every ζ ∈ [0, T ]. Moreover, ujk is a binary
variable for every j ∈ A and k = 1, . . . , Dt, where ujk = 1 if tj ≤ T · 2k−Dt . Thus we
add the following inequalities to the model:

tj ≥ T · 2k−Dt(1 − ujk)(4.17)
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for all j ∈ A and k = 1, . . . , Dt. Summarizing, we obtain a linear mixed-integer model
with dynamics given by

min
zj ,y

j
i ,ujk,λk

v,w,qj ,tj

J̃

where for junctions of dispersing type

ti = tj = tk + Lk τ̃k(qk)

qi + qj = qk

where for junctions of merging type

case A: tk =
(
ti + Liτ̃i(qi)

)
· w̃ +

(
tj + Lj τ̃j(qj)

)
· w̃

case B: tk = (ti + tj) · w̃ + ãk

qk = qi + qj

where for roads ingoing to the network

qj = f0(ρ0), tj = 0

where for all roads

Mj ≥ qj ≥ 0

and where ujk, zj , λ
k
v,w are coupled as introduced

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.(4.18)

Remark 4.1. In the above modelling we set the discretization points as T2k−Dt

for k = 1, . . . , Dt. This produces a log-scale distribution of discretization points in
[0, T ]. Other distributions are also possible. For example, if we identically distribute
we obtain

tj ≥ T
k − 1

Dt − 1
(1 − ujk)(4.19)

instead of (4.17). The proper choice depends on the size of the network geometry and
the scaling of T .

4.2. Linear model without dynamics. We assume tj = 0 which models a

static traffic flow network. We obtain a linear function J̃ from (4.3) by a piecewise

linear approximation of J . For this, we introduce D variables 0 ≤ yji ≤ Mj

D for every
arc j ∈ A. Then the flux qj is represented by

qj =

D∑
i=1

yji .(4.20)

Now J is approximated by

J̃(qj ;T, ρ0) :=
∑
j∈A

D∑
i=1

(
G

(
(i + 1) ·Mj

D

)
−G

(
i ·Mj

D

))
· D

Mj
· yji ,(4.21)

where G is defined by

G(ξ) :=

(
TLj −

τ(ξ)L2
j

2

)
· τ(ξ) · ξ.(4.22)
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Again, we assume G(·) to be convex. Summarizing, we have the following model:

min
yj
i ,qj

J̃

where for roads connected to a junction v∑
j∈δ+

v

qj =
∑
j∈δ−v

qj

where for roads ingoing to the network

qj = f0(ρ0)

where for all roads

Mj ≥ qj ≥ 0

and yji satisfies (4.20)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.(4.23)

4.3. Linearization of monotone, nonconvex functions. In both lineariza-
tions above we assumed G(·, ζ) and G(·), respectively, to be convex functions. The
convexity depends on τ(·) and is satisfied for those functions τ we study within this
article. However, other choices for τ are possible, where G is nonconvex. But if G
happens to be monotone (and nonconvex), it is still possible to obtain a linearization.
We present the necessary changes to the model only in the case without dynamics.
In the dynamic case they are similar.

We introduce D variables yji ≥ 0 for every arc j ∈ A. Since G is nonconvex, they
cannot be coupled to the flux qj as simple as in (4.20). Instead we use the following
inequalities:

qj ≤ yji +
Mj

D
· i ∀i = 1, . . . , D, j ∈ A.(4.24)

Now J is approximated by

J̃((qj)j∈A;T, ρ0) :=
∑
j∈A

D

Mj

(
G

(
Mj

D

)
· yj0(4.25)

+

D∑
i=2

(
G

(
(i + 1) ·Mj

D

)
− 2 ·G

(
i ·Mj

D

)
+ G

(
(i− 1) ·Mj

D

))
· D

Mj
· yji

)
,

where G is as in (4.22).

4.4. Min cost flow model. We again assume tj = 0, i.e., the static network
case. Instead of a piecewise linear approximation of our objective function (4.3) we
additionally assume a simplified dynamic: if the function

ue
j(ρ) = cj

is constant for all j, then by definition

τ(qj) =
1

cj
.

The function (4.3) reads

J̄((qj)j∈A;T, ρ0) =
∑
j∈A

ωjqj ,(4.26)
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where ωj are constants given by

ωj = T
Lj

cj
−

L2
j

2c2j
.

Together with the linear coupling conditions and the lower bounds for qj we obtain
the classical min cost flow problem:

min
qj

∑
j∈A

ωjqj

where for roads connected to a junction v∑
j∈δ+

v

qj =
∑
j∈δ−v

qj

where for roads ingoing to the network

qj = f0(ρ0)

and where for all roads

Mj ≥ qj ≥ 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.(4.27)

Remark 4.2. Unfortunately, the assumption ue
j = constantj is not a realistic ap-

proximation of a typical fundamental diagram. For reasonable fundamental diagrams
we refer to [22]. At least we have to assume ue

j(x) is linear.
We have the following remark on the relation of the linear models given above

and known other approaches.
Remark 4.3. We note that for the linear models there is a strong connection to

the traffic flow models proposed by Möhring et al.; see, for example, [26, 25, 24]. Espe-
cially, the occurence of the so-called transit-times shows the close relation between the
models. However, the cost function for the linear problem differs due to the derivation
starting with partial differential equations. The starting point of the models intro-
duced in [25, 24] is the transit times τe which are assumed to be known functions.
They describe the time needed by a flow to pass the arc e. In our formulation the
transit times are the functions derived by equation (4.1), i.e.,

q → τj(q)Lj .

The case of constant transit times is called “static flow problems” in [25]. In our
introduced model this reflects the situation ue

j(ρ) constant. As pointed out by Möhring
et al. this cannot be a realistic assumption. Therefore, they introduced “static traffic
flows with congestion” by assuming a dependency of τe on q. In our model this
approach is reflected by the introduced linear model without dynamics. However, we
see by our derivation that congestion in the form of backward-going shock waves is
not covered by those models; cf. numerical results below.

Remark 4.4. In the previous sections we derived a hierachy of models. The most
accurate and detailed model is based on partial differential equations and is given by
(2.16). In a first step we reduce the PDE model to a set of nonlinear equations. We
call this model simplified nonlinear model and refer to (3.5). Further simplifications
yield linear models with dynamics (4.18). Two different modelings at the junction
(denoted by case A and B) are considered. Neglecting the dynamics we obtain the
linear model without dynamics which is given by (4.23). Finally, we reduced the
model to a min cost flow problem (4.27).
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Fig. 5.1. Example of a network.

5. Results. We compared the computing times for different models and net-
works. All results have been obtained on a 1.0 Ghz Pentium III processor machine
with 2 GB RAM, 256 KB first-level cache, and Debian Linux v3.0 as operating system.

5.1. Test case for comparing network models. For the purpose of com-
paring the models we introduce a network with two controls and seven roads, as in
Figure 5.1. As an example we use the smooth and concave family of flux functions

fj(ρ) = ρue
j(ρ) = 4ρ(1 − ρ/Mj).(5.1)

The function τj(ρ) is then given by (4.1), i.e.,

τj(q) =
Mj

2
(
Mj +

√
M2

j −Mjq
) , 0 ≤ q ≤ Mj .(5.2)

If not stated otherwise we assume

T = 5 and Lj := bj − aj = 1 ∀j = 1, . . . , 7.(5.3)

We define q0 to be the known inflow given at x = a1.

5.1.1. Comparison of the values of the objective function. We compare
the derived models on the sample network. We compute the objective function of the
corresponding model for all admissible choices of the control variables α1 and α2. In
the context of the linear models this implies computing the objective for all choices
q1, . . . , q7 satisfying the constraints. As described in section 4 the fluxes qj and the
controls are related. For example, we obtain for the first roads of our sample network

q1 = q0, q2 = α1q1, q3 = (1 − α1)q1.

In all subsequent plots we draw contour lines of the objective function against α1 and
α2. We choose different maximal fluxes Mj on the roads to obtain different test cases.

Test Case 1. Free flow.
We set Mj = 1 for all roads and q0 = 96%M1. We compute the objective function

(2.15) by a trapezoid rule. The underlying partial differential equations is solved by
a first order Godnuov scheme with N = 100 discretization points for each road j.
The objective function (3.6) is computed by the formulas given in section 3. For the
linear models we computed the function (4.25) with D = 1000 variables for each arc
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Fig. 5.2. Test Case 1: Contour lines of the functions for partial differential equation (2.15),
simplified nonlinear (3.6), linear without dynamics (4.25), and min cost flow model (4.26) (top left
to bottom right).

j. Note, that the function ξ → G(ξ) is at least monotone for the choice (5.1). For
comparison we include a plot of the function for the min cost flow problem (4.26),
where we set ue

j(ρ) = 2 for this calculation. The results are given in Figure 5.2. The

minimizer of all problems is (α1, α2) = ( 1
2 , 0). In case of the min cost flow problem

we lose the uniqueness of the minimizer. Furthermore, the qualitative behavior differs
significantly from the other models.

Test Case 2. Backward-going shock waves.

When deriving the simplified models we neglected backward-going shock waves.
This was an essential part of the simplification of the dynamics. We compare the
simplified nonlinear model (3.5) with the model based on partial differential equations
(2.16) in a case with backward-going shock waves. We set M1 = M2 = M4 = M6 = 2,
M3 = 1, M5 = 0.5, and q0 = 75%M1. We used the same discretization as previously
and compare the contour lines of (2.15) and (3.6) in Figure 5.3. We observe that in the
PDE case the domain of admissible controls is larger than in the case of the simplified
nonlinear model. This effect is due to backward-going shock waves which occur on
some roads in the PDE model. Controls generating these waves are not admissible in
the simplified nonlinear model. In our special case the region for the optimal control
coincides. We skip results on the linear model since they approximate the algebraic
model.

Test Case 3. Neglecting dynamics.

For the linear and simplified nonlinear models we considered models with and
without dynamics. In this test case we highlight the influence of the correct modeling
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Fig. 5.3. Test Case 2: Contour lines for the functions for PDE and simplified nonlinear model
(left to right).
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Fig. 5.4. Test Case 3: Contour lines for the functions (3.6) for simplified model with (left)
and without dynamics.

of the dynamics. We compute the corresponding functions (4.25) and (4.14) for the
following setting: Mj = 2, q0 = 96%M1 and L1 = L7 = L5 = 2, L4 = L6 = 1,
L2 = 2.5, L3 = 15. In the dynamic case we allow only those controls α1, α2 where the
incoming flux reaches x = b7 with t7 ≤ T . The simplified nonlinear model is given in
section 3. Besides this model we compute (3.6) for the case

tj = 0 ∀j = 1, . . . , 7,

too. This allows us to study the effect of the dynamics. The results are given in
Figure 5.4. Note that in the region α1 < 30% the routed traffic does not reach
the outgoing road. Furthmore, the functions differ significantly in their qualitative
behavior.

Test Case 4. Discretization points for linear models.

The linear models depend strongly on the number of discretization points D. We
study the qualitative behavior of the contour lines when decreasing D. We consider
the linear model without dynamics and its objective function (4.25). We set Mj = 1,
q0 = 0.96%. We plot the contour lines for D = 5 and D = 25 discretization points in
Figure 5.5.
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Fig. 5.5. Test Case 4: Contour lines for the functions (4.25) for linear model without dynamics
and varying D = 25 (left), resp., D = 5 (right).
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Fig. 5.6. Test Case 5: Contour lines for the functions for simplified nonlinear (3.6) and
different linear models with dynamics (4.14). Simplified nonlinear (upper left), Case A (upper
right), Case B with Ni = Nj = 5, resp., Ni = Nj = 25 (lower row left to right).

Test Case 5. Linearization of the dynamics.

In this case we consider the influence of the various possible discretizations for
the coupling in tj . We consider the same setting as in Test Case 3. We compare
the qualitative behavior of the objective function for the simplified nonlinear model
with the linear models with dynamics given in section 4.1. We compare the different
discretization, Cases A and B. The results are given in Figure 5.6. We used Dq =
Dt = 100 variables for the discretization of the flux and the time on each road for



OPTIMIZATION OF TRAFFIC FLOW ON NETWORKS 1173

Table 5.1

CPU times for sample network and different models.

Model and Scheme Parameters CPU time
Godunov scheme for PDE model N=100 135.65 s
Godunov scheme for PDE model N=50 45.17 s
Simplified nonlinear model 0.05 s
Linear Model with dynamics (B) Dq = Dt = 100, Ni ·Nj = 25 0.02 s
Linear Model without dynamics Dq = 100 0.01 s

any linearized model. We calculate Cases B with Ni = Nj = 5 and Ni = Nj = 25,
respectively, discretization points for each junction of the merging type.

5.1.2. Optimization on the sample network. We consider the optimization
problems introduced and compare computing times on the sample network.

As in the previous section we solved the partial differential equations model (2.16)
with a Godunov scheme with N discretization points. The objective function is dis-
cretized using the trapezoid rule. For standard nonlinear optimization routines we
need at least the gradient of the objective function. We compute an approxima-
tion by finite differences. Other approaches (using adjoint formulas) are investigated
in [13]. In case of the simplified nonlinear model (3.5) the gradient can be calculated
analytically.

For all nonlinear optimization problems the L-BFGS-B optimizer [4, 34, 5] is
used. This method is a gradient projection method with a limited memory BFGS
approximation of the Hessian and is able to consider bound constraints. The default
settings are m = 17, factr = 1.d + 5, pgtol = 1.d− 8, and isbmin = 1.

The linear model without dynamics (4.23) is a pure linear programming problem.
We solved it using ILOG CPLEX 8.1 [20]. As a default strategy, we set the network
simplex method to solve the linear programs. For our test cases, this method outper-
forms other solution techniques, such as primal or dual simplex. In case of the linear
model with dynamics (4.18) we have a mixed-integer problem. Among the currently
most successful methods for solving these problems are linear programming–based
branch-and-bound algorithms, where the underlying linear programming relaxations
are possibly strengthend by cutting planes. Fortunately, today’s state-of-the-art com-
mercial MIP solvers (such as CPLEX [20]) can handle mixed-integer programs even
for our large-size problem instances.

For the setting of Test Case 1 we have the following result on the computational
times (CPU times); see Table 5.1. The parameters (Dq, Dt) describe the discretiza-
tion of the nonlinear function. The parameter Ni ·Nj describes the total number of
discretization points for the function ak(·, ·) at the merging junctions. Therefore, the
only models reasonable to test on large-scale networks are the simplified nonlinear
and the linear models.

5.2. Large-scale network optimization. The network considered next is shown
in Figure 5.7.

There, every node in the top row is controllable via a separate control αv. There
are only one source and one sink. The prescribed inflow is again q0 = 96%M1 and
all streets have the same maximal flux, Mj = 1.0 Then, the optimal controls are
α1 = 0.5 and αv = 1.0 ∀ v 	= 1. The results are given in Table 5.2. The number
of discretization points for the flux q per road is denoted by Dq and for the time by
Dt. The number of discretization points for each function ak (cf. (4.6)) in model B
is denoted by NiNj . Note that all nodes in the bottom row are of the merging type.
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Fig. 5.7. General layout of a large scale network.

Table 5.2

CPU times for large-scale networks. n.a.-not available: those quantities do not appear in the
corresponding models.

Model # Roads Dq Dt NiNj Gap CPU time
Simplified nonlinear model 240 n.a. n.a. n.a. n.a. 6 s
Linear with dynamics (B) 10 10 25 1% 11 m

10 10 25 10% 3.8 m
10 10 9 0.1% 2.6 m
10 10 9 10% 57 s

Linear with dynamics (A) 100 10 n.a. 0.1% 33.08 s
10 10 n.a. 0.1% 4.78 s

Linear without dynamics 100 n.a. n.a. 0.1% <0.01 s
Simplified nonlinear model 1,500 n.a. n.a. n.a. n.a. 57 m
Linear with dynamics (B) 10 10 25 10% 4.7 h

10 10 9 10% 26 m
5 5 9 10% 5 m

Linear with dynamics (A) 100 10 n.a. 0.1% 180.01 m
10 10 n.a. 0.1% 13.69 m

Linear without dynamics 1000 n.a. n.a. 0.1% 24.98 s
100 n.a. n.a. 0.1% 12.75 s

5 n.a. n.a. 0.1% 1.8 s
Simplified nonlinear model 15,000 n.a. n.a. n.a. n.a. >4d
Linear with dynamics (B) 5 5 9 10% 6.2 h
Linear without dynamics 100 n.a. n.a. n.a. 22.79 m

10 n.a. n.a. n.a. 7.33 m
Linear without dynamics 150,000 10 n.a. n.a. n.a. 16.77 h

To improve the performance of CPLEX we increased the optimality gap from 0.001%
(default setting) to 10%. We present results for other optimality gaps, too.

6. Summary.
• A hierachy a traffic network models ranging from PDE models to simple

combinatorial models of min cost flow type has been developed.
• A variety of different network topologies has been investigated. Combinato-

rial and continuous optimization approaches using these models have been
implemented and compared.

• The investigation shows the advantages and disadvantages of the different
models and optimization procedures. In particular, for very large networks
discrete optimization procedures are superior in terms of computation time.

• However, the simplified models developed here do not contain more compli-
cated dynamic situations like backward-going shocks, i.e., traffic jams. To
include such situations one has to use the original PDE model or to derive
more sophisticated models from the PDE network.

• One could combine the models described here in a coupling strategy for very
large networks. The main part of the network can be simulated using simple
linear models. More complicated dynamic models may be used in regions
where the detailed dynamic behavior is important.
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Acknowledgment. We thank Rolf Möhring for his valuable comments on time-
dependent network flow models.

REFERENCES

[1] A. Aw and M. Rascle, Resurrection of second order models of traffic flow, SIAM J. Appl.
Math., 60 (2000), pp. 916–938.

[2] C. Bardos, A. Y. LeRoux, and J. C. Nedelec, First order quasilinear equations with bound-
ary conditions, Comm. Partial Differential Equations, 4 (1979), pp. 1017–1034.

[3] M. Blinkin, Problem of optimal control of traffic flow on highways, Automat. Remote Control,
37 (1976), pp. 662–667.

[4] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, A limited memory algorithm for bound con-
strained optimization, SIAM J. Sci. Comput., 16 (1995), pp. 1190–1208.

[5] R. Byrd, J. Nocedal, and R. Schnabel, Representations of quasi-Newton matrices and their
use in limited memory methods, Math. Program., 63 (1994), pp. 129–156.

[6] M. Carey and E. Subrahmanian, An approach for modeling time-varying flows on congested
networks, Transp. Res. B, (2000), pp. 157–183.

[7] G. M. Coclite and B. Piccoli, Traffic flow on a road network, SIAM J. Math. Anal., to
appear.

[8] R. Colombo, Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002),
pp. 708–721.

[9] C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a
conservation law, J. Math. Anal. Appl., 38 (1972), pp. 33–41.

[10] L. R. Ford and D. R. Fulkerson, Constructing maximal dynamic flows from static flows,
Oper. Res., (1958), pp. 419–433.

[11] J. Greenberg, Extension and amplification of the Aw-Rascle model, SIAM J. Appl. Math., 62
(2001), pp. 729–745.

[12] J. Greenberg, A. Klar, and M. Rascle, Congestion on multilane highways, SIAM J. Appl.
Math., 63 (2003), pp. 818–833.

[13] M. Gugat, M. Herty, A. Klar, and G. Leugering, Adjoint calculus for traffic flow networks,
JOTA, 126 (2005), pp. 589–616.

[14] M. Günther, A. Klar, T. Materne, and R. Wegener, Multivalued fundamental diagrams
and stop and go waves for continuum traffic flow equations, SIAM J. Appl. Math., 64
(2003), pp. 468–483.

[15] D. Helbing, Improved fluid dynamic model for vehicular traffic, Phys. Rev. E, 51 (1995),
p. 3164.

[16] M. Herty and A. Klar, Modelling, simulation and optimization of traffic flow networks,
SIAM J. Sci. Comput., 25 (2003), pp. 1066–1087.

[17] M. Herty and A. Klar, Simplified dynamics and optimization of large scale traffic networks,
Math. Models Methods Appl. Sci., 14 (2004), pp. 1–23.

[18] H. Holden and N. H. Risebro, A mathematical model of traffic flow on a network of unidi-
rectional road, SIAM J. Math. Anal., 4 (1995), pp. 999–1017.

[19] H. Holden and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer,
New York, Berlin, Heidelberg, 2002.

[20] ILOG CPLEX Division, Using the CPLEX Callable Library, available online from
http://www.cplex.com.
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Abstract. SQP methods for the optimal control of the instationary Navier–Stokes equations
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the quadratic subproblems (QPs) of SQP require a more sophisticated solver when compared to the
unconstrained case. In this paper, a semismooth Newton method is proposed for efficiently solving
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relies on the concept of slant differentiability for proving locally superlinear convergence of the QP-
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1. Introduction. In this paper we continue our efforts in devising efficient nu-
merical algorithms for the optimal control of the instationary Navier–Stokes equations.
While the contributions in [22, 27] focus on unconstrained problems with respect to
the control, the goal of the present work is to extend the framework in [22] to problems
involving box constraints on the control variable.

Throughout we focus on the problem

minimize J(y, u) over (y, u) ∈ W × Uad

subject to
∂y

∂t
+ (y · ∇)y − νΔy + ∇� = u in Q = (0, T ) × Ω,

div y = 0 in Q,
y(t, ·) = 0 on Σ = (0, T ) × ∂Ω,
y(0, ·) = y0 in Ω

(1.1)

with Uad denoting the closed convex subset of the Hilbert space U of controls given
by

Uad = {v ∈ U : a ≤ v ≤ b a.e. in Q},(1.2)
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where the bounds a < b are sufficiently regular. In fact, for our existence result
(Theorem 3.1) we require a, b ∈ L2(Q). In section 6, however, for arguing locally
superlinear convergence of our QP-solver we require a, b ∈ Lq(Q) for some q > 2.
In (1.1), T > 0 denotes the finite time horizon and � the pressure. The space W
corresponding to the state variable (velocity field) y and the choice of cost functionals
J will be specified below. The variable u will be referred to as the control variable.

In the unconstrained case, i.e., Uad = U , the development of numerical tech-
niques for the optimal control of the stationary as well as instationary Navier–Stokes
equations has received a considerable amount of attention. Here we refer to the mono-
graphs and selected papers [3, 6, 11, 15, 17, 18, 19, 22, 27, 32] covering distributed
and boundary control problems. However, the presence of constraints on u requires a
different algorithmic approach and usually complicates the numerical treatment sig-
nificantly. If one wishes to apply a gradient related approach (like, e.g., in [17]), then
the fact that Uad ⊂ U requires Hilbert space projections and modifications in poten-
tial line search techniques for globalization. Recently, SQP techniques have become
feasible for solving the unconstrained version of (1.1); see, for instance, [19, 22, 27].
With respect to convergence speed the latter approach is typically superior to gra-
dient methods. With regard to the computational complexity of SQP, the efficient
solution of the linear-quadratic subproblems (QPs) is essential. In the presence of
control constraints the QPs inherit the constraints from the problem formulation. As
a consequence, compared to the unconstrained case more sophisticated QP-solvers
have to be applied in order to compute appropriate search directions.

Motivated by the fast local convergence properties of SQP-techniques, we will
extend the unconstrained approach of, e.g., [22, 27] to the control constrained case.
The numerical QP-framework in this paper is related to the primal-dual active set
strategy (pdAS) as introduced in [4] and further analyzed and tested in [5, 20, 21]. In
particular, the latter results prove this method to be extremely efficient in the case
of control constraints. Recently, in [23] it was shown that the pdAS is a particular
instance of a generalized Newton method for a class of optimization problems in
function spaces. In the present context, we utilize an inexact version of pdAS which
is due to the large size of the problem and in order to save computation time. This is
in the spirit of inexact Newton techniques for smooth problems; see, e.g., [10, 16].

As a key result it will turn out that pdAS provides a framework which efficiently
deals with the constraints of the type (1.2) and requires only a moderate number of
modifications in a SQP-environment for unconstrained problems in order to include
the constrained case, too. This is of particular advantage since it allows one to extend
one’s favorite SQP-solver quite easily. The alterations needed for including constraints
essentially comprise the storage of index sets referring to whether u is equal to one of
the bounds and changes in the conjugate gradient (CG) method for solving the linear
systems arising in pdAS when solving the QP-problems. Moreover, if the initial
control u0 is feasible, i.e., u0 ∈ Uad, and exact QP-solutions are computed, then the
algorithm produces only feasible iterates with respect to the control variable.

Besides the numerical justification of our approach by a report on an excerpt of
extensive numerical tests, an infinite dimensional convergence analysis for the SQP-
algorithm is provided. By utilizing the concept of slant differentiability of a not
necessarily (Fréchet) differentiable mapping between Banach spaces [7, 23] (see also
[37] for a related notion), the locally superlinear convergence of the primal-dual active
set algorithm (inner iteration) is established. For the analysis of the SQP-method
(outer iteration) a generalized equations approach is utilized. In a different context,
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the potential of generalized equations for the analysis of algorithms for constrained
optimal control problems was exploited previously in, e.g., [1, 12, 34] and the references
therein. Under a strong regularity property (see [31]) we prove that the SQP-iteration
converges at a locally quadratic rate.

To the best of our knowledge, the only contribution dealing with control con-
strained optimal control of the instationary Navier–Stokes equations in a generalized
Newton framework is given by [36]. In this paper, a Newton algorithm for computing
a solution to the first order optimality conditions of the reduced problem

minimize Ĵ(u) = J(y(u), u) subject to u ∈ Uad(1.3)

is considered. Here y(u) denotes the solution of the Navier–Stokes equations for
given u. In [36] a locally superlinear rate of convergence of the generalized Newton
method is established. Note the difference from our approach. First, we use a SQP-
framework which requires a different convergence analysis yielding convergence at a
locally quadratic rate. We utilize the pdAS, or equivalently a generalized Newton
method, as the QP-solver and prove its locally superlinear convergence. In our tests,
typically the pdAS terminates after one or two iterations with a solution fulfilling a
stopping rule similar to inexact Newton methods. The stopping tolerance is tuned
in such a way that fast progress of the outer iteration is maintained. Further, our
generalized Newton method does not require a separate smoothing step for its analy-
sis. Indeed we take advantage of inherent smoothing properties due to the structure
of the control problem; see the proof of Proposition 5.4. On the numerical level, we
use a different discretization concept which provides discrete, numerically computable
controls without explicitly discretizing the controls. The controls are discretized im-
plicitly through the optimality conditions in terms of the adjoint variables. For more
details on this technique see [26].

The rest of the paper is organized as follows. In the next section we introduce the
precise functional analytic setting of (1.1) and notation. Further we establish some
basic results required for the convergence analysis. Section 3 is devoted to the first
order optimality system for the underlying control problem. Due to the constraints
the first order system involves a so-called complementarity system consisting of primal
and dual inequality conditions and a nonlinear equality. Relying on the concept of
complementarity functions, we reformulate the latter system as a set of nonsmooth
equalities. In section 4 we introduce the reduced first order system and the SQP-
algorithm. Due to the equality related to the complementarity function which is
nondifferentiable, an active set type QP-solver is the focus of section 5. The section
also includes the convergence analysis for the QP-solver. In section 6 local quadratic
convergence of the SQP-iteration is established. In section 7 we provide a report on
numerical results obtained by our SQP-method.

2. Preliminaries. For the convenience of the reader we collect the analytical
preliminaries for a proper formulation of problem (1.1) and to establish convergence
results for the algorithms presented in this paper. To define the spaces and operators
required for the investigation of (1.1) we introduce the solenoidal spaces

H = {v ∈ C∞
0 (Ω)2 : div v = 0}−|·|

L2 , V = {v ∈ C∞
0 (Ω)2 : div v = 0}−|·|

H1

with the superscripts denoting closures in the respective norms. We have (see [32])

V ↪→ H = H∗ ↪→ V ∗
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with ↪→ denoting the continuous injection. The spaces H∗ and V ∗ denote the dual
spaces of H and V , respectively. Further, we define the Banach spaces

W p
q = {v ∈ Lp(V ) : vt ∈ Lq(V ∗)} and Z := L2(V ) ×H,(2.1)

where W p
q is endowed with the norm

|v|Wp
q

= |v|Lp(V ) + |vt|Lq(V ∗),

abbreviate

W := W 2
2 ,(2.2)

and set 〈·, ·〉 := 〈·, ·〉L2(V ∗),L2(V ). Here L2(V ) is an abbreviation for L2(0, T ;V ) and
similarly L2(V ∗) = L2(0, T ;V ∗). Note that we also have L2(V ) ↪→ L2(Q)2 ↪→ L2(V ∗).
We further need the following embedding result.

Proposition 2.1. Let ε ∈ (0, 1). For all 1 ≤ p < 3
2 + 1+ε

1−ε =: δε there holds

W 2
1+ε ↪→ Lp(Q)2.

Proof. In [36, Lemma A1] the result is proved for ε = 1
3 . It follows from [2,

Theorem 1.1] that W 2
1+ε ↪→ Lq(H) for all q ∈ [1, 4(1+ε)

1−ε ). The remainder of the proof
follows the lines of the proof of Lemma A1 in [36].

We note that up to a set of measure zero in (0, T ), elements v ∈ W can be
identified with elements in C([0, T ];H). In our convergence analysis we also need

H2,1(Q) =
{
v ∈ L2

(
0, T ;H2(Ω)

)
: vt ∈ L2(H)

}
endowed with the norm

|v|H2,1(Q) := |v|2L2(V ∩H2(Ω)2) + |vt|2L2(H).

In [33] (compare [30]) it is shown that for Ω ⊂ R2

H2,1(Q) ↪→ L∞(
0, T ;H1(Ω)

)
∩ Lq(Q) for 1 ≤ q < +∞.(2.3)

In (1.2) U denotes the Hilbert space of controls which is identified with its dual U∗.
Throughout we adopt the frequent choice U = L2(Q)2. Note that w ∈ L2(0, T ;H)
satisfies w ∈ L2(Q)2.

Concerning the class of cost functionals J : W × U → R considered herein, we
invoke the following assumption.

Assumption 2.2.

• J(y, u) = J1(y)+J2(u) is bounded from below, weakly lower semi-continuous,
and twice Fréchet differentiable with locally Lipschitzian second derivative.

• J2(u) = α
2 |u|2U which implies that J is radially unbounded in u, i.e., J(y, u) →

∞ as |u|U → ∞ for every y ∈ W .
• J1y (y), J1yy (y)v ∈ L1+ε(V ∗) ∩W ∗ for all v ∈ W and for some ε ∈ (0, 1).

Our assumptions on J are satisfied for the tracking type functional

J(y, u) =
1

2

∫
Q

|y − z|2dx dt +
α

2
|u|2U(2.4)
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and functionals involving the vorticity of the fluid like

J(y, u) =
1

2

∫
Q

|∇x × y(t, ·)|2 dx dt +
α

2
|u|2U ,(2.5)

where α, γ > 0 and z ∈ W are given. These two functionals are even infinitely Fréchet
differentiable on W × U .

Associated with the governing equation in (1.1) we define the nonlinear mapping
e : W × U → Z∗ by

e(y, u) = (∂y∂t + (y · ∇)y − νΔy − u, y(0) − y0),

where y0 ∈ H. Note that we could also include a class of linear operators B acting
on the control u on the right-hand side of the equation and in the first component in
e. As long as B fulfills certain regularity requirements, like in, e.g., [36], it poses no
difficulty. In variational form the constraints in (1.1) can be equivalently expressed
as follows: given u ∈ Uad find y ∈ W such that y(0) = y0 in H and

〈yt, v〉 + 〈(y · ∇)y, v〉 + ν(∇y,∇v)L2(L2) = 〈u, v〉 ∀ v ∈ L2(V ).(2.6)

Utilizing e, the control problem (1.1) can be rewritten as

min
(y,u)∈W×Uad

J(y, u) subject to e(y, u) = 0 in Z∗.(2.7)

For the analysis of the SQP-method we shall frequently refer to the variational
solution of the linearized Navier–Stokes system and the adjoint equations in the
solenoidal setting. For this purpose we state the following proposition, which is proved
in [22]; compare also [27] for a similar analytic framework. It is also essential for New-
ton and quasi-Newton methods.

Proposition 2.3. Let y ∈ W , v0 ∈ H, and g ∈ L2(V ∗). Then the system of
linearized Navier–Stokes equations

A(y)v = (g, v0) in Z∗ ⇔
{

vt + (v · ∇)y + (y · ∇)v − νΔv = g in L2(V ∗),
v(0) = v0 in H

(2.8)

admits a unique variational solution v ∈ W . For y ∈ W ∩ L∞(V ) ∩ L2(H2(Ω)2),
v0 ∈ V , and g ∈ L2(H) the unique solution v of (2.8) is an element of H2,1(Q) and
satisfies the a priori estimate

|v|H2,1(Q) ≤ C(|y|L∞(V ), |y|L2(H2(Ω)2))
{
|g|L2(H) + |v0|V

}
.

Concerning the adjoint equation we state the following result.
Proposition 2.4. Let y ∈ W and f ∈ W ∗. Then the adjoint equation

A(y)∗w = f in W ∗

admits a unique variational solution w = (w1, w0) ∈ Z. If f ∈ Lq(V ∗)∩W ∗ (1 ≤ q ≤
∞), then for every 0 ≤ ε ≤ min{q − 1, 1

3} the function w1 is an element of W 2
1+ε and

the variational solution of{
−w1

t + (∇y)�w1 − (y · ∇)w1 − νΔw1 = f,
w1(T ) = 0,

(2.9)
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and it satisfies w1(0) = w0. If in addition y ∈ L∞(V ), and f ∈ L2(V ∗), then w1 ∈ W .
For y ∈ W ∩L∞(V )∩L2(H2(Ω)2), v0 ∈ V, and f ∈ L2(H) the unique solution w1 of
(2.9) is an element of H2,1(Q) and satisfies the a priori estimate

|w1|H2,1(Q) ≤ C(|y|L∞(V ), |y|L2(H2(Ω)2)) |f |L2(H).

Further properties of the linearized and adjoint equations can be found in [27].
For the application of the SQP-method to (1.1) we need second order information

of the Lagrangian L, which is defined below in (3.1). The basic ingredients are the
derivatives of the operator e which were characterized in [22]; compare also [27]. For
the convenience of the reader we state the following proposition.

Proposition 2.5. The operator e = (e1, e2) : W × U → Z∗ is infinitely Fréchet
differentiable with Lipschitz continuous first derivative, constant second derivative,
and vanishing third and higher derivatives. The actions of the first two derivatives of
e1 are given by

〈e1
x(x)(w, s), φ〉 = 〈wt, φ〉 + 〈(w · ∇)y, φ〉 + 〈(y · ∇)w, φ〉

+ ν(∇w,∇φ)L2(L2) − 〈s, φ〉L2(L2),

where x = (y, u) ∈ W × U, (w, s) ∈ W × U , and φ ∈ L2(V ) and

〈e1
xx(x)(w, s)(v, r), φ〉 = 〈e1

yy(x)(w, v), φ〉(2.10)

= 〈(w · ∇)v, φ〉 + 〈(v · ∇)w, φ〉 =: 〈v,M(φ)w〉W,W∗ ,(2.11)

where (v, r) ∈ W × U and M : L2(V ) → L(W,W ∗).
Next we introduce the Lagrange function related to problem (2.7) with Uad = U ,

i.e., L̂ : W × U × Z → R with

L̂(y, u, p) = J(y, u) + 〈p, e(y, u)〉Z,Z∗ .

According to Proposition 2.5 we have

〈L̂yy(y, u, p)v, w〉 = 〈Jyy(y, u)v, w〉 + 〈eyy(y, u)(v, w), p〉
= 〈v, w〉 + 〈(v · ∇)w, p〉 + 〈(w · ∇)v, p〉

with v, w ∈ W .

3. First order optimality and the QP-subproblem. The starting point
for devising algorithms to find a local solution of (1.1) are the first order necessary
conditions which will be derived in this section.

According to the results in the previous section we can write (1.1) in the compact
form

minimize J(y, u) over (y, u) ∈ W × U
subject to e(y, u) = 0 in Z∗,

a ≤ u ≤ b a.e. in Q
(P)

with a, b ∈ L2(Q)2.
The existence of a solution of (P) follows from standard arguments. For the sake

of completeness we include the short proof.
Theorem 3.1. Problem (P) admits a (global) solution (y∗, u∗) ∈ W × Uad.
Proof. Let {un}n∈N ⊂ Uad be a minimizing sequence for problem (P). Due to

the radial unboundedness of J2(u) this sequence is bounded and, thus, contains a
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weakly (in U) convergent subsequence, which we again denote by {un}n∈N. Since
Uad is convex it is weakly closed and the limit u∗ of the subsequence is an element
of Uad. The a priori estimates stated above now ensure that the unique solutions yn
of e(yn, un) = 0 in Z∗ form a bounded sequence in W , which, in turn, contains a
weakly (in W ) convergent subsequence. Let ỹ ∈ W denote its limit. It follows from
the analysis provided by Temam in [32] that ỹ = y(u∗). Since J is weakly lower
semicontinuous the pair (y∗, u∗), in fact, is a solution of (P).

In the unconstrained case, SQP-methods can be derived by applying Newton’s
method to the first order optimality system; see [27]. Due to the presence of the
constraints on u this approach has to be generalized. Associated with (P) we consider
the Lagrange functional

L(x, p, λ) = J(x) + 〈e(x), p〉Z∗,Z + (a− u, λa) + (u− b, λb),(3.1)

where we used λ = (λa, λb) ∈ U×U and x = (y, u). Here and throughout we denote by
(·, ·) the L2(Q)2 inner product. Let us next state the first order necessary conditions
of (P).

Theorem 3.2. An optimal solution x∗ = (y∗, u∗) ∈ W × Uad to (P) is char-
acterized by the existence of Lagrange multipliers p∗ ∈ Z and (λ∗

a, λ
∗
b) = λ∗ ∈ U2

satisfying ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Jy(x
∗) + e∗y(x)p∗ = 0,

Ju(x∗) + e∗u(x∗)p∗ − λ∗
a + λ∗

b = 0,

e(x∗) = 0,

a− u∗ ≤ 0, λ∗
a ≥ 0, (a− u∗, λ∗

a) = 0,

u∗ − b ≤ 0, λ∗
b ≥ 0, (u∗ − b, λ∗

b) = 0.

(OS)

The last two equation in (OS) form the so-called complementarity system. Note
that in the case where Uad = U only the first three equations in (OS) with λ∗ = 0
have to be taken into account.

Given a point (x, p, λ) close to a locally optimal solution (x∗, p∗, λ∗) let us now
apply a generalized Newton step to the system⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Jy(x) + e∗y(x)p = 0,

Ju(x) + e∗u(x)p− λa + λb = 0,

e(x) = 0,

a− u ≤ 0, λa ≥ 0, (a− u, λa) = 0,

u− b ≤ 0, λb ≥ 0, (u− b, λb) = 0.

(3.2)

To unburden the notation, subsequently we will neglect the argument (x, p, λ). The
generalized Newton step (δy, . . . , δλb

) satisfies

⎛
⎝Lyy 0 e∗y 0 0

0 Luu e∗u − id id
ey eu 0 0 0

⎞
⎠

⎛
⎜⎜⎜⎜⎝

δy
δu
δp
δλa

δλb

⎞
⎟⎟⎟⎟⎠ = −

⎛
⎝Ly

Lu

e

⎞
⎠(3.3)

for the first three equations in (OS). For the complementarity system we define

λ̂a = λa + δλa , λ̂b = λb + δλb
.
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Thus, we obtain

a− u− δu ≤ 0, λ̂a ≥ 0, (a− u− δu, λ̂a) = 0,(3.4a)

u + δu − b ≤ 0, λ̂b ≥ 0, (u + δu − b, λ̂b) = 0.(3.4b)

Note that in the last equations in (3.4a), respectively, (3.4b), we keep the quadratic
terms −(δu, δλa

), respectively, (δu, δλb
). This allows us to establish a link between

(3.3)–(3.4) and the constrained minimization problem (QP) introduced below. Ob-
serve that the second equation in (3.3) implies

Luuδu + e∗uδp + λ̂ = −(Ju + e∗up),(3.5)

where we use

λ̂ = −λ̂a + λ̂b.

Further note that the system (3.4) can be rewritten as a nonsmooth equation of the
form

max(λ̂ + σ(u + δu − b), 0) + min(λ̂ + σ(u + δu − a), 0) = λ̂(3.6)

for arbitrarily fixed real σ > 0. In fact, it is an easy exercise to show that (3.4) and
(3.6) are equivalent.

These considerations finally result in the following system which has to be solved
in order to obtain the Newton direction (δy, δu, δp) with associated Lagrange multiplier

λ̂: ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Lyyδy + e∗yδp = −Ly,

Luuδu + e∗uδp + λ̂ = −(Ju + e∗up),

eyδy + euδu = −e,

Ψ(δu, λ̂;u) = λ̂

(3.7)

with

Ψ(δu, λ̂;u) := max(λ̂ + σ(u + δu − b), 0) + min(λ̂ + σ(u + δu − a), 0).(3.8)

In the case where the operator matrix

Lxx :=

(
Lyy 0
0 Luu

)

is positive semidefinite, i.e., it satisfies 〈Lxxδx, δx〉 ≥ 0 for all δx = (δy, δu) ∈ W × U ,
the system (3.7) represents the first order necessary and sufficient condition of the
QP-problem

minimize 〈L̂x, δx〉 + 1
2 〈L̂xxδx, δx〉 over δx ∈ W × U

subject to e + exδx = 0 in Z∗,
a− u ≤ δu ≤ b− u a.e. in Q.

(QP)

Here we used

L̂(x, p) = J(x) + 〈e(x), p〉Z∗,Z ,
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the Lagrangian for the unconstrained version of (P). Note that due to the affine linear
nature of the inequality constraints we have

L̂xx(x, p) = Lxx(x, p, λ)

and further

L̂y(x, p) = Ly(x, p, λ).

Hence, compared to the unconstrained control problem as considered, e.g., in [22] the
objective functional of the QP-problems remains the same, and only the additional
constraints on δu must be realized. However, this requires a more sophisticated QP-
solver, which is the subject of section 5.

4. Reduced system and the SQP-algorithm. Solving, in every iteration of a
numerical algorithm, a time-dependent (sub)problem of the type (3.7) is a formidable
task due to the size of the problem. Our aim is now to derive a reduced version of
(3.7) which is more tractable numerically. For this purpose observe that the third
equation in (3.7) yields

δy = −e−1
y (x)(e(x) + eu(x)δu).(4.1)

Utilizing (4.1) in the first equation of (3.7) results in

δp = −e−∗
y (x)(L̂y(x, p) + L̂yy(x, p)δy)

= −e−∗
y (x)

(
L̂y(x, p) − L̂yy(x, p)

(
e−1
y (x)(e(x) + eu(x)δu)

))
,

(4.2)

where e−∗
y denotes the adjoint of the inverse e−1

y . If we insert (4.1)–(4.2) in the second
equation of (3.7), then we obtain (again after neglecting the argument (x, p, λ))

(Luu + e∗ue
−∗
y L̂yye

−1
y eu)δu + λ̂ = −L̂u + e∗ue

−∗
y (L̂y − L̂yye

−1
y e).(4.3)

Taking into account that

−L̂u + e∗ue
−∗
y L̂y = −Ju + e∗ue

−∗
y Jy,

then (4.3) simplifies to

T ∗L̂xxTδu + λ̂ = −T ∗Jx − e∗ue
−∗
y L̂yye

−1
y e(4.4)

with

T =

(
−e−1

y eu
id

)
and L̂xx =

(
L̂yy 0

0 L̂uu

)
=

(
Lyy 0
0 Luu

)
.

Summarizing our computations, it turns out that the solution (δx, δp, λ̂) of (3.7) can
be computed by solving the reduced system{

T ∗L̂xxTδu + λ̂ = −T ∗Jx − e∗ue
−∗
y L̂yye

−1
y e,

Ψ(δu, λ̂;u) = λ̂
(OR)

for (δu, λ̂) and then performing efficient backward substitution in (4.1) and (4.2).
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Let r = r(x, p) denote the negative right-hand side in (4.4), i.e.,

r = T ∗Jx + e∗ue
−∗
y L̂yye

−1
y e.

Assuming that

H = T ∗L̂xxT

is positive semidefinite, then the reduced system (OR) represents the first order nec-
essary and sufficient condition for the reduced QP-problem

minimize
1

2
〈T ∗L̂xxTδu, δu〉 + 〈r, δu〉

subject to a− u ≤ δu ≤ b− u a.e. in Q.
(R)

The basic SQP-algorithm will be specified next. Subsequently (ORn) refers to
problem (OR) with (x, p) = (xn, pn), n ∈ N0.

Algorithm 4.1. SQP-framework.

1. Choose x0 = (y0, u0) ∈ W × Uad, p
0 ∈ Z, λ0 ∈ U2, sufficiently close to a local

solution; set n = 0.
2. Do until convergence

(a) Compute the solution (δnu , λ̂
n) of (ORn).

(b) Compute δny , δ
n
p from (4.1)–(4.2) at (xn, pn).

(c) Update xn = xn−1 + δnx and pn = pn−1 + δnp . Set n = n + 1.
Note that this SQP-algorithm requires globalization in order to allow an arbitrary

initial choice. A globalization with respect to the requirements for unconstrained
optimal control of the Navier–Stokes equations can be found in [22]. This strategy
may also be applied in the present context. In fact, due to the affine character
of the inequality constraints, the Hessian of the constrained and the unconstrained
problems coincide. Also the line search technique in [22] remains valid as long as the
control iterates un remain feasible during the iteration. The key ingredient of this
globalization strategy is to check positive definiteness properties of

Hn := T ∗(xn)L̂xx(xn, pn)T (xn)

for all n. If Hn is not positive definite in the direction δnu , then a positive definite
approximation H̃n of Hn is computed and the QP-subproblem with Hn replaced by
H̃n is solved yielding a new δnu . Here, positive definiteness of, e.g., H̃n refers to the
existence of some ε > 0 such that 〈H̃nδu, δu〉 ≥ ε|δu|2U . It can be shown that Hn is
positive definite sufficiently close to a local solution which satisfies the strong second
order sufficient conditions; see [27]. This implies that we eventually have H̃n = Hn.
Consequently, resorting to local arguments we may assume throughout that Hn is
positive definite for all n.

5. An efficient QP-solver. As noticed earlier, the computation of a solution to
(ORn) requires a more sophisticated solver compared to the unconstrained case. This

is due to the nonsmooth equation Ψ(δu, λ̂;u) = λ̂. Here we adopt the primal-dual
active set strategy (pdAS) in order to solve (ORn).

Recall that we use λ̂ = λb − λa. The key step of pdAS consists in estimating the
a-active, b-active, and inactive sets at the solution (y∗, u∗, p∗, λ̂∗) given by

Aa
∗ := (Aa

∗,1,Aa
∗,2)

�, Aa
∗,i := {u∗

i = ai}, i = 1, 2,(5.1a)

Ab
∗ := (Ab

∗,1,Ab
∗,2)

�, Ab
∗,i := {u∗

i = bi}, i = 1, 2,(5.1b)

I∗ := Q2 \ (Aa
∗ ∪ Ab

∗) (componentwise union),(5.1c)
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respectively. Note that from our first order characterization, Theorem 3.2, we have
(in the almost everywhere sense)

λ̂∗
|Aa

∗
≤ 0, λ̂∗

|Ab
∗
≥ 0, λ̂∗

|I∗
= 0.(5.2)

Now assume that we are given un and we want to determine the solution δnu , λ̂n to

(ORn) by the pdAS. In view of (5.1) and (5.2), the aim is to compute (δnu , λ̂
n) such

that un + δnu and λ̂n satisfy

a ≤ un + δnu ≤ b and λ̂n
|Aa

n
≤ 0, λ̂n

|Ab
n
≥ 0, λ̂n

|In
= 0

simultaneously. Given estimates δu,l−1 and λ̂l−1 of δnu and λ̂n, we define the following
approximations of the active and inactive sets in (5.1) by (i = 1, 2):

Aa
l := (Aa

l,1,Aa
l,2)

�, Aa
l,i :=

{(
λ̂l−1 + σ(un + δu,l−1 − a)

)
i
< 0

}
,(5.3a)

Ab
l := (Ab

l,1,Ab
l,2)

�, Ab
l,i :=

{(
λ̂l−1 + σ(un + δu,l−1 − b)

)
i
> 0

}
,(5.3b)

Il := Q2 \ (Aa
l ∪ Ab

l ) (componentwise union).(5.3c)

Above the scalar σ > 0 is arbitrarily fixed. In section 5.1 we will see that σ = α > 0
is of particular interest. The choice (5.3) is related to (3.6). In a discussion following
Proposition 5.4 a detailed motivation is given. As it will turn out, it is associated to
a generalized derivative of Ψ.

Let us next specify the pdAS as utilized in step 2(a) of the SQP-algorithm. For
convenience we use rn = r(xn, pn).

Algorithm 5.1. Primal-dual active set strategy.

2(a.0) Initialize δu,0 = 0, λ̂0 = −rn; set l = 1. Choose a small ε > 0.
2(a.1) Determine Aa

l , Ab
l and Il from (5.3).

2(a.2) If l ≥ 2 and Aa
l = Aa

l−1, Ab
l = Ab

l−1, or

|Ψ(δu,l−1, λ̂l−1;u
n) − λ̂l−1|(L2)2 ≤ ε,

then δnu = δu,l−1, λ̂
n = λ̂l−1 and RETURN (to Algorithm 4.1); otherwise go

to step 2(a.3).
2(a.3) Fix

δu,l = a− un on Aa
l ,

δu,l = b− un on Ab
l ,

λ̂l = 0 on Il

and obtain δu,l|Il
, λ̂l|Aa

l
∪Ab

l
from solving

Hnδu,l + λ̂l = −rn.(5.4)

Put l := l + 1 and go to 2(a.1).
The reduced problem (5.4), which has to be solved in every iteration of the pdAS,

can hardly be solved by means of direct solvers due to the size of the problem. Since
Hn is positive definite and symmetric, we apply the CG-method. In the context of
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pdAS the CG-method has to take care of the particular settings according to step
2(a.3) of pdAS, i.e.,

δu,l|Aa
l

= (a− un)|Aa
l
, δu,l|Ab

l
= (b− un)|Ab

l
, and λ̂l|Il

= 0.(5.5)

Hence, the CG-method operates essentially only on Il. Consequently, we consider the
following subspace CG-method, where Al = Aa

l ∪ Ab
l .

Algorithm 5.2. Subspace CG-method.

2(a.3.0) Initialize

v0|Il
:= 0, v0|Aa

l
= (a− un)|Aa

l
, v0|Ab

l
= (b− un)|Ab

l
,

d0|Il
= rn|Il

− (Hnv0)|Il
=: g0|Il

, k := 0.

2(a.3.1) Do until convergence

(a) tk :=
|gk|Il

|2
(L2)2

(dk,Hndk) ,

(b) vk+1 = vk + tkdk,
(c) gk+1|Il

= gk|Il
+ tk(H

ndk)|Il
,

(d) βk =
|gk+1|Il

|2
(L2)2

|gk|Il
|2
(L2)2

,

(e) dk+1|Il
= −gk+1|Il

+ βkdk|Il
,

(f) dk+1|Al
= 0,

(g) k = k + 1.

2(a.3.2) Set δu,l = vk and compute λ̂l = −rn −Hnδu,l.
Note that we do not require a partitioning of Hn according to active and inactive

sets. Rather we achieve the settings (5.5) by fixing dk+1|Al
= 0 in step 2(a.3.1)(f).

Finally, we remark that the stopping tolerance ε > 0 of the pdAS and the criterion
for terminating the subspace CG-method have to be adjusted appropriately; see our
choices in section 7.

5.1. Convergence properties of the primal-dual active set strategy. Let
us now turn toward the convergence analysis of the primal-dual active set strategy. For
this purpose we recall the concept of slant differentiability of a function as introduced
in [7]. In [23] this concept is utilized for proving locally superlinear convergence of
the primal dual active set strategy for a class of constrained optimization problems in
function spaces. This convergence result relies on the fact that the primal-dual active
set strategy is equivalent to a semismooth Newton method.

Let F : D ⊂ X → Y be a mapping from an open subset D of the Banach space
X with values in the Banach space Y . The following definition is taken from [7] (see
also [23]).

Definition 5.3. The mapping F : D ⊂ X → Y is called slantly differentiable in
D if there exists a family of mappings G ∈ L(X,Y ) satisfying

lim
h→0

‖F (x + h) − F (x) −G(x + h)h‖Y
‖h‖X

= 0 for x ∈ D.

The mapping G is called slanting function for F in D.
In [23] (see also [37]) it is observed that max : Lq1(Ω) → Lq2(Ω) is slantly differ-

entiable for 1 ≤ q2 < q1 ≤ +∞. If q1 ≤ q2 this property does not hold true. Note that
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in our problem setting we have u, δu, λ̂ ∈ L2(Q)2. Hence, the slant differentiability

concept with respect to δu or λ̂ cannot be applied to Ψ(δu, λ̂;u) immediately.
In our numerical tests we use the following modified version of the primal dual

active set algorithm which operates on δu only. For its derivation consider equation
(4.3), which gives a relation between λ̂ and δu, i.e.,

λ̂ = −L̂u + e∗ue
−∗
y

(
L̂y − L̂yye

−1
y (e + euδu)

)
− Luuδu.(5.6)

Note that the cost functionals in (2.4) and (2.5) yield

Ju(u) = αu and Luu(x, p, λ)δu = αδu.

Thus, from (5.6) it follows

λ̂ = −α(u + δu) + Sδu + t(5.7)

with

t = t(y, u, p) = e∗ue
−∗
y (Jy − L̂yye

−1
y e),

S = S(y, u, p) = −e∗ue
−∗
y L̂yye

−1
y eu.

Using (5.7) for λ̂ in Ψ(δu, λ̂;u) with the particular choice σ = α yields

Ψ̂(δu) := max(Sδu − αb + t, 0) + min(Sδu − αa + t, 0).(5.8)

Relation (5.8) allows us to replace the componentwise active set estimates in (5.3)
by

Aa
l,i :=

{
(Snδu,l−1 − αa + tn)i < 0

}
, i = 1, 2,(5.9a)

Ab
l,i :=

{
(Snδu,l−1 − αb + tn)i > 0

}
, i = 1, 2.(5.9b)

Here we use Sn = S(yn, un, pn) and analogously for tn. We call the resulting algo-
rithm, which iterates on δu,l only, the reduced primal-dual active set strategy (rpdAS).

As a candidate for a slanting function for Ψ̂ we consider

G(δu) = gmax(Sδu − αb + t)S + gmin(Sδu − αa + t)S(5.10)

with

gmax(w)(x) =

{
1 if w(x) > 0,
0 else,

and

gmin(w)(x) =

{
1 if w(x) < 0,
0 else.

Let us motivate this particular choice of G with respect to the pdAS, respectively,
rpdAS. Assume for the moment that G is a slanting function for Ψ̂. We apply a
generalized version of Newton’s method for iteratively solving

Hnδu + λ̂ + rn = 0,(5.11a)

Ψ̂(δu) + α(u + δu) − Sδu − t = 0.(5.11b)
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Suppose that δu,l−1, λ̂l−1 are the actual iterates in the Newton process. Then, using
G(δu,l−1), we obtain the following equations for the increments du, dλ̂:

Hndu + dλ̂ = −rn −Hnδu,l−1 − λ̂l−1,(5.12a)

χAb
l
Sdu + χAa

l
Sdu + αdu − Sdu = −Ψ̂(δu,l−1) − α(u + δu) + Sδu + t.(5.12b)

By χS we denote the characteristic function of a set S ⊂ Q2. On Ab
l equation (5.12b)

yields

δu,l−1 + du = b− u.

Analogously, on Aa
l we obtain

δu,l−1 + du = a− u.

Thus rpdAS is regained. As a consequence, if G in (5.10) is a slanting function for Ψ̂,
then rpdAS is equivalent to a generalized Newton method for the nondifferentiable
system (5.11).

With respect to the desired slant differentiability relation we have the following
result.

Proposition 5.4. Let Assumption 2.2 be satisfied with ε ∈ (0, 1
3 ] and let δε as in

Proposition 2.1. Further let q ∈ (2, δε) be arbitrarily fixed, and a, b ∈ Lq(Q)2. Then
the mapping G defined in (5.10) is a slanting function for Ψ̂ : L2(Q)2 → L2(Q)2 with
t ∈ Lq(Q)2, y ∈ W , p ∈ Z, and S : L2(Q)2 → W 2

1+ε ↪→ Lq(Q)2.
Proof. First observe that eu = (− id, 0) which, by Proposition 2.3, yields e−1

y euδu ∈
W for δu ∈ L2(Q)2. Next consider w = L̂yyv with v = e−1

y euδu in detail. Since p ∈ Z

and y ∈ W , a straightforward estimation gives 〈eyy(y, u)(·, v), p〉Z∗,Z ∈ L
4
3 (V ∗)∩W ∗.

Since by Assumption 2.2 J1yy
(y)v ∈ L1+ε(V ∗)∩W ∗ we obtain L̂yyv ∈ L1+ε(V ∗)∩W ∗.

The regularity results of Proposition 2.4 now yield

z = e−∗
y w ∈ W 2

1+ε,

where by Proposition 2.1 the space W 2
1+ε continuously embeds into Lp(Q)2 for all

2 < p < δε. Since eu = (− id, 0), this immediately yields Sδu ∈ Lq(Q)2. A similar
argument proves that e−∗

y Jy and e−∗
y L̂yye

−1
y e are elements of W 2

1+ε, respectively, and
hence t ∈ Lq(Q)2.

For the remainder of the assertion we restrict ourselves to proving that ψ̂ :
L2(Q)2 → L2(Q)2 with

ψ̂(δu) = max(Sδu − αb + t, 0)

is slantly differentiable with slanting function

Gmax(δu) = gmax(Sδu − αb + t, 0)S.

Applying the analogous arguments to the min-term in Ψ̂ then proves slant differen-
tiability of Ψ̂ with the slanting function G as defined in (5.10).

For h ∈ L2(Q)2 and 2 < q < δε consider

lim
h→0

|ψ̂(δu + h) − ψ̂(δu) −Gmax(δu + h)h|(L2)2

|h|(L2)2

= lim
h→0

|Sh|(Lq)2

|h|(L2)2

|ψ̂(δu + h) − ψ̂(δu) −Gmax(δu + h)h|(L2)2

|Sh|(Lq)2
.
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Since S : L2(Q)2 → Lq(Q)2 is bounded we may proceed as in the proof of [23, Theorem
4.1] to argue

lim
h→0

|Sh|(Lq)2

|h|(L2)2

|ψ̂(δu + h) − ψ̂(δu) −Gmax(δu + h)h|(L2)2

|Sh|(Lq)2

≤ C lim
h→0

|ψ̂(δu + h) − ψ̂(δu) −Gmax(δu + h)h|(L2)2

|Sh|(Lq)2
= 0

with some constant C > 0. This completes the proof.

For a related result in the context of the reduced problem (1.3) see [36, Theo-
rem 11].

Before we state our convergence result for the rpdAS let us discuss the assump-
tions in Proposition 5.4. We define Z̃ = W 2

1+ε×H, and we suppose that a, b ∈ Lq(Q)2

with q > 2 are given. Assume further that the SQP-method is initialized by

(y0, u0, p0, λ̂0) ∈ W × L2(Q)2 × Z̃ × L2(Q)2.

Note that by the structure of the QP-problems (QP) at (y,u,p) = (yn−1,un−1,pn−1),
n ≥ 1, the corresponding first order system analogous to (3.7), and Propositions 2.3
and 2.4 we have

(δny , δ
n
u , δ

n
p , λ̂

n) ∈ W × L2(Q)2 × Z̃ × L2(Q)2.

Consequently, the iterates of the SQP-algorithm satisfy

(yn, un, pn, λ̂n) ∈ W × L2(Q)2 × Z̃ × L2(Q)2 ∀n ≥ 0.

Applying Proposition 5.4 yields for all n ∈ N0

tn = t(yn, un, pn) ∈ Lq(Q)2 ∀ 2 < q < δε.

Now we can apply the convergence result of [7] (see also [23, 37]) for Newton’s method
for slantly differentiable mappings.

Theorem 5.5. Let the assumptions of Proposition 5.4 be satisfied. Then the
reduced pdAS is equivalent to a generalized Newton method and converges at a locally
superlinear rate, i.e.,

|δu,l+1 − δnu |(L2)2 = O(|δu,l − δnu |(L2)2) ∀ l

with δu,0 sufficiently close to δnu , the solution to (ORn).

The above convergence result is only a local result, i.e., one has to find an initial
point close to the solution of the QP-subproblem (OR). In our numerical test runs
we have never observed problems with respect to convergence of the rpdAS with
initialization δu,0 = 0. In fact, after two or three SQP iterations it turns out that the
rpdAS requires only one iteration to terminate successfully; see, e.g., Tables 7.1–7.3.
Further, if the SQP-method converges to a solution (stationary point) of the control
problem, we have that δnu approaches zero in the course of the SQP-iterations. Thus,
it is to be expected that initializing with δu,0 = 0 yields a starting point for rpdAS
such that Theorem 5.5 holds true.
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6. Convergence analysis of the SQP-iteration. We analyze the SQP-itera-
tion by utilizing generalized equations; see, e.g., [31]. Let ε ∈ (0, 1

3 ], and let 2 < q < δε
with δε as is Proposition 2.1. We consider the spaces

D = W × Lq(Q)2 × Z̃,

R = L1+ε(V ∗) ∩W ∗ × Z∗ × Lq(Q)2,

and we recall the definitions of Z, W , and W 2
1+ε in (2.1)–(2.2). The norms | · |D and

| · |R are the sums of the component norms, respectively. From now on we assume that
a, b ∈ Lq(Q)2. Note that we use Lq(Q)2 in the definitions of D and R rather than
L2(Q)2. This is feasible because if we initialize the SQP-method by u0 ∈ Lq(Q)2 and
observe that due to a, b ∈ Lq(Q)2 we have δnu ∈ Lq(Q)2 for all n, then un+δnu ∈ Lq(Q)2

for all n. Utilizing the tools employed in the proof of Proposition 5.4 for the analysis
of rn and Hnδnu , we further obtain λ̂n ∈ Lq(Q)2 for all n.

First we convert the system (3.2) into the generalized equation

0 ∈ F (d) + T (u)(6.1)

with d = (y, u, p) by defining F : D → R as

F1(d) := Jy(y, u) + e∗y(y, u)p,

F2(d) := e(y, u),

F3(d) := Ju(y, u) + e∗u(y, u)p

and the set-valued map T : D → 2R as

T (u) := ({0}, {0}, N(u)).

By N(u) we denote the cone

N(u) =

{
{ϕ ∈ Lq(Q)2 : (ϕ, v − u) ≤ 0 for all v ∈ Uad} if u ∈ Uad,
∅ else.

Observe that N(u) is the normal cone of Uad ⊂ U intersected with Lq(Q)2. Further,
T has a closed graph, and F is of class C1,1.

The generalized Newton method for (6.1) is defined as follows. Let dn denote the
actual iterate. Then the next iterate dn+1 is defined by

find δd : 0 ∈ F (dn) + F ′(dn)δd + T (dn + δd),(6.2a)

dn+1 = dn + δd.(6.2b)

A straightforward computation verifies that (6.2) is equivalent to (3.7) at (y, u, p) =
(yn, un, pn).

In order to prove quadratic convergence of the process (6.2) we use the concept
of strong regularity of (6.1). The notion of strong regularity of a generalized equation
was introduced in [31].

Definition 6.1. The inclusion (6.1) is called strongly regular at d∗ ∈ D if there
exist r1, r2, CL > 0 such that for all perturbations η ∈ Br1(0R) the linearized equation

η ∈ F (d∗) + F ′(d∗)(d− d∗) + T (d)(6.3)
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admits a unique solution d ∈ Br2(d
∗) with a Lipschitz continuous solution operator

d : Br1(0R) → Br2(d
∗), i.e.,

|d(η1) − d(η2)|D ≤ CL|η1 − η2|R ∀ η1, η2 ∈ Br1(0R).

For the following discussion we rely on the assumption which is stated next. Let
x∗ = (y∗, u∗) denote a solution to problem (1.1) with p∗ as the corresponding adjoint
state.

Assumption 6.2.

• There exists c > 0 such that (Juu(x∗)v, v)U ≥ c|v|2U for all v ∈ U .
• Jyy(x

∗) is positive semidefinite.
• Jy(x

∗) ∈ L1+ε ∩W ∗ is sufficiently small.
We point out that the smallness assumption on Jy can be relaxed by requiring

the positive definiteness of the Hessian of the Lagrange function on the subspace
associated with the linearized constraints; see [35] for further details in this respect.
We are now prepared to formulate the local convergence theorem for (6.2).

Theorem 6.3. Let d∗ denote a solution of (6.1) which satisfies Assumption 6.2.
Then there exist constants r > 0 and C > 0 such that for all starting values d0 ∈
Br(d

∗) the generalized Newton method (6.2) generates a sequence {dn} ⊂ Br(d
∗)

which converges quadratically to d∗, i.e.,

|dn+1 − d∗|D ≤ C|dn − d∗|2D ∀n ≥ 0.

Following the concepts in [1, 12, 34], for a proof of Theorem 6.3 we first investigate
the strong regularity of (6.1) at d∗ = (y∗, u∗, p∗). This is the content of the next
lemma.

Lemma 6.4. Let d∗ denote a solution of (6.1) which satisfies Assumption 6.2.
Then the generalized equation (6.1) is strongly regular at d∗.

Proof. We check the conditions of definition 6.1 by utilizing the analysis developed
in [27].

First we show that the generalized equation (6.3) admits a unique solution d =
(x, p)�. For this purpose let η = (η1, η2, η3)

� ∈ R, and define

f(y, u) := 〈Jy, δy〉W∗,W +
1

2
〈Jyyδy, δy〉W∗,W + 〈eyy(δy, δy), p∗〉Z∗,Z + (Ju, δu)U

+
1

2
(Juu(δu), δu)U − 〈η1, δy〉W∗,W − (η3, δu)U ,

where we use δy = y − y∗, δu = u − u∗, J = J(x∗), and e = e(x∗) for the ease of
notation. Next we consider the minimization problem

min
y,u

f(y, u) subject to e + eyδy + euδu = η2 in Z∗ and u ∈ Uad.(6.4)

Note that its necessary optimality condition coincides with (6.3). These conditions
also would be sufficient if f were convex. But lack of convexity can only arise through
the term

〈eyy(δy, δy), p∗〉Z∗,Z

since it may be negative. Using a similar technique to the one in the proof of [27,
Lemma 5.1], it is not difficult to show that for Jy(x

∗) small enough, there holds for
some κ > 0

�xx(d)(δx, δx) ≥ κ
(
|δy|2W + |δu|2L2(Q)2

)
(6.5)
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for all δx ∈ W × Uad with eyδy + euδu = 0 in Z∗. Here we have set δx = (δy, δu),
and � denotes the Lagrangian associated to the minimization problem (6.4), i.e., � :
W × Uad × Z̃ → R with

�(d) = f(y, u) + 〈e + ey(y − y∗) + eu(u− u∗) − η2, p〉Z∗,Z .

The relation (6.5) implies that (6.4), under Assumption 6.2, admits a unique solution
(y(η), u(η)).

Next we argue Lipschitz continuity of the solution w.r.t η. First note that the
solution (y(η), u(η)) satisfies the following variational inequality:

�′(y(η), u(η), p(η))(y − y(η), u− u(η), p− p(η)) ≥ 0 ∀ (y, u, p) ∈ W × Uad × Z.
(6.6)

Here p(η) denotes the adjoint state associated with (y(η), u(η)). We denote by prime
the differentiation w.r.t. (y, u, p), and we use d(η) = (y(η), u(η), p(η)). Now let η1, η2 ∈
R be given. To simplify the notion we define δηy = y(η1) − y(η2) and analogously for
δηu, δηx, and δηp . Below the constant C can take different values on different occasions.
A straightforward computation shows that

0 ≤ �′(d(η2))(δηx, δ
η
p) − �′(d(η1))(δηx, δ

η
p)

= 〈η1
1 − η2

1 , δ
η
y 〉W∗,W − 〈η1

2 − η2
2 , δ

η
p〉Z∗,Z + (η1

3 − η2
3 , δ

η
u)(6.7)

− �′′(d∗)(δηx, δ
η
x).

Proposition 2.3 and 2.4 yield

|δηy |W ≤ C(|δηu|L2(Q)2 + |η1
2 − η2

2 |Z∗),(6.8)

|δηp |Z ≤ C(|δηy |W + |η1
1 − η2

1 |W∗).(6.9)

From (6.5) and (6.7)–(6.9) we infer

κ|δηu|2L2(Q)2 ≤ C
(
|η1 − η2|R|δηu|L2(Q)2 + |η1 − η2|2R

)
.(6.10)

Using Young’s inequality we obtain

|η1 − η2|R|δηu|L2(Q)2 ≤ 1

2κ
|η1 − η2|2R +

κ

2
|δηu|2L2(Q)2 .

Therefore (6.10) implies

|δηu|L2(Q)2 ≤ C|η1 − η2|R.(6.11)

Further Proposition 2.4 yields the existence of a constant C > 0 such that

|δηp |Z̃ ≤ C(|δηy |W + |η1
1 − η2

1 |L1+ε(V ∗)∩W∗).(6.12)

The variational inequality (6.6) yields

αu(η) − η3 + e∗up(η) ∈ N(u(η)).

This is equivalent to

u(η) = PUad

(
α−1(η3 − e∗up(η))

)
∈ Lq(Q)2,
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where PUad
denotes the (pointwise) projection onto Uad. Hence, we have

|u(η1) − u(η2)|Lq(Q)2 ≤ C
(
|η1

3 − η2
3 |Lq(Q)2 + |δηp |Z̃

)
.

Finally, combining the last estimate with (6.11)–(6.12) and (6.8) results in

|d(η1) − d(η2)|D ≤ C|η1 − η2|R.

This completes the proof.
We point out that the approach taken in the proof of Lemma 6.4 is related to the

technique utilized in [34, sections 3–4].
Once we have established the strong regularity of (6.1) at d∗, the proof of The-

orem 6.3, i.e., the locally quadratic convergence rate for (6.2), follows from [1, 12];
see also [34, Theorem 3.3]. Since the Newton process (6.2) is equivalent to the SQP-
iteration in Algorithm 4.1 we readily obtain the same locally quadratic convergence
rate for {(xn, pn)} produced by Algorithm 4.1.

Remark 6.5. The smallness assumption imposed on Jy(y
∗, u∗) is commonly used

in the literature; see [27] and the references therein. In the case of tracking-type
functionals it can be guaranteed in the case of exact (or ε) controllability of the
desired state; compare [8, 13].

7. Numerical experiments. The control problem considered here is the track-
ing of the Stokes flow z in a cavity; see Figure 7.1, left. Its formulation is given by
(P) with the cost functional

J(y, u) :=
1

2

∫
Q

|y − z|2 dxdt +
α

2

∫
Q

|u|2 dxdt.

Here, Q := (0, T ) × Ω with Ω := (0, 1)2 and T := 1. The desired state z(t, x) =
(z1, z2)

� is chosen such that z(t, ·) = s(·) for every time instance t ∈ (0, T ), where
s = (s1, s2)

� denotes the stationary Stokes flow in the domain Ω with inhomogeneous
boundary condition s1 = 1, s2 = 0 on (0, 1) × {1} and s = 0 on the rest of ∂Ω.
The same boundary conditions are prescribed for the flow y on (0, T ) × ∂Ω. The
value of the kinematic viscosity is ν = 1

400 , and the initial velocity y0 is taken as
stationary Navier–Stokes flow corresponding to ν, with the same boundary conditions
as s. Unless otherwise specified, for the bounds on the controls we use box constraints
(constant in time and space) with the values a = −0.5 and b = 0.5. We note that the
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Fig. 7.1. Target flow s (left) and initial condition (right).



1196 M. HINTERMÜLLER AND M. HINZE

first term in the cost functional values the control gain when tracking the state z, and
the second term measures the control cost, where α > 0 denotes a weighting factor.

We mention that sufficiently smooth inhomogeneous boundary conditions may be
incorporated into our theoretical framework through a transformation of the form y →
y − y′ with y′ satisfying the inhomogeneous boundary conditions. This concept even
carries over to Dirichlet boundary control; see [14, 28]. However, it was mentioned in
[24] and [36], that the boundary conditions taken here are not smooth enough to allow
this transformation. In this respect, also the robustness of our numerical approach is
tested by the chosen numerical example.

For the results presented an equidistant time discretization is chosen with step
length δt = 0.00625, and for the spatial discretization the Taylor–Hood finite element
[29] is used on a grid containing 1024 triangles with 2113 velocity and 545 pressure
nodes. The time integration for forward systems like (2.8) is performed semi-implicitly,
i.e., implicitly in the diffusive part and explicitly in the convective parts. For adjoint
systems like (2.9) we take the transpose of the scheme applied to the corresponding
forward system.

Numerical results for this flow configuration in the unconstrained case are pre-
sented in [27] (Newton’s method), [24] (SQP method), and [25] (comparison of New-
ton’s and the SQP method). The constrained case with the same bounds is considered
in [36], where a semismooth Newton method is applied for the numerical solution of
the reduced control problem (1.3).

Let us comment on our discrete approach. We discretize each part of the over-
all solution algorithm separately. For the subproblems, like, e.g., (3.7), we apply a
discrete concept which is closely related to [26]. In our approach, the control vari-
ables are not discretized explicitly but implicitly through the first order optimality
conditions (like, e.g., (3.7)). We resolve the corresponding active sets in (5.9) only
on the grid induced by the velocity nodes (vertices of the triangulation together with
edge midpoints). For this reason, it suffices to manage control functions in terms of
their function values on the same grid, since control functions enter into our algorith-
mical approach only in terms of arguments of functionals. To evaluate functionals
numerically, we utilize appropriate quadrature rules based on function values. For
the function values of the control obtained by this procedure we may pick a Rothe
function which is piecewise constant (or piecewise linear and continuous) in time,
piecewise linear on the velocity grid, and continuous in space. This function is then
contained in Uad. See [26] for a detailed discussion of related discretization concepts,
including error estimates and numerical examples.

Utilizing this discrete technique, we obtain approximations of the reduced gradient
and of “reduced Hessian times increment” operations with respective approximation
errors of the order of the discretization error of the Navier–Stokes equations. (See [9]
for an analysis of the latter type of error.) As a consequence, it is only meaningful
to monitor fast convergence of the SQP-framework of Algorithm 4.1 for stopping
tolerances of the order of the discretization error of the state equations.

Finally we note that in the practical implementation the component sets of the ac-
tive sets are computed via their complements, the componentwise inactive sets, where
the inequalities are relaxed by relative errors of the order of the machine precision.

In what follows all iterates represent discrete quantities. Including the primal,
adjoint, and control variables, the number of unknowns in the discretized control
problem is 2.40288×106. The termination criterion for the outer SQP-iteration in
Algorithm 4.1 is chosen as |(δxn, δpn)| ≤ tolSQP := 5× 10−3. Here | · | is the norm on
W ×U×Z. Note that the results in [9] let us expect a discretization error of O(δt) for
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Table 7.1

Performance of Algorithm 4.1 for α = 1.e-1.

Iteration pdas-steps CG-steps qn ln cn J(xn)

1 4 1:5,2:5,3:6,4:0 3.53 1 4.48372e-2 1.18135e-2
2 2 1:8,2:0 2.06 5.84e-1 1.50152e-2 5.50584e-3
3 2 1:7,2:0 1.12 1.86e-1 5.03267e-3 4.83819e-3
4 2 1:7,2:0 9.33 2.88e-1 7.41022e-4 4.7917e-3
5 2 1:7,2:0 14.66 1.3e-1 9.99308e-5 4.79280e-3

our discretization described above. discretization error is discussed in detail below.
In iteration n, the stopping tolerance in Algorithm 5.1 is chosen as ε =toln with

toln = 0.1|Ψ(δu,0, λ̂0;u
n) − λ̂0|(L2)2 .

Alternatively, we stop Algorithm 5.1 as soon as the active nodes of two successive iter-
ations coincide. The inner CG-loop of Algorithm 5.1, i.e., Algorithm 5.2, is terminated
if the iterate vk satisfies

|(Hnvk − rn)Il
|(L2)2 < 0.01|(Hnv0 − rn)Il

|(L2)2 .

All computations were performed on a Dell laptop computer with 1.7 GHz CPU.
In the tables that follow, the column of CG-steps is to be read as follows: l : b indicates
that in the lth pdas-iteration (Algorithm 5.1) b cycles of Algorithm 5.2 are performed
until its stopping criterion is met.

We present test runs for α = 0.1 and α = 0.01. In both runs the Lagrange
multiplier λ̂ in the pdas-Algorithm 5.1 is initialized with the right-hand side of system
(OR). Subsequently we use

qn =
|(δnx , δnp )|

|(δn−1
x , δn−1

p )|2
and ln =

|(δnx , δnp )|
|(δn−1

x , δn−1
p )|

to study the convergence speed of the SQP-method and

cn = |Ψ̂(δnu) + α(un + δnu) − Snδnu − tn|(L2)2

to measure the residual in the complementarity system at iteration n.

Run 1 (for α = 0.1). The state, control, and adjoint variables of the equality
constraint are initialized with zero, respectively. In Figure 7.1 the desired flow (left
plot) together with the initial flow (right plot) is shown.

In Table 7.1 we summarize our numerical results. The optimal value of the cost
functional for the unconstrained problem is J∗ = 4.76846856e-3, which is only slightly
smaller than the corresponding value in the constrained case. This is because in the
numerical solution there are only 8451 active controls. This corresponds to approxi-
mately 1.25% of the total number of controls. From Table 7.1 we see that the active
set for the QPs is identified after at most four iterations of the primal-dual active set
strategy (Algorithm 5.1) for solving the quadratic subproblems. We recall that when-
ever the number of pdas-iterations is 2, then the active set is detected immediately
(within the stopping tolerance), and Algorithm 5.1 stops successfully after the first
cycle. This behavior is typical in our test runs also for other choices of the parameters
involved in the optimization problem. Moreover, we can study the impact of the dis-
cretization error on the convergence speed of the algorithm. Iterations 1–3 indicate
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Table 7.2

Performance of Algorithm 4.1 for α = 1.e-1 and bounds a = −0.05, b = 0.05.

Iteration pdas-steps CG-steps qn ln cn J(xn)

1 2 1:4,2:0 8.89 1 6.27174e-3 1.18135e-2
2 2 1:4,2:0 2.68 3.02e-1 8.43381e-4 8.92351e-3
3 2 1:5,2:0 0.72 2.44e-2 4.99023e-5 8.91613e-3

Table 7.3

Performance of Algorithm 4.1 for α = 1.e-2.

Iteration pdas-steps CG-steps qn ln cn J(xn)

1 3 1:12,2:16,3:0 16.52 1 1.31661e-3 2.09569e-3
2 2 1:13,2:0 2.60 1.57e-1 1.50761e-4 2.05383e-3
3 2 1:15,2:0 13.51 1.29e-1 1.55306e-5 2.05460e-3
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Fig. 7.2. Optimal control (left) together with active set at t = 0.1, Run 2.

the fast local convergence behavior. At iteration 4 the order of the discretization error
is reached and subsequently the convergence speed is reduced; compare the last two
rows in the qn and ln columns, respectively.

In Table 7.2 we study the influence of the box constraints. In this case we pick
a = −0.05 and b = 0.05. As one can see, our algorithm detects the numerical solution
after three iterations of Algorithm 4.1. Moreover, for the present choice of parameters,
the active sets are detected immediately, and we observe fast local convergence. The
numerical solution is active in 447663 controls, which corresponds to 66.21% of the
total number of controls.

Run 2 (α = 0.01). Initializing state, control, and adjoint of the equality con-
straint with zero does not yield convergence for the current choice of parameters. This
reflects the local character of the method. Instead, we initialize Algorithm 4.1 with
the numerical solution (x0, p0) = ((y∗, u∗), p∗) obtained for α = 0.02. Our numerical
findings are summarized in Table 7.3. Obviously, our choice (x0, p0) is a good initial
guess which delivers fast local convergence after three iterations, with only a moder-
ate number of CG iterations within Algorithm 5.1. In the numerical solution 90204
controls are active. This corresponds to 13.34% of the total number of controls. In
the unconstrained case the cost functional takes the optimal value J∗ = 1.47922e-3.

In Figure 7.2 a spatial snapshot of the control together with the corresponding
active set at t = 0.1 is presented. Figure 7.3 shows the optimally controlled flow at
t = 0.1, t = 0.5, and t = 1 (from left to right).
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Fig. 7.3. Optimally controlled flow at t = 0.1 (left), t = 0.5 (middle), and t = 1 (right),
α = 1.e-2, Run 2.

With respect to our initial choice (x0, p0), we note that in [36] convergence of
a semismooth Newton algorithm with zero initial control is reported for a similar
parameter setting as in the present run. This suggests that a Newton technique
for solving (1.3) exhibits a more robust behavior w.r.t. the initial choice. For the
unconstrained case, in [25] a similar observation was made.
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LOSS OF SUPERLINEAR CONVERGENCE FOR AN SQP-TYPE
METHOD WITH CONIC CONSTRAINTS∗
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Abstract. In this short note we consider a sequential quadratic programming (SQP)–type
method with conic subproblems and compare this method with a standard SQP method in which
the conic constraint is linearized at each step. For both approaches we restrict our attention to
convex subproblems since these are easy to solve and guarantee a certain global descent property.
Using the example of a simple nonlinear program (NLP) and its conic reformulation we show that
the SQP method with conic subproblems displays a slower rate of convergence than standard SQP
methods. We then explain why an SQP subproblem that is based on a better approximation of the
feasible set of the NLP results in a much slower algorithm.
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1. Introduction. We consider a nonlinear program (NLP) and its equivalent
conic reformulation. We compare the standard sequential quadratic programming
(SQP) method for solving the NLP and a sequential linear conic programming (SLCP)
method to solve the equivalent conic reformulation. At each iteration of the SLCP
method the constraint function F is replaced by its linear (Taylor) approximation
and a convex quadratic objective function is used to model the nonlinear objective
and the curvature of F . This step yields a convex quadratic program with linear
conic constraints to which we refer to as an SLCP subproblem. The standard SQP
subproblem is obtained if the cone is linearized as well. Instead, for the SLCP method,
the cone is maintained unperturbed and the convex quadratic objective term is then
replaced by an equivalent second order cone constraint, so that the SLCP subproblem
is in fact a linear conic program explaining the name SLCP method.

Efficient interior point solvers for solving the conic SLCP subproblems are avail-
able only when the Hessian of the conic subproblem is positive semidefinite.1 Through-
out this paper we therefore restrict our comparison to SLCP subproblems that use a
positive semidefinite approximation of the Hessian of the Lagrangian.

Our comparison is based on problem (2.1) below. This problem satisfies the
strong second order sufficient conditions for local optimality. Hence, the standard
SQP approach will always converge to the optimum if the initial point is sufficiently
close to the optimum and the semidefinite approximations Bk of the Hessians used
in the SQP subproblems are bounded. Thus the assumptions of Theorem 3 of [4] are
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1Moreover, even if nonconvex quadratic SQP subproblems could be used, there are examples

where the full SQP step starting at a feasible iterate returns an infeasible point and a short multiple
of the SQP step is an ascent direction for the objective function. In such situations additional
techniques like a trust region approach need to be used to ensure global convergence.
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satisfied when the matrices Bk are defined by a damped quasi-Newton update and
the resulting SQP method is locally R-superlinearly convergent. If the exact Hessian
is used, locally quadratic convergence is achieved.

As the standard SQP approach with a suitable positive semidefinite approxima-
tion of the Hessian is superlinearly convergent, one might expect that superlinear
convergence will hold for the seemingly “better” approximation of the subproblem in
the SLCP approach. The surprising result of sections 3 and 5 is that superlinear con-
vergence is lost if, instead of linearizing the constraint of problem (2.1), the equivalent
conic constraint is maintained without change in the SLCP subproblem.

While the restriction to a positive semidefinite Hessian does not destroy super-
linear convergence for the standard SQP method it may do so in the case of SQP
problems with conic constraints. The reason for this is that the Hessian of the La-
grangian at an optimum is not necessarily positive semidefinite along critical direc-
tions when the subproblem includes (nonlinear convex) conic constraints [5]. Thus,
the combination of linearization and convexification is efficient, while that of partial
linearization (maintaining the nonlinear convex cone) and convexification does not
lead to an efficient algorithm.

2. A simple example. We consider the NLP

min
{
−x2

1 − (x2 − 1)2 | ‖x‖2
2 ≤ 1, x ∈ R2

}
.(2.1)

Problem (2.1) satisfies the strong second order sufficiency conditions for optimality
at its solution (0,−1)T with corresponding multiplier y = 2.

Let K be the second order cone in three dimensions, i.e.,

K :=

{
(x0, x1, x2)

T ∈ R3 | x0 ≥
√
x2

1 + x2
2

}
.

We extend the vector

x =

(
x1

x2

)
∈ R2 to x̂ =

⎛
⎝ x0

x1

x2

⎞
⎠ ∈ R3.

With the above definition, problem (2.1) allows an equivalent conic formulation

min{f(x̂) | F (x̂) = 0, x̂ ∈ K},(2.2)

where f : R3 → R is defined by

x̂ �→ f(x̂) = −x2
1 − (x2 − 1)2

and F : R3 → R is defined by

x̂ �→ F (x̂) = x0 − 1.

The Lagrangian L of (2.2) with Lagrangian multiplier y ∈ R and the dual variable
s ∈ R3 are given by

L(x̂, ŷ, ŝ) := f(x̂) − ŷF (x̂) − 〈ŝ, x̂〉,

where ŝ lies in the dual cone KD,

KD = K.
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The gradient g of L with respect to x̂ is given by

g(x̂, ŷ, ŝ) := ∇x̂L(x̂, ŷ, ŝ) = ∇f(x̂) −

⎛
⎝ ŷ

0
0

⎞
⎠− ŝ

=

⎛
⎝ −ŷ −s0

−2x1 −s1

−2(x2 − 1) −s2

⎞
⎠

and the Hessian with respect to x̂ is given by

Ĥ(x̂, ŷ) := ∇2
x̂L(x̂, ŷ, ŝ) = Dx̂(∇f(x̂))

=

⎛
⎝ 0 0 0

0 −2 0
0 0 −2

⎞
⎠.

The global minimizer is

x̂∗ =

⎛
⎝ 1

0
−1

⎞
⎠,

with multipliers

ŝ∗ =

⎛
⎝ s0

s1

s2

⎞
⎠ =

⎛
⎝ 4

0
4

⎞
⎠ and ŷ∗ = −4

satisfying g(x̂∗, ŷ∗, ŝ∗) = 0. Observe that the Hessian Ĥ(x̂, ŷ) is negative semidefinite
and independent of x̂, ŷ.

3. Linear convergence with conic constraints and projected Hessian. In
the following we analyze the local convergence properties of a basic SLCP algorithm
without globalization. To simplify the notation we define

ĉk := ∇f(x̂k).

The algorithm iterates x̂k+1 = x̂k + Δx̂k, where Δx̂k solves the approximation

min

{
ĉTk Δx̂ +

1

2
Δx̂TB̂kΔx̂

∣∣∣ DF (x̂k)[Δx̂] = −F (x̂k) x̂k + Δx̂ ∈ K
}

(3.1)

of the conic problem (2.2). Here, B̂k is an approximation of the Hessian Ĥ(x̂k, ŷk) of
L. Because Ĥ is constant and no other part of the above conic problem depends on
ŷk, we need not regard multiplier iterates here.

Note that the linear equality constraint in (3.1) implies x̂k+1,0 = x̂k,0+Δx̂k,0 = 1.
Thus we can assume that x̂k,0 is fixed to 1 for all k > 0 and simplify (3.1) by replacing
the cone K with the inequality constraint:

min

{(
−2x1

−2(x2 − 1)

)
Δx +

1

2
ΔxTBΔx

∣∣∣ ‖x + Δx‖2 ≤ 1

}
.

For simplicity of notation, we have dropped the iteration index k now. We denote the
projections on the (x1, x2)-space of the exact Hessian Ĥ and its approximation B̂ by
H and B.
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If the exact Hessian B = H is used we obtain the problem

min

{(
−2x1

−2(x2 − 1)

)T

Δx +
1

2
ΔxT

(
−2 0
0 −2

)
Δx

∣∣∣ ‖x + Δx‖2 ≤ 1

}
,(3.2)

which is nonconvex. This subproblem is equivalent to the initial NLP (2.1) and would
thus return the solution of the initial problem in one step. This subproblem is hence
“suitably defined.”

The subproblems in an SQP algorithm should easily be solved. However, noncon-
vex quadratic conic problems are about as difficult to solve as general nonlinear conic
problems. Given efficient software packages like SeDuMi [6] or SDPT3 [7] for solving
convex conic programs we search for a suitable positive semidefinite matrix B such
that the above subproblem still yields rapid convergence.

The Hessian of the Lagrangian in (3.2) is H = −2I, and the orthogonal projection
of H onto the cone of positive semidefinite matrices is simply given by B = 0.

We first consider the choice B = 0, for which the optimal solution is always on
the boundary of the cone. We start close to the optimal solution at the point(

x1

x2

)
=

(
sin(α)
− cos(α)

)
,

where

0 < α � 1.(3.3)

Without loss of generality we will keep this choice of α also in sections 4 and 5. The
case −1 � α < 0 can be treated analogously.

For B = 0 and α as in (3.3) the conic SLCP subproblem is equivalent to

min

{(
−2 sin(α)

2 (1 + cos(α))

)T

(x + Δx)
∣∣∣ ‖x + Δx‖2 ≤ 1

}
,(3.4)

the solution of which is given by

x + Δx =

(
sin

(
α
2

)
− cos

(
α
2

)
)
.

Hence, the (local) convergence for B = 0 is linear, with a convergence rate of 1
2 .

As indicated in the next section this result does not imply linear convergence for all
choices of positive semidefinite B.

4. Superlinear convergence for unbounded positive semidefinite B. It
is well known (see, e.g., [3]) that the orthogonal projection of the Hessian as used
in section 3 is not affine invariant and other semidefinite approximations of H, for
example, the Hessian of the augmented Lagrangian, may be more suitable to obtain
rapid local convergence of an SQP-type method.

In fact, as we show in this section, we can present a sequence of positive semidef-
inite matrices Bk for which the iterates xk generated by solution of the SLCP sub-
problem

min

{
cTΔx +

1

2
ΔxTBΔx

∣∣∣ ‖x + Δx‖2 ≤ 1

}
(4.1)
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Fig. 4.1. Visualization of the SLCP subproblem.

converge quadratically to (0,−1)T. The SLCP subproblems based on the matrices Bk

presented here have unique solutions on the boundary of the constraint set of (4.1).
Thus we use again

x(α) =

(
x1(α)
x2(α)

)
=

(
sin(α)

− cos(α)

)
(4.2)

and prove the quadratic convergence with respect to α as defined in (3.3).
For B = 0 the result of the previous section states that the search direction

Δx = v is approximately equal to

v :=

(
sin

(
α
2

)
− cos

(
α
2

)
)

−
(

sin(α)
− cos(α)

)
≈ α

2

(
−1
− 3

4α

)
.(4.3)

The method is locally superlinearly convergent if and only if this direction is perturbed
to approximately

v∗ := x∗ − x(α) =

(
0
−1

)
−
(

sin(α)
− cos(α)

)
≈ α

(
−1
− 1

2α

)
.(4.4)

In Figure 4.1 the steps v and v∗ are visualized.
Note that the direction v∗ leading to the optimal solution x∗ = x(0) is orthogonal

to the vector c. Hence c is the direction we like to penalize, but it is also the gradient
of the objective function of (4.1) at Δx = 0. Also note that as a consequence, the
SLCP subproblems (4.1) using

B :=
1

α4
ccT(4.5)

do not necessarily produce superlinearly convergent steps. Let N be the null space of
B. For B as in (4.5) the space of optimal solutions of (4.1) is the intersection of the
feasible set and

V := N − α4c

16
+ O(α6).(4.6)
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The affine space x(α) + V includes a point on the boundary of the constraint set of
(4.1) of the form x(α)+(v∗+O(α3)). We call such a point “close” to the optimum v∗.

To obtain a unique optimal solution for each SLCP subproblem we use a rotation
with a small angle β > 0 of the vector c to form a matrix Bβ . We define

rotβ :=

(
cos(β) − sin(β)
sin(β) cos(β)

)
, cβ := rotβc, and Bβ :=

1

α4
cβc

T
β .

Note that for β ∈ (0, α
4 ) the objective value of (4.1) can be improved in a direction

orthogonal to the penalty direction cβ . This implies that the optimal solution of (4.1)
is a unique point on the boundary of the constraint set of (4.1). For β = 0 we have
the case of (4.5) while for β = α

4 we obtain the same SLCP iterates as for B = 0.
In the following we assume β ∈ (0, α

4 ) and consider the problem

min

{
cTΔx +

1

2
ΔxTBβΔx

∣∣∣ ‖x + Δx‖2 ≤ 1

}
.(4.7)

Recall that v∗ is in the null space N of B and x(α) + v∗ lies on the boundary of
the constraint set of (4.1).

Let Nβ be the null space of Bβ and let v∗β be the unique solution of (4.7). Note
that the angle between Nβ and the objective function c is less than the angle of the
null space N = Nβ=0 of B and c. Therefore, as in (4.6), the vector v∗β lies on the

boundary of the constraint set of (4.7) and is O(α4)-“close” to points of the null space
Nβ of Bβ .

The null space Nβ intersects the boundary of the constraint set of (4.7) twice.
Let ṽ∗β be the intersection that is close to v∗. Then ṽ∗β satisfies

ṽ∗β = v∗β + O(α3)

and is given by

ṽ∗β =

(
sin(2β) − sin(α)
cos(2β) + cos(α)

)
= x(2β) − x(α).

Thus, for a sequence βk the points

x(αk+1) = x(2βk) + O(α3
k)

converge superlinearly to x(0) if and only if the angles βk converge superlinearly to
zero, too.

Summarizing, the method is quadratically convergent if we choose βk =
α2

k

2 and
accordingly cβk

as well as Bk := 1
α4

k
cβk

cTβk
with αk := arcsin(xk

1).

The main advantage of the augmented Lagrangian over other penalty functions
is the fact that under standard assumptions a finite value for the barrier parameter
is sufficient to guarantee exactness. In the above analysis, however, the matrices
Bk are unbounded! In the next section we show that we cannot obtain superlinear
convergence when Bk is bounded.

5. Linear convergence for any choice of bounded positive semidefinite
B. In this section we prove the following statement.

Proposition 5.1. Suppose problem (2.1) is solved with the SLCP method where
the Hessian approximations are given by any globally bounded sequence of positive
semidefinite matrices. Then it is not possible to have a faster than linear convergence.



LOCAL CONVERGENCE OF AN SQP-TYPE METHOD 1207

Proof. We assume from now on that the positive semidefinite matrix B̆ = B̆k for
the SLCP subproblem (3.1) is bounded independently of k, ‖B̆‖2 ≤ M , and prove
by contradiction that for any such B̆ the rate of convergence cannot be better than
αk+1 = αk

2 + O(α2
k).

We denote the solution of the SLCP subproblem (3.1) by v̆ and use v∗ as defined
in (4.4) for the vector to the global optimum of (2.1).

If x + v̆ is not on the unit circle, i.e., the boundary of the feasible set, it follows
that B̆v̆ = −c. Since v̆ → 0 and ‖c‖2 → 4 this implies ‖B̆‖2 → ∞ in contradiction to
our assumption ‖B̆‖2 ≤ M . Thus we can assume without loss of generality that x+ v̆
is on the unit circle and use again the notation

x(α) =

(
sin(α)
− cos(α)

)

with α as in (3.3).
Let x(α) be the kth iterate and let x(γ) be the (k + 1)st iterate; thus we have

v̆ = x(γ) − x(α). We assume for contradiction that

0 ≤ γ ≤ α

2
− εα + O(α2)

with 0 < ε ≤ 1
2 independent of α. (The SLCP method is quadratically convergent if

and only if ε = 1
2 .) As in (4.3) the optimal solution of the linear SLCP subproblem

(3.1) using B = 0 is denoted by v.
As v̆ is the optimal solution of the SLCP subproblem (3.1) using B = B̆, the

objective value of v is greater than the objective value of v̆:

cTv +
1

2
vTB̆v ≥ cTv̆ +

1

2
v̆TB̆v̆ ⇔

cT(v − v̆) ≥ 1

2
(v̆ − v)TB̆(v̆ − v) + vTB̆(v̆ − v).

(5.1)

In the following we will evaluate the terms of (5.1) up to O(α4) to show that (5.1)
cannot be true.

First we analyze the linear term on the left-hand side of (5.1) and obtain from
Figure 5.1

cT(v − v̆) = −‖c‖2‖v − v̆‖2 cos

(
π

2
− α

4
+

γ

2

)

= −‖c‖2‖v − v̆‖2 sin

(
α

4
− γ

2

)

= −‖c‖22 sin

(
α

4
− γ

2

)
sin

(
α

4
− γ

2

)

= −8 sin2

(
α

4
− γ

2

)
+ O(α4)

≤ −2ε2α2 + O(α4).

For the evaluation of the right-hand side of (5.1) note that

1

2
(v̆ − v)B̆(v̆ − v) ≥ 0

since B̆ is positive semidefinite.
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Fig. 5.1. Angles and vectors used in the proof.

Denote by v⊥ the orthogonal complement of v with norm ‖v‖2 = ‖v⊥‖2 that
is obtained by a clockwise rotation of v by 90◦. To evaluate the last term of the
right-hand side of (5.1) note again by Figure 5.1 that

v̆ − v =
‖v̆ − v‖2

‖v‖2
v cos

(
α

2
− γ

2

)
+

‖v̆ − v‖2

‖v‖2
v⊥ sin

(
α

2
− γ

2

)
.

Thus we have

vTB̆(v̆ − v) = ‖v̆−v‖2

‖v‖2
cos

(
α
2 − γ

2

)
vTB̆v + ‖v̆−v‖2

‖v‖2
sin

(
α
2 − γ

2

)
vTB̆v⊥

≥ 0 − sin
(
α
2 − γ

2

)
‖v̆ − v‖2‖B̆‖2‖v⊥‖2

≥ − sin
(
α
2

)
2 sin

(
α
4

)
M2 sin

(
α
4

)
= −M

8 α3 + O(α5).

From (5.1) it would therefore follow that

−2ε2α2 + O(α4) ≥ cT(v − v̆) ≥ 1
2 (v − v̆)B̆(v − v̆) + vTB̆v̆ ≥ −M

8 α3 + O(α5),

i.e., −2ε2α2 + O(α3) ≥ 0, which is not true for α sufficiently small and fixed ε > 0.
Therefore, the assumption of faster than linear convergence has led to a contradic-
tion.
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6. Consequences for semidefinite programming. Instead of using the Lo-
rentz cone one can also use the semidefinite cone to formulate problem (2.1). The
SLCP subproblems then have the form

min

⎧⎨
⎩
(
−2x1

2−2x2

)T

Δx +
1

2
ΔxTBΔx

∣∣∣∣∣
⎛
⎝ 1 x1+Δx1 0
x1+Δx1 1 x2+Δx2

0 x2+Δx2 1

⎞
⎠ � 0

⎫⎬
⎭.

Obviously these subproblems produce the same iterates. Thus linear convergence
also follows for “sequential semidefinite programming methods” as considered, for
example, in [1, 2] with bounded positive semidefinite B.

7. Conclusion. The constraint that a matrix X be positive semidefinite may be
formulated as a nonlinear constraint that the determinant of X (and some principal
minors) be nonnegative. As the optimal solution of a (nonlinear) program with a
semidefiniteness constraint typically results in a solution X for which zero is a mul-
tiple eigenvalue, the constraint det(X) ≥ 0 is degenerate at the optimal solution.
On the other hand, requiring that each of the eigenvalues of X be nonnegative typi-
cally yields a nondegenerate but also nonsmooth formulation. One may therefore be
tempted to solve a nonlinear semidefinite program by an SQP-type method where the
semidefiniteness constraint is maintained in the SLCP subproblem and the Hessian
is given, for example, by the Hessian of the augmented Lagrangian or a semidefinite
approximation thereof. If the quadratic objective function of such an SLCP subprob-
lem is convex, these subproblems can be reformulated as linear semidefinite programs
and can be solved efficiently. The example in this paper, however, shows that such
a modified SLCP method cannot be superlinearly convergent in general contrasting
the case of standard SQP methods.

The reason for the superiority of a standard SQP method over the presented SLCP
method (both with positive definite Hessian approximations) can be seen in the fact
that in the standard SQP subproblems all curvature information of the problem is col-
lected in a single entity, namely, the approximation of the Hessian of the Lagrangian,
and this matrix is positive definite on the null space of the linearized active constraints
at any point satisfying the second order sufficient optimality conditions (and those
are the points we are interested in). In the example, the negative curvature of the
objective is more than counterweighted by the positive curvature of the constraint,
and convex SQP subproblems arise naturally that need no Hessian modification. In
the case of a standard SQP method for a general NLP the true Hessian needs only
to be modified in the space orthogonal to the null space of the active constraints in
order to keep the Hessian approximation positive definite, and the SQP steps are not
affected by such Hessian modifications.

In contrast to this, the SLCP method uses curvature information at two places,
separate in the objective and in the conic constraints. While this seems to be an
advantage at first glance, it makes the Hessian of the Lagrangian independent of the
conic constraints and therefore it can no longer profit from their positive curvature.
Thus, the Hessian of the Lagrangian does not satisfy a similar positive definiteness
condition as in the case of a standard NLP formulation; cf. [5]. If we desire a convex
SLCP subproblem, we therefore need to change the Hessian of the Lagrangian consid-
erably. The contribution of this paper was to show that superlinear convergence of the
SLCP method cannot generally be enforced by bounded Hessian modifications. While
this paper does not make any implications about the global behavior of SLCP meth-
ods for the solution of nonconvex problems with conic constraints, the observation
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made here implies that SLCP methods need to be modified to achieve rapid local
convergence.
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POLYNOMIAL CONVERGENCE OF
INFEASIBLE-INTERIOR-POINT METHODS OVER

SYMMETRIC CONES∗
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Abstract. We establish polynomial-time convergence of infeasible-interior-point methods for
conic programs over symmetric cones using a wide neighborhood of the central path. The conver-
gence is shown for a commutative family of search directions used in Schmieta and Alizadeh [Math.
Program. 96 (2003), pp. 409–438]. Monteiro and Zhang [Math. Program., 81 (1998), pp. 281–299]
introduced this family of directions when analyzing semidefinite programs. These conic programs
include linear and semidefinite programs. This extends the work of Rangarajan and Todd [Tech.
rep. 1388, School of OR & IE, Cornell University, Ithaca, NY, 2003], which established convergence
of infeasible-interior-point methods for self-scaled conic programs using the NT direction. Our work
is built on earlier analyses by Faybusovich [J. Comput. Appl. Math., 86 (1997), pp. 149–175] and
Schmieta and Alizadeh [Math. Program. 96 (2003), pp. 409–438]. Of independent interest, we
provide a constructive proof of Lyapunov lemma in the Jordan algebraic setting.

Key words. conic programming, infeasible-interior-point methods, symmetric cones, Euclidean
Jordan algebras, semidefinite programming

AMS subject classifications. 90C25, 90C51, 65Y20, 90C22, 90C05

DOI. 10.1137/040606557

1. Introduction. There is extensive literature on the analysis of interior-point
methods (IPMs) for conic programming. In conic programs, a linear function is min-
imized over the intersection of an affine space and a closed convex cone. The founda-
tion for solving these problems using IPMs was laid by Nesterov and Nemirovskii [8].
These methods were primarily either primal or dual based. Later, Nesterov and Todd
[9] introduced symmetric primal-dual interior-point algorithms on a special class of
cones called self-scaled cones, which allowed a symmetric treatment of the primal and
the dual. Self-scaled cones are precisely the same as symmetric cones, which have
been characterized using Jordan algebras (see Güler [3] and also Faraut and Koranyi
[1]). Faybusovich [2] analyzed an interior-point algorithm over the symmetric cones
using this characterization of symmetric cones.

Nonnegative orthants, second-order cones, and positive semidefinite cones are
important special cases of symmetric cones. Monteiro and Zhang [7] gave a unified
analysis of feasible-IPMs for semidefinite programs that used the so-called commuta-
tive class of search directions. These search directions include the popular directions
such as the NT (Nesterov–Todd), the XS, and the SX directions. As we shall see,
symmetric cones, when described using Jordan algebras, bear a striking resemblance
to the cone of real symmetric positive semidefinite matrices. This resemblance was
exploited by Schmieta and Alizadeh [11], who extended Monteiro and Zhang’s analysis
to feasible-IPMs over symmetric cones.
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Infeasible-IPMs, unlike feasible-IPMs, do not require that the iterates be feasible
to the relevant linear systems but only be in the interior of the cone constraints. As
such infeasible points are easy to obtain, infeasible-IPMs are an attractive choice for
practical implementations. At the same time, the analysis of infeasible-IPMs presents
significant difficulties due to the nonorthogonality of search directions. Zhang [14]
analyzed the convergence of an infeasible-interior-point algorithm for semidefinite
programming using the XS and SX search directions. Rangarajan and Todd [10]
established convergence of an infeasible-IPM for self-scaled cones using the NT direc-
tion for a wide neighborhood of the central path. The results in [10] that deal with
the nonorthogonality of search directions are adapted from those in Zhang [14].

In this paper, we prove the polynomial convergence of an infeasible-IPM on sym-
metric cones for the commutative class of search directions, which includes XS, SX,
and the NT directions. In the process we give a constructive proof of the Lyapunov
lemma in this setting (this is used in proving Lemma 3.5). To our knowledge this is
the first time an infeasible-IPM has been analyzed for the NT method using the N−∞
neighborhood for semidefinite programming (which is a special case of our framework).
The complexity result obtained here for symmetric cones using the NT direction com-
pares with the best bound obtained for linear programs (Zhang [13]). Besides the
work of Schmieta and Alizadeh, our main tool in this paper is the analysis of an
infeasible-IPM for self-scaled conic programming in Rangarajan and Todd [10].

This paper is organized as follows: We start with an introduction to the theory of
Jordan algebras. Next we outline the basics of interior-point theory that leads to the
algorithm and present its analysis. We present some conclusions in the final section.

2. Euclidean Jordan algebras. Characterization of symmetric cones using
Jordan algebras (see Theorem 2.3) forms the fundamental basis for our analysis. This
section covers the basic results in Jordan algebras, closely following Schmieta and
Alizadeh [11] in presentation. For a comprehensive treatment of Jordan algebras, the
reader is referred to Faraut and Koranyi [1]. For the purposes of illustration, we use
the space of real symmetric matrices, which yields the cone of positive semidefinite
matrices. In this case, the analysis in section 3 specializes to the case of semidefinite
programming.

Definition 2.1. Let J be an n-dimensional vector space over the field of real
numbers along with the bilinear map • : (x, y) �→ x • y ∈ J . Then (J , • ) is a
Euclidean Jordan algebra with identity if for all x, y ∈ J

1. x • y = y • x (commutativity);
2. x • (y • x2) = (x • y) • x2, where x2 = x • x (Jordan identity);
3. there exists a symmetric positive definite quadratic form Q on J such that

Q(x • y, z) = Q(x, y • z);
4. there exists an identity element e ∈ J , i.e., e such that e • x = x • e for all

x ∈ J .
Definition 2.2. If J is a Euclidean Jordan algebra, then its cone of squares is

the set

K(J ) := {x2 : x ∈ J }.

Let G(K) denote the group of automorphisms of a cone K. K is a homogeneous
cone if G(K) acts on it transitively. That is, if x, y ∈ int K, then there exists g ∈ G(K)
such that g(x) = y. Symmetric cones are cones that are self-dual and homogeneous.
Symmetric cones are also precisely the class of self-scaled cones introduced by Nesterov
and Todd in [9] (see also Faybusovich [2] and Güler [3]). The following theorem relates
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symmetric cones and Euclidean Jordan algebras (for a proof, see Theorems III.2.1 and
III.3.1 in Faraut and Koranyi [1]).

Theorem 2.3 (Jordan algebraic characterization of symmetric cones). A cone
is symmetric iff it is the cone of squares of some Euclidean Jordan algebra.

Example. Let J = Sn, the space of real symmetric matrices with the operation
X • Y := XY +Y X

2 for X,Y ∈ Sn. We can choose Q(X,Y ) := Trace (XY ) and e to
be the identity matrix. Then (J , • ) is a Euclidean Jordan algebra with identity.
We obtain the cone of symmetric positive semidefinite matrices as the squares of real
symmetric matrices.

Since • is a bilinear map, for every x ∈ J a linear operator L(x) can be defined
such that L(x)y = x • y for all y ∈ J . For x, y ∈ J , let

Qx,y := L(x)L(y) + L(y)L(x) − L(x • y) and Qx := Qx,x = 2L2(x) − L(x2),

where Qx is called the quadratic representation of x. Clearly Qx,yz and Qxz are in
J for all x, y, z ∈ J . We will use K to denote K(J ) henceforth, when no confusion
can arise.

Example. For X ∈ Sn, L(X) is the operator from Sn to itself such that L(X)[Y ] =
XY +Y X

2 . A further computation shows that QX,Y [Z] = XZY +Y ZX
2 and QX [Z] =

XZX. The operator QX plays an important role in the analysis of IPMs for semidef-
inite programming. The operator Qx in Jordan algebras plays a similar role in our
analysis.

An element x ∈ J is called invertible if there exists a y =
∑k

i=0 γix
i for some

finite k < ∞ and real numbers γi such that y • x = e, and is written x−1. The
following are some of the basic properties of Qx (see Propositions II.3.1 and II.3.3 in
[1]).

Lemma 2.4. Let x, y ∈ J . Then
1. Qxx

−1 = x (or equivalently QxL(x−1) = L(x)), Q−1
x = Qx−1 , and Qxe = x2;

2. QQyx = QyQxQy.
With each Jordan algebra is associated a characteristic called the rank. We define

rank of a Jordan algebra next.
Definition 2.5.

a. For x ∈ J , let r be the smallest integer such that the set {e, x, x2, . . . , xr} is
linearly dependent. Then r is called the degree of x and is denoted by deg (x).

b. The rank of J , denoted by rank (J ), is defined as the maximum of deg (x)
over all x ∈ J . An element is called regular if its degree equals the rank of
the Jordan algebra.

One of the most important tools that help us in working with Jordan algebras
is the spectral decomposition theorem. Towards this end, we discuss the concept of
Jordan frames and introduce the result on spectral decomposition.

An idempotent c is a nonzero element of J such that c2 = c. A complete system
of orthogonal idempotents is a set {c1, . . . , ck} of idempotents, where ci • cj = 0 for
all i �= j, and c1 + · · ·+ ck = e. An idempotent is primitive if it is not the sum of two
other idempotents. A complete system of orthogonal primitive idempotents is called
a Jordan frame. Note that in Jordan frames k = r; that is, Jordan frames always
contain r primitive idempotents.

Theorem 2.6 (spectral decomposition, Theorem III.1.2 in [1]). Let J be a
Euclidean Jordan algebra. For x ∈ J there exist a Jordan frame c1, . . . , cr and real
numbers λ1, . . . , λr such that x = λ1c1 + · · · + λrcr, where the λi’s are called the
eigenvalues of x.
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Using this we can define the following:

1. The square root: x1/2 := λ
1/2
1 c1 + · · · + λ

1/2
r cr whenever all λi ≥ 0, and

undefined otherwise.
2. The inverse: x−1 := λ−1

1 c1 + · · · + λ−1
r cr whenever all λi �= 0, and undefined

otherwise. (This is consistent with our earlier definition by Proposition II.2.4
in [1].)

3. The square: x2 := λ2
1c1 + · · ·+ λ2

rcr. This is consistent with the definition of
x2 as x • x.

Note that (x1/2)2 = x. It can be shown that an element is in (the interior of) the
cone of squares iff all its eigenvalues are nonnegative (positive). The eigenvalues of e
are all equal to one.

Definition 2.7. Let x ∈ J and λ1, . . . , λr be its eigenvalues. Then
1. Trace (x) := λ1 + · · · + λr is called the trace of x;
2. Det (x) := λ1, . . . , λr is called the determinant of x.

Trace can be shown to be a linear function of x. For the identity element,
Trace (e) = r and Det (e) = 1 as all its eigenvalues are equal to one.

Next, norms and inner products are defined on J . Since Trace (x • y) is a bilinear
function, the inner product can be defined as 〈x, y〉 := Trace (x • y). For x ∈ J , with
eigenvalues λi, 1 ≤ i ≤ r, we can define the Frobenius norm (see Proposition III.1.5
in [1]) satisfying the Cauchy–Schwarz inequality:

‖x‖F :=

√√√√ r∑
i=1

λ2
i =

√
Trace (x2) and | 〈x, y〉 | ≤ ‖x‖F ‖y‖F .

As all the eigenvalues of e are equal to one, ‖e‖F =
√
r.

Example. For a matrix X ∈ Sn, we have the spectral decomposition that there
exists a set of orthonormal vectors {qi, 1 ≤ i ≤ n} ⊂ �n and real numbers λ1, . . . , λn

such that X =
∑

i λiqiq
T
i . It can be checked that the matrices qiq

T
i form a primitive

system of orthogonal idempotents. The inner product is the usual trace inner product
of matrices and the Frobenius norm has its usual definition.

Since Trace (·, ·) is associative (see Proposition II.4.3 in [1]), i.e., Trace (x • (y • z))
= Trace ((x • y) • z),

〈L(x)p, q〉 = Trace ((x • p) • q) = Trace ((p • x) • q) = Trace (p • (x • q)) = 〈p, L(x)q〉

shows that L(x) is a self-adjoint operator. As the definition of Qx depends only on
L(x) and L(x2), both of which are self-adjoint, Qx is also self-adjoint.

We recall parts of Lemmas 12, 13, and 14 in [11] in the next two lemmas.
Lemma 2.8. Let x = λ1c1 + · · · + λrcr, using the spectral decomposition. Then

the following statements hold.
1. The matrices L(x) and Qx commute and thus share a common system of

eigenvectors.
2. Every eigenvalue of L(x) can be written as

λi+λj

2 for some i, j ≤ r. In
particular, x ∈ K (int K) iff L(x) is positive semidefinite (definite). The
eigenvalues of x (λi) are amongst the eigenvalues of L(x).

3. Every eigenvalue of Qx can be written as λiλj, for some i, j ≤ r. The square
of the eigenvalues of x (λ2

i ) are amongst the eigenvalues of Qx.
Henceforth the minimum (maximum) eigenvalue of x will be denoted by λmin(x)
(λmax(x)).
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Lemma 2.9. Let x ∈ J ; then we have

λmin(x) = min
u �=0

〈u, u • x〉
〈u, u〉 .

For x, y ∈ J , we have

λmin(x + y) ≥ λmin(x) − ‖y‖F ,
‖x • y‖F ≤ ‖x‖F ‖y‖F .

Proof. For proofs of all but the last part, see Lemmas 13 and 14 in [11]. The last
part follows from

‖x • y‖F = ‖L(x)y‖F ≤ ‖L(x)‖‖y‖F ≤ ‖x‖F ‖y‖F .

The first equality follows from the definition of L(x), and ‖L(x)‖ refers to the operator
norm induced by ‖·‖F . Since the ‖·‖F can be seen as the norm induced by the inner
product 〈·, ·〉, the operator norm coincides with the spectral norm. For the second
inequality note that the spectral norm of a self-adjoint linear operator is ‖L(x)‖ =
maxi |λi(L(x))|. Using Lemma 2.8 we can see that maxi |λi(L(x))| = maxi |λi(x)| ≤
‖x‖F .

We state two useful propositions about the operator Qx.

Proposition 2.10 (Faraut and Koranyi [1, Proposition III.2.2]). If x, y ∈ int K,
then Qxy ∈ int K. Furthermore, if x ∈ int K, then Qx is an automorphism of the
cone K.

Proposition 2.11. Let x, s ∈ int K; then

1. Qx1/2s and Qs1/2x have the same spectrum;
2. if p ∈ int K define x̃ := Qpx and s̃ := Qp−1s, then Qx1/2s and Qx̃1/2 s̃ have

the same spectrum.

Furthermore, Trace (Qx1/2s) = 〈s, x〉.
Proof. See Proposition 21 in [11] for proofs of 1 and 2. Using the self-adjointness

of Qx1/2 we have

Trace (Qx1/2s) = Trace ((Qx1/2s) • e) = 〈Qx1/2s, e〉 = 〈s,Qx1/2e〉 = 〈s, x〉 ,

which completes the proof of the proposition.

Now we are ready to state and prove the Lyapunov lemma for Euclidean Jordan
algebras.

Lemma 2.12 (Lyapunov lemma for Euclidean Jordan algebras). Suppose that J
is a Euclidean Jordan algebra. If x ∈ int K, w ∈ K, then there exists s ∈ K such that
x • s = w.

Proof. Let us set s = 2
∫∞
0

Qv(t)w dt, where x =
∑r

i=1 λici is the spectral de-

composition of x and v(t) =
∑r

i=1 e
−λitci. Clearly v(t) ∈ J as ci ∈ J . By expanding

using the spectral decomposition and integrating we obtain s = 2
∑

i,j
1

λi+λj
Qci,cjw

and hence s is well defined and s ∈ J . Observe that v(t) ∈ int K as e−λit > 0 for all
t and hence Qv(t) is an automorphism of K. It follows that Qv(t)w ∈ K. For u ∈ K,
we have

〈s, u〉 = 2

〈∫ ∞

0

Qv(t)w dt, u

〉
= 2

∫ ∞

0

〈
Qv(t)w, u

〉
dt ≥ 0.
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Consequently s ∈ K. By Proposition II.3.4 in [1] Qv(t) = e−2tL(x). Therefore,

d

dt
Qv(t)w =

d

dt
e−2tL(x)w = −2L(x)e−2tL(x)w = −2L(x)Qv(t)w = −2x •Qv(t)w.

We can substitute for s in the desired equation and use the above identity to get

x • s = 2

∫ ∞

0

x •Qv(t)w dt =

∫ ∞

0

− d

dt

(
Qv(t)w

)
dt = w,

as v(0) = e, and v(∞) = 0.

Sturm [12], along with extensions to many properties of symmetric matrices, pro-
vides an alternate proof of the Lyapunov lemma, though the proof is not constructive.
Another tool that is very useful in the analysis of algorithms is the notion of operator
commutativity for the elements of a Jordan algebra. The notion of operator com-
mutativity is not to be confused with the commutativity of elements of the Jordan
algebra.

Definition 2.13. We say two elements x, y of a Jordan algebra J operator
commute if L(x)L(y) = L(y)L(x). In other words, x and y operator commute if for
all z, x • (y • z) = y • (x • z).

Theorem 2.14 (Theorem 27 in [11]). Let x and y be two elements of Eu-
clidean Jordan algebra J . Then x and y operator commute iff there is a Jordan
frame c1, . . . , cr such that x =

∑r
i=1 λici and s =

∑r
i=1 μici for some λi, μi.

A Jordan algebra is called simple if it cannot be represented as a direct sum of
two Jordan algebras. Simple Jordan algebras have been classified into the following
five cases and consequently we have a classification for symmetric cones (see Chapter
V in [1]). This classification is due to Jordan, von Neumann, and Wigner [4].

Theorem 2.15 (Faraut and Koranyi [1, Chapter V]). Let J be a simple Euclidean
Jordan algebra. Then J is isomorphic to one of the following algebras, where for the
matrix algebras, the operation is defined by X • Y = 1

2 (XY + Y X):

1. the algebra En+1, the algebra of quadratic forms in �n+1 under the operation
x • y = (xT y;x0ȳ + y0x̄), where x = (x0; x̄), y = (y0; ȳ) ∈ � × �n;

2. the algebra (Sn, •) of n× n symmetric matrices;
3. the algebra (Hn, •) of n× n complex Hermitian matrices;
4. the algebra (Qn, •) of n× n quaternion Hermitian matrices;
5. the exceptional Albert algebra, i.e., the algebra (O3, •) of 3 × 3 octonian

Hermitian matrices.

3. Algorithm and analysis.

3.1. Problem background. We begin with the problem statement and discuss
some of the theory relevant to developing interior-point algorithms: the perturbed
optimality conditions, central path, and the Newton systems that give rise to the
commutative class of search directions. In the following subsection, we present the
algorithm and analyze its convergence.

Let J be a Euclidean Jordan algebra of dimension n and rank r, and K be its
cone of squares. Consider the following primal and associated dual problem.

Primal and Dual.

(P ) min{〈c, x〉 : Ax = b, x ∈ K}(3.1)
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and

(D) max{〈b, y〉Y : A∗y + s = c, s ∈ K, y ∈ Y },(3.2)

where c ∈ J and b ∈ Y , a finite dimensional real vector space with an inner product
〈·, ·〉Y . Here A is a linear operator that maps J into Y . A∗ is defined to be the linear
operator that maps Y to J such that 〈A∗y, x〉 = 〈Ax, y〉Y for all x ∈ J , y ∈ Y .

We call x ∈ K primal feasible if Ax = b. Similarly (s, y) ∈ K × Y is called dual
feasible if A∗y + s = c. Let

F0(P ) := {x ∈ J : Ax = b, x ∈ int K} and

F0(D) := {(s, y) ∈ J × Y : A∗y + s = c, s ∈ int K}

represent the interior feasible solutions of the primal and the dual. For the rest of the
paper, we will assume that A is surjective, F0(P ) �= ∅, and F0(D) �= ∅. For a given
primal feasible x and dual feasible (s, y), 〈s, x〉 is called the duality gap due to the
well-known relation

〈b, y〉Y − 〈c, x〉 = 〈Ax, y〉Y − 〈A∗y + s, x〉 = 〈s, x〉 ≥ 0.

Since the iterates in our algorithm may not satisfy the linear constraints, 〈s, x〉 will
be referred to as the complementarity. Let us note that 〈s, x〉 = 0 for feasible (x, s, y)
is sufficient for optimality. By Lemma 2.2 in [2], for x, s ∈ K 〈s, x〉 = 0 is equivalent
to s • x = 0. Using our assumptions above, the optimality conditions for the primal
and dual problems can be written as

Ax = b,

A∗y + s = c,

s • x = 0,(3.3)

x, s ∈ K, y ∈ Y,

where s • x = 0 is usually referred to as the complementary slackness condition.
The perturbed optimality conditions (PCμ) are obtained by replacing s • x = 0

in (3.3) with the “perturbed” complementary slackness condition, s • x = μe for
μ > 0. Interior-point algorithms follow the solutions to (PCμ) as μ goes to zero. The
perturbed optimality conditions have unique solutions for all positive μ, and these
solutions form the so-called central trajectory (see [2]). Note that the duality gap
of the solutions is proportional to μ, i.e., 〈s, x〉 = Trace (s • x) = μTrace (e) = μr.
IPMs employ Newton’s method to target the solution of (PCσμ), where σ ∈ (0, 1),

(x, s, y) is the current iterate, and μ = 〈s,x〉
r . Such algorithms are called primal-dual

path-following algorithms; primal-dual, because the primal and the dual are treated
symmetrically in the optimality conditions.

The following lemma motivates different, but equivalent, ways of forming the
perturbed optimality conditions, thus leading to different Newton systems.

Lemma 3.1 (Lemma 28 in [11]). Let x, s and p be in some Euclidean Jordan
algebra J , x, s ∈ int K and p invertible. Then s • x = μ e iff Qp−1(s) •Qp(x) = μ e.

Therefore for a scaling p ∈ int K, (PCμ) can be equivalently written as

Ãx̃ = b,

Ã∗y + s̃ = c̃,

s̃ • x̃ = μe,

x̃, s̃ ∈ K, y ∈ Y,
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where x̃ = Qpx, s̃ = Qp−1s, Ã = AQp−1 , and c̃ = Qp−1c. We restrict our attention to
the following set of scalings:

C(x, s) := {p : p ∈ int K such that Qp(x) and Qp−1(s) operator commute}.

Note that p = e need not be in C(x, s). For p = x−1/2 we get the xs-method, for

p = s1/2 we get the sx-method, and for the choice of p =
[
Qx1/2(Qx1/2s)−1/2

]−1/2
=[

Qs−1/2(Qs1/2x)1/2
]−1/2

, we get the Nesterov–Todd (NT) method. The Newton equa-
tions corresponding to a scaling in C(x, s) are stated below.

Scaled Newton Equations.

Ã∗�y + �s̃ = c̃− Ã∗y − s̃,

Ã�x̃ = b− Ãx̃,(3.4)

s̃ • �x̃ + �s̃ • x̃ = σμe− s̃ • x̃.

Though C(x, s) seems to be a restrictive class, it does include some of the most
interesting choices of scalings.

Our algorithm will restrict the iterates to the following neighborhood, called the
minus-infinity neighborhood, of the central path. For a given constant γ ∈ [0, 1]

N−∞(γ) := {(x, s, y) ∈ K ×K × Y : d−∞(x, s) ≤ γμ},(3.5)

where

d−∞(x, s) := μ− λmin(z), μ =
〈s, x〉
r

and z = Qx1/2s.

A few observations about z are in order. As x1/2 ∈ K and Qx1/2 is an automorphism
of K, z ∈ K and hence λi(z) are nonnegative. By Proposition 2.11 〈s, x〉 = Trace (z) =∑

i λi(z). The neighborhood contains the central path and γ represents the size of the
neighborhood as it can be shown that the set N−∞(0) ∩

[
F0(P ) ×F0(D)

]
is exactly

the central path and N−∞(1) ∩
[
F0(P ) ×F0(D)

]
= F0(P ) ×F0(D).

Now we discuss the symmetry and scale-invariance of the neighborhoods. By
the first statement of Proposition 2.11, Qx1/2s and Qs1/2x have the same spectrum.
Hence the centrality measure d−∞(x, s) and the neighborhood N−∞ are symmetric
with respect to x and s, i.e., d−∞(x, s) = d−∞(s, x).

Proposition 3.2. The neighborhood is scaling invariant; that is, (x, s) is in the
neighborhood iff (x̃, s̃) is.

Proof. Let z̃ := Qx̃1/2 s̃. By the second statement of Proposition 2.11 λ(z̃) is the
same as λ(z). Since 〈s̃, x̃〉 =

〈
Qp−1s,Qpx

〉
= 〈s, x〉, the result follows by substituting

the expressions in the definition of N−∞(γ).
Hence the scaling transformations are not just automorphisms of the cone but

they also map the neighborhood to itself. As the definition of N−∞ is independent of
y, sometimes y in (x, s, y) is suppressed for convenience and we write (x, s) instead,
but y should be clear from the context.

3.2. Algorithm and analysis of convergence. Having discussed the key el-
ements needed for the algorithm, we describe the infeasible-IPM in detail. To keep
the analysis self-contained we have mentioned the relevant results from Schmieta and
Alizadeh [11] and when dealing with infeasibility of iterates, we have proved the ex-
tension of results from Zhang [14] and Rangarajan and Todd [10].
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Algorithm IIPM.

1. Let 1 > β > σ > 0, ε∗ > 0, γ ∈ (0, 1), x0 ∈ int K, y0 ∈ Y , and s0 ∈ int K be
given such that (x0, s0, y0) ∈ N−∞(γ). Set k = 0, φ0

p = 1, and φ0
d = 1.

2. Choose a p ∈ C(xk, sk) and form the corresponding scaled iterate. Solve for
(�x̃k,�s̃k,�yk) from the scaled Newton equations in (3.4) at (x̃k, s̃k, yk).
Let (�xk,�sk,�yk) = (Qp−1�x̃k, Qp�s̃k,�yk).

3. Let (x(α), s(α), y(α)) := (xk, sk, yk)+α(�xk,�sk,�yk). Compute the largest
step length

ᾱk ∈ (0, 1] such that for all α ∈ [0, ᾱk], (x(α), s(α), y(α)) ∈ N−∞(γ),

〈s(α), x(α)〉 ≥ max(φk
p, φ

k
d)(1 − α) 〈s0, x0〉 , and 〈s(α), x(α)〉

≤ (1 − (1 − β)α) 〈sk, xk〉 .

4. Choose a primal step length αk
p > 0 and a dual step length αk

d > 0 such that

(xk+1, sk+1, yk+1) := (xk + αk
p�xk, sk + αk

d�sk, yk + αk
d�yk) ∈ N−∞(γ),

〈sk+1, xk+1〉 ≥ max(φk
p(1 − αk

p), φ
k
d(1 − αk

d)) 〈s0, x0〉, and

〈sk+1, xk+1〉 ≤ (1 − (1 − β)ᾱk) 〈sk, xk〉.

Set φk+1
p = φk

p(1 − αk
p) and φk+1

d = φk
d(1 − αk

d).
5. Increase k by 1. If 〈sk, xk〉 < ε∗ 〈s0, x0〉, then STOP. Otherwise, repeat step 2.

On the choice of step lengths: if we choose αk
p = αk

d = ᾱk, all the conditions in
Step 4 are satisfied. However, we are free to choose different step lengths as long we can
make a comparable progress in the feasibility and complementarity while remaining
inside the neighborhood.

Using the Newton equations we can show that φk
p and φk

d satisfy the relations

Axk − b = φk
p(Ax0 − b) and A∗yk + sk − c = φk

d(A
∗y0 + s0 − c),(3.6)

and hence they represent the relative infeasibilities at (xk, sk, yk). At every iterate we
maintain the condition,

〈sk, xk〉 ≥ max(φk
p, φ

k
d) 〈s0, x0〉,(3.7)

which ensures that the infeasibilities approach zero as the complementarity, 〈s, x〉, ap-
proaches zero. The following theorem forms the skeleton of the convergence argument
and sets the agenda for the rest of the paper.

Theorem 3.3. If ᾱk ≥ α∗ for all k for some α∗ > 0, then the infeasible-interior-
point method (IIPM) will terminate in (xk, sk, yk) such that ‖Axk − b‖ ≤
ε∗‖Ax0 − b‖, ‖A∗yk + sk − c‖ ≤ ε∗‖A∗y0 + s0 − c‖, and 〈sk, xk〉 ≤ ε∗ 〈s0, x0〉 in O( 1

α∗

ln( 1
ε∗ )) iterations.
Proof. All the conditions in step 3 of IIPM are satisfied for α∗. Since for each k,

ᾱk ≥ α∗, if we choose k = � 1
(1−β)α∗ � ln

(
1
ε∗

)
, then we have

ln(〈sk, xk〉) ≤ ln (〈sk−1, xk−1〉 (1 − α∗(1 − β)))

≤ ln
(
〈s0, x0〉 (1 − α∗(1 − β))

k )
≤ ln(〈s0, x0〉) − kα∗(1 − β)

≤ ln(〈s0, x0〉) + ln(ε∗) = ln(ε∗ 〈s0, x0〉).
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The first inequality follows from the decrease in complementarity condition, the second
from the same applied inductively, and the third inequality from the identity 1+ξ ≤ eξ

for all ξ > −1. The fourth inequality follows from our assumption on k.

From condition (3.7), it follows that max(φk
p, φ

k
d) ≤ 〈sk,xk〉

〈s0,x0〉 ≤ ε∗. Then (3.6)

implies that

‖Axk − b‖ ≤ ε∗ ‖Ax0 − b‖, and ‖A∗yk + sk − c‖ ≤ ε∗ ‖A∗y0 + s0 − c‖.

In the rest of the paper, we prove that such a lower bound on α∗ exists and
establishes an estimate of the lower bound that leads to the polynomial convergence
result for the IIPM. We split this task into three pieces. First, we show that the step
size at any iterate can be bounded from below using quantities that depend on the size
of the directions and the complementarity ((3.8), (3.9), and (3.10)). Next, we improve
this bound to a constant which is independent of the iteration number (Proposition
3.7 and (3.11)). Using a (rather restrictive) assumption on the size of the optimal
solutions, we make the final transition to the required polynomial convergence with
the help of Theorem 3.3.

Before we proceed to bounding the step lengths, we establish a useful inequality
on the minimum eigenvalues (Lemma 3.5). For simplicity, we will often write x, y, s,
and φ̄ for xk, yk, sk, and max(φk

p, φ
k
d), respectively. The indices should be clear from

the context.

Let (x, s, y) ∈ N−∞(γ) and satisfy the feasibility condition (3.7). For a fixed
p ∈ C(x, s), let (�x̃,�s̃,�y) be the direction computed in step 2 of the algorithm.
We will use the following notation:

x̃(α) = x̃ + α�x̃, s̃(α) = s̃ + α�s̃,

x(α) = x + α�x, s(α) = s + α�s,

μ̃(α) = μ(x̃(α), s̃(α)) =
〈s̃(α), x̃(α)〉

r
, and z̃(α) = Qx̃(α)1/2 s̃(α).

As a word of caution, since p need not lie in C(x(α), s(α)), x̃(α) and s̃(α) do not nec-
essarily operator commute. We collect some basic properties of the scaled directions
and the Newton system.

Lemma 3.4. Given the Newton equations, the following identities hold:

s̃(α) • x̃(α) = (1 − α) s̃ • x̃ + ασμe + α2 �s̃ • �x̃,

〈s̃, x̃〉 = 〈s, x〉 , and

μ̃(α) = μ(1 − α + σα) + α2 〈�s,�x〉
r

.

Proof. The first equality follows by direct expanding the third equation of the
scaled Newton system. The second statement was proven in Proposition 3.2. The last
equation follows straightforwardly from the first.

The following result is absolutely essential in obtaining the bounds on the step
lengths. The proof of this result uses the Lyapunov lemma (Lemma 2.12) established
earlier.

Lemma 3.5. Let (x, s) ∈ int K× int K. Then λmin(s • x) ≤ λmin(z) and equality
holds if x and s operator commute.
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Proof. The proof outline follows Lemma 30 in [11]. First, observe that Qx1/2,x−1/2

Qx1/2 = L(x), because

Qx1/2,x−1/2Qx1/2 = Qx1/2(2L(x−1/2)L(x1/2) − I)

= 2(Qx1/2L(x−1/2))L(x1/2) −Qx1/2

= 2L2(x1/2) −Qx1/2 = L(x).

Here, we have used the first statement of Lemma 2.4. As a result we have Qx1/2,x−1/2z
= Qx1/2,x−1/2Qx1/2s = x • s.

In Lemma 30 in [11], it is shown that Trace (Qx1/2,x−1/2u) = Trace (u). Note that
by Lemma 2.12 we know that K ⊂ L(x)(K) = Qx1/2,x−1/2Qx1/2(K) = Qx1/2,x−1/2(K),
as Qx1/2 is an automorphism of K. The result follows from the following two chains
of relations:

λmin(s • x) = min
u �=0

〈u, (s • x) • u〉
〈u, u〉 = min

Trace (u2)=1

〈
u2, s • x

〉
= min

Trace (u2)=1

〈
u2, Qx1/2,x−1/2z

〉
min

Trace (u2)=1

〈
u2, Qx1/2,x−1/2z

〉
= min

Trace (u2)=1

〈
z,Qx1/2,x−1/2u2

〉
≤ min

Trace (Q
x1/2,x−1/2u2)=1

{〈
z,Qx1/2,x−1/2u2

〉
:Qx1/2,x−1/2u2 ∈K

}
= min

{
〈z, t〉 : Trace (t) = 1, t ∈ Qx1/2,x−1/2(K)

}
≤ min {〈z, t〉 : Trace (t) = 1, t ∈ K}
= min

Trace (v2)=1

〈
z, v2

〉
= λmin(z).

The equality when x̃ and s̃ operator commute is established in Lemma 30 in [11].
Hence the proof of the lemma is complete.

As a consequence, using Proposition 2.11 and the definition of N−∞(γ), let us
note that

λmin(s̃ • x̃) = λmin(z̃) = λmin(z) ≥ (1 − γ)μ.

We find an interval for which (x(α), s(α)) lies in the neighborhood.
Lemma 3.6. Let δx = ‖�x̃‖F and δs = ‖�s̃‖F . If (x, s) ∈ N−∞(γ), then

(x(α), s(α)) ∈ N−∞(γ) for all 0 ≤ α ≤ α̂1, where

α̂1 := min

{
1,

γσ 〈s, x〉
2(r + 1 − γ)δxδs

}
.(3.8)

Proof. We first bound the left- and right-hand side of the inequality defining the
neighborhood N−∞(γ). To begin with a bound on the eigenvalue of z(α), we have

λmin(z(α)) = λmin(z̃(α)) ≥ λmin(s̃(α) • x̃(α))

= λmin((1 − α)s̃ • x̃ + ασμe + α2�s̃ • �x̃)

≥ (1 − α)λmin(s̃ • x̃) + ασμ− α2δxδs

≥ (1 − α)(1 − γ)μ + ασμ− α2δxδs.

The first equality follows from the second statement of Proposition 2.11, the first
inequality follows from Lemma 3.5, the second inequality follows from Lemma 2.9,
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and the last inequality follows because (x̃, s̃) ∈ N−∞(γ). Using Lemma 3.4 and
Cauchy–Schwarz we can see that

(1 − γ)μ(α) = (1 − γ)

(
μ(1 − α + σα) + α2 〈�s,�x〉

r

)

≤ (1 − γ)

[
μ(1 − α + σα) + α2 δxδs

r

]
.

Using 〈s, x〉 = μr, we can see that

(1 − α)(1 − γ)μ + ασμ− α2δxδs ≥ (1 − γ)

[
μ(1 − α + σα) + α2 δxδs

r

]

holds for all α ∈ [0, 2α̂1]. Since the right-hand side of the inequality is positive for all
α ∈ [0, 1], λmin(z(α)) > 0 for all α ∈ [0, α̂1]. Let α0 be the least α ≤ α̂1 such that
x(α), s(α) ∈ K for all α ≤ α0 and x(α0) ∈ ∂K (or s(α0) ∈ ∂K). Then λmin(z(α0)) =
0, which is a contradiction. Hence x(α), s(α) ∈ int K. Hence (x(α), s(α), y(α)) ∈
N−∞(γ) for all α ∈ [0, α̂1].

Note that the length of the interval obtained depends on the size of the scaled
Newton directions.

For the feasibility condition in step 3 of IIPM we want an α̂2 such that (3.7) holds
for all (x(α), s(α)), α ∈ [0, α̂2]. Using Lemma 3.4, the feasibility condition on (x, s)
and Cauchy–Schwarz, we get

〈s(α), x(α)〉
〈s0, x0〉

− φ̄(1 − α) =
〈s, x〉
〈s0, x0〉

(1 + α(σ − 1)) + α2 〈�s,�x〉
〈s0, x0〉

− φ̄(1 − α)

=

(
〈s, x〉
〈s0, x0〉

− φ̄

)
(1 − α) + ασ

〈s, x〉
〈s0, x0〉

+ α2 〈�s,�x〉
〈s0, x0〉

≥ α

〈s0, x0〉
(σ 〈s, x〉 − αδxδs).

Therefore the condition 〈s(α), x(α)〉 − φ̄(1 − α) 〈s0, x0〉 ≥ 0 holds for all α ∈ [0, α̂2],
where

α̂2 :=
σ 〈s, x〉
δxδs

.(3.9)

For the last condition in Step 3, Cauchy–Schwarz yields

〈s(α), x(α)〉 = 〈s, x〉 (1 − α(1 − σ)) + α2 〈�s,�x〉

≤ 〈s, x〉
(

1 − α(1 − σ) + α2 δxδs
〈s, x〉

)
.

It suffices to have[
1 − α(1 − σ) + α2 δxδs

〈s, x〉

]
− (1 − α(1 − β)) = α

(
α
δxδs
〈s, x〉 − (β − σ)

)
≤ 0.

Solving for α from the above inequality, we can see that the last condition holds for
all α ∈ [0, α̂3], where

α̂3 :=
(β − σ) 〈s, x〉

δxδs
.(3.10)
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So far, we have obtained a lower bound on the step sizes in terms of δx, δs, and
〈s, x〉. Next we prove Proposition 3.7, where we obtain a constant upper bound
(independent of the iteration number) on δxδs

〈s,x〉 , which appears in (3.8), (3.9), and

(3.10). By Theorem 3.3 this constant upper bound leads to a global convergence
result. For this we introduce the operator, G := L(s̃)−1L(x̃), which plays a useful
role in bounding δxδs. Recall the third scaled Newton equation

L(s̃)�x̃ + L(x̃)�s̃ = σμe− L(s̃)L(x̃)e.

Since x̃ and s̃ operator commute, and G is a symmetric matrix, by multiplying this
equation by (L(x̃)L(s̃))−1/2, we get

G−1/2�x̃ + G1/2�s̃ = σμ(L(x̃)L(s̃))−1/2e−G1/2s̃ =: h.

The analysis of IIPM is intricate because
〈
G1/2�s̃, G−1/2�x̃

〉
= 〈�s,�x〉 �= 0. Now

let us define

t2 := ‖G1/2�s̃‖2
F + ‖G−1/2�x̃‖2

F .

The following proposition will lead to a bound on the size of δxδs
〈s,x〉 .

Proposition 3.7. t2k ≤ ω 〈sk, xk〉, where ω is a constant independent of k.
We will drop the subscript k on t when we do not need to stress on the iteration

number. Before we prove the proposition, let us pause here to see its relevance in
bounding δxδs. We state the following technical but useful result (Lemma 33 in [11]).

Lemma 3.8. Let u, v ∈ J and G be a positive definite self-adjoint operator. Then

‖u‖F ‖v‖F ≤ 1

2

√
κG

(
‖G1/2u‖2

F + ‖G−1/2v‖2
F

)
,

where κG = λmax(G)
λmin(G) is the condition number of G.

Note that in our application, κG may depend on the iteration number k, but the
following lemma provides a bound on the condition number of G for the methods we
are interested in (see Lemma 36 in [11]).

Lemma 3.9. For the NT method κG = 1 =: κ. For the xs and the sx methods,

if (x, s) ∈ N−∞(γ), then κG ≤ r

1 − γ
=: κ.

Using the above lemmas, we have the following bound on δxδs:

δxδs ≤
t2

2

√
κ ≤ ω

2

√
κ 〈s, x〉 .(3.11)

Now we prove the proposition.
Proof (Proposition 3.7). We first note the following identity:

‖G1/2�s̃ + G−1/2�x̃‖2
F = ‖G1/2�s̃‖2

F + ‖G−1/2�x̃‖2
F + 2 〈G1/2�s̃, G−1/2�x̃〉

= ‖G1/2�s̃‖2
F + ‖G−1/2�x̃‖2

F + 2 〈�s̃,�x̃〉.

Using what we just derived we can show that

t2 + 2 〈�s̃,�x̃〉 = ‖h‖2
F =

r∑
i

(σμ− λi(z̃))
2

λi(z̃)
≤

(
1 − 2σ +

σ2

1 − γ

)
〈s, x〉,(3.12)
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where the second equality follows from the proof of Lemma 34 in [11] and inequality
from Lemma 35 in [11].

We take a small detour to introduce some convenient notation which helps us in
stating a key claim in the proof of this proposition, and is also used in the arguments
for polynomiality of convergence. Let us assume a reference point (u0, v0, r0) feasible
to the equality constraints (and not necessarily in the cone) such that x0−u0, s0−v0 ∈
int K, where (x0, s0, y0) is the initial iterate in IIPM. This condition is easily satisfied
by scaling the initial point for any given (u0, v0, r0). For a given sequence of iterates
{(xk, sk, yk)} we define

uk+1 = (1 − αk
p)(uk − xk) + xk+1;

rk+1 = (1 − αk
d)(rk − yk) + yk+1;

vk+1 = (1 − αk
d)(vk − sk) + sk+1.

From the above definitions, we can observe the following properties:

xk+1 − uk+1 = φk+1
p (x0 − u0) ∈ int K;(3.13)

sk+1 − vk+1 = φk+1
d (s0 − v0) ∈ int K;

Auk = b and A∗rk + vk = c for all k;

A(xk + �xk − uk) = A(x + �xk) −Auk = b− b = 0;

A∗(yk + �yk − rk) + sk + �sk − vk = 0.

(The third line holds for k = 0 by assumption, and then holds for all k by induction
using the last two lines.) The following result is the key to proving the proposition.

Claim 3.1.

〈s, x〉 〈s0 − v0, x0 − u0〉
〈s0, x0〉

+ 〈�s,�x〉 + ξt
√

〈s, x〉 ≥ 0,

where

ξ :=

√
r

1 − γ

[
〈s, x− u〉 + 〈s− v, x〉

〈s, x〉

]
.(3.14)

Due to the technical nature of the claim, the proved is placed in the appendix. For
now, we substitute 〈�s,�x〉 from the inequality in (3.12), to get

t2 ≤ 〈s, x〉 χ̄ + 2
√

〈s, x〉 ξt,

where

χ̄ := 1 − 2σ +
σ2

1 − γ
+ 2

{
〈s0 − v0, x0 − u0〉

〈s0, x0〉

}
is independent of k.(3.15)

Therefore,

t2k ≤ 〈sk, xk〉
(
ξk +

√
ξ2
k + χ̄

)2

.

From Lemma 4.1 in [10], we have the following useful bound: Let (x, s, y) be any
iterate generated by IIPM and (x∗, s∗, y∗) be an optimal solution to (P ) and (D).
Then

〈s, x− u〉 + 〈s− v, x〉
〈s, x〉 ≤ 1 +

〈s∗, x0 − u0〉 + 〈s0 − v0, x
∗〉 + 〈s0 − v0, x0 − u0〉

〈s0, x0〉
.
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Therefore ξk is uniformly bounded by ξ̄, where

ξ̄ =

√
r

1 − γ

{
1 +

〈s∗, x0 − u0〉 + 〈s0 − v0, x
∗〉 + 〈s0 − v0, x0 − u0〉

〈s0, x0〉

}
.(3.16)

Hence we can choose ω to be

ω =

(
ξ̄ +

√
ξ̄2 + χ̄

)2

.(3.17)

Recall that the conclusion of Proposition 3.7 led to a bound on δxδs in (3.11).
Hence we can bound from below the α̂’s in (3.8), (3.9), and (3.10) in the following
way:

α̂1 =
γσ 〈s, x〉

2 (r + 1 − γ) δxδs
≥ γσ

(r + 1 − γ)ω
√
κ

=: ᾱ1,(3.18)

α̂2 =
σ 〈s, x〉
δxδs

≥ 2σ

ω
√
κ

=: ᾱ2, and(3.19)

α̂3 =
(β − σ) 〈s, x〉

δxδs
≥ 2(β − σ)

ω
√
κ

=: ᾱ3.(3.20)

Taking into account the above bounds, we define

α∗ := min

(
1,

γσ

(r + 1 − γ)ω
√
κ
,

2σ

ω
√
κ
,
2(β − σ)

ω
√
κ

)
= Ω

(
1

rω
√
κ

)
.(3.21)

For this choice of α∗, for α ∈ [0, α∗] all the conditions in step 3 (and hence step 4 by
the remarks following the algorithm) of IIPM are satisfied. This bound implies the
global convergence of IIPM by Theorem 3.3. Also, note that since 〈�s̃,�x̃〉 = 0 for
feasible-IPMs, (3.12) implies that

t2 ≤
(

1 − 2σ +
σ2

1 − γ

)
〈s, x〉 .

Hence ω in the case of feasible-IPMs is replaced by a constant independent of the data
and we obtain O(r

√
κ ln(1/ε)) iteration complexity for feasible-IPMs by Theorem 3.3.

This is the bound obtained by Schmieta and Alizadeh in [11].

With some restrictions on the size of initial points, we can show that ω is polyno-
mially bounded and consequently obtains the polynomial convergence of IIPM. Let
(u0, r0, v0) be the solution to

min {‖u‖F : Au = b} and min {‖v‖F : A∗r + v = c}, and

x0 = s0 = ρ0e ∈ int K,(3.22)

where e is the identity element of the Euclidean Jordan algebra and ρ0 >
max (‖u0‖2, ‖v0‖2). This implies that x0 − u0 ∈ int K and s0 − v0 ∈ int K. Let
us assume that for some constant Ψ > 0,

ρ0 ≥ 1

Ψ
ρ∗ :=

1

Ψ
min {max (‖x∗‖2, ‖s∗‖2) : (x∗, s∗) solves (P ) and (D)}.(3.23)



1226 BHARATH KUMAR RANGARAJAN

(Note that we can always increase ρ0.) Now we can obtain a bound for ω. First, let
us note two useful facts: ‖·‖F ≤

√
r‖·‖2 and 〈s0, x0〉 = ρ2

0r. Therefore, using Cauchy–
Schwarz, we can see that 〈p, q〉 ≤ ‖p‖F ‖q‖F ≤ r‖p‖2‖q‖2. Now we can bound ξ̄ in
(3.16) as follows:

ξ̄ =

√
r

1 − γ

{
1 +

〈s∗, x0 − u0〉 + 〈s0 − v0, x
∗〉 + 〈s0 − v0, x0 − u0〉

〈s0, x0〉

}

≤
√

r

1 − γ

{
1 +

2ρ∗ρ0r + 2ρ∗ρ0r + 4ρ2
0r

ρ2
0r

}

=

√
r

1 − γ

{
5 + 4

ρ∗

ρ0

}
≤

√
r

1 − γ
(5 + 4Ψ) (using (3.23)).

For a bound on χ̄ in (3.15), we have

χ̄ = 1 − 2σ +
σ2

1 − γ
+ 2

{
〈s0 − v0, x0 − u0〉

〈s0, x0〉

}
≤ 1 +

1

1 − γ
+ 2 · 4ρ2

0r

ρ2
0r

= 9 +
1

1 − γ
.

Therefore,

ω =

(
ξ̄ +

√
ξ̄2 + χ̄

)2

= O(r).(3.24)

Having obtained bounds on the key quantities defining α∗ in (3.21), we state our main
theorem.

Theorem 3.10. Suppose that κG ≤ κ < ∞ for all iterations of IIPM. Then
IIPM will terminate in O(

√
κr2 ln(1/ε∗)) iterations. Hence the NT method takes

O(r2 ln(1/ε∗)) iterations, and the xs and sx methods take O(r2.5 ln(1/ε∗)) iterations.
Proof. For any α ∈ [0, α∗], α∗ as defined in (3.21), all the conditions in step 3 of

IIPM are satisfied. Thus by Theorem 3.3, IIPM will terminate in k =
⌈

1
α∗

⌉
ln
(

1
ε∗

)
=

O
(√

κr2 ln (1/ε∗)
)

iterations.
The second part of the theorem follows from the bound on κ in Lemma 3.9 for

the xs, the sx, and the NT method.

4. Appendix. The following technical result is useful in proving Claim 3.1.
Lemma 4.1. If G = L(s̃)−1L(x̃), then λmax(Q

−1
x̃ G) = 1

λmin(z̃) . If q ∈ K and

q̃ = Qp−1q, then

‖Qx̃1/2 q̃‖F ≤ 〈q̃, x̃〉 = 〈q, x〉.

Proof. Suppose {λi : 1 ≤ i ≤ r} are the eigenvalues of x̃ with λ1 ≥ · · · ≥
λi ≥ · · · ≥ λr paired with the eigenvectors {ci : 1 ≤ i ≤ r} derived from the spectral
decomposition. Let the corresponding eigenvalues of s̃ be {μi : 1 ≤ i ≤ r} with
μ1 ≥ · · · ≥ μi ≥ · · · ≥ μr. L(x̃−1) and L(s̃)−1 commute as operators as x̃ and s̃
operator commute. From section 4, Chapter V of [5] we can see that their eigenvalues
come from a common index pair set I ⊂ {(i, j) : 1 ≤ i, j ≤ r} (with (i, i) ∈ I for
1 ≤ i ≤ r) and they share the same eigenspace corresponding to the eigenvalue derived
from a pair (i, j) ∈ I. Using Lemmas 2.4 and 2.8, and Theorem 2.14, we then have
the following two results:

λmax

(
Q−1

x̃ L(s̃)−1L(x̃)
)

= λmax

(
Qx̃−1L(x̃)L(s̃)−1

)
= λmax

(
L(x̃−1)L(s̃)−1

)
= max

(i,j)∈I

[(
1

λi
+

1

λj

)
1

μi + μj

]
,
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λmin(z̃)2 = λmin(Qx̃1/2 s̃)2 = λmin(QQ
x̃1/2 s̃) = λmin (Qx̃1/2Qs̃Qx̃1/2) = λmin (Qs̃Qx̃) ,

and λmin (Qs̃Qx̃) = min(i,j)∈I λiλjμiμj . For any (i, j) ∈ I, it is straightforward to
verify that

min

(
1

λiμi
,

1

λjμj

)
≤

[(
1

λi
+

1

λj

)
1

μi + μj

]
≤ max

(
1

λiμi
,

1

λjμj

)
, and

max
(
(λiμi)

2, (λjμj)
2
)
≥ λiλjμiμj ≥ min

(
(λiμi)

2, (λjμj)
2
)
.

Hence, the max and min are achieved over the indices (i, i) ∈ I. This proves the first
part of the lemma.

For the second part, the equality is easy to see. To show the inequality, note that

λmax(Qx̃1/2 q̃) ≤ ‖Qx̃1/2 q̃‖F .

For p :=
Q

x̃1/2 q̃

‖Q
x̃1/2 q̃‖F

, λmax(p) ≤ 1, and hence e− p ∈ K. Since

〈q̃, x̃〉 = 〈q̃, Qx̃1/2e〉 = 〈Qx̃1/2 q̃, e〉 = 〈Qx̃1/2 q̃, e− p〉 + 〈Qx̃1/2 q̃, p〉 ,

we have

〈q̃, x̃〉 = 〈Qx̃1/2 q̃, e− p〉 + 〈Qx̃1/2 q̃, p〉 ≥ 〈Qx̃1/2 q̃, p〉 = ‖Qx̃1/2 q̃‖F .

Proof (Claim 3.1). By expanding 〈�s + s− v,�x + x− u〉 and using (3.13), we
find that

〈�s,�x〉 + 〈s− v, x− u〉 + 〈�s, x− u〉 + 〈s− v,�x〉 = 0.(4.1)

We will now bound the last three terms in the expansion. First, note that 〈s− v,�x〉 =
〈s̃− ṽ,�x̃〉 =

〈
G1/2(s̃− ṽ), G−1/2�x̃

〉
and using Cauchy–Schwarz, we see that

〈G1/2(s̃− ṽ), G−1/2�x̃〉 ≤ ‖G1/2(s̃− ṽ)‖F ‖G−1/2�x̃‖F ≤ ‖G1/2(s̃− ṽ)‖F t.(4.2)

Next, note that

‖G1/2(s̃− ṽ)‖2
F = 〈G1/2(s̃− ṽ), G1/2(s̃− ṽ)〉 = 〈s̃− ṽ, G(s̃− ṽ)〉 .(4.3)

Since x̃ and s̃ operator commute, operators G and Qx̃ commute. Hence we have

(4.4)

〈s̃− ṽ, G(s̃− ṽ)〉 = 〈Q1/2
x̃ (s̃− ṽ), Q−1

x̃ GQ
1/2
x̃ (s̃− ṽ)〉 ≤ λmax(Q

−1
x̃ G)‖Q1/2

x̃ (s̃− ṽ)‖2
F .

By substituting q = s− v in the second part of Lemma 4.1, we get ‖Q1/2
x̃ (s̃− ṽ)‖F ≤

〈s− v, x〉. Using (4.3) and (4.4), we see that

‖G1/2(s̃− ṽ)‖2
F ≤ λmax(Q

−1
x̃ G)‖Q1/2

x̃ (s̃− ṽ)‖2
F ≤ 1

λmin(z)
〈s− v, x〉2.

As (x, s) ∈ N−∞(γ), λmin(z) ≥ (1 − γ)μ and from (4.2) we have

〈s− v,�x〉 ≤ ‖G1/2(s̃− ṽ)‖F ‖G−1/2�x̃‖F ≤
√

1

(1 − γ)μ
〈s− v, x〉 t.
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Similarly it can be shown that

〈�s, x− u〉 ≤
√

1

(1 − γ)μ
〈s, x− u〉 t.

Also using the feasibility condition (3.7), (3.13), and φ̄ ≤ 1, we get

〈s− v, x− u〉 ≤ φ̄2 〈s0 − v0, x0 − u0〉 ≤
〈s, x〉
〈s0, x0〉

〈s0 − v0, x0 − u0〉 .

Substituting the above bounds into (4.1) and using (3.14), we get

0 ≤ 〈�s,�x〉 +
〈s, x〉
〈s0, x0〉

〈s0 − v0, x0 − u0〉 +

√
1

(1 − γ)μ
〈s, x− u〉 t

+

√
1

(1 − γ)μ
〈s− v, x〉 t

= 〈�s,�x〉 + 〈s, x〉 〈s0 − v0, x0 − u0〉
〈s0, x0〉

+ ξt
√

〈s, x〉.

5. Conclusion. We have established polynomial convergence of infeasible-
interior-point methods for three important methods: the xs, sx, and the NT method.
To our knowledge this is the first time an infeasible-interior-point method has been
analyzed for the NT method using the N−∞ neighborhood for both semidefinite pro-
gramming and conic programs over symmetric cones. We have, in the process, pro-
vided a constructive proof of the Lyapunov lemma in the Jordan algebraic setting.
The algorithm presented here is closely related to the algorithms used in practice to
solve large-scale linear programs [6]. The complexity obtained for the NT method
(in this general setting) coincides with the bound obtained for linear programming
by Zhang [13]. The work by Rangarajan and Todd [10] shows convergence of the NT
method using another neighborhood defined globally over the cone.
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STRONG CONVERGENCE THEOREM BY A HYBRID METHOD
FOR NONEXPANSIVE MAPPINGS AND LIPSCHITZ-CONTINUOUS

MONOTONE MAPPINGS∗

NATALIA NADEZHKINA† AND WATARU TAKAHASHI†

Abstract. In this paper we introduce an iterative process for finding a common element of the
set of fixed points of a nonexpansive mapping and the set of solutions of the variational inequality
problem for a monotone, Lipschitz-continuous mapping. The iterative process is based on two well-
known methods: hybrid and extragradient. We obtain a strong convergence theorem for three
sequences generated by this process. Based on this result, we also construct an iterative process for
finding a common fixed point of two mappings, such that one of these mappings is nonexpansive and
the other is taken from the more general class of Lipschitz pseudocontractive mappings.

Key words. extragradient method, fixed point, hybrid method, monotone mapping, nonexpan-
sive mapping, strong convergence, variational inequality

AMS subject classifications. 47H09, 47J20
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1. Introduction. Let C be a closed, convex, and nonempty subset of a real
Hilbert space H and let PC be the metric projection from H onto C. A mapping A
of C into H is called monotone if

〈Au−Av, u− v〉 ≥ 0

for all u, v ∈ C. A mapping A of C into H is called k-Lipschitz-continuous if there
exists a positive real number k such that

‖Au−Av‖ ≤ k ‖u− v‖

for all u, v ∈ C. Let the mapping A from C to H be monotone and Lipschitz-
continuous. The variational inequality problem is to find a u ∈ C such that

〈Au, v − u〉 ≥ 0

for all v ∈ C. The set of solutions of the variational inequality problem is denoted by
V I (C,A). The variational inequality problem was first discussed by Lions [16] and
now is well known; there are a lot of different approaches towards solving this problem
in finite-dimensional and infinite-dimensional spaces, and the research is intensively
continued. This problem has many applications in computational mathematics, math-
ematical physics, operation research, mathematical economics, optimization theory,
and other fields; see, e.g., [10], [20], [31]. At the same time, to construct a mathemati-
cal model which is as close as possible to a real complex problem, we often have to use
more than one constraint. Solving such problems, we have to obtain some solution
which is simultaneously the solution of two or more subproblems or the solution of
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one subproblem on the solution set of another subproblem. These subproblems can
be given, for example, by two or more different variational inequalities (see, e.g., the
lexicographic variational inequality problem [22]) or two or more different fixed point
problems (see, e.g., a problem of obtaining a common fixed point of two or more map-
pings [27], [28]). These subproblems can also be given by problems of different types.
Recently Antipin considered a finite-dimensional variant of the variational inequality
problem, where the solution should satisfy some related constraint in inequality form
[1] or some system of constraints in inequality and equality form [2]. Yamada [30]
considered an infinite-dimensional variant of the solution of the variational inequality
problem on the set of fixed points of some mapping. Takahashi and Toyoda [29] also
formulated an infinite-dimensional variant of the problem of finding a common point
of the set of the variational inequality solutions and the set of fixed points of some
mapping. The problem of Takahashi and Toyoda can be formulated in the following
way. A mapping A of C into H is called α-inverse-strongly-monotone if there exists
a positive real number α such that

〈Au−Av, u− v〉 ≥ α ‖Au−Av‖2

for all u, v ∈ C; see [6], [17]. It is obvious that an α-inverse-strongly-monotone
mapping A is monotone and Lipschitz-continuous. A mapping S of C into itself is
called nonexpansive if

‖Su− Sv‖ ≤ ‖u− v‖

for all u, v ∈ C; see [28]. We denote by F (S) the set of fixed points of S. The
problem of Takahashi and Toyoda entails finding an element of F (S) ∩ V I (C,A)
under the assumption that a set C ⊂ H is closed and convex, a mapping S of C into
itself is nonexpansive, and a mapping A of C into H is α-inverse-strongly-monotone.
To solving this problem Iiduka and Takahashi [12] introduced the following iterative
scheme by a hybrid method:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ C,

yn = αnxn + (1 − αn)SPC (xn − λnAxn) ,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖} ,
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0} ,
xn+1 = PCn∩Qnx

for every n = 0, 1, 2, . . . , where 0 ≤ αn ≤ c < 1 and 0 < a ≤ λn ≤ b < 2α. They
showed that if F (S) ∩ V I (C,A) is nonempty, then the sequence {xn}, generated by
this iterative process, converges strongly to PF (S)∩V I(C,A)x. Generally speaking, the
algorithm suggested by Iiduka and Takahashi is based on two well-known types of
methods, namely, on the projection-type methods for solving variational inequality
problems and so-called hybrid or outer-approximation methods for solving fixed point
problem. The idea of “hybrid” or “outer-approximation” types of methods was origi-
nally introduced by Haugazeau in 1968 and was successfully generalized and extended
in recent papers of Bauschke and Combettes [3], [4], Burachik, Lopes, and Svaiter [5],
Combettes [8], Nakajo and Takahashi [18], and Solodov and Svaiter [25].

It is easy to see that the class of α-inverse-strongly-monotone mappings in the
above-mentioned problem of Takahashi and Toyoda does not contain some important
classes of mappings even in a finite-dimensional case. For example, if the matrix in the
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corresponding linear complementarity problem is positively semidefinite, but not pos-
itively definite, then the mapping A will be monotone and Lipschitz-continuous, but
not α-inverse-strongly-monotone. It is also easy to see that while α-inverse-strongly-
monotone mappings are tightly connected with the important class of nonexpansive
mappings, monotone mappings are tightly connected with a more general and also
quite important class of Lipschitz pseudocontractive mappings. (A mapping T from C

to C is called pseudocontractive if ‖Tx− Ty‖2 ≤ ‖x− y‖2
+ ‖(I − T )x− (I − T ) y‖2

for all x, y ∈ C.) Namely, if a mapping T from C to C is nonexpansive, then the
mapping A = I − T is 1/2-inverse-strongly-monotone; moreover, F (T ) = V I (C,A)
(see, e.g., [29]). At the same time, if a mapping T from C to C is pseudocontractive
and k-Lipschitz-continuous, then the mapping A = I − T is monotone and (k + 1)-
Lipschitz-continuous; moreover, F (T ) = V I (C,A) (see, e.g., proof of Theorem 4.5).
So, it seems to be quite natural to try to get some result similar to the result of
Iiduka and Takahashi for a more general class of monotone and Lipschitz-continuous
mappings. But in this case we cannot apply the previous idea of combining projection-
type and hybrid-type methods, because the mapping SPC (xn − λnAxn) in this case
is not nonexpansive and the usual schemes of proof are not applicable. In this paper
the main idea is to investigate iterative schemes based on combination of hybrid-type
methods and so-called extragradient-type methods. In 1976, for finding a solution of
the nonconstrained variational inequality problem in the finite-dimensional Euclidean
space Rn under the assumption that a set C ⊂ Rn is closed and convex and a mapping
A of C into Rn is monotone and k-Lipschitz-continuous, Korpelevich [15] introduced
the following so-called extragradient method:⎧⎪⎨

⎪⎩
x0 = x ∈ C,

xn = PC (xn − λAxn) ,

xn+1 = PC (xn − λAxn)

(1.1)

for every n = 0, 1, 2, . . . , where λ ∈ (0, 1/k). He showed that if V I (C,A) is nonempty,
then the sequences {xn} and {xn}, generated by (1.1), converge to the same point z ∈
V I (C,A). The idea of the extragradient iterative process introduced by Korpelevich
was successfully generalized and extended not only in Euclidean but also in Hilbert
and Banach spaces; see, e.g., the recent papers of He, Yang, and Yuan [11], Gárciga
Otero and Iuzem [9], Noor [19], Solodov and Svaiter [26], and Solodov [24].

In the present paper, by combining hybrid and extragradient methods, we intro-
duce an iterative process for finding a common element of the set of fixed points of
a nonexpansive mapping and the set of solutions of the variational inequality prob-
lem for a monotone, Lipschitz-continuous mapping in a real Hilbert space. Then, we
obtain a strong convergence theorem for three sequences generated by this process.
Some well-known strong convergence theorems in a Hilbert space follow from this re-
sult. Based on our main result, we construct an iterative process for finding a common
fixed point of two mappings, one of which is nonexpansive and the other taken from
the more general class of Lipschitz pseudocontractive mappings.

2. Preliminaries. Let H be a real Hilbert space with inner product 〈·, ·〉 and
norm ‖·‖ and let C be a closed, convex, and nonempty subset of H. We write xn ⇀ x
to indicate that the sequence {xn} converges weakly to x and xn → x to indicate that
{xn} converges strongly to x. For every point x ∈ H there exists a unique nearest
point in C, denoted by PCx, such that ‖x− PCx‖ ≤ ‖x− y‖ for all y ∈ C. PC

is called the metric projection of H onto C. We know that PC is a nonexpansive
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mapping from H onto C. It is also known that PCx ∈ C and

〈x− PCx, PCx− y〉 ≥ 0(2.1)

for all x ∈ H, y ∈ C; see [28] for more details. It is easy to see that (2.1) is equivalent
to

‖x− y‖2 ≥ ‖x− PCx‖2
+ ‖y − PCx‖2

(2.2)

for all x ∈ H, y ∈ C.
Let A be a monotone mapping of C into H. In the context of the variational

inequality problem the characterization of projection (2.1) implies

u ∈ V I (C,A) ⇔ u = PC (u− λAu) ∀λ > 0.

It is also known that H satisfies Opial’s condition [21], i.e., for any sequence {xn}
with xn ⇀ x the inequality

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

holds for every y ∈ H with y = x.
A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H, f ∈ Tx

and g ∈ Ty imply 〈x− y, f − g〉 ≥ 0. A monotone mapping T : H → 2H is maximal if
its graph G (T ) is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping T is maximal if and only if for (x, f) ∈ H ×H,
〈x− y, f − g〉 ≥ 0 for every (y, g) ∈ G (T ) implies f ∈ Tx. Let A be a monotone,
k-Lipschitz-continuous mapping of C into H and let NCv be the normal cone to C at
v ∈ C, i.e., NCv = {w ∈ H : 〈v − u,w〉 ≥ 0 for all u ∈ C}. Define

Tv =

{
Av + NCv if v ∈ C,
∅ if v /∈ C.

It is known that in this case T is maximal monotone, and 0 ∈ Tv if and only if
v ∈ V I (C,A); see [23].

3. Strong convergence theorem. In this section we prove a strong conver-
gence theorem by a combined hybrid-extragradient method for nonexpansive map-
pings and monotone, k-Lipschitz-continuous mappings.

Theorem 3.1. Let C be a closed convex subset of a real Hilbert space H. Let
A be a monotone and k-Lipschitz-continuous mapping of C into H and let S be a
nonexpansive mapping of C into itself such that F (S) ∩ V I (C,A) = ∅. Let {xn},
{yn}, and {zn} be sequences generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ C,

yn = PC (xn − λnAxn) ,

zn = PC (xn − λnAyn) ,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖} ,
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0} ,
xn+1 = PCn∩Qnx

for every n = 0, 1, 2, . . . , where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and αn ⊂ [0, c]
for some c ∈ [0, 1). Then the sequences {xn}, {yn}, and {zn} converge strongly to
PF (S)∩V I(C,A)x.
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Proof. It is obvious that Cn is closed and Qn is closed and convex for every
n = 0, 1, 2, . . . . As Cn = {z ∈ C : ‖zn − xn‖2

+ 2 〈zn − xn, xn − z〉 ≤ 0}, we also have
that Cn is convex for every n = 0, 1, 2, . . . . As Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0},
we have 〈xn − z, x− xn〉 ≥ 0 for all z ∈ Qn and, by (2.1), xn = PQnx. Put tn =
PC (xn − λnAyn) for every n = 0, 1, 2, . . . . Let u ∈ F (S) ∩ V I (C,A). From (2.2),
monotonicity of A, and u ∈ V I (C,A), we have

‖tn − u‖2 ≤ ‖xn − λnAyn − u‖2 − ‖xn − λnAyn − tn‖2

= ‖xn − u‖2 − ‖xn − tn‖2
+ 2λn 〈Ayn, u− tn〉

= ‖xn − u‖2 − ‖xn − tn‖2

+2λn (〈Ayn −Au, u− yn〉 + 〈Au, u− yn〉 + 〈Ayn, yn − tn〉)
≤ ‖xn − u‖2 − ‖xn − tn‖2

+ 2λn 〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − 2 〈xn − yn, yn − tn〉 − ‖yn − tn‖2

+2λn 〈Ayn, yn − tn〉
= ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2

+ 2 〈xn − λnAyn − yn, tn − yn〉 .

Further, since yn = PC (xn − λnAxn) and A is k-Lipschitz-continuous, we have

〈xn − λnAyn − yn, tn − yn〉
= 〈xn − λnAxn − yn, tn − yn〉 + 〈λnAxn − λnAyn, tn − yn〉
≤ 〈λnAxn − λnAyn, tn − yn〉 ≤ λnk ‖xn − yn‖ ‖tn − yn‖ .

So, we have

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2
+ 2λnk ‖xn − yn‖ ‖tn − yn‖

≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2
+ λ2

nk
2 ‖xn − yn‖2

+ ‖yn − tn‖2

≤ ‖xn − u‖2
+
(
λ2
nk

2 − 1
)
‖xn − yn‖2

(3.1)

≤ ‖xn − u‖2
.

Therefore, from (3.1), zn = αnxn + (1 − αn)Stn, and u = Su, we have

‖zn − u‖2
= ‖αnxn + (1 − αn)Stn − u‖2

= ‖αn (xn − u) + (1 − αn) (Stn − u)‖2

≤ αn ‖xn − u‖2
+ (1 − αn) ‖Stn − u‖2

≤ αn ‖xn − u‖2
+ (1 − αn) ‖tn − u‖2

(3.2)

≤ ‖xn − u‖2
+ (1 − αn)

(
λ2
nk

2 − 1
)
‖xn − yn‖2

≤ ‖xn − u‖2

for every n = 0, 1, 2, . . . and hence u ∈ Cn. So, F (S) ∩ V I (C,A) ⊂ Cn for every
n = 0, 1, 2, . . . . Next, let us show by mathematical induction that {xn} is well-
defined and F (S) ∩ V I (C,A) ⊂ Cn ∩ Qn for every n = 0, 1, 2, . . . . For n = 0 we
have Q0 = C. Hence we obtain F (S) ∩ V I (C,A) ⊂ C0 ∩ Q0. Suppose that xk is
given and F (S) ∩ V I (C,A) ⊂ Ck ∩ Qk for some k ∈ N . Since F (S) ∩ V I (C,A) is
nonempty, Ck∩Qk is a nonempty closed convex subset of C. So, there exists a unique
element xk+1 ∈ Ck∩Qk such that xk+1 = PCk∩Qk

x. It is also obvious that there holds
〈xk+1 − z, x− xk+1〉 ≥ 0 for every z ∈ Ck∩Qk. Since F (S)∩V I (C,A) ⊂ Ck∩Qk, we



STRONG CONVERGENCE THEOREM 1235

have 〈xk+1 − z, x− xk+1〉 ≥ 0 for z ∈ F (S)∩V I (C,A) and hence F (S)∩V I (C,A) ⊂
Qk+1. Therefore, we obtain F (S) ∩ V I (C,A) ⊂ Ck+1 ∩Qk+1.

Let l0 = PF (S)∩V I(C,A)x. From xn+1 = PCn∩Qn
x and l0 ∈ F (S) ∩ V I (C,A) ⊂

Cn ∩Qn, we have

‖xn+1 − x‖ ≤ ‖l0 − x‖(3.3)

for every n = 0, 1, 2, . . . . Therefore, {xn} is bounded. From (3.1) and (3.2) we also
obtain that {zn} and {tn} are bounded. Since xn+1 ∈ Cn∩Qn ⊂ Qn and xn = PQnx,
we have

‖xn − x‖ ≤ ‖xn+1 − x‖

for every n = 0, 1, 2, . . . . Therefore, there exists limn→∞ ‖xn − x‖. Since xn = PQnx
and xn+1 ∈ Qn, using (2.2), we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x‖2 − ‖xn − x‖2

for every n = 0, 1, 2, . . . . This implies that

lim
n→∞

‖xn+1 − xn‖ = 0.

Since xn+1 ∈ Cn, we have ‖zn − xn+1‖ ≤ ‖xn − xn+1‖ and hence

‖xn − zn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − zn‖ ≤ 2 ‖xn+1 − xn‖

for every n = 0, 1, 2, . . . . From ‖xn+1 − xn‖ → 0, we have ‖xn − zn‖ → 0.

For u ∈ F (S) ∩ V I (C,A), from (3.2) we obtain

‖zn − u‖2 ≤ ‖xn − u‖2
+ (1 − αn)

(
λ2
nk

2 − 1
)
‖xn − yn‖2

.

Therefore, we have

‖xn − yn‖2 ≤ 1

(1 − αn) (1 − λ2
nk

2)

(
‖xn − u‖2 − ‖zn − u‖2

)

=
1

(1 − αn) (1 − λ2
nk

2)
(‖xn − u‖ − ‖zn − u‖) (‖xn − u‖ + ‖zn − u‖)(3.4)

≤ 1

(1 − αn) (1 − λ2
nk

2)
(‖xn − u‖ + ‖zn − u‖) ‖xn − zn‖ .

Since ‖xn − zn‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain
‖xn − yn‖ → 0. By the same process as in (3.1), we also have

‖tn − u‖2 ≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2
+ 2λnk ‖xn − yn‖ ‖tn − yn‖

≤ ‖xn − u‖2 − ‖xn − yn‖2 − ‖yn − tn‖2
+ ‖xn − yn‖2

+ λ2
nk

2 ‖yn − tn‖2

≤ ‖xn − u‖2
+
(
λ2
nk

2 − 1
)
‖yn − tn‖2

.

Then, in contrast with (3.2),
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‖zn − u‖2
= ‖αnxn + (1 − αn)Stn − u‖2

= ‖αn (xn − u) + (1 − αn) (Stn − u)‖2

≤ αn ‖xn − u‖2
+ (1 − αn) ‖Stn − u‖2

≤ αn ‖xn − u‖2
+ (1 − αn) ‖tn − u‖2

≤ αn ‖xn − u‖2
+ (1 − αn)

(
‖xn − u‖2

+
(
λ2
nk

2 − 1
)
‖yn − tn‖2

)
≤ ‖xn − u‖2

+ (1 − αn)
(
λ2
nk

2 − 1
)
‖yn − tn‖2

≤ ‖xn − u‖2

and, rearranging as in (3.4),

‖tn − yn‖2 ≤ 1

(1 − αn) (1 − λ2
nk

2)

(
‖xn − u‖2 − ‖zn − u‖2

)

=
1

(1 − αn) (1 − λ2
nk

2)
(‖xn − u‖ − ‖zn − u‖) (‖xn − u‖ + ‖zn − u‖)

≤ 1

(1 − αn) (1 − λ2
nk

2)
(‖xn − u‖ + ‖zn − u‖) ‖xn − zn‖ .

Since ‖xn − zn‖ → 0 and the sequences {xn} and {zn} are bounded, we obtain
‖tn − yn‖ → 0. As A is k-Lipschitz-continuous, we have ‖Ayn −Atn‖ → 0. From
‖xn − tn‖ ≤ ‖xn − yn‖ + ‖yn − tn‖ we also have ‖xn − tn‖ → 0. Since zn = αnxn +
(1 − αn)Stn, we have (1 − αn) (Stn − tn) = αn (tn − xn) + (zn − tn). Then

(1 − c) ‖Stn − tn‖ ≤ (1 − αn) ‖Stn − tn‖
≤ αn ‖tn − xn‖ + ‖zn − tn‖
≤ (1 + αn) ‖tn − xn‖ + ‖zn − xn‖

and hence ‖tn − Stn‖ → 0. As {xn} is bounded, there is a subsequence {xni} of {xn}
such that {xni} converges weakly to some u. We can obtain that u ∈ F (S)∩V I (C,A).
First, we show u ∈ V I (C,A). Since xn− tn → 0 and xn−yn → 0, we have {tni} ⇀ u
and {yni} ⇀ u. Let

Tv =

{
Av + NCv if v ∈ C,
∅ if v /∈ C,

where NCv is the normal cone to C at v ∈ C. We have already mentioned that in this
case the mapping T is maximal monotone, and 0 ∈ Tv if and only if v ∈ V I (C,A);
see [23]. Let G (T ) be the graph of T and let (v, w) ∈ G (T ). Then, we have w ∈
Tv = Av + NCv and hence w − Av ∈ NCv. So, we have 〈v − t, w −Av〉 ≥ 0 for all
t ∈ C. On the other hand, from tn = PC (xn − λnAyn) and v ∈ C we have

〈xn − λnAyn − tn, tn − v〉 ≥ 0

and hence 〈
v − tn,

tn − xn

λn
+ Ayn

〉
≥ 0.
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From 〈v − t, w −Av〉 ≥ 0 for all t ∈ C and tni
∈ C, we have

〈v − tni
, w〉 ≥ 〈v − tni

, Av〉

≥ 〈v − tni
, Av〉 −

〈
v − tni

,
tni − xni

λni

+ Ayni

〉

= 〈v − tni
, Av −Atni

〉 + 〈v − tni
, Atni

−Ayni
〉 −

〈
v − tni

,
tni

− xni

λni

〉

≥ 〈v − tni
, Atni −Ayni

〉 −
〈
v − tni ,

tni − xni

λni

〉
.

Hence, we obtain 〈v − u,w〉 ≥ 0 as i → ∞. Since T is maximal monotone, we have
u ∈ T−10 and hence u ∈ V I (C,A).

Let us show u ∈ F (S). Assume u /∈ F (S). From Opial’s condition, we have

lim inf
i→∞

‖tni − u‖ < lim inf
i→∞

‖tni
− Su‖ = lim inf

i→∞
‖tni − Stni + Stni − Su‖

≤ lim inf
i→∞

‖Stni − Su‖ ≤ lim inf
i→∞

‖tni − u‖ .

This is a contradiction. So, we obtain u ∈ F (S). This implies u ∈ F (S)∩ V I (C,A).
From l0 = PF (S)∩V I(C,A)x, u ∈ F (S) ∩ V I (C,A), and (3.3), we have

‖l0 − x‖ ≤ ‖u− x‖ ≤ lim inf
i→∞

‖xni − x‖ ≤ lim sup
i→∞

‖xni − x‖ ≤ ‖l0 − x‖ .

So, we obtain

lim
i→∞

‖xni − x‖ = ‖u− x‖ .

From xni −x ⇀ u−x we have xni −x → u−x and hence xni → u. Since xn = PQnx
and l0 ∈ F (S) ∩ V I (C,A) ⊂ Cn ∩Qn ⊂ Qn, we have

−‖l0 − xni‖
2

= 〈l0 − xni , xni − x〉 + 〈l0 − xni , x− l0〉 ≥ 〈l0 − xni
, x− l0〉 .

As i → ∞, we obtain −‖l0 − u‖2 ≥ 〈l0 − u, x− l0〉 ≥ 0 by l0 = PF (S)∩V I(C,A)x and
u ∈ F (S) ∩ V I (C,A). Hence we have u = l0. This implies that xn → l0. It is easy
to see yn → l0 and zn → l0.

4. Applications. Using Theorem 3.1, we prove some strong convergence theo-
rems in a real Hilbert space.

Theorem 4.1. Let C be a closed convex subset of a real Hilbert space H. Let A
be a monotone and k-Lipschitz-continuous mapping of C into H such that V I (C,A)
is nonempty. Let {xn}, {yn}, and {zn} be sequences generated by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ C,

yn = PC (xn − λnAxn) ,

zn = PC (xn − λnAyn) ,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖} ,
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0} ,
xn+1 = PCn∩Qn

x

for every n = 0, 1, 2, . . . , where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k). Then the
sequences {xn}, {yn}, and {zn} converge strongly to PV I(C,A)x.
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Proof. Putting S = I, αn = 0 for all n = 0, 1, 2, . . . , by Theorem 3.1 we obtain
the desired result.

Remark. See Iiduka, Takahashi, and Toyoda [13] for the case when the mapping
A is α-inverse-strongly-monotone.

Theorem 4.2. Let C be a closed convex subset of a real Hilbert space H and let
S be a nonexpansive mapping of C into itself such that F (S) is nonempty. Let {xn}
and {yn} be sequences generated by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ C,

yn = αnxn + (1 − αn)SPCxn,

Cn = {z ∈ C : ‖yn − z‖ ≤ ‖xn − z‖} ,
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0} ,
xn+1 = PCn∩Qnx

for every n = 0, 1, 2, . . . , where αn ⊂ [0, c] for some c ∈ [0, 1). Then the sequences
{xn} and {yn} converge strongly to PF (S)x.

Proof. Putting A = 0, by Theorem 3.1 we obtain the desired result.
Remark. Originally Theorem 4.2 is the result of Nakajo and Takahashi [18].
Theorem 4.3. Let H be a real Hilbert space. Let A be a monotone and k-

Lipschitz-continuous mapping of H into itself and let S be a nonexpansive mapping of
H into itself such that F (S)∩A−10 = ∅. Let {xn} and {yn} be sequences generated by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ H,

yn = αnxn + (1 − αn)S (xn − λnA (xn − λnAxn)) ,

Cn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖} ,
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0} ,
xn+1 = PCn∩Qnx

for every n = 0, 1, 2, . . . , where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and αn ⊂
[0, c] for some c ∈ [0, 1). Then the sequences {xn} and {yn} converge strongly to
PF (S)∩A−10x.

Proof. We have A−10 = V I (H,A) and PH = I. By Theorem 3.1 we obtain the
desired result.

Let B : H → 2H be a maximal monotone mapping. Then, for any x ∈ H and
r > 0, consider Jrx = {z ∈ H : z + rBz � x}. Such Jrx is called the resolvent of B

and is denoted by Jr = (I + rB)
−1

.
Theorem 4.4. Let H be a real Hilbert space. Let A be a monotone and k-

Lipschitz-continuous mapping of H into itself and let B : H → 2H be a maximal
monotone mapping such that A−10∩B−10 = ∅. Let Jr be the resolvent of B for each
r > 0. Let {xn} and {yn} be sequences generated by⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ H,

yn = αnxn + (1 − αn) Jr (xn − λnA (xn − λnAxn)) ,

Cn = {z ∈ H : ‖yn − z‖ ≤ ‖xn − z‖} ,
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0} ,
xn+1 = PCn∩Qnx

for every n = 0, 1, 2, . . . , where {λn} ⊂ [a, b] for some a, b ∈ (0, 1/k) and αn ⊂
[0, c] for some c ∈ [0, 1). Then the sequences {xn} and {yn} converge strongly to
PA−10∩B−10x.
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Proof. We know that JB
r is nonexpansive; see [28]. We also have A−10 =

V I (H,A) and F
(
JB
r

)
= B−10. Putting PH = I, by Theorem 3.1 we obtain the

desired result.
We also know one more definition of a pseudocontractive mapping, which is equiv-

alent to the definition given in the introduction. A mapping T from C to C is called
pseudocontractive if

〈Tx− Ty, x− y〉 ≤ ‖x− y‖2
(4.1)

for all x, y ∈ C; see [6]. Obviously, the class of pseudocontractive mappings is more
general than the class of nonexpansive mappings. Let us introduce two examples
of Lipschitz pseudocontractive mappings. A linear operator A : H → H is called
positive if 〈Ax, x〉 ≥ 0 for all x ∈ H. Let A be a bounded linear positive operator
from H to H. Then the linear operator T = I − A is Lipschitz-continuous and
pseudocontractive. Let B : H → 2H be a maximal monotone operator and let Jλ
be the resolvent of B for λ > 0. We can also define the following operator, which is
called the Yosida approximation: Bλ = 1

λ (I − Jλ). The operator T = I − Bλ is also
Lipschitz-continuous and pseudocontractive (see, e.g., [28]).

In the following theorem we introduce an iterative process that converges strongly
to a common fixed point of two mappings, one of which is nonexpansive and the other
Lipschitz-continuous and pseudocontractive.

Theorem 4.5. Let C be a nonempty closed convex subset of a real Hilbert space
H. Let T be a pseudocontractive, m-Lipschitz-continuous mapping of C into itself
and let S be a nonexpansive mapping of C into itself such that F (T )∩F (S) = ∅. Let
{zn} be a sequence generated by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 = x ∈ C,

yn = xn − λn (xn − Txn) ,

zn = αnxn + (1 − αn)SPC (xn − λn (yn − Tyn)) ,

Cn = {z ∈ C : ‖zn − z‖ ≤ ‖xn − z‖} ,
Qn = {z ∈ C : 〈xn − z, x− xn〉 ≥ 0} ,
xn+1 = PCn∩Qn

x

for every n = 0, 1, 2, . . . , where {λn} ⊂ [a, b] for some a, b with 0 < a < b < 1
m+1 and

αn ⊂ [0, c] for some c ∈ [0, 1). Then the sequences {xn}, {yn}, and {zn} converge
strongly to PF (T )∩F (S)x.

Proof. Let A = I − T . Let us show the mapping A is monotone and (m + 1)-
Lipschitz-continuous. From the definition of the mapping A and (4.1), we have

〈Ax−Ay, x− y〉 = 〈x− y − Tx + Ty, x− y〉
= ‖x− y‖2 − 〈Tx− Ty, x− y〉 ≥ ‖x− y‖2 − ‖x− y‖2

= 0.

So, A is monotone. We also have

‖Ax−Ay‖2
= ‖(I − T )x− (I − T ) y‖2

= ‖x− y‖2
+ ‖Tx− Ty‖2 − 2 〈x− y, Tx− Ty〉

≤ ‖x− y‖2
+ m2 ‖x− y‖2

+ 2 ‖x− y‖ ‖Tx− Ty‖
≤ ‖x− y‖2

+ m2 ‖x− y‖2
+ 2m ‖x− y‖2

= (m + 1)
2 ‖x− y‖2

.
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So, we have ‖Ax−Ay‖ ≤ (m + 1) ‖x− y‖ and A is (m + 1)-Lipschitz-continuous.

Now let us show F (T ) = V I (C,A). In fact, we have, for λ > 0,

u ∈ V I (C,A) ⇔ 〈y − u,Au〉 ≥ 0 ∀y ∈ C

⇔ 〈u− y, u− λAu− u〉 ≥ 0 ∀y ∈ C

⇔ u = PC (u− λAu)

⇔ u = PC (u− λu + λTu)

⇔ 〈u− λu + λTu− u, u− y〉 ≥ 0 ∀y ∈ C

⇔ 〈u− Tu, u− y〉 ≤ 0 ∀y ∈ C

⇔ u = Tu.

By Theorem 3.1 we obtain the desired result.
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